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Abstract. Proving the security of complex protocols is a crucial and very challenging task. A widely
used approach for reasoning about such protocols in a modular way is universal composability. A perfect
model for universal composability should provide a sound basis for formal proofs and be very flexible in
order to allow for modeling a multitude of different protocols. It should also be easy to use, including
useful design conventions for repetitive modeling aspects, such as corruption, parties, sessions, and
subroutine relationships, such that protocol designers can focus on the core logic of their protocols.
While many models for universal composability exist, including the UC, GNUC, and IITM models,
none of them has achieved this ideal goal yet. As a result, protocols cannot be modeled faithfully and/or
using these models is a burden rather than a help, often even leading to underspecified protocols and
formally incorrect proofs.
Given this dire state of affairs, the goal of this work is to provide a framework for universal compos-
ability which combines soundness, flexibility, and usability in an unmatched way. Developing such a
security framework is a very difficult and delicate task, as the long history of frameworks for universal
composability shows.
We build our framework, called iUC, on top of the IITM model, which already provides soundness and
flexibility while lacking sufficient usability. At the core of iUC is a single simple template for specifying
essentially arbitrary protocols in a convenient, formally precise, and flexible way. We illustrate the main
features of our framework with example functionalities and realizations.
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1 Introduction

Universal composability [4, 25] is an important concept for reasoning about the security of protocols in a
modular way. It has found wide spread use, not only for the modular design and analysis of cryptographic
protocols, but also in other areas, for example for modeling and analyzing OpenStack [16], network time
protocols [11], OAuth v2.0 [14], the integrity of file systems [8], as well as privacy in email ecosystems [13].

The idea of universal composability is that one first defines an ideal protocol (or ideal functionality) F
that specifies the intended behavior of a target protocol/system, abstracting away implementation details. For
a concrete realization (real protocol) P, one then proves that “P behaves just like F” in arbitrary contexts.
Therefore, it is ensured that the real protocol enjoys the security and functional properties specified by F .

Several models for universal composability have been proposed in the literature [4, 5, 7, 9, 10, 15, 18, 23–25].
Ideally, a framework for universal composability should support a protocol designer in easily creating full,
precise, and detailed specifications of various applications and in various adversary models, instead of being
an additional obstacle. In particular, such frameworks should satisfy at least the following requirements:

Soundness: This includes the soundness of the framework itself and the general theorems, such as composition
theorems, proven in it.

Flexibility: The framework must be flexible enough to allow for the precise design and analysis of a wide range
of protocols and applications as well as security models, e.g., in terms of corruption, setup assumptions,
etc.

Usability: It should be easy to precisely and fully formalize protocols; this is also an important prerequisite
for carrying out formally/mathematically correct proofs. There should exist (easy to use) modeling
conventions that allow a protocol designer to focus on the core logic of protocols instead of having to deal
with technical details of the framework or repeatedly taking care of recurrent issues, such as modeling
standard corruption behavior.

Unfortunately, despite the wide spread use of the universal composability approach, existing models and
frameworks are still unsatisfying in these respects as none combines all of these requirements simultaneously
(we discuss this in more detail below). Thus, the goal of this paper is to provide a universal composability
framework that is sound, flexible, and easy to use, and hence constitutes a solid framework for designing and
analyzing essentially any protocol and application in a modular, universally composable, and sound way.
Developing such a security framework is a difficult and very delicate task that takes multiple years if not
decades as the history on models for universal composability shows. Indeed, this paper is the result of many
years of iterations, refinements, and discussions.

Contributions: To achieve the above described goal, we here propose a new universal composability framework
called iUC (“IITM based Universal Composability”). This framework builds on top of the IITM model with
its extension to so-called responsive environments [1]. The IITM model was originally proposed in [18], with
a full and revised version – containing a simpler and more general runtime notion – presented in [22].

The IITM model already meets our goals of soundness and flexibility. That is, the IITM model offers
a very general and at the same time simple runtime notion so that protocol designers do not have to care
much about runtime issues, making sound proofs easier to carry out. Also, protocols are defined in a very
general way, i.e., they are essentially just arbitrary sets of Interactive Turing Machines (ITMs), which may be
connected in some way. In addition, the model offers a general addressing mechanism for machine instances.
This gives great flexibility as arbitrary protocols can be specified; all theorems, such as composition theorems,
are proven for this very general class of protocols. Unfortunately, this generality hampers usability. The model
does not provide design conventions, for example, to deal with party IDs, sessions, subroutine relationships,
shared state, or (different forms of) corruption; all of this is left to the protocol designer to manually specify
for every design and analysis task, distracting from modeling the actual core logic of a protocol.

In essence, iUC is an instantiation of the IITM model that provides a convenient and powerful framework
for specifying protocols. In particular, iUC greatly improves upon usability of the IITM model by adding
missing conventions for many of the above mentioned repetitive aspects of modeling a protocol, while also
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abstracting from some of the (few) technical aspects of the underlying model (in particular the concept of
named tapes, explained in §2); see below for the comparison of iUC with other frameworks.

At the core of iUC is one convenient template that supports protocol designers in specifying arbitrary
types of protocols in a precise, intuitive, and compact way. This is made possible by new concepts, including
the concept of entities as well as public and private roles. The template comes with a clear and intuitive
syntax which further facilitates specifications and allows others to quickly pick up protocol specifications and
use them as subroutines in their higher-level protocols.

A key difficulty in designing iUC was to preserve the flexibility of the original IITM model in expressing
(and composing) arbitrary protocols while still improving usability by fixing modeling conventions for certain
repetitive aspects. We solve this tension between flexibility and usability by, on the one hand, allowing
for a high degree of customization and, on the other hand, by providing sensible defaults for repetitive
and standard specifications. Indeed, as further explained and discussed in §4 and also illustrated by our
case study (cf. §5 and Appendix E), iUC preserves flexibility and supports a wide range of protocol types,
protocol features, and composition operations, such as: ideal and global functionalities with arbitrary protocol
structures, i.e., rather than being just monolithic machines, they may, for example, contain subroutines;
protocols with joint-state and/or global state; shared state between multiple protocol sessions (without
resorting to joint-state realizations); subroutines that are partially globally available while other parts are only
locally available; realizing global functionalities with other protocols (including joint-state realizations that
combine multiple global functionalities); different types of addressing mechanisms via globally unique and/or
locally chosen session IDs; global functionalities that can be changed to be local when used as a subroutine;
many different highly customizable corruption types (including incorruptability, static corruption, dynamic
corruption, corruption only under certain conditions, automatic corruption upon subroutine corruptions); a
corruption model that is fully compatible with joint-state realizations; arbitrary protocol structures that are
not necessarily hierarchical trees and which allow for, e.g., multiple highest-level protocols that are accessible
to the environment.

Importantly, all of the above is supported by just a single template and two composition theorems (one
for parallel composition of multiple protocols and one for unbounded self composition of the same protocol).
This makes iUC quite user friendly as protocol designers can leverage the full flexibility with just the basic
framework; there are no extensions or special cases required to support a wide range of protocol types.

We emphasize that we do not claim specifications done in iUC to be shorter than the informal descriptions
commonly found in the universal composability literature. A full, non-ambiguous specification cannot compete
with such informal descriptions in terms of brevity, as these descriptions are often underspecified and ignore
details, including model specific details and the precise corruption behavior. iUC is rather meant as a powerful
and sound tool for protocol designers that desire to specify protocols fully, without sweeping or having to sweep
anything under the rug, and at the same time without being overburdened with modeling details and technical
artifacts. Such specifications are crucial for being able to understand, reuse, and compose results and to carry
out sound proofs.

Related work: The currently most relevant universal composability models are the UC model [4] (see [3] for
the latest version), the GNUC model [15], the IITM model [18] (see [22] for the full and revised version), and
the CC model [23]. The former three models are closely related in that they are based on polynomial runtime
machines that can be instantiated during a run. In contrast, the CC model follows a more abstract approach
that does not fix a machine model or runtime notion, and is thus not directly comparable to the other models
(including iUC). Indeed, it is still an open research question if and how typical UC-style specifications, proofs,
and arguments can be modeled in the CC model. In what follows, we therefore relate iUC with the UC and
GNUC models; as already explained and further detailed in the rest of the paper, iUC is an instantiation of
the IITM model.

While both the UC and GNUC models also enjoy the benefits of established protocol modeling conventions,
those are, however, less flexible and less expressive than iUC. Let us give several concrete examples: conventions
in UC and GNUC are built around the assumption of having globally unique SIDs that are shared between
all participants of a protocol session, and thus locally managed SIDs cannot directly be expressed (cf. §4, §5,
and §5.3 for details including a discussion of local SIDs). Both models also assume protocols to have disjoint
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sessions and thus their conventions do not support expressing protocols that directly share state between
sessions, such as signature keys (while both models support joint-state realizations to somewhat remedy this
drawback, those realizations have to modify the protocols at hand, which is not always desirable; cf. §5.3).
Furthermore, in both models there is only a single highest-level protocol machine with potentially multiple
instances, whereas iUC supports arbitrarily many highest-level protocol machines. This is very useful as it, for
example, allows for seamlessly modeling global state without needing any extensions or modifications to our
framework or protocol template (as illustrated in §5). In the case of GNUC, there are also several additional
restrictions imposed on protocols, such as a hierarchical tree structure where all subroutines have a single
uniquely defined caller (unless they are globally available also to the environment) and a fixed top-down
corruption mechanism; none of which is required in iUC.

There are also some major differences between UC/GNUC and iUC on a technical level which further affect
overall usability as well as expressiveness. Firstly, both UC and GNUC had to introduce various extensions of
the basic computational model to support new types of protocols and composition, including new syntax and
new composition theorems for joint-state, global state, and realizations of global functionalities [5, 7, 12,15].
This not only forces protocol designers to learn new protocol syntax and conventions for different types of
composition, but also indicates a lack of flexibility in supporting new types of composition (say, for example,
a joint-state realization that combines several separate global functionalities, cf. §5.3). In contrast, both
composition theorems in iUC as well as our single template for protocols seamlessly support all of those
types of protocols and composition, including some not considered in the literature so far (cf. Appendix E.3).
Secondly, there are several technical aspects in the UC model a protocol designer has to take care of in order
to perform sound proofs: a runtime notion that allows for exhaustion of machines, even ideal functionalities,
and that forces protocols to manually send runtime tokens between individual machine instances; a directory
machine where protocols have to register all instances when they are created; “subroutine respecting” protocols
that keep sessions disjoint. Technical requirements of the GNUC model mainly consist of several restrictions
imposed on protocol structures (as mentioned above) which in particular keep protocol sessions disjoint.
Unlike UC, the runtime notion of GNUC supports modeling protocols that cannot be exhausted, however,
GNUC introduces additional flow-bounds to limit the number of bits sent between certain machines. In
contrast, as also illustrated by our case study, iUC does not require directory machines, iUC’s notion for
protocols with disjoint sessions is completely optional and can be avoided entirely, and iUC’s runtime notion
allows for modeling protocols without exhaustion, without manual runtime transfers, and without requiring
flow bounds (exhaustion and runtime transfers can of course be modeled as special cases, if desired).

The difference in flexibility and expressiveness of iUC compared to UC and GNUC is further explained in
§4 and illustrated by our case study in §5, where we model a real world key exchange protocol exactly as it
would be deployed in practice. This case study is not directly supported by the UC and GNUC models (as
further discussed in §5.3). A second illustrative example is given in Appendix E.9, where we show that iUC
can capture the SUC model [10] as a mere special case. The SUC model was proposed as a simpler version of
the UC model specifically designed for secure multi party computation (MPC), but has to break out of (some
technical aspects of) the UC model.

Structure of this paper: In §2, we briefly recall the IITM model along with the extension to responsive
environments as far as relevant for iUC. We describe the iUC framework in §3, with a discussion of the main
concepts and features in §4. A case study further illustrates and highlights some features of iUC in §5. We
conclude in §6. Further details are provided in the appendix.

This paper is the full version of [2].

2 Relevant Parts of the IITM Model

The IITM model was first introduced in [18] and revised in [22] with a more general and simpler runtime
notion. In [1], the IITM model was extended to handle responsive environments, a general concept (see
below) that can also be applied to other models. Our framework is based on the IITM model with responsive
environments. In this section, we provide a brief overview of those parts of the responsive IITM model that
suffice to understand and use the iUC framework. More details are given in Appendix H.
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Inexhaustible interactive Turing machines: An inexhaustible interactive Turing machine (IITM or simply
ITM) is a probabilistic Turing machine with a number of named tapes which determine how different ITMs are
connected in a system of ITMs (see below). There might exist several instances of an ITM, called ITIs, in a run
of a system of ITMs. As detailed below, an instance of an ITM M runs in one of two modes: CheckAddress
and Compute. The former is used to address the different instances of an ITM in a run, whereas in the latter
the actual computation is performed. In CheckAddress mode, deterministic computation is performed with
a runtime bounded by a (fixed) polynomial in the length of the security parameter, the current input message,
and the current configuration of the machine. The runtime limit in Compute is discussed later.

Systems of ITMs: A system Q of ITMs is a set Q = {M1, . . .,Mk}4 of ITMs M1, . . . ,Mk, where the way
ITMs in this system are connected is defined by the names of the tapes of those machines. More specifically,
for every name n, it is required that at most two of these ITMs have a tape named n; we say that both ITMs
respectively their tapes with name n are connected. Tapes in Q that are already connected to (a tape of)
another machine of Q are called internal tapes of Q and all other (unconnected) tapes are called external
tapes of Q. External tapes are further grouped into an I/O interface and a network interface of Q, where
tapes in the I/O interface are used for secure direct communication with other protocols5 (or the environment,
see below) and tapes in the network interface are used to communicate with the adversary on the network.

There are two special tapes, named start and decision, both of which may occur only in one machine. A
machine with tape start is called the master ITM.

A system Q2 is said to be connectable to a system Q1 if Q2 connects to the external tapes of Q1 only, i.e.,
tapes with the same name in Q2 and Q1 are external tapes of both Q2 and Q1. By {Q1,Q2} one denotes the
composition of the connectable systems Q1 and Q2, defined in the obvious way. Note that {Q1,Q2} again
is a system of ITMs as defined above, where the external tapes of Q1 and Q2 that are now connected are
internal tapes of the system {Q1,Q2}. For example, if Q1 = {M1,M2} and Q2 = {M3,M4,M5}, then {Q1,
Q2} = {M1, . . .,M5}.

Running a system: In a run of a system Q, an unbounded number of instances of each ITM in Q may be
spawned. An instance of a machine, say an instance of Mi in Q, can send a message to an instance of another
machine, say Mj , in Q if and only if Mi and Mj are connected via tapes, in the sense defined above. Which
instance of Mj gets to process the message sent by the instance of Mi is determined by running the instances
of Mj in CheckAddress mode.

More specifically, in a run of a system Q(1η) with security parameter η, only one ITI is active at any time
and all other ITIs wait for new input. The first machine to be activated is the master ITM in Q by writing
the empty message on start;6 if no master ITM exists, the run of Q terminates immediately. If a message m
is written by some instance of a machine, say M ′, on one of its named tapes, say on a tape named n, and
there is a different machine, say M, in Q with another tape also named n, then which instance of M gets to
process m is decided as follows.

The instances of M are run in CheckAddress mode in the order of their creation until one instance
accepts m. This instance (if any) then runs in Compute mode with input m written on its tape with name
n. If no instance has accepted m, a fresh instance of M is spawned and run in mode CheckAddress and
if it accepts m, it gets to process m on its tape with name n in Compute mode. Otherwise (if the freshly
created instance also does not accept the message), the freshly created instance is deleted again, m is dropped,
and the empty message is written on start to trigger the master ITM (of which there might also be several
instances, where again their CheckAddress is used to decide which one gets to process the message). After

4 In the notation of the original IITM paper this notation corresponds to Q = ! M1 | · · · | ! Mk.
5 I/O tapes are generally used to model a subroutine relationship between two protocols, representing that a higher-

level protocol is able to directly send inputs and receive outputs from its subroutines without interference of a
network attacker.

6 If a system is run with external input, then this input is written on start. Note that the IITM model supports both
uniform and non-uniform environments/machines. For ease of presentation, we consider only the uniform setting in
this paper, however, our framework also supports the non-uniform setting.
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Fig. 1: The setup for the universal composability experiment (P ≤ F) and internal structure of protocols.
Here E is an environmental system, A and S are adversarial systems, and P and F are protocol systems.
Arrows between E and adversarial systems, and arrows between adversarial systems and protocol systems
represent network tapes. All other arrows represent I/O tapes. The boxes Mi in P are different machines
modeling various tasks in the protocol. Note that P with the machines depicted is just an example. Also, all
other systems, including E , A, and F , can also consist of several machines connected in some way.

running an ITI in mode CheckAddress, the configuration is set back to the state it was in before it was
run in CheckAddress; in this sense, this mode does not change the configuration of a machine.

When an instance of M processes a message in mode Compute, it may write at most one message, say
m′, on one of its named tapes, say a tape named n′, and then stops. If there is another ITM with a tape also
named n′ in the system, the message m′ is delivered to one instance of that ITM on the tape with name n′
as described above. If the instance of M stops without outputting a message or there is no other ITM with a
tape named n′, then (an instance of) the master ITM is activated in the same way as described above. A
run stops as soon as a message is written on decision, no master instance accepted an incoming message, or
a master ITI stopped without output in mode Compute. The overall output of a run is defined to be the
one-bit message that is output on decision, or zero if decision was not written to. The probability that the
overall output of a run of Q(1η) is b ∈ {0, 1} is denoted by Pr [Q(1η) = b], where the probability is taken over
the random choices of all ITIs in runs of Q.

Indistinguishability of systems: Two systems that produce overall output 1 with almost the same proba-
bility are called indistinguishable: two systems Q1 and Q2 are indistinguishable (Q1 ≡ Q2) if and only if
|Pr [Q1(1η) = 1]− Pr [Q2(1η) = 1]| is negligible in η.

Types of systems: To define simulation, one distinguishes between protocol systems, adversarial systems, and
environmental systems. These are arbitrary systems (in the sense defined above), but only environmental
systems may have start and decision tapes; in particular, only the environment may contain the master ITM.
There are no other restrictions on these systems. For simulation and universal composability, adversarial
systems (A and S), environmental systems (E), and protocol systems (P and F) are connected as illustrated
in Figure 1. In the IITM model neither any specific internal structure of P or F nor any specific addressing
mechanism or corruption behavior is fixed; P and F are arbitrary systems which can be freely specified by
the protocol designer. (Note that Figure 1 contains merely an example of how P could look like internally.)

Responsiveness of environments and adversaries: In the specifications of protocols, it is often required for the
adversary/environment to provide to the protocol some modeling related (meta-)information or to receive
some (meta-)information, such as the initial corruption status of protocol instances. Protocols typically
exchange this information via the network interface, with the protocol sending some message/request to the
adversary (or the environment). As discussed in detail in [1], it is often natural to expect the adversary to
send an immediate response to such requests, as otherwise one has to deal with additional and often hard to
resolve artificial complications in protocol specifications and security proofs. For this reason, [1] introduces
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the concept of responsive environments and proposes an extension of the IITM model (as well as the UC and
GNUC models). Informally, if a protocol sends what is called a restricting message, then both the adversary
and environment are forced to send an immediate response. We provide further technical details on responsive
environments and adversaries and on how restricting messages are formally defined in Appendix H. This
concept is also used and illustrated, for example, in §3.2 and in the case study (see, e.g., Figure 7). See also
Appendix E.8 for more discussion of this concept.

Runtime requirements for environmental and protocol systems: Compared to other frameworks, the IITM
model uses very general and simple runtime notions. More specifically, for the simulation notions, we have the
following requirements for the runtime of environmental, adversarial, and protocol systems. An environmental
system (or environment) E has to be universally bounded, i.e., there exists a polynomial p such that for every
system Q connectable to E the overall runtime of E in mode Compute is bounded by p(η) in every run
of {E ,Q} with security parameter η. Given a system Q, Env(Q) denotes the set of all universally bounded
environmental systems that can be connected to Q and are responsive for Q. A protocol system (or protocol)
P has to be environmentally bounded, i.e., for every E ∈ Env(P) there exists a polynomial p such that for
every η the overall runtime of P in mode Compute is bounded by p(η) in every run of {E ,P} with security
parameter η, except for a negligible set of runs. An adversarial system (or adversary) A for a protocol
system P must satisfy that the combined system {A,P} is environmentally bounded. We define the set
Adv(P) to contain all such adversarial systems for P where, in addition, we require that these adversaries are
responsive and connect only to the network interface of P. Note that the dummy adversary, which simply
forwards messages between P and the environment, always belongs to this set. These runtime notions are
introduced, discussed, and compared with notions of other frameworks in detail in [22], with the treatment
of responsiveness presented in [1]. In particular, as discussed in [22], we point out that the environmentally
bounded property is typically easy to check and should cover all practical protocols. In fact, we are not aware
of any real-world protocol that is not environmentally bounded.

Simulation and universal composability: We can now define what it means for a protocol P to realize/emulate
another protocol F : P realizes or emulates F , denoted by P ≤ F , if and only if both protocols have the
same I/O interfaces and for all A ∈ Adv(P) there exists S ∈ Adv(F) such that for all E ∈ Env({A,P}) it is
the case that {E ,A,P} ≡ {E ,S,F} (cf. Figure 1). Intuitively, F usually is a so-called ideal protocol or ideal
functionality which specifies a task in an ideal and perfectly secure way, whereas P usually is a so-called real
protocol which tries to realize this task in a real setting. If P ≤ F , then for all attacks on P there is one on F
such that both attacks are indistinguishable for any environment, and hence, P is as secure as F , where the
latter is secure by definition. Due to this intuition, one often refers to the system {E ,A,P} as the real world
system, and {E ,S,F} as the ideal world system.

The above simulation notion is often called “universal simulatability” or “universal composability”. In the
IITM model, also the simulation notions “dummy UC”, “strong simulatability”, “black-box simulatability”, and
“reactive simulatability” have been formulated and shown to be equivalent to “universal simulatability” [1,22],
which is an important sanity check for a UC-like model. In particular, strong simulatability is a conceptually
simpler notion that allows for omitting the adversary A and which we will thus use in the following: P
(strongly) realizes or emulates F , denoted by P ≤ F , if and only if both protocols have the same I/O interfaces
and there exists S ∈ Adv(F) such that for all E ∈ Env(P) it is the case that {E ,P} ≡ {E ,S,F}. Note that in
this case E may connect to both the network and the I/O interface of P.

Composition theorems: The core of every universal composability model are the composition theorems. The
IITM model comes with two general composition theorems. The first composition theorem handles concurrent
composition of any (fixed) number of potentially different protocols. It says that the ideal protocols can be
replaced by the real ones:

Theorem 1. [1] Let Q be a protocol, and P,F be protocols such that P ≤ F . If {Q,P} is environmentally
bounded and Q connects only to external I/O tapes of P/F , then:

{Q,P} ≤ {Q,F} .
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This theorem also immediately implies joint-state and global state theorems in the IITM model [20,22].
The second composition theorem guarantees the secure composition of an unbounded number of sessions

of the same protocol system, given that a single session of the protocol system in isolation is secure [1].
We state this theorem more formally in Appendix H. Both theorems can be combined to securely compose
increasingly complex protocols. In particular, if a single session of P realizes a single session of F , then the
composition theorems imply that Q using multiple sessions of P realizes Q using multiple sessions of F .

3 The iUC Framework

In this section, we present the iUC framework which is built on top of the IITM model. As explained in
§1, the main shortcoming of the IITM model is a lack of usability due to missing conventions for protocol
specifications. Thus, protocol designers have to manually define many repetitive modeling related aspects such
as a corruption model, connections between machines, specifying the desired machine instances (e.g., does an
instance model a single party, a protocol session consisting of multiple parties, a globally available resource),
the application specific addressing of individual instances, etc. The iUC framework solves this shortcoming by
adding convenient and powerful conventions for protocol specifications to the IITM model. A key difficulty in
crafting these conventions is preserving the flexibility of the original IITM model in terms of expressing a
multitude of various protocols in natural ways, while at the same time not overburdening a protocol designer
with too many details. We solve this tension by providing a single template for specifying arbitrary types of
protocols, including real, ideal, joint-state, global state protocols, which needed several sets of conventions
and syntax in other frameworks, and sometimes even new theorems. Our template includes many optional
parts with sensible defaults such that a protocol designer has to define only those parts relevant to her
specific protocol. As the iUC framework is an instantiation of the IITM model, all composition theorems and
properties of the IITM model carry over.

We start by explaining the general structure of protocols in iUC in §3.1, with corruption explained in
§3.2. We then present our protocol template in §3.3. In §3.4, we explain how protocol specifications can
be composed in iUC to create new, more complex protocol specification. Finally, in §3.5, we present the
realization relation and the composition theorem of iUC. As mentioned, concrete examples are given in our
case study (cf. §5). We provide a precise mapping from iUC protocols to the underlying IITM model in
Appendix I, which is crucial to verify that our framework indeed is an instantiation of the IITM model, and
hence, inherits soundness and all theorems of the IITM model. We note, however, that it is not necessary
to read this technical mapping to be able to use our framework. The abstraction level provided by iUC is
entirely sufficient to understand and use this framework.

3.1 Structure of Protocols

A protocol P in our framework is specified via a system of machines {M1, . . .,Ml}. Each machine Mi

implements one or more roles of the protocol, where a role describes a piece of code that performs a specific
task. For example, a (real) protocol Psig for digital signatures might contain a signer role for signing messages
and a verifier role for verifying signatures. In a run of a protocol, there can be several instances of every
machine, interacting with each other (and the environment) via I/O interfaces and interacting with the
adversary (and possibly the environment) via network interfaces. An instance of a machine Mi manages one
or more so-called entities. An entity is identified by a tuple (pid , sid , role) and describes a specific party with
party ID (PID) pid running in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of Mi according to the specification of Mi. Entities
can send messages to and receive messages from other entities and the adversary using the I/O and network
interfaces of their respective machine instances. In the following, we explain each of these parts in more detail,
including roles and entities; we also provide examples of the static and dynamic structure of various protocols
in Figure 2.
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Fig. 2: Examples of static and dynamic structures of various protocol types. Fsig is an ideal protocol, Psig
a real protocol, Pjssig a so-called joint-state realization, and FCRS a global state protocol. On the left-hand
side: static structures, i.e., (specifications of) machines/protocols. On the right-hand side: possible dynamic
structures (i.e., several machine instances managing various entities).

Roles: As already mentioned, a role is a piece of code that performs a specific task in a protocol P . Every role
in P is implemented by a single unique machine Mi, but one machine can implement more than one role. This
is useful for sharing state between several roles: for example, consider an ideal functionality Fsig for digital
signatures consisting of a signer and a verifier role. Such an ideal protocol usually stores all messages
signed by the signer role in some global set that the verifier role can then use to prevent forgery. To share
such a set between roles, both roles must run on the same (instance of a) machine, i.e., Fsig generally consists
of a single machine Msigner,verifier implementing both roles. In contrast, the real protocol Psig uses two
machines Msigner and Mverifier as those roles do not and cannot directly share state in a real implementation
(cf. left-hand side of Figure 2). Machines provide an I/O interface and a network interface for every role that
they implement. The I/O interfaces of two roles of two different machines can be connected. This means
that, in a run of a system, two entities (managed by two instances of machines) with connected roles can
then directly send and receive messages to/from each other; in contrast, entities of unconnected roles cannot
directly send and receive messages to/from each other.7 Jumping ahead, in a protocol specification (see below)
it is specified for each machine in that protocol to which other roles (subroutines) a machine connects to (see,
e.g., also Figure 3a where the arrows denote connected roles/machines). The network interface of every role
is connected to the adversary (or simulator), allowing for sending and receiving messages to and from the
adversary. For addressing purposes, we assume that each role in P has a unique name. Thus, role names can
be used for communicating with a specific piece of code, i.e., sending and receiving a message to/from the
correct machine.

Public and private roles: We, in addition, introduce the concept of public and private roles, which, as we will
explain, is a very powerful tool. Every role of a protocol P is either private or public. Intuitively, a private role
can be called/used only internally by other roles of P whereas a public role can be called/used by any protocol
and the environment. Thus, private roles provide their functionality only internally within P , whereas public
roles provide their functionality also to other protocols and the environment. More precisely, a private role
connects via its I/O interface only to (some of the) other roles in P such that only those roles can send
messages to and receive messages from a private role; a public role additionally provides its I/O interface for
arbitrary other protocols and the environment such that they can also send messages to and receive messages
from a public role. We illustrate the concept of public and private roles by an example below.

7 This bidirectional connection of interfaces is an abstraction from tapes and tape names in the IITM model. Protocol
designers need not care about those in iUC. More information about how connections are mapped to tapes in the
sense of the IITM model is available in Appendix I.2.
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Fig. 3: The static structures of the ideal key exchange functionality FKE (right side) and its realization PKE
(left side), including their subroutines, in our case study. Arrows denote direct connections of I/O interfaces;
network connections are omitted for simplicity. Solid boxes (labeled with one or two role names) denote
individual machines, dotted boxes denote (sub-)protocols that are specified by one instance of our template
each (cf. §3.3).

Using other protocols as subroutines: Protocols can be combined to construct new, more complex protocols.
Intuitively, two protocols P and R can be combined if they connect to each other only via (the I/O interfaces
of) their public roles. (We give a formal definition of connectable protocols in §3.4.) The new combined
protocol Q consists of all roles of P and R, where private roles remain private while public roles can be either
public or private in Q; this is up to the protocol designer to decide. To keep role names unique within Q,
even if the same role name was used in both P and R, we (implicitly) assume that role names are prefixed
with the name of their original protocol. We will often also explicitly write down this prefix in the protocol
specification for better readability (cf. §3.3).

Examples illustrating the above concepts: Figure 3a, which is further explained in our case study (cf. §5),
illustrates the structure of the protocols we use to model a real key exchange protocol. This protocol as a
whole forms a protocol in the above sense and at the same time consists of three separate (sub-) protocols:
The highest-level protocol PKE has two public roles initiator and responder executing the actual key
exchange and one private role setup that generates some global system parameters. The protocol PKE uses
two other protocols as subroutines, namely the ideal functionality Fsig-CA for digital signatures with roles
signer and verifier, for signing and verifying messages, and an ideal functionality FCA for certificate
authorities with roles registration and retrieval, for registering and retrieving public keys (public key
infrastructure). Now, in the context of the combined key exchange protocol, the registration role of FCA is
private as it should be used by Fsig-CA only; if everyone could register keys, then it would not be possible to
give any security guarantees in the key exchange. The retrieval role of FCA remains public, modeling that
public keys are generally considered to be known to everyone, so not only PKE but also the environment (and
possibly other protocols later using PKE) should be able to access those keys. This models so-called global
state. Similarly to role registration, the signer role of Fsig-CA is private too. For simplicity of presentation,
we made the verifier role private, although it could be made public. Note that this does not affect the
security statement: the environment knows the public verification algorithm and can obtain all verification
keys from FCA, i.e., the environment can locally compute the results of the verification algorithm. Altogether,
with the concept of public and private roles, we can easily decide whether we want to model global state
or make parts of a machine globally available while others remain local subroutines. We can even change
globally available roles to be only locally available in the context of a new combined protocol.

As it is important to specify which roles of a (potentially combined) protocol are public and which ones are
private, we introduce a simple notation for this. We write (role1, . . . , rolen | rolen+1, . . . , rolem) to denote a
protocol P with public roles role1, . . . , rolen and private roles rolen+1, . . . , rolem. If there are no private roles,
we just write (role1, . . . , rolen), i.e., we omit “|”. Using this notation, the example key exchange protocol from
Figure 3a can be written as (initiator, responder, retrieval | setup, signer, verifier, registration).
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Entities and Instances: As mentioned before, in a run of a protocol there can be several instances of every
protocol machine, and every instance of a protocol machine can manage one or more, what we call, entities.
Recall that an entity is identified by a tuple (pid , sid , role), which represents party pid running in a session
with SID sid and executing some code defined by the role role. As also mentioned, such an entity can
be managed by an instance of a machine only if this machine implements role. We note that sid does
not necessarily identify a protocol session in a classical sense. The general purpose is to identify multiple
instantiations of the role role executed by party pid. In particular, entities with different SIDs may very well
interact with each other, if so desired, unlike in many other frameworks.

The novel concept of entities allows for easily customizing the interpretation of a machine instance by
managing appropriate sets of entities. An important property of entities managed by the same instance is that
they have access to the same internal state, i.e., they can share state; entities managed by different instances
cannot access each others internal state directly. This property is usually the main factor for deciding which
entities should be managed in the same instance. With this concept of entities, we obtain a single definitional
framework for modeling various types of protocols and protocol components in a uniform way, as illustrated
by the examples in Figure 2, explained next.

One instance of an ideal protocol in the literature, such as a signature functionality Fsig, often models a
single session of a protocol. In particular, such an instance contains all entities for all parties and all roles
of one session. Figure 2 shows two instances of the machine Msigner,verifier, managing sessions sid and sid ′,
respectively. In contrast, instances of real protocols in the literature, such as the realization Psig of Fsig, often
model a single party in a single session of a single role, i.e., every instance manages just a single unique entity,
as also illustrated in Figure 2. If, instead, we want to model one global common reference string (CRS), for
example, we have one instance of a machine MCRS which manages all entities, for all sessions, parties, and
roles. To give another example, the literature also considers so-called joint-state realizations [7,20] where a
party re-uses some state, such as a cryptographic key, in multiple sessions. An instance of such a joint-state
realization thus contains entities for a single party in one role and in all sessions. Figure 2 shows an example
joint-state realization Pjssig of Fsig where a party uses the same signing key in all sessions. As illustrated by
these examples, instances model different things depending on the entities they manage.

Exchanging messages: Entities can send and receive messages using the I/O and network interfaces belonging
to their respective roles. When an entity sends a message it has to specify the receiver, which is either the
adversary in the case of the network interface or some other entity (with a role that has a connected I/O
interface) in the case of the I/O interface. If a message is sent to another entity (pidrcv, sidrcv, rolercv), then
the message is sent to the machine M implementing rolercv; a special user-defined CheckID algorithm (see
§3.3) is then used to determine the instance of M that manages (pidrcv, sidrcv, rolercv) and should hence
receive the message. When an entity (pidrcv, sidrcv, rolercv) receives a message on the I/O interface, i.e.,
from another entity (pidsnd, sidsnd, rolesnd), then the receiver learns pidsnd, sidsnd8 and either the actual
role name rolesnd (if the sender is a known subroutine of the receiver, cf. §3.3) or an arbitrary but fixed
number i (from an arbitrary but fixed range of natural numbers) denoting a specific I/O connection to some
(unknown) sender role (if the sender is an unknown higher-level protocol or the environment9). The latter
models that a receiver/subroutine does not necessarily know the exact machine code of a caller in some
arbitrary higher-level protocol, but the receiver can at least address the caller in a consistent way for sending
a response. If a message is received from the network interface, then the receiving entity learns only that it
was sent from the adversary.

We note that we do not restrict which entities can communicate with each other as long as their roles are
connected via their I/O interfaces, i.e., entities need not share the same SID or PID to communicate via an
I/O connection. This, for example, facilitates modeling entities in different sessions using the same resource,
as illustrated in our case study. It, for example, also allows us to model the global functionality FCRS from

8 The environment can claim arbitrary PIDs and SIDs as sender.
9 The environment can choose the number that it claims as a sender as long as it does not collide with a number

used by another (higher-level) role in the protocol.
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Figure 2 in the following natural way: FCRS could manage only a single (dummy) entity (ε, ε, CRS) in one
machine instance, which can be accessed by all entities of higher-level protocols.

3.2 Modeling Corruption
We now explain on an abstract level how our framework models corruption of entities. In §3.3, we then explain
in detail how particular aspects of the corruption model are specified and implemented. Our framework
supports five different modes of corruption: incorruptible, static corruption, dynamic corruption with/without
secure erasures, and custom corruption. Incorruptible protocols do not allow the adversary to corrupt any
entities; this can, e.g., be used to model setup assumptions such as common reference strings which should
not be controllable by an adversary. Static corruption allows adversaries to corrupt entities when they are
first created, but not later on, whereas dynamic corruption allows for corruption at arbitrary points in time.
In the case of dynamic corruption, one can additionally choose whether by default only the current internal
state (known as dynamic corruption with secure erasures) or also a history of the entire state, including all
messages and internal random coins (known as dynamic corruption without secure erasures) is given to the
adversary upon corruption. Finally, custom corruption is a special case that allows a protocol designer to
disable corruption handling of our framework and instead define her own corruption model while still taking
advantage of our template and the defaults that we provide; we will ignore this custom case in the following
description.

To corrupt an entity (pid , sid , role) in a run, the adversary can send the special message corrupt on
the network interface to that entity. Note that, depending on the corruption model, such a request might
automatically be rejected (e.g., because the entity is part of an incorruptible protocol). In addition to this
automatic check, protocol designers are also able to specify an algorithm AllowCorruption, which can
be used to specify arbitrary other conditions that must be met for a corrupt request to be accepted. For
example, one could require that all subroutines must be corrupted before a corruption request is accepted
(whether or not subroutines are corrupted can be determined using CorruptionStatus? requests, see later),
modeling that an adversary must corrupt the entire protocol stack running on some computer instead of just
individual programs, which is often easier to analyze (but yields a less fine grained security result). One could
also prevent corruption during a protected/trusted “setup” phase of the protocol, and allow corruption only
afterwards.

If a corrupt request for some entity (pid , sid , role) passes all checks and is accepted, then the state of the
entity is leaked to the adversary (which can be customized by specifying an algorithm LeakedData) and
the entity is considered explicitly corrupted for the rest of the protocol run. The adversary gains full control
over explicitly corrupted entities: messages arriving on the I/O interface of (pid , sid , role) are forwarded on
the network interface to the adversary, while the adversary can tell (pid , sid , role) (via its network interface)
to send messages to arbitrary other entities on behalf of the corrupted entity (as long as both entities have
connected I/O interfaces). The protocol designer can control which messages the adversary can send in the
name of a corrupted instance by specifying an algorithm AllowAdvMessage. This can be used, e.g., to
prevent the adversary from accessing uncorrupted instances or from communicating with other (disjoint)
sessions, as detailed in §3.3.

In addition to the corruption mechanism described above, entities that are activated for the first time also
determine their initial corruption status by actively asking the adversary whether he wants to corrupt them.
More precisely, once an entity (pid , sid , role) has finished its initialization (see §3.3), it asks the adversary via
a restricting message10 whether he wants to corrupt (pid , sid , role) before performing any other computations.
The answer of the adversary is processed as discussed before, i.e., the entity decides whether to accept or
reject a corruption request. This gives the adversary the power to corrupt new entities right from the start, if
he desires; note that in the case of static corruption, this is also the last point in time where an adversary
can explicitly corrupt (pid , sid , role).
10 Recall from §2 that by sending a restricting message, the adversary is forced to answer, and hence, decide upon

corruption right away, before he can interact in any other way with the protocol, preventing artificial interference
with the protocol run. This is a very typical use of restricting messages, which very much simplifies corruption
modeling (see also [1]).
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Setup for the protocol Q = {M1, . . .,Mn}:
Participating roles: list of all n sets of roles participating in this protocol. Each set corresponds to one machine Mi.
Corruption model: incorruptible, static, dynamic with/without erasures, custom.
Protocol parameters∗: e.g., externally provided algorithms parametrizing a machine.

Implementation of Mi for each set of roles:
Implemented role(s): the set of roles that is implemented by this machine.
Subroutines∗: a list of all (other) roles that this machine uses as subroutines.
Internal state∗: state variables used to store data across different invocations.
CheckID∗: algorithm for deciding whether this machine is responsible for an entity (pid , sid , role).
Corruption behavior∗: description of DetermineCorrStatus, AllowCorruption, LeakedData, and/or

AllowAdvMessage algorithms.
Initialization∗: this block is executed only the first time an instance of the machine accepts a message; useful to, e.g.,

assign initial values that are globally used for all entities managed by this instance.
EntityInitialization∗: this block is executed only the first time that some message for a (new) entity is received; useful

to, e.g., assign initial values that are specific for single entities.
MessagePreprocessing∗: this algorithm is executed every time a message for an uncorrupted entity is received.
Main: specification of the actual behavior of an uncorrupted entity.

Fig. 4: Template for specifying protocols. Blocks labeled with an asterisk (*) are optional. CheckID is
part of the CheckAddress mode, whereas Corruption behavior, . . . , Main are all executed within the
Compute mode of the machine. Note that the template does not specify public and private roles as those
change depending on how several protocols (each defined via a copy of this template) are connected.

For modeling purposes, we allow other entities and the environment to obtain the current corruption
status of an entity (pid , sid , role).11 This is done by sending a special CorruptionStatus? request on the
I/O interface of (pid , sid , role). If (pid, sid, role) has been explicitly corrupted by the adversary, the entity
returns true immediately. Otherwise, the entity is free to decide whether true or false is returned, i.e.,
whether it considers itself corrupted nevertheless (this is specified by the protocol designer via an algorithm
DetermineCorrStatus). For example, a higher level protocol might consider itself corrupted if at least one
of its subroutines is (explicitly or implicitly) corrupted, which models that no security guarantees can be
given if certain subroutines are controlled by the adversary. To figure out whether subroutines are corrupted,
a higher level protocol can send CorruptionStatus? requests to subroutines itself. We call an entity that
was not explicitly corrupted but still returns true implicitly corrupted. We note that the responses to
CorruptionStatus? request are guaranteed to be consistent in the sense that if an entity returns true once,
it will always return true. Also, according to the defaults of our framework, CorruptionStatus? request are
answered immediately (without intervention of the adversary) and processing these requests does not change
state. These are important features which allow for a smooth handling of corruption.

3.3 Specifying Protocols

We now present our template for fully specifying a protocol Q, including its uncorrupted behavior, its
corruption model, and its connections to other protocols. As mentioned previously, the template is sufficiently
general to capture many different types of protocols (real, ideal, hybrid, joint-state, global, ...) and includes
several optional parts with reasonable defaults. Thus, our template combines freedom with ease of specification.

The template is given in Figure 4. Some parts are self-explanatory; the other parts are described in more
detail in the following. The first section of the template specifies properties of the whole protocol that apply
to all machines.

11 This operation is purely for modeling purposes and does of course not exist in reality. It is crucial for obtaining a
reasonable realization relation: The environment needs a way to check that the simulator in the ideal world corrupts
exactly those entities that are corrupted in the real world, i.e., the simulation should be perfect also with respect to
the corruption states. If we did not provide such a mechanism, the simulator could simply corrupt all entities in the
ideal world which generally allows for a trivial simulation of arbitrary protocols.
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Participating roles: This list of sets of roles specifies which roles are (jointly) implemented by a machine.
To give an example, the list “{role1, role2}, role3, {role4, role5, role6}” specifies a protocol Q consisting of
three machines Mrole1,role2 , Mrole3 , and Mrole4,role5,role6 , where Mrole1,role2 implements role1 and role2, and so
on.

Corruption model: This fixes one of the default corruption models supported by iUC, as explained in
§3.2: incorruptible, static, dynamic with erasures, and dynamic without erasures. Moreover, if the corruption
model is set to custom, the protocol designer has to manually define his own corruption model and process
corruption related messages, such as CorruptionStatus?, using the algorithms MessagePreprocessing
and/or Main (see below), providing full flexibility.

Apart from the protocol setup, one has to specify each procotol machine Mi, and hence, the behavior of
each set of roles listed in the protocol setup.

Subroutines: Here the protocol designer lists all roles that Mi uses as subroutines. These roles may be
part of this or potentially other protocols, but may not include roles that are implemented by Mi. The
I/O interface of (all roles of) the machine Mi will then be connected to the I/O interfaces of those roles,
allowing Mi to access and send messages to those subroutines.12 We note that (subroutine) roles are uniquely
specified by their name since we assume globally unique names for each role. We also note that subroutines
are specified on the level of roles, instead of the level of whole protocols, as this yields more flexibility and a
more fine grained subroutine relationship, and hence, access structure.

If roles of some other protocol R are used, then protocol authors should prefix the roles with the protocol
name to improve readability, e.g., “R : roleInR” to denote a connection to the role roleInR in the protocol
R. This is mandatory if the same role name is used in several protocols to avoid ambiguity. If a machine is
supposed to connect to all roles of some protocol R, then, as a short-hand notation, one can list the name R
of the protocol instead.

Internal state: State variables declared here (henceforth denoted by sans-serif fonts, e.g., a, b) preserve
their values across different activations of an instance of Mi.

In addition to these user-specified state variables, every machine has some additional framework-specific
state variables that are set and changed automatically according to our conventions. Most of these variables
are for internal bookkeeping and need not be accessed by protocol designers. Those that might be useful in
certain algorithms are mentioned and explained further below (we provide a complete list of all framework
specific variables in Appendix I.2).

CheckID: As mentioned before, instances of machines in our framework manage (potentially several) entities
(pidi, sidi, rolei). The algorithm CheckID allows an instance of a machine to decide which of those entities
are accepted and thus managed by that instance, and which are not. Furthermore, it allows for imposing a
certain structure on pidi and sidi; for example, SIDs might only be accepted if they encode certain session
parameters, e.g., sidi = (parameter1, parameter2, sid ′i).

More precisely, the algorithm CheckID(pid , sid , role) is a deterministic algorithm that computes on
the input (pid , sid , role), the internal state of the machine instance, and the security parameter. It runs in
polynomial time in the length of the current input, the internal state, and the security parameter and outputs
accept or reject. Every time a machine instance is invoked with a message m for some entity (pid , sid , role),
it runs CheckID(pid , sid , role) in CheckAddress mode to determine whether it manages (pid , sid , role),
i.e., whether the message m should be accepted.

We require that CheckID behaves consistently, i.e., it never accepts an entity that has previously been
rejected, and it never rejects an entity that has previously been accepted; this ensures that there are no two
instances that manage the same entity. For this purpose, we provide access to a convenient framework specific
12 We emphasize that we do not put any restrictions on the graph that the subroutine relationships of machines of

several protocols form. For example, it is entirely possible to have machines in two different protocols that specify
each other as subroutines.
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list acceptedEntities that contains all entities that have been accepted so far (in the order in which they were
first accepted). We note that CheckID cannot change the (internal) state of an instance; all changes caused
by running CheckID are dropped after outputting a decision, i.e., the state of an instance is set back to the
state before running CheckID.13 In Appendix C we provide a simple syntax for easily specifying the most
common cases in the CheckID algorithm.

If CheckID is not specified, its default behavior is as follows: Given input (pid , sid , role), if the machine
instance in which CheckID is running has not accepted an entity yet, it outputs accept. If it has already
accepted an entity (pid ′, sid ′, role′), then it outputs accept iff pid = pid ′ and sid = sid ′. Otherwise, it outputs
reject. Thus, by default, a machine instance accepts, and hence, manages, not more than one entity per role
for the roles the machine implements.

Corruption behavior: This element of the template allows for customization of corruption related behavior
of machines by specifying one or more of the optional algorithms DetermineCorrStatus, AllowCorruption,
LeakedData, and AllowAdvMessage, as explained and motivated in §3.2, with the formal definition of
these algorithms, including their default behavior if not specified, given in Appendix A. A protocol designer
can access two useful framework specific variables for defining these algorithms: transcript, which, informally,
contains a transcript of all messages sent and received by the current machine instance, and CorruptionSet,
which contains all explicitly corrupted entities that are managed by the current machine instance. As these
algorithms are part of our corruption conventions, they are used only if Corruption model is not set to
custom.

Initialization, EntityInitialization, MessagePreprocessing, Main: These algorithms specify the actual
behavior of a machine in mode Compute for uncorrupted entities.

The Initialization algorithm is run exactly once per machine instance (not per entity in that instance)
and is mainly supposed to be used for initializing the internal state of that instance. For example, one can
generate global parameters or cryptographic key material in this algorithm.

The EntityInitialization(pid , sid , role) algorithm is similar to Initialization but is run once for each
entity (pid , sid , role) instead of once for each machine instance. More precisely, it runs directly after a potential
execution of Initialization if EntityInitialization has not been run for the current entity (pid , sid , role)
yet. This is particularly useful if a machine instance manages several entities, where not all of them might be
known from the beginning.

After the algorithms Initialization and, for the current entity, the algorithm EntityInitialization have
finished, the current entity determines its initial corruption status (if not done yet) and processes a corrupt
request from the network/adversary, if any. Note that this allows for using the initialization algorithms to
setup some internal state that can be used by the entity to determine its corruption status.

Finally, after all of the previous steps, if the current entity has not been explicitly corrupted,14 the
algorithms MessagePreprocessing and Main are run. The MessagePreprocessing algorithm is executed
first. If it does not end the current activation, Main is executed directly afterwards. While we do not fix how
authors have to use these algorithms, one would typically use MessagePreprocessing to prepare the input
m for the Main algorithm, e.g., by dropping malformed messages or extracting some key information from
m. The algorithm Main should contain the core logic of the protocol.

If any of the optional algorithms are not specified, then they are simply skipped during computation.
We provide a convenient syntax for specifying these algorithms in Appendix C; see our case study in §5 for
examples.

This concludes the description of our template. As already mentioned, in Appendix I.2 we give a formal
mapping of this template to protocols in the sense of the IITM model, which provides a precise semantics for
the templates and also allows us to carry over all definitions, such as realization relations, and theorems, such
as composition theorems, of the IITM model to iUC (see §3.5).
13 This is because CheckID is part of mode CheckAddress which resets all state changes after it has finished its

computation.
14 As mentioned in §3.2, if an entity is explicitly corrupted, it instead acts as a forwarder for messages to and from the

adversary.
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3.4 Composing Protocol Specifications

Protocols in our framework can be composed to obtain more complex protocols. More precisely, two protocols
Q and Q′ that are specified using our template are called connectable if they connect via their public roles
only. That is, if a machine in Q specifies a subroutine role of Q′, then this subroutine role has to be public in
Q′, and vice versa.

Two connectable protocols can be composed to obtain a new protocol R containing all roles of Q and Q′
such that the public roles of R are a subset of the public roles of Q and Q′. Which potentially public roles of
R are actually declared to be public in R is up the protocol designer and depends on the type of protocol
that is to be modeled (see §3.1 and our case study in §5). In any case, the notation from §3.1 of the form
(rolepub

1 . . . rolepub
i | rolepriv

1 . . . rolepriv
j ) should be used for this purpose.

For pairwise connectable protocols Q1, . . . ,Qn we define Comb(Q1, . . . ,Qn) to be the (finite) set of all
protocols R that can be obtained by connecting Q1, . . . ,Qn. Note that all protocols R in this set differ
only by their sets of public roles. We define two shorthand notations for easily specifying the most common
types of combined protocols: by (Q1, . . . ,Qi | Qi+1, . . . ,Qn) we denote the protocol R ∈ Comb(Q1, . . . ,Qn),
where the public roles of Q1, . . . ,Qi remain public in R and all other roles are private. This notation can
be mixed with the notation from §3.1 in the natural way by replacing a protocol Qj with its roles, some of
which might be public while others might be private in R. Furthermore, by Q1 || Q2 we denote the protocol
R ∈ Comb(Q1,Q2) where exactly those public roles of Q1 and Q2 remain public that are not used as a
subroutine by any machine in Q1 or Q2.

We call a protocol Q complete if every subroutine role used by a machine in Q is also part of Q. In other
words, Q fully specifies the behavior of all subroutines. Since security analysis makes sense only for a fully
specified protocol, we will (implicitly) consider this to be the default in the following.

3.5 Realization Relation and Composition Theorems

In the following, we define the universal composability experiment and state the main composition theorem
of iUC. Since iUC is an instantiation of the IITM model, as shown by our mapping mentioned in §3.3, both
the experiment and theorem are directly carried over from the IITM model and hence do not need to be
re-proven.

Definition 1 (Realization relation in iUC). Let P and F be two environmentally bounded complete
protocols with identical sets of public roles. The protocol P realizes F (denoted by P ≤ F) iff there exists a
simulator (system) S ∈ Adv(F) such that for all E ∈ Env(P) it holds true that {E ,P} ≡ {E ,S,F} .15

Note that E in {E ,P} connects to the I/O interfaces of public roles as well as the network interfaces of all
roles of P. In contrast, E in the system {E ,S,F} connects to the I/O interfaces of public roles of F and
the network interface of S. The simulator S connects to E (simulating the network interface of P) and the
network interface of F ; see also Figure 1, where here we consider the case that E subsumes the adversary A.
(As shown in [1], whether or not the adversary A is considered does not change the realization relation. The
resulting notions are equivalent.)

Now, the main composition theorem of iUC, which is a corollary of the composition of the IITM model, is
as follows:
15 Intuitively, the role names are used to determine which parts of F are realized by which parts of P, hence they

must have the same sets of public roles. Also, recall from §3.1 that the environment can use arbitrary (and also
arbitrarily many) I/O connections of public roles. Hence, the realization proof has to hold true independently of (i)
how many connections a public role provides to the environment (this is an arbitrary but fixed parameter in the
proof) and (ii) which exact connections of a public role are used by the environment and which are used internally
by (unknown) higher-level roles of P, if any (this is also an arbitrary but fixed parameter). We emphasize that this
requirement is trivially met by typical protocol specifications, where roles offer some kind of service/functionality to
all (unknown) higher-level protocols.
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Corollary 1 (Concurrent composition in iUC). Let P and F be two protocols such that P ≤ F . Let Q
be another protocol such that Q and F are connectable. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such
that R and I have the same sets of public roles. If R is environmentally bounded and complete, then R ≤ I.16

Just as in the IITM model, we emphasize that this corollary also covers the special cases of protocols
with joint-state and global state. Furthermore, a second composition theorem for secure composition of an
unbounded number of sessions of a protocol is also available, again a corollary of a more general theorem in
the IITM model. We discuss various types of composition, including composition for protocols with joint
and/or global state, in more detail in §E.

4 Concepts and Discussion

Recall from the introduction that a main goal of iUC is to provide a flexible yet easy to use framework for
universally composable protocol analysis and design. In this section, we briefly summarize and highlight some
of the core concepts that allow us to retain the flexibility and expressiveness of the original IITM model
while adding the usability with a handy set of conventions. We then highlight a selection of features that are
supported by iUC due to the concepts iUC uses and that are not supported by other (conventions of) models,
including the prominent UC and GNUC models. Our case study in §5 further illustrates the expressiveness of
iUC. An extended discussion of concepts and features is available in Appendix E. Some of the most crucial
concepts of iUC, discussed next, are the separation of entities and machine instances, public and private
roles, a model independent interpretation of SIDs, support for responsive environments as well as a general
addressing mechanism, which enables some of these concepts.
Separation of entities and machine instances: Traditionally, universal composability models do not distinguish
between a machine instance and its interpretation. Instead, they specify that, e.g., a real protocol instance
always represents a single party in a single session running a specific piece of code. Sometimes even composition
theorems depend on this view. This has the major downside that, if the interpretation of a machine instance
needs to be changed, then existing models, conventions, and composition theorems are no longer applicable
and have to be redefined (and, in the case of theorems, reproven). For example, a typical joint state protocol
instance [7, 20] manages a single party in all sessions and one role. Thus, in the case of the UC and GNUC
models, the models had to be extended and reproven, including conventions and composition theorems. This
is in contrast to iUC, which introduces the concept of entities. A protocol designer can freely define the
interpretation of a machine instance by specifying the set of entities managed by that instance; the resulting
protocol is still supported by our single template and the main composition theorem. This is a crucial feature
that allows for the unified handling of real, ideal, joint-state, and (in combination with the next concept) also
global state protocols.

We emphasize that this generality is made possible by the highly customizable addressing mechanism
(CheckID in the template) used in iUC, which in turn is based on the very general addressing mechansim of
the IITM model.
Public and private roles: Similar to the previous point, traditionally global state is defined by adding a
special new global functionality with its own sets of conventions and proving specific global state composition
theorems. However, whether or not state is global is essentially just a matter of access to that state. Our
framework captures this property via the natural concept of public roles, which provides a straightforward
way to make parts of a protocol accessible to the environment and other protocols. Thus, there is actually no
difference between protocols with and without global state in terms of conventions or composition theorems
in our framework.
16 Technically speaking, public roles of P and F are not identically named but rather have a different prefix, i.e., a

public role “P : role” in R corresponds to/is replaced by the public role “F : role” in I. Hence, one technically has
to slightly modify the higher level protocol Q to redirect messages appropriately, depending on which subroutine is
to be used. By (slight) abuse of notation, we write Q in both systems R and I as the meaning is clear from the
context.
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A model independent interpretation of SIDs: In most other models, such as UC and GNUC, SIDs play a
crucial role in the composition theorems. Composition theorems in these frameworks require protocols to
either have disjoint sessions, where a session is defined via the SID, or at least behave as if they had disjoint
sessions (in the case of joint-state composition theorems). This has two major implications: Firstly, one
cannot directly model a protocol where different sessions share the same state and influence each other. This,
however, is often the case for real world protocols that were not built with session separation in mind. For
example, many protocols such as our case study (cf. §5) use the same signing key in multiple sessions, but
do not include a session specific SID in the signature (as would be required for a joint-state realization).
Secondly, sessions in ideal functionalities can consist only of parties sharing the same SID, which models
so-called global SIDs or pre-shared SIDs [21]. That is, participants of a protocol session must share the same
SID. This is in contrast to so-called local SIDs often used in practice, where participants with different SIDs
can be part of the same protocol session (cf. 5.3). Because our main composition theorem is independent of
(the interpretation of) SIDs, and in particular does not require state separation, we can also capture shared
state and local SIDs in our framework.

Just as for the concept of entities and instances, this flexibility is made possible by the general addressing
mechanism of iUC (and its underlying IITM model).
Support for responsive environments: Recall that responsive environments [1] allow for sending special messages
on the network interface, called restricting messages, that have to be answered immediately by the adversary
and environment. This is a very handy mechanism that allows protocols to exchange modeling related meta
information with the adversary without disrupting the protocol run. For example, entities in our framework
request their initial corruption status via a restricting message. Hence, the adversary has to provide the
corruption status right away and the protocol run can continue as expected. Without responsive environments,
one would have to deal with undesired behavior such as delayed responses, missing responses, as well as state
changes and unexpected activations of (other parts of) the protocol before the response is provided. In the
case of messages that exist only for modeling purposes, this adversarial behavior just complicates the protocol
design and analysis without relating to any meaningful attack in reality, often leading to formally wrong
security proofs and protocol specifications that cannot be re-used in practice. See Appendix E.8 and [1] for
more information.

Selected Features of iUC. The iUC framework uses and combines the above concepts to support a wide range
of protocols and composition types, some of which have not even been considered in the literature so far,
using just a single template and one main composition theorem. We list some important examples:

i) Protocols with local SIDs and global SIDs, arbitrary forms of shared state including state that is shared
across multiple protocol sessions, as well as global state. Our case study in §5 is an example of a protocol
that uses and combines all of these protocol features, with a detailed explanation and discussion provided
in §5.3.

ii) Ideal protocols that are structured into several subcomponents, unlike the monolithic ideal functionalities
considered in other (conventions of) models. Parts of such structured ideal protocols can also be defined
to be global, allowing for easily mixing traditional ideal protocols with global state. Again, this is also
illustrated in our case study in §5. We also note that in iUC there is no need to consider so-called dummy
machines in ideal protocols, which are often required in other models that do not allow for addressing the
same machine instance with different IDs (entities).

iii) The general composition theorem, which in particular is agnostic to the specific protocols at hand, allows
for combining and mixing classical composition of protocols with disjoint session, composition of joint-state
protocols, composition of protocols with global state, and composition of protocols with arbitrarily shared
state. One can also, e.g., realize a global functionality with another protocol (this required an additional
composition theorem for the UC model [12] and is not yet supported by GNUC, whereas in iUC this is
just another trivial special case of protocol composition). iUC even supports new types of compositions
that have not been considered in the literature so far, such as joint-state realizations of two separate
independent protocols (in contrast to traditional joint-state realizations of multiple independent sessions
of the same protocol; cf. Appendix E.3).
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Party A Party B
A, gx

B, gy, SIGskB (gx, gy, A)

SIGskA (gy, gx, B)

Fig. 5: ISO 9798-3 key exchange protocol for mutual authentication. A and B are the names of two parties
that, at the end of the protocol, share a session key gxy.

Besides our case study in §5, the flexibility and usability of iUC is also illustrated by another example in
Appendix E, where we discuss that the iUC framework can capture the SUC model [10] as a mere special
case. As already mentioned in the introdcution, the SUC model has been specifically designed for secure
multi party computation (MPC) as a simpler version of the UC model, though it has to break out of (some
technical aspects of) the UC model.

5 Case Study

In this section, we illustrate the usage of iUC by means of a concrete example, demonstrating usability,
flexibility, and soundness of our framework. More specifically, we model and analyze a key exchange protocol
of the ISO/IEC 9798-3 standard [17], an authenticated version of the Diffie-Hellman key exchange protocol,
depicted in Figure 5. While this protocol has already been analyzed previously in universal composability
models (e.g., in [6, 19]), these analyses were either for modified versions of the protocol (as the protocol could
not be modeled precisely as deployed in practice) or had to manually define many recurrent modeling related
aspects (such as a general corruption model and an interpretation of machine instances), which is not only
cumbersome but also hides the core logic of the protocol.

We have chosen this relatively simple protocol for our case study as it allows for showing how protocols
can be modeled in iUC and highlighting several core features of the framework without having to spend much
time on first explaining the logic of the protocol.

More specifically, our case study illustrates that our framework manages to combine soundness and
usability: the specifications of the ISO protocol given in the figures below are formally complete, no details
are swept under the rug, unlike the informal descriptions commonly encountered in the literature on universal
composability. This allows for a precise understanding of the protocol, enabling formally sound proofs and
re-using the protocol in higher-level protocols. At the same time, specifications of the ISO protocol are not
overburdened by recurrent modeling related aspects as they make use of convenient defaults provided by the
iUC framework. All parts of the ISO protocol are specified using a single template with one set of syntax
rules, including real, ideal, and global state (sub-)protocols, allowing for a uniform treatment.

This case study also shows the flexibility of our framework: entites are grouped in different ways into
machine instances to model different types of protocols and setup assumptions; we are able to share state
across several sessions; we make use of the highly adjustable corruption model to precisely capture the desired
corruption behavior of each (sub-)protocol; we are able to model both global state and locally chosen SIDs in
a very natural way (we discuss some of these aspects, including locally chosen SIDs, in detail in §5.3).

We start by giving a high-level overview of how we model this ISO key exchange protocol in §5.1, then
state our security result in §5.2, and finally discuss some of the features of our modeling in §5.3.

5.1 Overview of our Modeling

We model the ISO protocol in a modular way using several smaller protocols. The static structure of all
protocols, including their I/O connections for direct communication, is shown in Figure 3, which was partly
explained already in §3.1. We provide a formal specification of FCA using our template and syntax in Figure 6.
The remaining protocols specifications are given in Appendix B. The syntax is mostly self-explanatory,
except for (pidcur, sidcur, rolecur), which denotes the currently active entity (that was accepted by CheckID),
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(pidcall, sidcall, rolecall), which denotes the entity that called the currently active entity on the I/O interface,
and “ ”, which is a wildcard symbol. A formal definition of the syntax is provided in Appendix C. In the
following, we give a high-level overview of each protocol.

The ISO key exchange (Figure 5) is modeled as a real protocol PKE that uses two ideal functionalities
as subroutines: an ideal functionality Fsig-CA for creating and verifying ideal digital signatures and an ideal
functionality FCA modeling a certificate authority (CA) that is used to distribute public verification keys
generated by Fsig-CA. The real protocol PKE, as already mentioned in §3.1, consists of three roles, initiator,
responder, and setup. The setup role models secure generation and distribution of a system parameter,
namely, a description of a cyclic group (G,n, g). As this parameter must be shared between all runs of
a key exchange protocol, setup is implemented by a single machine which spawns a single instance that
manages all entities and always outputs the same parameter. The roles initiator and responder implement
parties A and B, respectively, from Figure 5. Each role is implemented by a separate machine and every
instance of those machines manages exactly one entity. Thus, these instances directly correspond to an actual
implementation where each run of a key exchange protocol spawns a new program instance. We emphasize
that two entities can perform a key exchange together even if they do not share the same SID, which models
so-called local SIDs (cf. [21]) and is the expected behavior for many real-world protocols; we discuss this
feature in more detail below.

During a run of PKE, entities use the ideal signature functionality Fsig-CA to sign messages. The ideal
functionality Fsig-CA consists of two roles, signer and verifier, that allow for the corresponding operations.
Both roles are implemented by the same machine and instances of that machine manage entities that share
the same SID. The SID sid of an entity is structured as a tuple (pidowner, sid′), modeling a specific key pair
of the party pidowner. More specifically, in protocol PKE, every party pid owns a single key pair, represented
by SID (pid, ε)17, and uses this single key pair to sign messages throughout all sessions of the key exchange.
Again, this is precisely what is done in reality, where the same signing key is re-used several times. The
behavior of Fsig-CA is closely related to the standard ideal signature functionalities found in the literature
(such as [20]), except that public keys are additionally registered with FCA when being generated.

As also mentioned in §3.1, the ideal CA functionality FCA allows for storing and retrieving public keys.
Both roles, registration and retrieval, are implemented by one machine and a single instance of that
machine accepts all entities, as FCA has to output the same keys for all sessions and parties. Keys are stored
for arbitrary pairs of PIDs and SIDs, where the SID allows for storing different keys for a single party. In our
protocol, keys can only be registered by Fsig-CA, and the SID is chosen in a matter that it always has the
form (pid, ε), denoting the single public key of party pid. We emphasize again that arbitrary other protocols
and the environment are able to retrieve public keys from FCA, which models so-called global state.

In summary, the real protocol that we analyze is the combined protocol (PKE,FCA : retrieval |
Fsig-CA,FCA : registration) (cf. left side of Figure 3). We note that we analyze this protocol directly in
a multi-session setting. That is, the environment is free to spawn arbitrarily many entities belonging to
arbitrary parties and having arbitrary local SIDs and thus there can be multiple key exchanges running in
parallel. Analyzing a single session of this key exchange in isolation is not possible due to the shared signing
keys and the use of local SIDs, which, as mentioned, precisely models how this protocol would usually be
deployed in practice.18

We model the security properties of a multi-session key exchange via an ideal key exchange functionality
FKE. This functionality consists of two roles, initiator and responder, and uses FCA as a subroutine, thus
providing the same interfaces (including the public role retrieval of FCA) as PKE in the real world. Both
initiator and responder roles are implemented via a single machine, and one instance of this machine
manages all entities. This is due to the fact that, at the start of a run, it is not yet clear which entities will

17 Since we need only a single key pair per party, we set sid′ to be the fixed value ε, i.e., the empty string.
18 Note that this is true in all UC-like models that can express this setting: the assumption of disjoint sessions, which

is necessary for performing a single session analysis, is simply not fulfilled by this protocol. This issue cannot even
be circumvented by using a so-called joint-state realization for digital signatures, as such a realization not only
requires global SIDs (cf. §5.3) but also changes the messages that are signed, thus creating a modified protocol with
different security properties.
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Description of the protocol FCA = (registration, retrieval):
Participating roles: {registration, retrieval}
Corruption model: incorruptible

Description of Mregistration,retrieval:
Implemented role(s): {registration, retrieval}
Internal state:

– keys : ({0, 1}∗)2 → {0, 1}∗ ∪ {⊥}
{

Mapping from a tuple (PID,SID) to stored keys; ini-
tially ⊥.

CheckID(pid , sid , role): Accept all entities.
{

By this there is only a single machine instance that
manages all entities.

Main:

recv (Register, key) from I/O to ( , , registration):


Allows every higher level protocol that
connects to the registration role to
register a key. The key is stored for
the PID and SID of the caller of FCA.

if keys[pidcall, sidcall] 6= ⊥:
reply (Register, failed).

else:
keys[pidcall, sidcall] = key
reply (Register, success).

recv (Retrieve, (pid, sid)) from to ( , , retrieval): {Everyone, including NET, can retrieve
keys registered by someone with PID
pid and SID sid.

reply (Retrieve, keys[pid, sid]).

Fig. 6: The ideal CA functionality FCA models a public key infrastructure based on a trusted certificate
authority.

interact with each other to form a “session” and perform a key exchange (recall that entities need not share
the same SID to do so, i.e., they use locally chosen SIDs, see also §5.3). Thus, a single instance of FKE must
manage all entities such that it can internally group entities into appropriate sessions that then obtain the
same session key. Formally, the adversary/simulator is allowed to decide which entities are grouped into
a session, subject to certain restrictions that ensure the expected security guarantees of a key exchange,
including authentication. If two honest entities finish a key exchange in the same session, then FKE ensures
that they obtain an ideal session key that is unknown to the adversary. The adversary may also use FKE to
register arbitrary keys in the subroutine FCA, also for honest parties, i.e., no security guarantees for public
keys in FCA are provided (see the remark in Figure 13).

5.2 Security Result

For the above modeling, we obtain the following result.

Theorem 2. Let groupGen(1η) be an algorithm that outputs descriptions (G,n, g) of cyclical groups (i.e., G
is a group of size n with generator g) such that n grows exponentially in η and the DDH assumption holds
true. Then we have:

(PKE,FCA : retrieval | Fsig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

Proof. Given in Appendix D.19

Note that we can realize Fsig-CA via a generic implementation Psig-CA of a digital signature scheme (see
Figure 9 in the Appendix):

19 We note that the realization proof trivially meets the requirements of Footnote 15 because all (sub-)protocols
from our case study provide their services to all higher-level protocols and the environment no matter which exact
connections they use. This is really the standard case for natural protocol definitions.
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Lemma 1. If the digital signature scheme used in Psig-CA is existentially unforgable under chosen message
attacks (EUF-CMA-secure), then

(Psig-CA,FCA : retrieval | FCA : registration)
≤ (Fsig-CA,FCA : retrieval | FCA : registration) .

Proof. Analogous to the proof in [20].

By Corollary 1, we can thus immediately replace the subroutine Fsig-CA of PKE with its realization Psig-CA
to obtain an actual implementation of Figure 3 based on an ideal trusted CA:

Corollary 2. If the conditions of Theorem 2 and Lemma 1 are fulfilled, then

(PKE,FCA : retrieval | Psig-CA,FCA : registration)
≤ (FKE,FCA : retrieval | FCA : registration) .

5.3 Discussion

In the following, we highlight some of the key details of our protocol specification where we are able to model
reality very precisely and in a natural way, illustrating the flexibility of iUC, also compared to (conventions
of) the UC and GNUC models.

Local SIDs: Many real-world protocols, including the key exchange in our case study, use so-called local
session IDs in practice (cf. [21]). That is, the SID of an entity (pid , sid , role) models a value that is locally
chosen and managed by each party pid and used only for locally addressing a specific instance of a protocol
run of that party, but is not used as part of the actual protocol logic. In particular, multiple entities can form
a “protocol session” even if they use different SIDs. This is in contrast to using so-called pre-established SIDs
(or global SIDs), where entities in the same “protocol session” are assumed to already share some globally
unique SID that was created prior to the actual protocol run, e.g., by adding an additional roundtrip to
exchange nonces, or that is chosen by and then transmitted from one entity to the others during the protocol
run. As illustrated by the protocols PKE (and FKE) in our case study, iUC can easily model such local SIDs
in a natural way. This is in contrast to several other UC-like models, including the UC and GNUC models,
that are built around global SIDs and thus do not directly support local SIDs with their conventions. While
it might be possible to find workarounds by ignoring conventions, e.g., by modeling all sessions of a protocol
in a single machine instance M , i.e., essentially ignoring the model’s intended SID mechanism and taking
care of the addressing of different sessions with another layer of SIDs within M itself, this has two major
drawbacks: Firstly, it decreases overall usability of the models as this workaround is not covered by existing
conventions of these models. Secondly, existing composition theorems of UC and GNUC do not allow one to
compose such a protocol with a higher-level protocol modeled in the “standard way” where different sessions
use different SIDs.20 We emphasize that the difference between local and global SIDs is not just a minor
technicality or a cosmetic difference: as argued by Küsters et al. [21], there are natural protocols that are
insecure when using locally chosen SIDs but become secure if a global SID for all participants in a session
has already been established, i.e., security results for protocols with global SIDs do not necessarily carry over
to actual implementations using local SIDs.

Shared State: In iUC, entities can easily and naturally share arbitrary state in various ways, even across
multiple protocol sessions, if so desired. This is illustrated, e.g., by PKE in our case study, where every party
uses just a single signature key pair across arbitrarily many key exchanges. This allows for a very flexible and
precise modeling of protocols. In particular, for many real-world protocols this modeling is much more precise
than so-called joint-state realizations that are often used to share state between sessions in UC-like models
20 This is because such a higher level protocol would then access the same subroutine session throughout many different

higher-level sessions, which violates session disjointness as required by both UC and GNUC.
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that assume disjoint sessions to be the default, such as the UC and GNUC models. Joint-state realizations
have to modify protocols by, e.g., prefixing signed messages with some globally unique SID for every protocol
session (which is not done by many real-world protocols, including our case study). Thus, even if the modified
protocol is proven to be secure, this does not imply security of the unmodified one. The UC and GNUC models
do not directly support state sharing without resorting to joint-state realizations or global functionalities.
While one might be able to come up with workarounds similar to what we described for local SIDs above,
this comes with the same drawbacks in terms of usability and flexibility.

Global State: Our concept of public and private roles allows us to not only easily model global state but also
to specify, in a convenient and flexible way, machines that are only partially global. This is illustrated by FCA
in our case study, which allows arbitrary other protocols to retrieve keys but limits key registration to one
specific protocol to model that honest users will not register their signing keys for other contexts (which, in
general, otherwise voids all security guarantees). This feature makes FCA easier to use as a subroutine than
the existing global functionality Gbb for certificate authorities by Canetti et al. [12], which does not support
making parts of the functionality “private”. Thus, everyone has full access to all operations of Gbb, including
key registration, allowing the environment to register keys in the name of (almost) arbitrary parties, even if
they are supposed to be honest.

Note that our formulation of FCA means that, if the ideal protocol (FKE,FCA : retrieval | FCA :
registration) is used as a subroutine for a new hybrid protocol, then only FKE but not the higher-level
protocol can register keys in FCA. If desired, one can, however, also obtain a single global FCA where both
FKE and the higher-level protocol can store keys in the following way: First analyze the whole hybrid protocol
while using a second separate copy of FCA, say F ′CA, where only the higher-level protocol can register keys.
After proving this to be secure (which is simpler than directly using a global CA where multiple protocols
register keys), one can replace both FCA and F ′CA with a joint-state realization where keys are stored in and
retrieved from the same FCA subroutine along with a protocol dependent tag (see Appendix E.3 for this novel
type of joint-state realization). Of course, this approach can be iterated to support arbitrarily many protocols
using the same FCA. This modeling reflects reality where keys are certified for certain contexts/purposes.

6 Conclusion

We have introduced the iUC framework for universal composability. As illustrated by our case study, iUC
is highly flexible in that it supports a wide range of protocol types, protocol features, and composition
operations. This flexibility is combined with greatly improved usability compared to the IITM model due
to its protocol template that fixes recurring modeling related aspects while providing sensible defaults for
optional parts. Adding usability while preserving flexibility is a difficult task that is made possible, among
others, due to the concepts of roles and entities; these concepts allow for having just a single template and
two composition theorems that are able to handle arbitrary types of protocols, including real, ideal, joint-state,
and global ones, and combinations thereof. The flexibility and usability provided by iUC also significantly
facilitates the precise modeling of protocols, which is a prerequisite for carrying out formally complete and
sound proofs. Our formal mapping from iUC to the IITM shows that iUC indeed is an instantiation of the
IITM, and hence, immediately inherits all theorems, in particular, all composition theorems, of the IITM
model. Since we formulate these theorems also in the iUC terminology, protocol designers can completely
stay in the iUC realm when designing and analyzing protocols.

Altogether, the iUC framework is a well-founded framework for universal composability which combines
soundness, flexibility, and usability in an unmatched way. As such, it is an important and convenient tool for
the precise modular design and analysis of security protocols and applications.
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A Full Definitions of Corruption Behavior Algorithms

This element of the template allows for customization of corruption related behavior of machines by specifying
a custom version of one or more of the optional algorithms DetermineCorrStatus, AllowCorruption,
LeakedData, and AllowAdvMessage. These algorithms are used to customize our corruption model, as
explained in §3.2 (cf. that section for possible use cases). As these algorithms are part of our corruption
conventions, they are used only if Corruption model is not set to custom. A detailed description of the
purpose of every algorithm, including its default behavior if not specified, is given next.

The DetermineCorrStatus(pid , sid , role) algorithm is used to customize the response upon receiving
CorruptionStatus? requests (recall that other roles/the environment can send this message on the I/O
interface to obtain the current corruption status of (pid , sid , role)); the algorithm must output either true
or false. More precisely, upon receiving a CorruptionStatus? request from a sender for some receiving
entity (pid , sid , role), an instance does the following right at the start of mode Compute: if (pid , sid , role)
has not yet received a message 6= CorruptionStatus? (and thus in particular has not yet determined
whether it is explicitly corrupted), then (CorruptionStatus, false) is sent back to the sender immediately.
Otherwise, the instance checks whether (pid , sid , role) has been explicitly corrupted by the adversary. If so,
the instance sends (CorruptionStatus, true) back to the sender. The same also happens if, at some point
in the past, the instance has already responded with true for (pid , sid , role) at least once. Finally, in all
other cases the DetermineCorrStatus algorithm is called to decide whether the instance responds with the
message (CorruptionStatus, true) or (CorruptionStatus, false). As mentioned previously, this decision
might depend on, e.g., the corruption status of subroutines. In particular, DetermineCorrStatus might
ask for the corruption status of (entities in) subroutines by sending CorruptionStatus? to (entities in) these
subroutines. If not specified, the DetermineCorrStatus algorithm always returns false. We note that
no other actions are performed during or after responding to a CorruptionStatus? request. In particular,
neither Initialization, Main, or such is performed nor is the adversary asked whether he wants to corrupt
an entity.21

The AllowCorruption(pid , sid , role) algorithm is used to decide whether an adversary may explicitly
corrupt an entity (pid , sid , role); it must output true or false. More precisely, when an the adversary asks
to corrupt some uncorrupted entity (pid , sid , role) (either by sending a corrupt request or when (pid , sid , role)
determines its initial corruption status), the entity first checks whether, for the specified corruption mode
of the protocol, corruption of this entity is possible at the current point in time, and rejects the request if
not. Otherwise, AllowCorruption is called to decide whether corruption of that entity is accepted. The
decision can, for example, depend on the corruption states of (entities in) subroutines, as explained in §3.2.
If the algorithm outputs true, then the entity is henceforth considered explicitly corrupted. The entity is
then also added to a framework-specific set CorruptionSet that keeps track of all explicitly corrupted entities
managed by the current machine instance; this set can be used by a protocol designer for eample to let the
behavior of algorithms depend on which entities are explicitly corrupted. If the AllowCorruption algorithm
is not specified, then the default is to always return true, i.e., the adversary is not further restricted in which
entities he may corrupt.

The LeakedData(pid , sid , role) algorithm is used to determine the data that is leaked to the adversary
upon successful (explicit) corruption of an entity (pid , sid , role); it outputs an arbitrary bit string. Formally,
this algorithm is called directly after AllowCorruption has allowed corruption by outputting true; the
output of LeakedData is then sent as part of a confirmation of successful corruption back to the network. To
make the specification of LeakedData easier, authors can use the framework specific variable transcript that
contains a list of all messages that have been received and sent by the MessagePreprocessing and Main
algorithms (see below) of this instance; in other words, this variable generally contains all messages except
for (meta) messages related to initialization and corruption. If LeakedData is not specified, the following
default behavior is used: If an entity is currently determining its initial corruption status after receiving
some (first) message m from some sender sender and gets corrupted during this, then (m, sender) is output
21 This ensures that CorruptionStatus? requests, by default, do not change the internal state of machines, which

would complicate simulations needlessly.
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by LeakedData. Thus, the adversary learns all information that this entity ever obtained, modeling that
the entity was corrupted before the protocol started. If corruption occurs later on, which is possible only
for dynamic corruption modes, then the leakage contains either the Internal state (in the case of dynamic
corruption with secure erasures) or the Internal state, the transcript of all messages transcript, and all
random coins that have been used so far (in the case of dynamic corruption without secure erasures). We
note that, generally, this default for dynamic corruption is suitable only for instances that manage exactly
one entity because the full Internal state, transcript, and random coins are leaked.

The AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m) algorithm is used to decide
whether an adversary may send a message m via an explicitly corrupted entity (pid , sid , role) to some other
receiving entity (pidreceiver, sidreceiver, rolereceiver) (where rolereceiver is a role that is connected to the current
machine, i.e., it is a subroutine or a higher level protocol). The algorithm must output either true or false,
depending on whether the message is allowed. If a message m is not allowed, then the entity stops the current
activation without forwarding m by returning an error message to the adversary. If AllowAdvMessage is
not specified, it defaults to outputting true iff pid = pidreceiver. In other words, by default an adversary can
interact only with subroutines/higher level protocols in the name of the same party pid. This default has
been chosen as in most cases we expect protocols to be designed such that parties call other protocols only in
their own name; in such a setting, an adversary should not be able to directly use, e.g., subroutines belonging
to other (uncorrupted) parties. Note that this default does not restrict the adversary from sending messages
to entities with a different SID. If this property is desired, for example, to model disjoint protocol sessions
that do not interact with each other, then this algorithm can be customized appropriately.

B Postponed Protocol Definitions

This section provides the remaining definitions for the protocols from our case study in §5. The protocols are
specified in Figures 7 to 14. We provide a formal definition of the syntax used for specifying these protocols
in Appendix C.

C Notation

In the following we present a compact yet formally complete and unambiguous syntax for writing down the
different blocks of the protocol specification template presented in Figure 4.

C.1 General notation

We recommend to use typewriter font for strings, sans serif font for global variables (i.e., variables that are
persistent across multiple activations of the same instance of a machine), italic font for local (i.e., ephemeral)
variables, and bold font for keywords (e.g., for sending or receiving).

C.2 Special variables

For notational convenience, each instance maintains two framework-specific global variables, namely the
variable entitycur = (pidcur, sidcur, rolecur) and the variable entitycall = (pidcall, sidcall, rolecall), both consisting of
a PID, an SID, and a role. The former triple, entitycur, specifies the entity that was accepted by CheckID
and thus the entity that is currently being processed as the receiver of an incoming message. If the current
activation is due to a message received on the I/O interface, then entitycall specifies the entity that called the
current entity by sending that message.
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Description of the protocol Fsig-CA = (signer, verifier):
Participating roles: {signer, verifier}
Corruption model: dynamic with secure erasures
Protocol parameters:

– p ∈ Z[x].
{

Polynomial that bounds the runtime of the signing and verifications algo-
rithms provided by the adversary.

Description of Msigner,verifier:
Implemented role(s): {signer, verifier}
Subroutines: FCA : registration
Internal state:

– (sig, ver, pk, sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥). {Algorithms and key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊆ {0, 1}∗ = ∅. {Set of recorded messages.
– KeysGenerated ∈ {ready,⊥} = ⊥. {Has signer initialized his key?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′).
If this check fails, output reject.
Otherwise, accept all entities with the same SID.


An instance manages all parties and
roles in a single session. See Ap-
pendix C.3 for the formal definition of
this abbreviated statement.

Corruption behavior:
– LeakedData(pid , sid , role): If called while (pid , sid , role) determines its initial corruption status, use the default

behavior of LeakedData. That is, output the initially received message and the sender of that message.
Otherwise, if role = signer and pid = pidowner, return KeysGenerated. In all other cases return ⊥.

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):
Check that pid = pidreceiver.
If rolereceiver = FCA : registration, also check that role = signer and sid = (pid, sid′) (for some sid′).{

Only the owner of a key may register it, modeling that FCA authenticates
the owner upon registration.

If all checks succeed, output true, otherwise output false.

Initialization:
send responsively InitMe to NET;a
wait for (Init, (sig, ver , pk, sk)).
(sig, ver, pk, sk)← (sig, ver , pk, sk).
Parse sidcur as (pid, sid).
pidowner← pid.

Main:
See Figure 8.

a By sending the message responsively, the adversary is forced to provide the expected answer before interacting
with the protocol again. This makes the definition of Fsig-CA simpler as we do not have to specify what
happens if the adversary does not provide the expected response. It also makes Fsig-CA easier to use for
higher-level protocols as they get the guarantee that, when they send, e.g., a sign request, the response will
be returned immediately without the adversary being able to interfere in unexpected ways (just as is the case
in an actual implementation of a signature scheme). This in turn simplifies proofs as there are less edge cases
to consider. See [1] for a more detailed discussion of the advantages and use cases of this mechanism.

Fig. 7: The ideal signature functionality Fsig-CA.
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Description of Msigner,verifier (continued):
Main:

recv InitSign from I/O to (pidowner, , signer):
{

Only the owner of the key can create (and use)
his signing key.send (Register, pk) to (pidcur, ε, FCA : registration);

wait for (Register, ).
KeysGenerated← ready.

{Successful initialization. Note that signer can sub-
mit InitSign multiple times, always with the same
effect.reply (InitSign, success, pk).

recv (Sign,msg) from I/O to (pidowner, , signer) s.t. KeysGenerated = ready:

σ ← sig(p)(msg, sk).
{

Run at most polynomially many steps of sig. See Appendix C.7
for a formal definition.

b← ver(p)(msg, σ, pk). {Sign and check that verification succeeds.
if σ = ⊥ ∨ b 6= true:

reply (Signature,⊥). {Signing or verification test failed.
else:

add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ, pk) from I/O to ( , , verifier):
b← ver(p)(msg, σ, pk). {Verify signature.
if pk = pk ∧ b = true ∧msg /∈ msglist ∧ (pidowner, sidcur, signer) 6∈ CorruptionSet:

{cf. §3.3 for CorruptionSet.
reply (VerResult, false). {Prevent forgery.

else:
reply (VerResult, b). {Return verification result.

Fig. 8: The ideal signature functionality Fsig-CA (continued).

C.3 CheckID

To specify that an instance of a machine should manage all entities for a single party, one can use the informal
statement

“accept all entities with the same PID”.

This is short for the following formal algorithm: “Let (pid , sid , role) be the input of CheckID. If no entity has
been accepted yet, then output accept. Otherwise, let (pid1, sid1, role1) be the first entity that was accepted
at some point in the past (i.e., the first entity in the list acceptedEntities). Output accept iff pid = pid1;
output reject otherwise.”

The above specification of CheckID of a machine M says that each instance of M is responsible for all
entities belonging to a single party pid, where different instances are responsible for different parties. In other
words, a machine instance models a party. More specifically, if an instance is fresh, then it will just accept
the first entity it sees. This fixes the party pid that is managed by this machine instance. For all following
activations, an entity is accepted iff it belongs to pid. Note that, since entities of party pid are never rejected,
there will never be a second instance of M that also accepts pid.

The informal statements

“accept all entities with the same SID”,
“accept all entities with the same SID and role”, etc.

are interpreted analogously to “accept all entities with the same PID”. We also allow for using the statement

“accept a single entity”,

which is formally defined as follows: “Let (pid , sid , role) be the input of CheckID. If no entity has been
accepted yet, then output accept. Otherwise, let (pid1, sid1, role1) be the first entity that was accepted at
some point in the past (i.e., the first entity in the list acceptedEntities). Output accept iff (pid , sid , role) =
(pid1, sid1, role1); output reject otherwise.”
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Description of the protocol Psig-CA = (signer, verifier):
Participating roles: signer, verifier
Corruption model: dynamic with secure erasures
Protocol parameters:

– an EUF-CMA signature scheme Σ = (gen, sig, ver).

Description of Msigner:
Implemented role(s): signer
Subroutines: FCA : registration
Internal state:

– (sk, pk) ∈ ({0, 1}∗ ∪ {⊥})2 = (⊥,⊥). {key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– KeysGenerated ∈ {ready,⊥} = ⊥. {Has signer initialized his key?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′); otherwise output reject.
Accept a single entity. {An instance manages exactly one entity.

Corruption behavior:
– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):

Check that pid = pidreceiver.
If rolereceiver = FCA : registration, also check that sid = (pid, sid′) (for some sid′).
If all checks succeed, output true, otherwise output false.

Initialization:
(sk, pk)← gen(1η).
Parse sidcur as (pid, sid).
pidowner← pid.

Main:

recv InitSign from I/O to (pidowner, , ):
send (Register, pk) to (pidcur, sidcur, FCA : registration);
wait for (Register, ).
KeysGenerated← ready.
reply (InitSign, success, pk).

recv (Sign,msg) from I/O to (pidowner, , ) s.t. KeysGenerated = ready:
σ ← sig(msg, sk). {Sign msg, return signature.
reply (Signature, σ).

Description of Mverifier:
Implemented role(s): verifier
CheckID(pid , sid , role):

Check that sid = (pid′, sid′); otherwise output reject.
Accept a single entity. {An instance manages exactly one entity.

Main:

recv (Verify,msg, σ, pk) from I/O:
b← ver(msg, σ, pk).
reply (VerResult, b). {Verify, return result.

Fig. 9: The real signature protocol Psig-CA.
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Description of the protocol PKE = (initiator, responder | setup):
Participating roles: initiator, responder, setup
Corruption model: static
Protocol parameters:

– groupGen(1η).
{

Algorithm for generating tuples (G,n, g) describing cyclic groups G
of size n with generator g.

Description of Minitiator:
Implemented role(s): initiator
Subroutines: setup, Fsig-CA, FCA : retrieval
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state ∈ {⊥, started, inSession, finished} = ⊥ {Current state in key exchange.
– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the initial caller of this entity/instance.
– intendedPID ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the intended partner PID.
– k ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the session key.
– einit ∈ Zn ∪ {⊥} = ⊥ {Secret DH exponent of initiator.
– hresp ∈ G ∪ {⊥} = ⊥ {Public DH key share of responder.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role) :

{
Consider entity corrupted if one of the signature
keys or the verification subroutine is corrupted.

if intendedPID = ⊥:
return corr(pid, (pid, ε),Fsig-CA : signer).


The corr macro sends
CorruptionStatus? to the speci-
fied entity, waits for the response, and
then outputs that response.else:

return corr(pid, (pid, ε),Fsig-CA : signer)
∨ corr(intendedPID, (intendedPID, ε),Fsig-CA : signer)
∨ corr(pid, (intendedPID, ε),Fsig-CA : verifier).

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):
If rolereceiver = Fsig-CA : signer, return false.a
Otherwise output true iff pid = pidreceiver.

Initialization:
send GetParameters to (pidcur, ε, setup); {Get DH parameters
wait for (GetParameters, (G,n, g)).
(G, n, g)← (G,n, g).
send InitSign to (pidcur, (pidcur, ε), Fsig-CA : signer);
wait for (InitSign, success, ).

Main:
See Figure 11.

a In our modeling, the corruption status of signer entities indicates whether the adversary has access to the
corresponding signature keys, i.e., whether he can sign his own messages (as in this case the signer entity
should be considered compromised). Thus, the adversary is not allowed to access uncorrupted signer entities.
If the signer entity is corrupted, then the adversary already knows the secret key and can sign messages on
his own, so there is no need to give him access in this case.

Fig. 10: A real key exchange protocol PKE for realizing FKE (part 1). Note that each instance of Minitiator
and Mresponder corresponds to a single entity.
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Description of Minitiator (continued):
Main:

recv (InitKE, intendedPartner) from I/O s.t. state = ⊥:
{

Start KE and send first mes-
sage.

(state, caller, intendedPID)← (started, entitycall, intendedPartner).
Choose einit ← Zn uniformly at random, compute hinit = geinit .
send (pidcur, hinit) to NET.

recv (intendedPID, hresp, σ) from NET s.t. state = started:
{

Receive second message and
output key.

send (Retrieve, (intendedPID, (intendedPID, ε))) to (pidcur, ε, FCA : retrieval);
wait for (Retrieve, pk). {Get public verification key of intended partner.
if pk = ⊥:

abort.
msg = (geinit , hresp, pidcur). {Check signature.
send (Verify,msg, σ, pk) to (pidcur, (intendedPID, ε), Fsig-CA : verifier);
wait for (VerResult, b).
if b = false:

abort.
hresp ← hresp; k← hrespeinit ; state← finished.
send (FinishKE, k) to caller.

recv GetLastMessage from NET s.t. state = finished:a

m = (hresp, geinit , intendedPID).
send (Sign,m) to (pidcur, (pidcur, ε), Fsig-CA : signer);
wait for (Signature, σ).
send σ to NET.

a Allow the adversary to retrieve the third protocol message. This modeling works around the fact that machines
may send only one message at a time, but the last protocol step outputs two (one for the network and one for
the user with the key). We note that this issue is not specific to the IITM model or iUC but also appears in
other models, such as the UC and GNUC models.

Description of Msetup:
Implemented role(s): setup
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
CheckID(pid , sid , role): Accept all entities.
Corruption behavior:

– AllowCorruption(pid , sid , role) : return false.
{The adversary may not corrupt the

(honestly generated) setup parameters.Initialization:
(G, n, g)← groupGen(1η).

Main:

recv GetParameters from :
{

Everyone may retrieve the group parameters,
including the adversary on the network.

reply (GetParameters, (G, n, g)).

Fig. 11: A real key exchange protocol PKE for realizing FKE (part 2).
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Description of Mresponder:
Implemented role(s): responder
Subroutines: setup, Fsig-CA, FCA : retrieval
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state ∈ {⊥, started, inSession, finished} = ⊥ {Current state in key exchange.
– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the initial caller of this entity/instance.
– intendedPID ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the intended partner PID.
– k ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the session key.
– eresp ∈ Zn ∪ {⊥} = ⊥ {Secret DH exponent of responder.
– hinit ∈ G ∪ {⊥} = ⊥ {Public DH key share of initiator.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role) :

{
Consider entity corrupted if one of the signature
keys or the verification subroutine is corrupted.

if intendedPID = ⊥: return corr(pid, (pid, ε),Fsig-CA : signer).
else: return corr(pid, (pid, ε),Fsig-CA : signer)

∨ corr(intendedPID, (intendedPID, ε),Fsig-CA : signer)
∨ corr(pid, (intendedPID, ε),Fsig-CA : verifier).

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):
If rolereceiver = Fsig-CA : signer, return false. {cf. explanation in Figure 10.
Otherwise output true iff pid = pidreceiver.

Initialization:
send GetParameters to (pidcur, ε, setup); {Get DH parameters.
wait for (GetParameters, (G,n, g)).
(G, n, g)← (G,n, g).
send InitSign to (pidcur, (pidcur, ε), Fsig-CA : signer);
wait for (InitSign, success, ).

Main:

recv (InitKE, intendedPartner) from I/O s.t. state = ⊥: {Start KE.
(state, caller, intendedPID)← (started, entitycall, intendedPartner).

send InitKE to NET.
{

Notify network that the key exchange has started and the responder is
ready to receive the first message.

recv (intendedPID, hinit) from NET s.t. state = started:
{

Receive first message, send sec-
ond message.hresp ← hinit

Choose eresp ← Zn uniformly at random, compute hresp = geresp .
m = (hinit, geresp , intendedPID).
send (Sign,m) to (pidcur, (pidcur, ε), Fsig-CA : signer);
wait for (Signature, σ).
state← inSession
send (pidcur, hresp, σ) to NET.

recv σ from NET s.t. state = inSession: {Receive third message, output key.
send (Retrieve, (intendedPID, (intendedPID, ε))) to (pidcur, ε, FCA : retrieval);
wait for (Retrieve, pk). {Get public verification key of intended partner.
if pk = ⊥:

abort.
msg = (geresp , hinit, pidcur). {Check signature.
send (Verify,msg, σ, pk) to (pidcur, (intendedPID, ε), Fsig-CA : verifier);
wait for (VerResult, b).
if b = false:

abort.
k← hinit

eresp ; state← finished.
send (FinishKE, k) to caller.

Fig. 12: A real key exchange protocol PKE for realizing FKE (part 3).
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Description of the protocol FKE = (initiator, responder):
Participating roles: {initiator, responder}
Corruption model: dynamic with secure erasures
Protocol parameters:

– groupGen(1η).
{

Algorithm for generating tuples (G,n, g) describing cyclic groups G
of size n with generator g.

Description of Minitiator,responder:
Implemented role(s): {initiator, responder}
Subroutines: FCA : registration
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state : ({0, 1}∗)3 → {⊥, started, inSession, finished}

{Stores the current state of entities in key exchange; initially ⊥.
– caller : ({0, 1}∗)3 → ({0, 1}∗)3 ∪ {⊥}

{Stores the calling entity for each entity in key exchange; initially ⊥.
– intendedPID : ({0, 1}∗)3 → {0, 1}∗ ∪ {⊥}

{Mapping from entity to intended partner PID; initially ⊥.
– sessions ⊆ ({0, 1}∗)3 × ({0, 1}∗)3 = ∅

{Pairs of entities in the same global key exchange session.
– sessionKeys : ({0, 1}∗)3 → {0, 1}∗ ∪ {⊥}

{Mapping from entity to session key; initially ⊥.

CheckID(pid , sid , role): Accept all entities.
{All entites are managed in a single instance, which

then internally pairs them to “key exchange ses-
sions”.Corruption behavior:

– LeakedData(pid , sid , role): If called while (pid , sid , role) determines its initial corruption status, use the default
behavior of LeakedData. That is, output the initially received message and the sender of that message.
Otherwise, return (caller[pid, sid, role], sessionKeys[pid, sid, role]).

Initialization:

recv m from sender :
(G, n, g)← groupGen(1η).
if sender = NET ∧m = InitGroup:

send (LeakGroup, (G, n, g)) to NET.
{Allow adversary to start initialization and then return

the generated group. No other actions are performed in
this case.

else:
send responsively (LeakGroup, (G, n, g)) to NET;


Leak the group parameters to the
adversary. Note that this command
forces the adversary to respond be-
fore interacting with the protocol in
any other way, i.e., the run can con-
tinue as expected.

wait for .

Main: See Figure 14.

Fig. 13: The ideal key exchange functionality FKE (part 1).

C.4 Receiving inputs

The algorithms Initialization, EntityInitialization, MessagePreprocessing, and Main generally have
to process incoming messages for various entities. We structure these algorithms as a sequence of blocks,
where each block is of the generic form:
recv 〈message pattern〉 from 〈sender〉 to 〈receiver〉 s.t. 〈condition〉 : 〈code〉

Upon receiving an input, the instance sequentially checks whether the input matches one of these specifications
and executes the first matching block. In particular, the ordering of blocks influences the behaviour of an
instance if a message fits multiple blocks as only the first one is executed.

– The 〈message pattern〉 describes the format of the message accepted by this code block. It is built from
local variables, global variables, strings, and special characters such as “(”, “)”, “,”, “ ”, and “⊥”. To
compare a message m to a pattern, first the values of all global and, if already defined, local variables are
inserted into the pattern. The resulting pattern p is then compared to m, where undefined local variables
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Description of Minitiator,responder (continued):

Main:
{

Note that Main continues processing the message m that Initialization has already parsed if
Initialization does not end the run.

recv (InitKE, intendedPartner) from I/O s.t. state[entitycur] = ⊥:
state[entitycur]← started.
caller[entitycur]← entitycall.
intendedPID[entitycur]← intendedPartner .
send (InitKE, intendedPartner) to NET.

recv (GroupSession, entityI , entityR) from NET:
Parse entityI as (pidI , sidI , initiator) and
parse entityR as (pidR, sidR, responder) with the following constraints:

(intendedPID[entityI ] = pidR ∨ entityI ∈ CorruptionSet)a

∧ (intendedPID[entityR] = pidI ∨ entityR ∈ CorruptionSet)
∧ (state[entityI ] = started ∨ entityI ∈ CorruptionSet)b

∧ (state[entityR] = started ∨ entityR ∈ CorruptionSet).
if the above parsing succeeds:

Choose k ← G uniformly at random.
sessionKeys[entityI ]← k.
sessionKeys[entityR]← k.
Add (entityI , entityR) to sessions.
state[entityI ]← inSession.
state[entityR]← inSession.

{By this, honest entities cannot be grouped into
a second group; however, corrupted ones can
be part of many groups.reply (GroupSession, success).

else:
reply (GroupSession, failed).

recv (FinishKE, k) from NET s.t. state[entitycur] = inSession:
Find the partner entityp of entitycur in sessions. {

Note that entityp is uniquely defined as entitycur is honest.
if entityp ∈ CorruptionSet:

sessionKeys[entitycur]← k.
{

Adversary may choose the key if he has cor-
rupted the partner.

state[entitycur]← finished.
send (FinishKE, sessionKeys[entitycur]) to caller[entitycur].

recv (Register, pk) from NET:c

send (Register, pk) to (pidcur, ε,FCA : registration);
wait for (Register, response).
reply (Register, response).

a If an entity is not corrupted: ensure that its partner is correct.
b If an entity is not corrupted: ensure that it has started the exchange and is not already in another session.
c Allow the adversary to register arbitrary keys in FCA for honest entities. Note that FKE provides security

for session keys independently of any keys stored in FCA, so giving the adversary full access also for honest
entities does not weaken security guarantees.

Fig. 14: The ideal key exchange functionality FKE (part 2).
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match to arbitrary bit strings. If a block is entered after a successful match, then undefined local variables
are initialized with the bit strings they matched with. We use the special symbol “ ” in patterns to match
with arbitrary bit strings, just as for undefined local variables, but without storing the results for later
use.

– The 〈sender〉 is either the constant bit string NET if a message is to be received on the network interface,
the constant bit string SUB if a message is to be received on the I/O interface from some arbitrary (known)
subroutine, the constant bit string I/O if a message is to be received on the I/O interface from some
arbitrary (unknown) higher-level protocol/the environment, or of the form (pidsnd, sidsnd, rolesnd) if a
message is to be received from a specific sender entity on the I/O interface. In the latter case, pid and
sid can be constructed just as a message pattern, whereas role is a fixed bit string of a known subroutine,
a fixed number indicating a connection to some (unknown) higher-level protocol, or a variable denoting
an I/O connection to a subroutine or higher-level protocol (cf. paragraph “exchanging messages” in §3.1).
If a concrete bit string is given, then, for better readability, authors are encouraged to prefix role with
the protocol it belongs to, e.g., “Fsig : signer”.
Again, “ ” can be used as a wildcard symbol.

– The 〈receiver〉 is an entity (pidrcv, sidrcv, rolercv) that denotes the intended receiving entity of a message
and is built analogous to (pidsnd, sidsnd, rolesnd) from above.

– In 〈condition〉 one can define arbitrary further conditions, e.g., depending on the current state of the
instance, that need to be satisfied in order to enter the subsequent code block.

– Finally, 〈code〉 specifies arbitrary code that will be executed.

To omit unnecessary syntax in the above generic pattern of blocks, the 〈condition〉 and 〈receiver〉 parts
can be omitted, if no additional conditions need to be fulfilled to accept a message or if the message shall be
accepted by this block for any receiver entity, respectively. If there is only one block that is always entered
for all incoming messages, then the header can be omitted altogether and it suffices to provide 〈code〉 only.

C.5 Sending outputs

The activation of an instance ends when it sends outputs on one of its interfaces, or aborts with a special
abort command in which case the environment gets activated by definition of the IITM model.

Send-commands are part of the 〈code〉 block introduced above and follow the general format:
send 〈message pattern〉 from 〈sender〉 to 〈receiver〉.

where all parts are as for receiving messages, but with swapped semantics for sending and receiving entities
(e.g., NET can now only occur as 〈receiver〉).

Analogous to before, 〈sender〉 can be omitted in the regular case where the message is sent in the name
of the currently active entity, i.e., (pidcur, sidcur, rolecur). If in addition 〈receiver〉 is the same as the original
callee, i.e., (pidcall, sidcall, rolecall), then one can use the following shorthand notation:

reply 〈message pattern〉.

Waiting for Immediate Replies: Often, one would like to obtain some information from, e.g., a subroutine
and then continue the computation where it left of. To accommodate this need, we complement the above
generic commands with two additional constructions:

– The following command allows an instance to send output to a receiver and wait for a response of a
specific format:

send 〈message pattern out〉 from 〈sender〉 to 〈receiver〉;
wait for 〈message pattern in〉 s.t. 〈condition〉.

Upon receiving the correct response from 〈receiver〉, the computation continues where it stopped, even
preserving local variables. All other incoming messages will be dropped by this instance, ending the
activation immediately (except for some framework specific meta messages related to corruption and
initialization which are still processed to allow for, e.g., corruption of entities. See Appendix I.2.6 for
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more details). In other words, the instance is “stuck” until it receives the expected response. As this can
easily disrupt the protocol execution if the receiver does not answer immediately, this command should
be used only sparsely and with special care (see also the remarks in Appendix I.2.6).
As before, 〈sender〉 can be omitted. In that case, the sender will default to (pidcur, sidcur, rolecur).

– In line with Camenisch et al. [1], we support responsive environments and adversaries where one can send
a restricting messages on the network interface that force the adversary to immediately return an answer
(i.e., before any other interaction with the protocol can occur). One can do so via the following command:

send responsively 〈message pattern out〉 from 〈sender〉;
wait for 〈message pattern in〉 s.t. 〈condition〉.

where the 〈sender〉 can again be omitted. This command sends such a restricting message and receives
the response; if the response does not match the expected criteria, then the initial message is repeated
until the response is accepted. This is a useful contruction in many cases where meta messages need to be
exchanged with the adversary, e.g., during initialization steps of an instance, cf. [1] and Appendix I.2.6
for details.

C.6 Macros

We provide the following macros that can be used in algorithms:

– To obtain the corruption status of a subroutine entity (pidsub, sidsub, rolesub) one can use the following
macro:

corr(pidsub, sidsub, rolesub)
Formally, this macro sends the special message CorruptionStatus? to entitysub, which, as explained in
Section 3.2, will respond with the corruption status of the entity (note that, when using default algorithms,
the response to this request is immediate. In particular, control is returned to the caller of corr even if
entitysub is corrupted). The macro then outputs this response.

– One can initialize a subroutine entity (pidsub, sidsub, rolesub) via the following macro:
init(pidsub, sidsub, rolesub)

More specifically, this sends a special message InitEntity to entitysub, which will then run Initialization,
EntityInitialization, and determine its initial corruption status (steps that have already been executed
before are skipped). Importantly, entitysub will always return control to the caller of init, even if it gets
corrupted, such that the computation can continue as expected.

We provide a formal definition of these macros in Appendix I.2.6.

C.7 Running externally provided algorithms

It is sometimes necessary to run an arbitrary algorithm alg provided by the adversary or environment.
For example, this is a common mechanism used in ideal functionalities such as Fsig-CA (see Figures 7
and 8) to provide security guarantees independently of a specific algorithm. However, as alg is an arbitrary
algorithm which might not terminate within polynomial time, a protocol P running alg would no longer be
environmentally bounded.

To solve this issue, we introduce the following syntax: given a polynomial p ∈ Z[x], we write alg(p)(x) to
say that we simulate the algorithm alg with input x, but abort the simulation after at most p(η + |x|) steps.
The overall output of the simulation is defined to be ⊥ if the simulation is aborted, and otherwise to be the
output of alg.

Note that since the polynomial p is fixed, a protocol P can run alg(p)(x) while still being environmentally
bounded. Also note that for every PPT algorithm alg, there is a runtime bound p such that alg(p)(x) never
aborts and thus behaves just as alg(x).
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D Security Proof of our Case Study

In this section we provide a proof sketch of Theorem 2, i.e., we show that the real key exchange R :=
(PKE,FCA : retrieval | Fsig-CA,FCA : registration) realizes the ideal key exchange I := (FKE,FCA :
retrieval | FCA : registration). As part of this, we define a responsive simulator S such that the real
world running R is indistinguishable from the ideal world running {S, I} for every ppt environment E .

First note that it is easy to see that that both R and I are environmentally bounded and complete.
Now, the simulator S is defined as follows: the simulator is a single machine that is connected to I and the
environment via their network interfaces. In a run, there is only a single instance of the machine S that
accepts all incoming messages. The simulator S internally simulates the full protocol R, including its behavior
on the network interface to the environment. Note that this simulation includes in particular a second copy
of FCA; the simulator manually ensures that the public verification keys stored in this internally simulated
copy are consistent with the keys stored in FCA of I. More precisely, the simulation runs as follows:

– At the start of a run, S obtains the group parameters used by FKE: if the simulator is activated for
the first time via the (LeakGroup, (G, n, g)) message, then he simply saves this message and returns ok.
Otherwise, S sends an InitGroup message to (an arbitrary entity of) FKE to trigger Initialization
and obtain the group parameters. Note that the environment cannot observe whether the simulator
has manually triggered Initialization of FKE. The group parameters are used by S as output of the
internally simulated PKE : setup role.

– Upon receiving a (InitKE, entitypartner) from an honest22 entity entitysender, S forwards this message in
the name of a higher-level protocol to the simulated entity entitysender in R. This triggers the start of a
key exchange in the simulation.

– As soon as an honest entity entity1 = (pid1, sid1, role1) in a public role of R outputs (FinishKE, k), the
following happens:
• If role1 is initiator, then S looks for a simulated entity entity2 = (pid2, sid2, role2) such that role2

is responder and both entities agree on the public Diffie-Hellman key shares of each other. Then S
sends (GroupSession, entity1, entity2) to some honest entity23 in I, waits for the response, and then
sends (FinishKE, k) to entity1 in I. This causes the initiator to output a session key.

• If role1 is responder, then S sends (FinishKE, k) to entity1 in I. This causes the responder to output
a session key.

– Every time a public key is registered for some PID and SID in FCA in the simulated R, S registers the
same key for the same PID and SID in FCA of I by sending a Register request via an entity of FKE
with the same PID and SID.24

– All network communication from the environment is forwarded to corresponding entities in the internally
simulated R, and vice versa.

– S keeps the corruption states of entities in public roles of I and the same entities in the internal simulation
of R in sync. In particular, if such an entity of I asks for its initial corruption status, then the same
entity in R is simulated to also do so. Furthermore, as soon as a simulated entity in a public role of R
considers itself to be corrupted (either explicitly or due to a corrupted subroutine), S corrupts the same
entity in I. Note that we do not have to care about entities in private roles as those cannot be accessed
by the environment anyway.

– If a corrupted entity entity in a public role of R outputs a message on its I/O interface to a higher-level
protocol, then S instructs the (explicitly) corrupted entity entity in I to forward the same message on its
I/O interface. The same is also done in the other direction.

22 We consider an entity to be honest if it outputs false upon CorruptionStatus? requests. Conversely, a we call an
entity corrupted if it outputs true, even if it was not explicitly corrupted.

23 The exact entity does not matter for this request, however, it must be honest such that Main in I is actually
executed.

24 Recall that, by the definition of FKE given in Figure 14, the simulator may register arbitrary keys in its subroutine
FCA also in the name of honest entities. This does not weaken security guarantees as FKE provides security for
session keys of honest entities independently of FCA.
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– If any error occurs while running the above steps, S aborts (and thus fails the simulation).

This concludes the description of the simulator. It is easy to see that {S, I} is environmentally bounded
and S is responsive for I as long as S aborts only with negligible probability while running with I and a
responsive environment; we show that this is indeed the case as part of the following proof as this property is
also necessary for showing indistinguishability. Now, let E be an arbitrary responsive environment. We argue
in two steps that E cannot distinguish R and {S, I}.

Step 1: We start by considering a protocol I ′ that behaves as I but always outputs the session key that is
provided by the simulator, even if two honest entities are combined into a session. Then R and {S, I ′} are
indistinguishable for E due to the following:

Observe that the keys in FCA (of I) are consistent with the simulation of R in S. Also observe that S
already simulates R perfectly on the network interface. In particular, upon corruption of a simulated public
entity of PKE, S obtains sufficient information from corrupting the corresponding entity in I ′ to compute
the leakage of the simulated entity. Furthermore, corrupted entities are also simulated perfectly on the I/O
interface of FKE: firstly, S is indeed able to keep the corruption states of public entities in sync as I ′ does not
impose any limitations on when corruption can occur.25 Secondly, once a public entity has been corrupted, S
has full control over the I/O interface. The only case where the simulation might fail (and potentially trigger
an abort) is while handling FinishKE responses from honest entities in the internal simulation: (i) in the case
of an initiator entity, there might not be a suitable responder entity that can be grouped into a session,
and (ii) in the case of a responder entity, it might not have been grouped into a session yet. We now argue
that both cases do not occur with more than negligible probability.

Case (i): let entityinit be an initiator entity in the simulated R that outputs a FinishKE message
while being honest. Let pidintended be the PID of the intended partner. We have to show that S can indeed
find a responder entity that can be partnered with entityinit, in which case the simulation succeeds. Since
entityinit is honest, we have that the signing keys belonging to pidinit and pidintended must be uncorrupted.
As FinishKE is output only after a valid signature from pidintended on (hinit, hresp, pidinit) is received (and
FCA outputs the correct public key of pidintended), this implies that there is at least one honest entity
entityintended of pidintended that has signed this share and has the intended partner pidinit. We still need the
following properties of entityintended for the pairing to succeed:

1. entityintended is a responder.
2. entityintended has not been grouped already (and thus is still in the state started).

Both properties hold true with overwhelming probability:

1. Suppose by contradiction that entityintended was an initiator. Then, the signature was created during
the third protocol step. Since entityintended is honest, this implies that it has previously received a
signature on the message (hresp, hinit, pidintended) signed by an honest entity of pidinit that has the public
DH key share hinit. As honestly generated DH key shares collide with negligible probability only, there is
only one such entity, namely, entityinit with overwhelming probability. However, entityinit has not signed
any messages yet. Thus, entityintended is a responder with overwhelming probability.

2. By definition of S, honest responder entities are paired only if there is an honest initiator entity that
has accepted the signature on the second protocol message (hinit, hresp, pidinit). This message is accepted
only by honest entities that have the public DH key share hinit. By the same argument as above, with
overwhelming probability entityinit is the only entity that fits this description and thus entityintended has
not already been grouped with a different entity.

As there are only polynomially many entities in every run (as the environment has only polynomial runtime),
this implies that S succeeds with its simulation in case (i) with overwhelming probability.
25 Note that here we need that FKE allows for dynamic corruption: while entities of PKE can be explicitly corrupted

only in a static way, they also forward the corruption state of signature keys in Fsig-CA, which can change dynamically
at any point.
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Case (ii): let entityresp be a responder entity in the simulated R that outputs a FinishKE message while
being honest. Let pidintended be the PID of the intended partner. We have to show that this entity has already
been grouped with an (honest) initiator entity, in which case the simulation succeeds. Since entityresp is
honest, we have that the signing keys belonging to pidresp and pidintended must be uncorrupted. As FinishKE
is output only after a valid signature from pidintended on (hresp, hinit, pidresp) is received, this implies that
there is at least one honest entity entityintended of pidintended that has signed this share and has the intended
partner pidresp. We still have to argue the following properties of entityintended:

1. entityintended is an initiator.
2. entityintended has been grouped with entityresp.

Both properties hold true with overwhelming probability:

1. Suppose by contradiction that entityintended was a responder. Then, the signature was created after
receiving the public DH key share hresp in the first message and subsequently generating a fresh DH
key share hinit. As DH key shares of honest instances collide with other (previously existing) DH shares
only with negligible probability, this implies that entityresp has generated its public DH key share before
entityintended has received it (with overwhelming probability). Thus, entityresp has already received the
first message containing hinit before entityintended has honestly generated hinit, which is a contradiction
with overwhelming probability. So entityintended is a initiator with overwhelming probability.

2. As entityintended is an initiator, it must have already output a session key after accepting a signature
on the message (hinit, hresp, pidinit) signed by pidresp. Thus, by definition of S, it is indeed already grouped.
Furthermore, as the signing key of pidresp is uncorrupted and honestly generated DH key shares collide
with negligible probability, we have that there is only one entity that signs such a message, namely,
entityresp (with overwhelming probability). In other words, entityintended and entityresp are already
partnered.

As there are only polynomially many entities in every run, this implies that S also succeeds with its simulation
in case (ii) with overwhelming probability.

Overall, we have that the systems R and {S, I ′} are indistinguishable for every responsive environment
as the simulation of S is perfect with overwhelming probability.

Step 2: We now show that the systems {S, I ′} and {S, I} are indistinguishable for E , which concludes the
proof. Observe that the only difference between both systems is how the session keys are chosen for sessions
(groups) consisting of two honest entities. In this case, I chooses a uniformly random key gc, whereas I ′ uses
the key from the simulator S, which is gab.

To show indistinguishability, one uses a standard hybrid argument that replaces the keys gab of honest
sessions with an ideal key gc in the order of their occurrence. The distinguishing advantage between each of
the hybrid steps can be upper bounded via a reduction to the DDH assumption. Note that this reduction
indeed works: keys are replaced only for sessions consisting of two honest entities. Since we consider static
corruption of the real protocol, honest entities can only be explicitly corrupted at the start of the run, and
thus will never leak their secret exponents. Furthermore, the whole system can be simulated in polynomial
time. Thus, the system can be simulated by a ppt distinguisher on the DDH game without knowing the secret
exponents. Overall, as there are only a polynomial number of hybrid steps (as the environment can only
create a polynomial number of sessions), each of which is upper bounded by the same negligible function,
this hybrid argument implies that {S, I ′} and {S, I} are indistinguishable for E . ut

E Applying iUC

This section provides further explanation of how iUC can be used to capture various kinds of protocols
and settings in natural ways, illustrating its flexibility and expressiveness. As part of this section, we also
discuss various types of composition, including unbounded self composition, composition with joint-state, and
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composition with global state (recall that concurrent composition has already been presented in §3.5). We
emphasize that all of these cases, except for unbounded self composition, are covered directly by the concurrent
composition theorem (cf. Corollary 1). Thus a single theorem covers most use cases, which illustrates the
power and generality of the composition theorem in our framework.

E.1 Single Session Composition

In addition to concurrent composition (cf. §3.5 and Corollary 1), our framework also supports so-called single
session composition (also called unbounded self composition). Single session composition works on protocols
that are built in such a way that instances of those protocols can be grouped into several disjoint sessions
such that instances from different sessions do not share any state and do not interact with each other. For
such protocols, the single session composition theorem, intuitively, states that if one session of a protocol P
realizes one session of a protocol F , then an unlimited number of sessions of P realizes an unlimited number
of sessions of F .

By default, our framework does not enforce a protocol structure with disjoint sessions (unlike many other
universal composability models that assume disjoint sessions). On the contrary, we do not restrict the protocol
designer and instead allow for, e.g., sharing arbitrary state between several protocol sessions by being able to
manage several entities in the same instance of a machine. However, if so desired, one can easily define a
protocol with disjoint sessions. On a high level, such a protocol has to ensure that (i) no instance accepts
entities from different sessions (which makes the state disjoint) and (ii) entities send messages to other entities
only in the same session (which prevents interactions between different sessions). These properties are easy to
obtain via appropriate definitions of the algorithms in our template:

For (i), one uses the CheckID algorithm to specify machine instances that do not accept entities from
two or more different “sessions”, where a “session” can be defined in many different ways. For example, if one
considers a “session” to be defined by a single shared SID, as is common in the UC and GNUC models, one
can define CheckID such that all entities using the same SID are accepted by one instance. This essentially
creates what is called an ideal functionality in the UC and GNUC models, which uses a single instance
to manage all parties in a single session and fulfills (i). Alternatively, one can also, e.g., use the default
definition of CheckID that accepts a single unique entity per instance and which creates what is called a
real protocol in the UC and GNUC models. For (ii), one uses appropriate definitions of the Initialization,
MessagePreprocessing, Main, and AllowAdvMessage algorithms that send messages to other entities
only if they are in the same session.

For protocols defined in such a way, our framework offers the following single session composition theorem:

Corollary 3 (Unbounded self composition (informal)). Let P and F be two complete protocols such
that they are environmentally bounded and P realizes F in a single session. That is, the environment may
send messages only to a single session of P or F , respectively.
Then P ≤ F , i.e., P realizes F in an unbounded number of sessions.

Proof. This is a direct implication of the unbounded self composition theorem of the IITM model. See also
the formalized version of this theorem in Appendix F, which includes a more detailed argument.

We provide a more detailed description of single session composition, including a formal version of the
above theorem and an example of a protocol with disjoint sessions, in Appendix F. Note that, just as for
concurrent composition, we do not require a specific internal structure of P and F besides session disjointness.
In addition, the definition of a “session” is not fixed and can be determined depending on the type of protocol.
For example, sometimes it can be useful to define a “session” to comprise all entites that share the same
prefix of their SIDs, or share the same (prefix of the) PID. This is in contrast to many other UC-like models,
including the UC and GNUC models, that fix in their model and theorems how a “session” is defined.
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E.2 Joint-State Composition for Multiple Sessions

Modeling protocols with disjoint sessions (cf. §E.1) is not always realistic. In many cases, some kind of state
should be shared between instances of the same machine in different sessions. For example, cryptographic
keys for signing and verifying messages are generally supposed to be re-used across multiple sessions of a
protocol. In order to be able to also capture these settings in universal composability models that assume
disjoint sessions, the concept of joint-state composition was introduced [7, 15, 20]. A joint-state composition
theorem intuitively states that a protocol F with disjoint sessions can be replaced by another protocol P
that shares state between multiple sessions if no environment can distinguish both cases.

Supporting joint-state composition in models that assume disjoint sessions to be the default entails
introducing a new set of syntax constructs, defining a new realization relation, and defining (and proving)
an entirely new composition theorem. In contrast, our framework supports joint-state seamlessly and out of
the box, without needing any modifications or new theorems: as already mentioned in §E.1, protocols are
able to share state by default, so no new syntax is necessary. To give an example, consider some protocol F
with disjoint sessions where an instance of F manages all entities sharing a single SID. Such a protocol can
re-use, e.g., some cryptographic key across multiple entities with the same SID, however, since different SIDs
are handled by different instances, every session will use a different key. Now, one can define a joint-state
realization Pjs of F (with the same public roles) where one instance of Pjs accepts all entities, also in different
sessions. In Pjs, one can then use the same key for entities in multiple sessions as all entities are handled by
the same instance. For a more concrete example of a joint-state realization in our framework, we refer the
reader to Appendix G.

In general, we say that a protocol Pjs has joint-state if it shares some state between sessions, but is
still supposed to behave just like a protocol F that does not share state between sessions. This notion of a
protocol with joint-state is just a special case of the very general protocol definition of iUC, unlike in many
other models. Hence, once we have shown that Pjs realizes F (as per Definition 1), we can directly apply our
main composition theorem (Corollary 1) as follows, where clearly this corollary applies no matter which inner
structure Pjs has, and in fact, no matter whether it is a joint-state protocol or not:

Corollary 4 (Concurrent composition with joint-state). Let Pjs be an environmentally bounded pro-
tocol with joint-state and F be a environmentally bounded protocol with disjoint sessions such that Pjs ≤ F .
Let Q be another protocol such that Q and F are connectable. Let R ∈ Comb(Q,Pjs) and let I ∈ Comb(Q,F)
such that R and I have the same sets of public roles.
If R is environmentally bounded, then

R ≤ I .

Proof. This is a mere special case of Corollary 1 and as such trivially implied.

Because both disjoint sessions and joint-state are mere special cases in our framework, both the realization
relation and the concurrent composition theorem remain unchanged. In particular, we do not have to change
any of the definitions, syntax, theorems, or introduce additional requirements. Overall, this drastically
simplifies the handling of joint-state for protocol designers as they are able to work with the same syntax,
definitions, and theorems. Also, by this, joint-state can seamlessly be combined with other concepts (e.g.,
other forms of shared state, including global state).

We want to highlight that the corruption model of our framework is fully compatible with joint-state in
the sense that one can actually prove realizations. To understand why this is a non-trivial feature, consider
an ideal signature functionality Fsig with disjoint sessions and a potential joint-state realization Pjssig that
re-uses the same signature key in all sessions. Now, if an adversary corrupts the single signing key in Pjssig
and can thus forge messages for all sessions, this corresponds to infinitely many corrupted sessions in Fsig. A
simulator must be able to perform all of those corruptions, even though he has only polynomial runtime. Our
framework deals with this issue by asking for the corruption state of newly created entities before any other
operations are performed, i.e., the simulator does not have to pro-actively corrupt non-existing entities but
can instead act re-actively when the environment triggers a new entity for the first time.
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E.3 Joint-State Composition for Multiple Protocols

So far, most of the literature has considered only the above type of joint-state where a single instance of one
machine realizes multiple instances of one machine.

Our framework, however, also supports various other types of joint-state composition via the standard
concurrent composition theorem (cf. Corollary 1). It, for instance, allows one to use one instance of one
machine to realize instances of multiple different machines. For example, one can use a protocol P to realize
the combination of two protocols F || F ′, where one machine instance of P realizes both an instance of F
and an instance of F ′. The concurrent composition theorem then implies that Q ||P realizes Q ||F || F ′ (for
an arbitrary protocol Q), i.e., we can replace multiple independent protocols by a single one that is able to
re-use some state across different invocations.

To illustrate when and why this type of joint state is useful, consider the following example. Let R be some
higher level protocol, such as a key exchange, using an ideal signature protocol Fsig = (signer, verifier) as
a subroutine. Analogously, let R′ be a different higher level protocol also using an ideal signature protocol
F ′sig as a subroutine (where Fsig and F ′sig use the same machine code). The combined protocols R||Fsig and
R′ || F ′sig can be analyzed in isolation and proven to be secure. Now, the composition theorem implies that
these protocols running concurrently, i.e., the combined protocol R||R′ || Fsig || F ′sig, are still secure. This
combination contains two separate subroutines Fsig and F ′sig that do not share any state between each other,
i.e., R and R′ use different signature keys. In some cases, one would like to obtain security even if R and
R′ use the same signature key; intuitively, this should be possible if R and R′ sign messages from disjoint
messages spaces such that signatures by R do not impact R′ and vice-versa.

Our framework allows for showing this expected security result via an appropriate joint-state realization
and Corollary 1: one defines a joint-state realization Pjssig that has the same public roles as Fsig || F ′sig, i.e.,
two signer and two verifier roles. Internally, Pjssig accepts all entities in one machine instance which then
acts as a multiplexer for a single subroutine F ′′sig (that, again, uses the same code as Fsig). More specifically,
signing requests arriving for any of the signer roles of Pjssig are prefixed with a unique ID, depending on the
role where they arrived, and then forwarded to the signer role of F ′′sig. In other words, Pjssig uses the same
subroutine and thus the same signing key for signing requests arriving for both public signer roles. Once we
have shown that Pjssig || F ′′sig ≤ Fsig || F ′sig, we can use the concurrent composition theorem (cf. Corollary 1)
to conclude that R||R′ || Pjssig || F ′′sig ≤ R ||R′ || Fsig || F ′sig. Thus we can use the same signing key for both
protocols and still retain security by adding unique prefixes to keep the message spaces of each protocol
disjoint (as is common in many real-world protocols).

E.4 Global Functionalities and Global State

Sometimes it is desirable to define a protocol in such a way that it exposes some of its subroutines to other
protocols, the idea being that some state can or should be shared with other arbitrary (and unknown)
protocols. For example, a common reference string (CRS) is generally considered to be a globally available
resource, so it seems natural to make it globally available instead of modeling it as an internal subroutine that
no other protocols can see or access. Another example is a subroutine modeling a public key infrastructure
based on certificate authorities which should make public keys accessible for every protocol, not just one
specific protocol (we use this example in our case study in §5).

Just as for joint-state, most universal composability models had to introduce additional extensions
to model so-called global state [5, 12, 15]. This entails additional syntax, changes to the definition of the
realization relation, and introducing (potentially multiple) new composition theorems. In contrast, again, our
framework seamlessly supports global state out of the box without any modifications to syntax or definitions.
This is due to the built-in concept of public and private roles: having a globally available subroutine is
as simple as making a role public. For example, consider a protocol FCRS = (retrieveCRS) with a single
role modeling a CRS, and a higher level protocol P = (somePublicRole | somePrivateRole) using FCRS
as a subroutine. If one wants to model a CRS that is only locally available to P, then one considers
the combined protocol (somePublicRole | somePrivateRole, retrieveCRS) (which can also be written as
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(P | FCRS) using the shorter notation from §3.4); to model a global CRS, one considers the combined protocol
(somePublicRole, retrieveCRS | somePrivateRole) instead (which can also be written as (P,FCRS)).

In general, we say that a protocol P has global state if (one or more) subroutine roles of P are public and
hence allow the environment to access state stored in those subroutines. Just as for protocols with joint-state
(cf. Appendix E.2), a protocol with global state is again a special case of the very general protocol definition
of iUC, unlike in many other models. Hence, once we have shown that a protocol P with global state realizes
some other protocol F , we can directly apply the main composition theorem (Corollary 1) as follows, where
clearly this corollary applies no matter which inner structure P has, and in fact, no matter whether it is a
protocol with or without global state:

Corollary 5 (Concurrent composition with global state). Let P and F be two environmentally bounded
protocols with global state such that P ≤ F . Let Q be another protocol such that Q and F are connectable.
Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R and I have the same sets of public roles. If R is
environmentally bounded, then

R ≤ I .

Proof. This is a mere special case of Corollary 1 and as such trivially implied.

Again, just as for joint-state, we emphasize that both the realization relation and the composition theorem
remain unchanged. We do not have to change any of the definitions, syntax, theorems, or introduce additional
requirements, which makes global state in our framework very user friendly.

We highlight that global state in our framework is very flexible due to our concept of public and private
roles. For example, it is possible to make only parts of a protocol publicly available, instead of the full protocol.
Our case study in §5 makes use of this feature to define a globally available public key infrastructure where
key registration is protected. Furthermore, since public roles can be changed to be private when combined
with another protocol, one can actually change global subroutines to be only locally available to a single
protocol while retaining all security results and while still being able to use the composition theorem to
replace that subroutine with its realization.

E.5 Global and Local Session IDs

As already explained in §5.3, most universal composability models assume that all instances in a protocol
session have somehow agreed on a globally unique session identifier before the start of the protocol. While
this assumption is fine for some protocols, it prevents a faithful analysis of protocols that do not establish a
session ID prior to start of a run but rather do so during the actual protocol execution (perhaps even only
implicitly). In fact, there are protocols that can be shown to be secure when using a pre-established global
SID, but become insecure without it (see [21] for an in-depth discussion of local SIDs).

To facilitate the analysis of different kinds of protocols, our framework supports both global (pre-
established) SIDs and local SIDs that are managed by each participant on their own and may very well differ
between several participants in the same session. We provide examples for both types of SIDs in our case
study in §5. On a high level, one of the main differences is how the CheckID algorithm is specified: for global
SIDs which are shared by all participants in the same session, an instance generally accepts entities with
the same SID only. For local SIDs that need not be the same for different participants in the same session,
an instance might accept entities with varying SIDs. Then, such an instance might internally group entities
into new “sessions”, which models that, e.g., several entities with different local SIDs are executing a key
exchange together and end up with a shared secret that determines who is part of the same “session”.

E.6 Separating Entities and Instances

Historically, universal composability models generally did not distinguish between instances of a machine and
a specific person executing a protocol in a specific session. Instead, they defined different types of protocols
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depending on what an instance is supposed to model: An instance of a real protocol stands for one party in
one session, an instance of an ideal protocol stands for all parties in one session, an instance of a joint-state
protocol stands for one party in all sessions, and so on. For each different modeling choice, a new type of
protocol including corresponding notation had to be introduced.

Our framework introduces the concept of entities to clearly separate the modeling of a party in a session
from the actual machine instance in the protocol run. This feature enables us to use a single template with a
single set of notation to express multiple different types of protocols, including all of the classical protocol
types mentioned above. A protocol designer can easily create her own mapping between instances and entities
using the CheckID algorithm (as also illustrated in §E.1). For example, to model an ideal functionality as
defined in the UC and GNUC models, one defines an instance that accepts all entities with a specific SID; to
model a real protocol, instances accept only a single entity; to model a classical joint-state protocol, instances
accept all entites belonging to the same party. One can also, e.g., design a single (potentially global) instance
that manages all possible entities; see also FCA and FKE in our case study in §5 for examples. This flexibility
is not just limited to classical protocol types but one is rather able to express many other variations that
have not been explored in the literature so far, such as instances that accept entities for fixed ranges of SIDs,
which might be useful to model, e.g., using the same cryptographic key for a certain number of sessions before
a new one is chosen.

E.7 Corruption Model

Our framework provides a very flexible corruption model that, at the same time, is easy to use. One can easily
adapt the corruption model to various different situations by specifying one or more of the four corruption
related algorithms in an appropriate way. To give just a few examples, one can use the DetermineCorrStatus
algorithm to consider a higher level protocol to be corrupted if one/a certain percentage/all of its subroutines
are corrupted, modeling situations where security guarantees can still be obtained until too many subroutines
are corrupted. The AllowCorruption algorithm can be used to define incorruptible machines modeling, e.g.,
setup assumptions, or it can be used to force the adversary to corrupt all subroutines first, modeling that he
can only take full control of a party/computer. The AllowAdvMessage algorithm can be used to restrict
access of corrupted entities to other, potentially honest entities. This can be useful to restrict, e.g., access to
an uncorrupted signature key stored on a secure hardware token that is not directly accessible by corrupted
software running on a PC. In addition to these algorithms, our framework also provides mechanisms to model
both static and dynamic corruption which can be freely combined with arbitrary definitions of the above
algorithms (see also §3.2). Since all of these algorithms come with sensible defaults, we do not overburden a
protocol designer. Instead, one is able to omit most or all of these algorithms and still obtain a fully specified
and reasonable protocol. Last but not least, our corruption model is defined for and compatible with various
different types of protocols such as real, ideal, joint-state, and global state protocols as all of these protocols
use the same underlying template.

E.8 Responsive Environments

In the specifications of both real protocols and ideal functionalities, it is often required for the adversary
(and the environment) to provide some meta-information via the network interface to the protocol or the
functionality, such as cryptographic algorithms, cryptographic values of signatures, ciphertexts, and keys, or
corruption-related messages. Conversely, protocols/functionalities often have to provide the adversary with
meta-information, for example, signaling information (e.g., the existence of machines) or again corruption-
related messages. Such meta-information does not correspond to any real network messages, but is merely used
for modeling purposes. Typically, giving the adversary/environment the option to not respond immediately
to such modeling-specific messages does not translate to any real attack scenario. Hence, often it is natural
for protocol designers to expect that the adversary/environment (answers and) returns control back to the
protocol/functionality immediately when the adversary is requested to provide meta-information or when the
adversary receives meta-information from the protocol/functionality.
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As discussed in detail in [1], without responsive environments protocol designers have to manually deal
with various delicate problems caused by non-immediate responses: i) While waiting for a response to a
meta-information request, a protocol/ideal functionality might receive other requests, and hence, protocol
designers have to take care of interleaving and dangling requests. ii) While a protocol/ideal functionality
is waiting for an answer from the adversary to a meta-information request, other parties and parts of the
protocol/ideal functionality can be activated in the meantime (via the network or the I/O interface), which
might change their state, even their corruption status, and which in turn might lead to race conditions.

This is difficult to deal with and results in unnecessarily complex and artificial specifications of protocols
and ideal functionalities, which, in addition, are then hard to re-use. In some cases, one might not even be
able to express certain desired properties. As discussed in [1], there is no generic and generally applicable
way to deal with non-responsiveness environments, and hence, one has to resort to solutions specifically
tailored to the protocols at hand. This problem also propagates to all higher-level protocols as they might
not get responses from their subprotocols as expected. The security proofs become more complex because
one, again, has to deal with runs having various dangling and interleaving requests as well as unexpected and
unintuitive state changes, which do not translate into anything in the real world, but are just an artifact of
the modeling. In fact, since these artifacts are so unnatural, many protocol designers in the literature seem to
implicitly assume that meta-information requests are answered immediately. For models without responsive
environments, this has lead, besides others, to underspecified protocols and flawed security proofs (as detailed
in [1]).

The iUC framework inherits the feature of responsive environments from the IITM model and thus gets
rid of all of the above issues completely. This feature, as explained in §2, allows a protocol designer to mark
meta-messages on the network as restricting, forcing the adversary/environment to indeed answer them
immediately. Here, immediately means that the adversary may not interact with the protocol in any way
until he has provided the expected response to the requesting entity. This drastically simplifies protocol
specifications as well as security proofs since protocol designers do not have to manually deal with dangling
requests and edge cases that can arise from non-immediate answers (and that do not relate to real attack
scenarios anyway). Responsive environments also make protocol specifications more expressive as they allow
protocol designers to capture the property of immediate responses of subroutines modeling local computations
(such as Fsig-CA given in Figure 7, which provides immediate responses to Sign requests even when it has not
been initialized yet).

E.9 Capturing SUC

To further illustrate the flexibility and epxressiveness of our framework, we show that we can easily capture
the SUC model by Canetti et al. [10] as a mere special case in our framework. The SUC model was created
as a simpler version of the UC model that is tailored towards the setting of secure multiparty computation.
The most important changes are the following:
(i) A run/session consists of a fixed number of parties, each of them corresponding to one machine instance,

instead of an unbounded number.
(ii) The runtime definition is simplified, i.e., machine instances are only required to run in polynomial time

in the classical sense.
(iii) All communication is over authenticated channels.
(iv) The corruption model is fixed for ideal protocols in the ideal world.
(v) Machines do not have any subroutines except for possibly (multiple instances/sessions of) a single ideal

functionality. That is, all program logic is contained in a single machine.

Since some of those changes have to break out of the UC model, in particular the first two, the authors of the
SUC model had to create and prove a new composition theorem which takes up a major part of their paper.

It is easy to obtain all of the above properties within our framework by choosing appropriate definitions
for all fields in our template:
(i) The number of parties can be fixed by defining the CheckID algorithm such that PIDs are accepted

only if they are in the range of [1, . . . , n].
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(ii) The runtime definition in our framework is already simpler than in SUC, as we (intuitively) require only
the whole protocol to run in polynomial time instead of individual machines.

(iii) To model authenticated channels, one uses a subroutine Fach for ideal authenticated channels that
forwards messages while leaking their content.

(iv) Corruption for ideal protocols is already defined in our framework and can be further customized, if
desired.

(v) It is straightforward to encode the whole protocol logic into a single Main algorithm, if so desired, while
connecting to at most a single (ideal) subroutine.

Importantly, we do not have to re-prove a composition theorem for creating what is just a mere instantiation.
Furthermore, since we do not have to break out of our framework, such an instantiation can be combined
and/or realized with arbitrary other protocols defined in our framework, including those that use joint-state
and global state. This is in contrast to SUC, which supports only disjoint sessions with local state and cannot
directly be combined with other UC protocols as they use different computational models (only a mapping
from SUC protocols to somewhat artifical UC protocols exists).

F Single Session Analysis

This section illustrates how a single-session security analysis, which was explained on a high-level in §E.1,
can be performed in iUC. As part of this, we provide one concrete specification for protocols with disjoint
sessions (others are possible), which, thus, can be analyzed by considering just a single-session.

We start by defining (disjoint) protocol sessions of a protocol P in iUC. For this purpose, we introduce
a function σ, called a protocol session ID (PSID) function, that groups entities of P into protocol sessions.
On a high level, the function σ takes as input an entity and assigns it a PSID. A session is then defined
via a single PSID psid and encompasses all entities with that psid. Intuitively, the sessions of a protocol P
are disjoint (according to σ) if instances accept entities only for a single PSID and send messages only to
other entities with the same PSID. Thus, entities cannot share state directly or indirectly with entities from
other protocol sessions. We note that the concepts of SIDs and PSIDs are independent of each other: an SID
is used to denote multiple runs of some party pid in some role role, whereas a PSID denotes the set of all
entities that form a global protocol session. While it is possible to define a protocol session psid to contain
exactly those entities that share some fixed SID sid (which is the fixed way to deal with sessions in most
other model, including in UC and GNUC), a protocol session can also contain entities with multiple different
SIDs. We provide an example for the latter case at the end of this section.

More formally, protocol session functions and protocols with disjoint sessions are defined as follows. These
notions are derived from to the session identifier functions and σ-session versions in the IITM model.

Definition 2 (PSID function). A function σ : ({0, 1}∗)3 → {0, 1}∗ ∪ {⊥} is called PSID function if it is
computable in polynomial time (in the length of its input).

Definition 3 (Protocols with disjoint sessions). Let σ be a PSID function and let P be a complete
protocol. We say that P has disjoint sessions (according to σ), or P is a σ-session protocol, if in all runs of
the system {E ,P} (for an arbitrary environment E ∈ Env(P) that interacts with the I/O interfaces of public
roles of P and all network interfaces) the following holds true for every machine M in P:

1. M will never accept (via the CheckID algorithm) an entity (pid , sid , role) with σ(pid , sid , role) = ⊥.
2. If (pid , sid , role) is the first entity that an instance of M accepted, then this instance rejects all following

entities (pid ′, sid ′, role′) where σ(pid , sid , role) 6= σ(pid ′, sid ′, role′).
3. Let (pid , sid , role) be the first entity that an instance of M accepted. If this instance sends a message

m, then the message is sent in the name of an entity (pid ′, sid ′, role′) such that σ(pid , sid , role) =
σ(pid ′, sid ′, role′). Furthermore, if m is sent on a connection to some role role′′ in P, then this message
is sent to an entity (pid ′′, sid ′′, role′′) such that σ(pid , sid , role) = σ(pid ′′, sid ′′, role′′).
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We can analyze a single session of a σ-session protocol P in isolation to obtain security for an unbounded
number of sessions of P . We use a special type of environment to define such a single session security analysis
which, intuitively, is allowed to call at most a single session of P. Again, the concept of such single-session
environments is derived from a similar concept in the IITM model. More formally:

Definition 4. Let E ∈ Env(P) and let σ be a PSID function. We say that E is a σ-single-session environment
if the following holds true for all systems Q that can connect to E and in all runs of the combined system {E ,
Q}:

Let m be the first message that E sends on one of its external connections (connecting to Q). Then m
is sent to an entity (pid , sid , role) such that σ(pid , sid , role) 6= ⊥. Furthermore, every following message
m′ on an external connection of E is addressed to an entity (pid1, sid1, role1) such that σ(pid , sid , role) =
σ(pid1, sid1, role1).

We denote the set of all σ-single-session (responsive and universally bounded) environments for a protocol
P by Envσ-single(P).

We can now define the single session realization relation and state the unbounded self-composition theorem
in iUC (an informal version of this theorem was given as Corollary 3 in §E). Both the realization relation and
the composition theorem are natural translations of the corresponding statements in the IITM model.

Definition 5 (Single session realization relation). Let σ be a PSID function, and let P and F be two
environmentally bounded complete σ-session protocols with identical sets of public roles. We say that P
single-session realizes F (P ≤σ-single F) if there exists a simulator S ∈ Adv(F) such that {E ,P} ≡ {E ,S,F}
for all E ∈ Envσ-single(P).26

Corollary 6 (Unbounded self-composition theorem). Let σ be a PSID function, and let P and F be
two protocols such that P ≤σ-single F . Then P ≤ F .

Proof. This follows from the unbounded self-composition theorem in the IITM model [1]. However, unlike
Corollary 1, it is not a trivial instantiation but rather requires a short argument. This is because the definitions
of PSID functions and σ-session protocols in iUC are slightly different from how they are defined in the IITM
model, so we have to relate the notions from iUC to those in the IITM model. We provide a full proof in
Appendix J.

We now illustrate how protocols with disjoint sessions can be modeled in iUC by giving an example. More
specifically, we model the standard case that is considered in the UC and GNUC models where a single
session of a single highest-level protocol is analyzed in isolation. This single session can use potentially several
instances of arbitrary subroutines, as long as no instance is accessible by two or more different sessions. In
our framework, we model this setting by considering a combined protocol R := P || S1 || . . . || Sn consisting of
a highest-level protocol P with several subroutine protocols Si.

We define a protocol session of R via the SID used by entities in the highest-level protocol P . That is, an
entity (pid , sid , role) of P runs in the protocol session psid := sid. The SIDs of entities in subroutines consist
of two parts, a prefix and a suffix, where the prefix is the actual protocol session that they run in and the
suffix allows for arbitrarily many copies of a subroutine within the same session. That is, an entity of Si has
the form (pid, (sidpre, sidsuf ), role) and runs in session psid := sidpre. This directly implies a definition of a
PSID function σ which, in particular, is computable in polynomial time: σ(pid , sid , role) checks whether role
is in P or Si and then either outputs sid or the prefix of sid. In all other cases (e.g., if there is no prefix in
the SID in case of a subroutine) σ outputs ⊥.

Now, (instances of) machines in R have to meet the three properties of Definition 3 in order to have
disjoint sessions: (i) they may not accept entities that belong to no protocol session (i.e., where σ outputs ⊥),
(ii) they never accept entities from two different protocol sessions, and (iii) senders of messages are in the
correct session and receivers, if they are part of R, are in the same session. We ensure these properties as
follows:
26 Note that both F and P use the same PSID function σ to define disjoint sessions. Thus, they agree in their

“behavior” for the shared public roles, i.e., entities of those roles are grouped into protocol sessions in the same way.
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Structure of a highest-level protocol P (used in a combined protocol P || S1 || . . . || Sn) with disjoint sessions:

Participating roles: arbitrary
Corruption model: arbitrary

For each of the machines M of P:
Implemented role(s): arbitrary
CheckID(pid , sid , role):

Perform arbitrary checks and, potentially, output reject based on these checks.
If no other entity has been accepted yet, output accept.
Otherwise, let sidaccepted be the (full) SID of the first entity that was accepted.
Output accept if and only if sidaccepted = sid.

Corruption behavior:
– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):

If rolereceiver is part of P or a higher-level protocol/the environment, then check that sid = sidreceiver.
Otherwise, try to parse as sidreceiver as (sidprefix, sid′) and check that sid = sidprefix.

{i.e., the role is specified in Si.
If any of the previous steps/checks fails, output false.

{Ensure that messages are sent only to the same “session”.
Perform arbitrary other checks and output true or false based on these checks.

Other Corruption behavior, initialization, and core logic algorithms:
These algorithms are arbitrary, but subject to the restriction that they may only send messages from entities managed
by the current instancea to entities that are part of the same “session”.
In particular, messages must have a correct header (cf. §I.2.3; note that protocol designers using our syntax from
Appendix C need not care about headers as they are automatically added). Furthermore, if a message is sent to a
higher-level protocol or a role in P, then sidsender = sidreceiver, and if it is sent to a subroutine role in one of the
subroutine protocols Si, then sidreceiver = (sidsender, sid′) (for messages sent to the network there is not restriction
imposed on the receiver).

a i.e., from entities that get accepted by CheckID.

Fig. 15: Example structure of a highest-level protocol with disjoint-sessions. Fields/algorithms that are marked
as arbitrary or that are omitted can be specified freely by the protocol designer without breaking disjoint
sessions. See Figure 16 for how subroutine protocols Si are defined.

(i) The CheckID algorithm is used to ensure that the SIDs of entities in subroutines have the expected
format. That is, subroutine machines accept only entities that have a prefix in their SID. Thus, no
machine in R accepts an entity that does not have a PSID.

(ii) This can also be enforced via the CheckID algorithm. More specifically, a machine saves the first entity
that it has accepted and then accepts following entities only if they have the same PSID as the first one.
That is, they either have the same SID (in the case of entities in P) or the same SID prefix (in the case
of entities in Si).

(iii) This property is straightforward to ensure via suitable definitions of the various algorithms in our template.
More specifically, every send command in each of those algorithms must be defined such that senders
and receivers of this message meet this condition (note that this includes the macros from Appendix C,
which internally send messages). Furthermore, we use the AllowAdvMessage algorithm to prevent the
adversary from breaking this condition for corrupted entities.

We provide formal definitions of the components of R following these guidelines in Figures 15 and 16.
We directly obtain that a protocol R that is constructed as described above (cf. Figures 15, 16) is a

σ-session protocol. Thus we can use Corollary 6 to obtain the following: Let R and I be two σ-session
protocols that are constructed as described above (for the same σ). If R ≤σ-single I then R ≤ I. That is, it is
sufficient to analyze and compare a single protocol session of R with a single protocol session of I (and a
simulator) to obtain security for arbitrarily many sessions running concurrently.

We note that, in the above theorem, we did not fix which roles are public and private in R/I, i.e., this
argument also works even if some of the subroutine protocols have public roles that the environment can
access. For example, consider a protocol P that uses a subroutine S1 that provides common reference strings
(CRSs), where a different independent CRS is provided for different sessions of P . We can make the subroutine
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Structure of subroutine protocols Si (used in a combined protocol P || S1 || . . . || Sn) with disjoint sessions:

Participating roles: arbitrary
Corruption model: arbitrary

For each of the machines M of Si:

Implemented role(s): arbitrary
CheckID(pid , sid , role):

Check that sid = (sidprefix, sid′); otherwise output reject.
Perform arbitrary additional checks and, potentially, output reject based on these checks.
If not other entity has been accepted yet, output accept.
Otherwise, let sidaccepted

prefix
be the prefix of the SID of the first entity that was accepted.

Output accept if and only if sidaccepted
prefix

= sidprefix.
Corruption behavior:

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):
Parse sid as (sidprefix, sid′).
If rolereceiver is part of P, then check that sidprefix = sidreceiver.
Otherwise, try to parse sidreceiver as (sidprefix, sid′′).

{i.e., the role is specified in some Sj .
If any of the previous steps/checks fails, output false.

{Ensure that messages are sent only to the same “session”.
Perform arbitrary other checks and output true or false based on these checks.

Other Corruption behavior, initialization, and core logic algorithms:
These algorithms are arbitrary, but subject to the restriction that they may only send messages from entities managed
by the current instancea to entities that are part of the same “session”.
In particular, messages must have a correct header (cf. §I.2.3; note that protocol designers using our syntax from
Appendix C need not care about headers as they are automatically added). Furthermore, if a message is sent to a role
in P, then sidsender = (sidreceiver, sid′), and if it is sent to a subroutine role in one of the subroutine protocols Si,
then the prefixes of sidsender and sidreceiver are identical (for messages sent to the network there is not restriction
imposed in the receiver).

a i.e., from entities that get accepted by CheckID.

Fig. 16: Example structure of subroutine protocols with disjoint-sessions. Fields/algorithms that are marked
as arbitrary or that are omitted can be specified freely by the protocol designer without breaking disjoint
sessions. See Figure 15 for how the highest-level protocol P is defined.

S1 public in the combined protocol R, modeling globally available CRSs that can also be used by other
protocols independently of P . Even in this setting with global state, we can still apply Corollary 6 to be able
to analyze just a single session of R, i.e., one session of P using a single CRS provided by S1.

G Example: Joint-State Realization

This section illustrates how one can use iUC to model and analyze joint-state realizations (see Appendix E.2
and Appendix E.3 for a general explanation of joint-state composition). We do so by means of an example:
We consider an ideal signature functionality Fsig with disjoint sessions, i.e., where each session (defined via
the SID of entities) uses an independent key pair. We want to realize this functionality with a joint-state
realization Pjssig where the same key pair is re-used across multiple session.

The ideal signature functionality Fsig is given in Figure 17. It is analogous to existing signature function-
alities from the literature (e.g., [20]) and almost identical to the functionality Fsig-CA from our case study (cf.
§5 and Figure 7), except that it does not register verification keys in an ideal FCA subroutine. SIDs in Fsig
are of the form (pidowner, sid ′), where pidowner is the owner of a key and sid ′ denotes a specific key pair of
pidowner. In particular, for each sid ′ there is a separate independent key pair.

In our joint-state realization Pjssig of Fsig, we want to re-use the same signing key for all sessions of a key
owner, i.e., every party pidowner only has a single signing key for all sid ′. We achieve this as follows: Pjssig
(given in Figures 18 and 19) implements the signer and verifier roles, which act as multiplexers for a
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subroutine Fsig. For each party pid, there is one session of the subroutine Fsig with fixed SID (pid, ε). We
define the CheckID algorithm of the signer and verifier machines to accept all entities belonging to
the same party, i.e., an instance of the signer/verifier machines models one party in all sessions (as is
common for typical joint-state realizations). If a request for signing a message m in session/with key (pid, sid ′)
is received, then Pjssig instead prefixes m with sid ′ and uses the subroutine Fsig in session (pid, ε) to sign
(sid ′,m); the response is then returned. Prefixing messages with sid ′ ensures that, even though the same
signing key is used, signatures on messages for different SIDs sid ′ are still independent, just as in the ideal
world for Fsig. This is a standard technique often employed for obtaining joint-state realizations; in fact, our
realization Pjssig is based on the joint-state realization for digital signatures proposed in [20]. We obtain the
following result for Pjssig:

Lemma 2. Let Fsig and Pjssig be as above. Then:

(Pjssig | Fsig) ≤ (Fsig) .

Proof. Analogous to [20].

Hence, we can replace Fsig used by some protocol Q (which might have disjoint sessions, each of them
using separate signature key pairs) with its joint-state realization Pjssig via our general composition theorem:

Corollary 7. Let Q be a protocol such that Q and Fsig are connectable. Let R ∈ Comb(Q, (P js
sig | Fsig)) and

let I ∈ Comb(Q,Fsig) such that R and I have the same sets of public roles. If R is environmentally bounded,
then

R ≤ I .

Proof. This is an application of Corollary 1.

Let us highlight a few crucial features of iUC that we used above to model and compose the joint-state
realization Pjssig:

– The flexible adressing mechanism CheckID, which allows for dynamically mapping entities to machine
instances, allows us to easily create machine instances that manage/model a party in all sessions, as done
for Pjssig. In particular, one can then share the same state for that party throughout all sessions.

– Our framework does not impose any restrictions on how different machines are connected and how entities
of different machines are allowed to communicate. Hence, entities in Pjssig that have different SIDs (but
belong to the same party pid) can directly access the same signer entity (with fixed SID (pid, ε)) in the
subroutine Fsig. Similar to the previous point, this feature allows for easily sharing state between multiple
sessions.

– The main composition theorem is independent of (the interpretation of) SIDs and in particular does not
require protocols to have disjoint session. Instead, the theorem supports a general protocol definition,
where both protocols with and without joint-state (such as Pjssig and Fsig) are mere special case. Hence,
we can directly apply the theorem also to such a joint-state realization.

– Our corruption model allows the simulator in the ideal world to corrupt fresh entities as soon as they are
created. As already explained in detail in Appendix E.2, this is crucial to be able to prove Lemma 2:
Once the single key of a party pid in the real world has been corrupted, this corresponds to infinitely
many corrupted sessions of Fsig in the ideal world. Hence, the simulator needs a way to perform those
corruptions even though he has only polynomial runtime. iUC addresses this tension by providing a
reactive mechanism, i.e., corruption can occur as soon as an entity is first triggered.
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Description of the protocol Fsig = (signer, verifier):
Participating roles: {signer, verifier}
Corruption model: dynamic with secure erasures
Protocol parameters:

– p ∈ Z[x].
{

Polynomial that bounds the runtime of the algorithms
provided by the adversary.

Description of Msigner,verifier:
Implemented role(s): {signer, verifier}
Internal state:

– (sig, ver, pk, sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥). {Algorithms and key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊆ {0, 1}∗ = ∅. {Set of recorded messages.
– KeysGenerated ∈ {ready,⊥} = ⊥. {Has signer initialized his key?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{A single instance manages all
parties and roles in a single ses-
sion.Corruption behavior:

– LeakedData(pid , sid , role): If (pid , sid , role) determines its initial corruption status, use the default behavior of
LeakedData.
Otherwise, if role = signer and pid = pidowner, return KeysGenerated. In all other cases return ⊥.

Initialization:
send responsively InitMe to NET;
wait for (Init, (sig, ver , pk, sk)).
(sig, ver, pk, sk)← (sig, ver , pk, sk).
Parse sidcur as (pid, sid).
pidowner← pid.

Main:

recv InitSign from I/O to (pidowner, , signer):
KeysGenerated← ready.

{Successful initialization. Note that signer
can submit InitSign multiple times, always
with the same effect.reply (InitSign, success, pk).

recv (Sign,msg) from I/O to (pidowner, , signer) s.t. KeysGenerated = ready:
σ ← sig(p)(msg, sk).
b← ver(p)(msg, σ, pk). {Sign and check that verification succeeds.
if σ = ⊥ ∨ b 6= true:

reply (Signature,⊥). {Signing or verification test failed.
else:

add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ, pk) from I/O to ( , , verifier):
b← ver(p)(msg, σ, pk). {Verify signature.
if pk = pk ∧ b = true ∧msg /∈ msglist ∧ (pidowner, sidcur, signer) 6∈ CorruptionSet:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

Fig. 17: The ideal signature functionality Fsig.
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Description of the protocol Pjssig = (signer, verifier):

Participating roles: signer, verifier
Corruption model: dynamic with secure erasures
Protocol parameters:

– p ∈ Z[x].
{

Polynomial that bounds the runtime of the algorithms
provided by the adversary.

Description of Msigner:
Implemented role(s): signer
Subroutines: Fsig : signer
Internal state:

– initedSids ⊆ {0, 1}∗ ∪ {⊥} = ∅.
{

Which sessions have already sent an
InitSign request?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′); otherwise output reject.
Accept all entities with the same PID. {Accept one party in all sessions.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role): Output corr(pid, (pid, ε),Fsig : signer).
– AllowCorruption(pid , sid , role): Output corr(pid, (pid, ε),Fsig : signer).{

Allow corruption only if the corresponding subroutine entity of Fsig
has been corrupted.

MessagePreprocessing:

recv m from I/O:
Try to parse sidcur as (pidcur, sid′).

{Signers can perform actions only in sessions where they
own the key, i.e., where their PID is a prefix of the SID.
Otherwise, do nothing.if parsing fails:

abort.

Main:

{
Due to MessagePreprocessing we have that, for
I/O requests, the current entity is of the form
(pid, (pid, sid′), signer).recv InitSign from I/O:

send InitSign to (pidcur, (pidcur, ε),Fsig : signer);
wait for (InitSign, success, pk).
Add sidcur to initedSids.
reply (InitSign, success, pk).

recv (Sign,msg) from I/O s.t. sidcur ∈ initedSids:
send (Sign, (sidcur,msg))) to (pidcur, (pidcur, ε),Fsig : signer);{

Prefix message with the current SID to obtain disjoint message
spaces for different sessions.

wait for (Signature, σ).
reply (Signature, σ).

Fig. 18: The joint-state realization Pjssig of Fsig (Part 1). It uses a single instance of Fsig as a subroutine to
realize multiple instances (in different sessions) of Fsig.

H More Details About the IITM Model

In this section, we provide further details about the IITM model with responsive environments which extend
the description given in §2. We note that the level of detail given in §2 is fully sufficient in order to understand
and use the iUC framework; it is not necessary to also read this section. This section is used only to provide
additional technical information for defining the technical mapping in Appendix I and proving the unbounded
self-composition theorem in Appendix J. Full technical details of the IITM model with responsive environments
are available in [1].

Named input and output tapes. In §2 we presented a slightly abstracted form of named tapes: Recall from
§2 that ITMs have named tapes and two ITMs (in a system of ITMs) are connected if they each have
one tape with the same name. Instances of such ITMs can then send messages to each other due to the
connection provided by the named tapes, i.e., the connected tapes allow for bidirectional communication.
Such connections of tapes are required to be unique within a system, i.e., for each tape name there are at
most two ITMs that have a tape with that name.
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Description of Mverifier:
Implemented role(s): verifier
Subroutines: Fsig
CheckID(pid , sid , role):

Check that sid = (pid′, sid′); otherwise output reject.
Accept all entities with the same PID. {Accept one party in all sessions.

Corruption behavior:
– DetermineCorrStatus(pid , sid , role): Parse sid as (pidsigner , sid′).

Output corr(pidsigner , (pidsigner , ε),Fsig : signer)
∨ corr(pid, (pidsigner , ε),Fsig : verifier).

{If either of these two entities has
been corrupted, then the adversary
can forge messages.

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m):
Check that pid = pidreceiver and rolereceiver 6= Fsig : signer.
If all checks succeed, output true, otherwise output false

Main:

recv (Verify,msg, σ, pk) from I/O:
Parse sidcur as (pidsigner , sid′).
send (Verify, (sidcur,msg), σ, pk) to (pidcur, (pidsigner , ε),Fsig : signer);{

Prefix message with the current SID to obtain disjoint message
spaces for different sessions.

wait for (VerResult, b).
reply (VerResult, b).

Fig. 19: The joint-state realization Pjssig of Fsig (Part 2). It uses a single instance of Fsig as a subroutine to
realize multiple instances (in different sessions) of Fsig.

Formally, in the IITM model machines (ITMs) may have tapes with names (named tapes). A named tape
belongs to one machine. Such a tape is either an input tape or an output tape. A machine can have several
input and output tapes, where all of them have different names. Also, systems of ITMs are defined in such a
way that there are no two machines with an input tape with the same name. The same is true for output
tapes. In a run of a system Q, an (instance of an) ITM M with an output tape named n can write a message
m to that tape; if there is a machine M ′ in Q with an input tape named n, then the message m is written to
an input tape with name n of (one of the instances of) M ′.27 We also say that M and M ′ or their named
tapes are connected (while formally these are still different tapes). Otherwise, if there is no machine with an
input tape named n in Q, the message m is discarded and the master ITM is activated instead.

In this work, we consider a special case of systems of ITMs, where machines are always connected via
pairs of tapes, thus allowing for bidirectional communication. That is, if a machine M has an input tape
named n and there is a machine M ′ in the system with an output tape named n, then M also has an output
tape named n̂, for some name n̂, and M ′ has an input tape named n̂. Hence, (instances of) M and M ′ can
both send and receive messages to/from each other.

This motivated the slightly more abstracted presentation of tapes in §2: When we say that an ITM M has
a tape with name n, we actually mean that it has a pair of input and output tapes named n and n̂. When we
say that another ITM M ′ also has a tape named n, then we mean that it has a pair of input and output
tapes named n̂ and n, i.e., M ′ and M can communicate in both directions via the pairs of named tapes. For
simplicity of presentation, in the following we will often say (named) bidirectional tape or simply (named)
tape when we actually mean a pair of input and output tapes.

Responsiveness of environments and adversaries. Formally, restricting messages and responsive environ-
ments/adversaries are defined as follows. A so-called restriction R defines both restricting messages and
possible answers to them; R is a subset of {0, 1}+ × {0, 1}+ which contains message pairs (m,m′) and must
be efficiently decidable (see [1] for details). We define R[0] := {m | (m,m′) ∈ R}. A message m ∈ R[0] is
called a restricting message and if (m,m′) ∈ R, then m′ is a possible answer to m. Now, an environmental
27 As explained in §2, the CheckAddress mode is used to determine which instance of M ′ gets to receive and process

the incoming message.
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system E is responsive for a system Q if for all but a negligible set of runs of {E ,Q} the following is true:
If in a run an instance of Q sends a restricting messages m on the network interface to E , then E has to
answer “immediately” in the following sense: After having received m, the first message m′ sent from E to
Q (if any) has to be sent to the same instance of Q which sent m and it must hold true that (m,m′) ∈ R.
Analogously, an adversarial system is responsive for a system Q if the same property holds in runs of {E ,
A,Q} for any environment E that is responsive for {A,Q}. In other words, the adversary has to answer
restricting messages from Q immediately in the above sense as well. Note that it may, however, contact the
(responsive) environment before answering Q. (The adversary should send only restricting messages to E in
this case as otherwise E would be free to contact Q, violating the responsiveness property.) As shown in [1],
an environment which is responsive for a system Q is also responsive for all systems Q′ indistinguishable
from Q.

Unbounded self-composition theorem. We have already presented the concurrent composition theorem in §2
(on a slightly informal level). The IITM model also supports a second composition theorem for the secure
composition of an unbounded number of sessions of the same protocol system, given that one session of the
protocol system is secure. To state this theorem, following [1,22], we have to consider protocol systems where
instances of machines in these systems have protocol session IDs (PSIDs);28 instances with the same PSID
form a session. We also have to introduce environments which invoke a single session of a protocol only. For
this purpose, PSID functions σ and σ-session protocols are introduced.

A PSID function σ assigns a PSID (or ⊥) to every message sent or received on a tape of an IITM.
Typically, messages are prefixed with PSIDs, and the PSID function σ simply extracts these PSIDs.

An (instance of an) IITM M is called a σ-session machine if, while running in an arbitrary context, it
does not accept messages (in mode CheckAddress) for which σ outputs ⊥. Also, if M accepted a message
on some tape at some point for which σ returned the PSID sid 6= ⊥, then later M may only accept messages
with the same PSID sid, i.e., for which σ returns sid. Also, M may only output messages with this sid. So,
altogether an instance of M can only be addressed by one PSID (the first one M accepts) and this instance
only outputs messages with that PSID. A protocol system is called a σ-session protocol if all IITMs in that
system are σ-session machines.

A single-session environment (for an PSID function σ) may invoke machines with the same protocol
session ID (according to σ) only. That is, such an environment may output messages for which σ yields only
the same PSID, and hence, it may invoke one session of the protocol only. We emphasize that, similarly to
Definition 4, a single-session environment must have this property in every context it runs (not only when
interacting with P); a formal definition is available in [1]. We denote the set of single-session (responsive and
universally bounded) environments for a system Q by Envσ-single(Q).

We say that P single-session realizes F (P ≤σ-single F) if there exists a simulator S ∈ Adv(F) such that
{E ,P} ≡ {E ,S,F} for all E ∈ Envσ-single(P). Now, the composition theorem states that if a single session of a
real protocol P realizes a single session of an ideal protocol F , then multiple sessions of P realize multiple
sessions of F .

Theorem 3 (Unbounded self-composition [1]). Let R be a restriction, σ be an PSID function, and let
the protocol systems P and F be σ-session protocols. Then, P ≤σ-single F implies P ≤ F .

I Formal Mapping of Protocols to ITMs

In this section, we explain how the templates specified in §3 are mapped to actual systems in the sense of the
IITM model with responsive environments. The resulting systems are instantiations of the protocol systems
in the IITM model with responsive environment (see §2, §H, and [1]). Hence, all theorems of the responsive
28 In the original IITM model, these IDs were called session IDs (SIDs). To avoid confusion with the concept of SIDs

used in entities in iUC, we have renamed them to protocol session identifiers. This is in line with the terminology
used in iUC for the same concept, see Appendix F.
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IITM model, including composition theorems, hold true for these systems. This, in particular, shows that
iUC inherits the soundness properties of the IITM model.

This section is structured as follows: First, we introduce a low-level syntax for describing ITMs in
Appendix I.1. Then, in Appendix I.2, we explain how a single instance of our template from §3.3 is mapped
to a system of ITMs, including the exact specification of those ITMs. Finally, in Appendix I.3 we explain how
a complete protocol, which is defined by one or more instances of our template, is interpreted as a system of
ITMs (this mainly entails connecting the individual systems created from each template instance).

I.1 Notation for the Formal Specification of ITMs

Before being able to formally specify how protocol systems in the sense of the IITM model are obtained from
the specifications/templates, we need to introduce some notation for specifying ITMs. This notation is used
to formally define the ITMs that are obtained from our template, where by ITMs we mean the (plain) ITMs
introduced in §2. We note that this is a rather low-level syntax that need not be used by a protocol designer
but is rather only used for presenting the mapping of our template to ITMs. For specifying algorithms in our
template, we provide a convenient high-level syntax in Appendix C. Note that the following low-level syntax
borrows and adjusts several elements from the high-level syntax such as message patterns.

Message patterns: A message pattern mp is used to describe the format of a message m ∈ {0, 1}∗. It is built
from local variables (denoted in italic font) which only exist for a single activation of an algorithm, global
variables (denoted in sans-serif font) which are part of the internal state of an instance of a machine and can
be accessed across multiple activations of different algorithms of the same instance, strings (denoted in
typewriter font), and special characters such as “(”, “)”, “,” and “⊥”.

Message patterns can be used to describe outgoing messages, in the following denoted by mpout, and
incoming messages, in the following denoted by mpin. If a message pattern is used for sending, the current
values of global and local variables are inserted, while the remainder of the pattern stays as is (in particular,
strings and special signs are not altered). The resulting message is then sent. If a message pattern is used
for receiving, a message m upon receipt is matched against the pattern: After inserting the values of global
variables and, if already defined, those of local variables into mpin, the resulting message must be the same
as m except for undefined local variables, which match an arbitrary text. After a successful match, all local
variables contain the value that they matched on. The special symbol can be used in mpin instead of an
undefined local variable if the value that is matched on is not needed afterwards, i.e., matches everything
but does not store the result.

To illustrate message patterns, consider the case where an instance of an ITM has a global variable id
storing the ID of the instance. Such an instance might at some point send a request on the network to the
adversary which contains a unique request ID qid, which is stored in a local variable (as it is no longer needed
once the algorithm has terminated). Such an ID is useful to match responses from the adversary to specific
requests. Now, the message pattern min = (id, (Response, qid,m′)) can be used to wait for a response from
the adversary. This pattern will match any message m which contains the ID id of the instance, the fixed
bit string Response, the value contained in the local variable qid, and an arbitrary bit string which will be
stored in a new local variable m′ after a successful match.

Sending raw messages: When we write send mpout on t, we mean that the message m that is created from
mpout at runtime is sent on tape t.

Restricting messages: As explained in §2 and formally defined in Appendix H, we consider a restriction
relation R and responsive environments such that if a real or ideal protocol outputs a restricting message
x ∈ R[0] on a network tape, the environment/adversary/simulator has to send a reply y on the corresponding
tape with (x, y) ∈ R immediately, i.e., without sending an incorrect message (wrong message according to R
or wrong tape) to the protocol before. To be precise, we use the following definition of R:
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R := {(m,m′)|m = (id, CorruptMe?)∧
m′ = (id, (SetCorruptionStatus, b))∧
id ∈ {0, 1}∗ ∧ b ∈ {false, true}}

∪ {(m,m′)|m = (id, (CorrStatusRestrict, b,m′′))∧
m′ = (id, OK)∧
id ∈ {0, 1}∗ ∧ b ∈ {false, true} ∧m′′ ∈ {0, 1}∗ ∪ {⊥}}

∪ {(m,m′)|m = (id, (Respond,m′′))∧
m′ = (id,m′′′)∧
id ∈ {0, 1}∗ ∧m′′,m′′′ ∈ {0, 1}∗ ∪ {⊥}}

Note that according to R defined above, a restricting message m ∈ R[0] and a possible response m′ with
(m,m′) ∈ R always start with the same ID id. In our framework, instances of machines will use id to store
the sending entity of a message. Thus, by the definition of the restriction the response will be sent back to
the same entity and thus to the corresponding instance. In particular, the adversary/environment may not
interact with any other protocol instances before sending this response (except for negligible probability,
which can be ignored in security proofs).

We note that, as also discussed in [1], it would be sufficient to consider a restriction R which contains only
the last type of message pairs. That is, one simply indicates a restricting message by adding Respond to the
message and does not make any restrictions about the response. If one wants an answer that satisfies certain
conditions, one can inspect the answer and if it does not satisfy the condition, one can send the restricting
message again until one obtains a message that satisfies the condition; see also the command introduced next.
However, we chose to consider the above version of R as it makes explicit which responses are permitted for
framework specific messages and thus slightly simplifies runs (i.e., we do not have to re-send messages in
those cases).

We write send responsively mpout on tnet; wait for mpin on tnet s.t. 〈condition〉 to emphasize that the machine
sends a restricting message on a network tape tnet and then waits to receive a response on the same network
tape that matches with mpin and satisfies 〈condition〉. This command will only be used if a message m ∈ R[0]
is sent. We note that the message pattern mpin is usually defined in such a way that it accepts (some of the)
possible answers to the restricting message. If an incoming message m′ (with (m,m′) ∈ R) is not accepted
by the command, then the machine repeats the command send responsively mpout on tnet; wait for mpin on tnet s.t.
〈condition〉, i.e., it automatically sends the first message m on tnet again and waits for an answer that matches
mpin and satisfies condition. This is repeated until the answer matches mpin and satisfies condition. Because
of the responsiveness requirement, it is guaranteed that the environment/adversary/simulator has to provide
the expected answer to the correct instance if it wants the run to continue.

Abort: We use the special keyword abort to say that a machine stops its current activation at some point.
More specifically, as soon as a machine in Compute mode reaches the abort command, it will produce
empty output and thus stop its computation. Then, by definition, the master IITM is activated with empty
input on the start tape.

I.2 Mapping Templates/Machines

To explain how protocols in our framework can be interpreted as (protocol) systems in the sense of the IITM
model, we first have to explain how a single instance of the template in Figure 4 is mapped to a system of
ITMs. We start by describing how such a system and machines therein are structured and then detail the
CheckAddress and Compute modes of the ITMs, including the behavior in case of corruption. Based on
the mapping of templates, we then explain in §I.3 how a full protocol, potentially defined via several different
instances of the template interacting with each other, as well as public and private roles are interpreted as a
system in the IITM model. While some of the following has already been sketched in §2 and §3, this section
provides full details.
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I.2.1 System of machines In the following, let P be a protocol defined by a single instance of the
template in Figure 4. Recall from §3 that protocols consist of several machines (i.e., ITMs) that implement
the roles in this protocol. To be more precise, for each (set of) role(s) defined in the Participating roles
field, there is one machine that implements this set. Thus, if there are n (sets of) roles in P, then P is the
system {M1, . . .,Mn}. Next, we explain how a machine M ∈ {M1, . . . ,Mn} given in the template is defined,
where Mi is defined by one part of the template. Let {role1, . . . , rolem} be the set of roles that M implements,
as specified in the Implemented role(s) field.

I.2.2 Tapes Recall from §2 and Appendix H that a machine M has named tapes for (bidirectional)
communication with other machines. An instance of a machine M1 can write a message on a tape t named n;
if there is another machine M2 with a tape t′ also named n, then the message is delivered to (an instance
of) M2 on tape t′. In this case, we say that M1 and M2 (respectively their tapes t and t′) are connected.
Within a system of ITMs, it is required that tapes connect uniquely, i.e., for each name there are at most two
machines with tapes of that name. Also recall that tapes are grouped into network and I/O tapes.

On a high level, we have to use tapes to represent the abstract connections from the iUC framework.
That is, we have to represent network connections each role has to the adversary, (internal) I/O connections
between various roles, including subroutine roles, in a protocol, and a set of connections from each (public)
role to the environment that can be used to simulate higher-level protocols. To give an intuition right away,
let us look at an example.

Example 1. In Figure 3a on Page 11 each of the arrows between the box labeled “I/O” (representing an
environment) and the protocol will be represented via a parameterized set of I/O tapes. Each of the internal
arrows between roles of the protocol will be represented by a single unique (bidirectional) tape. In addition
(not shown in the Figure) each role will have one (bidirectional) network tape for connecting to the adversary.

In the following, we formalize the tapes that a single machine M offers for others to connect to. Later, in
Appendix I.3, we detail how multiple machines are connected in the context of a protocol, where some (roles
of a) machine are public and others are private.

Let M be the machine of P from above. For each role rolei implemented by M, there is one network
tape that is used to connect the adversary, allowing rolei to send an receive messages from the network.
Furthermore, for each role rolei and for each subroutine role subrolej of M , there is a I/O tape that is used
to connect rolei to subrolej , allowing them to directly send and receive messages to each other. Finally, each
role rolei also has a parameterized number of I/O tapes that allow other (unknown) higher-level protocols as
well as the environment to connect and send direct messages to rolei. All tapes of M are uniquely named
(the exact names can be chosen arbitrarily and do not matter for the purpose of this mapping. Later on,
in Appendix I.3, the names of I/O tapes will be chosen such that tapes connect to subroutine roles and
higher-level protocols/the environment as expected).

Jumping ahead, the exact parameterized number of I/O tapes for a role will be fixed depending on
whether the role is public in the context of a protocol Q (cf. Appendix I.3): If rolei is private, then it offers
exactly as many I/O tapes as are used by other roles of Q that want to connect to rolei as a subroutine. For
public roles, the number of I/O tapes is arbitrarily large but fixed, allowing the environment to connect to an
arbitrary number of I/O tapes and use them for simulating higher-level protocols.

Example 2 (Example 1 continued.). In Figure 3a the signer role is private (in the context of the combined
protocol) and hence offers exactly two I/O tapes for the initiator and responder roles to connect to
(represented by the two arrows between those roles). In contrast, the initiator role is public and hence
offers an arbitrary number of I/O tapes for the environment to connect to (these are represented by the single
arrow pointing towards the box labeled “I/O”).

I.2.3 Message format In order to uniquely determine both the sending entity and the intended receiving
entity of a message, machines in our framework expect incoming messages m on some tape t to have a specific
format (and likewise will encode all outgoing messages in this format). More specifically, a message received on
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an I/O tape must be of the form m = ((pidsnd, sidsnd), (pidrcv, sidrcv),m′) where m′ is the message payload,
pidsnd is the PID of the sender, sidsnd is the SID of the sender, pidrcv is the PID of the intended receiver, and
sidrcv is the SID of the intended receiver. The expected format for messages m received and sent on network
tapes is shortened to be m = ((pidrcv, sidrcv),m′) and m = ((pidsnd, sidsnd),m′) respectively, as one of the
communication partners is always the network, i.e., there is no second entity involved in the communication.
Messages that do not adhere to this format are automatically dropped by the CheckAddress mode (cf.
Appendix I.2.4).

Now, suppose M receives a message m = ((pidsnd, sidsnd), (pidrcv, sidrcv),m′) on one of its I/O tapes t
belonging to role rolei. The sending and receiving entities are computed from the message m and the tape
t as follows. The receiving entity is set to (pidrcv, sidrcv, rolei). For the sending entity, there are two cases
to distinguish: if t is a tape connecting rolei to one of its known subroutine roles subrolej , then the sending
entity is set to be (pidsnd, sidsnd, subrolej). Otherwise, t is one of the parameterized many I/O tapes of rolei.
In that case, the sending entity is set to be (pidsnd, sidsnd, l) where l ∈ N is a number that uniquely identifies
the tape t (i.e., all of the parameterized many tapes are numbered consecutively). Note that, while technically
speaking l is not the name of a role, it still identifies a unique name of a role that is connected to tape t (cf.
paragraph “exchanging messages” in §3.1).29

Conversely, suppose an entity (pidsnd, sidsnd, rolei) managed by an instance of M wants to send a message
body m′ to some other entity (pidrcv, sidrcv, subrolej) or (pidrcv, sidrcv, l), l ∈ N. The resulting message m,
including the header, and the tape t that is used for sending are computed as follows. The message m is set to
be ((pidsnd, sidsnd), (pidrcv, sidrcv),m′). The tape t is either the I/O tape connecting rolei to its subroutine
role subrolej , or the parameterized I/O tape connecting to a higher-level protocol which is identified by the
number l.

Sending and receiving entities are computed analogously for messages that are sent/received on a network
tape. We note that protocol designers using our syntax from Appendix C only have to deal with the actual
message payload m′ in their protocol specification; the syntax automatically takes care of adding the correct
headers to the message payload and parsing headers of incoming messages.

I.2.4 Check address mode of protocol machines As mentioned, every instance of a machine in our
framework manages one or more entities of the form (pid , sid , role) (where role is one of the roles of M), and
every entity is managed by a unique instance, i.e., there are no two instances that manage the same entity.
On a high level, the CheckAddress mode is used to decide which instance manages which entity and route
incoming messages accordingly.

First, recall that in the IITM model, whenever a message m is received on a tape of M , then all existing
instances of M (in the order of their creation) are invoked in mode CheckAddress to check which instance
accepts m. The first instance to accept m gets to process m in mode Compute. If no such instance exists,
then a new one is created and run in mode CheckAddress. If this new instance accepts, it gets to process
m, and otherwise, m is dropped and the new instance is removed from the run.

Now, upon being activated with a message m on tape t, an instance of M does the following in the
CheckAddress mode, as specified in detail in Figure 20: the instance first checks that m contains a header
that specifies the sender and intended receiver as described in the paragraph “message format”. Note that
the expected header format depends on whether the tape t is an I/O or network tape. If m does not
contain a correct header, then reject is output; this ensures that instances accept a message and enter
Compute only if they can determine both the sender and/or intended receiver of a message. Otherwise,
the instance determines the intended receiving entity (pidrcv, sidrcv, rolercv) as described in §I.2.3 and runs
CheckID(pidrcv, sidrcv, rolercv) to determine whether that entity is accepted or rejected. Thus, the protocol
designer can freely define which receiving entities are accepted and thus managed by an instance of a machine.

29 In other words, M is not aware of the precise name of the role as the connecting higher-level protocol is unknown/only
simulated by the environment. In particular, M cannot depend on this name in their code. Note that having the
tuple (pidsnd, sidsnd, l) is typically sufficient as it allows for uniquely addressing the sending entity, e.g., to return a
message. A machine can simply send a message with sender (pidsnd, sidsnd) on the tape with number l.
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Upon receiving a message m on tape t in mode CheckAddress, do the following.
if t is an I/O tape:: {Check that m contains the expected header, cf. §I.2.3

Check that m = ((pidsnd, sidsnd), (pidrcv , sidrcv),m′).
else:

Check that m = ((pidrcv , sidrcv),m′).
if the above check fails:

output reject.
Compute the receiving role rolercv from t. {cf. §I.2.3
decision ← CheckID(pidrcv , sidrcv , rolercv).
Output decision.

Fig. 20: The CheckAddress mode of protocol machines in our framework.

Note that, since we require CheckID to produce consistent outputs (i.e., never output both accept
and reject for the same entity during any run), the above definition of the CheckAddress mode implies
that every receiving entity that has been accepted at some point will be accepted by the same instance
again; in particular, no other instance gets to process messages for that entity during any point in the
run. In other words, in every run for every (accepted) entity there is a uniquely determined instance that
implements/manages that entity during mode Compute.

I.2.5 Compute mode of protocol machines Recall that the Compute mode of an ITM specifies the
actual computation performed by (an instance of) the ITM. Our framework fixes parts of the behavior of
protocol machines in a specific way to guarantee the desired behavior in terms of corruption and addressing
other machines. All other aspects can be customized by a protocol designer via specification of the various
algorithms in the template from Figure 4.

We provide the formal specification of the Compute mode of protocol machines in Figures 21, 22, and
23. On a high level, when an instance is activated with some message that includes the message body m from
a sender sender (either some entity connected via the I/O interface or the network) for some receiving entity
(pidrcv, sidrcv, rolercv), then the instance performs the following steps in order:

1. If m = CorruptionStatus? on an I/O tape, then the corruption status of (pidrcv, sidrcv, rolercv) is
determined and returned to the sender immediately. In particular, none of the following steps are
performed but instead a response is returned directly to the sending entity sender .

2. If this is the first time that this instance reaches this step, then it runs Initialization.
3. If this is the first time that this instance reaches this step when receiving a message for the entity

(pidrcv, sidrcv, rolercv), then it runs EntityInitialization.
4. If this is the first time that this instance reaches this step when receiving a message for the entity

(pidrcv, sidrcv, rolercv), then it asks the adversary to determine the initial corruption status of that entity.
This is done via a restricting message, i.e., the adversary is forced to respond such that the computation
can continue from this point forward (except for negligible probability).

5. Corruption requests received from the network are processed. We note that already in Step 4. the message
to be processed might be a corruption request. In this case, in 4. the adversary is not asked whether or
not he wants to corrupt the entity.

6. If the instance was activated by the initial message m = InitEntity on an I/O tape, then the instance
reports a successful initialization by sending a message to the sender sender . This ends the activation and
none of the following steps are performed. We note that, by default, a sender of a InitEntity request
receives a response even if the adversary decides to corrupt (pidrcv, sidrcv, rolercv) in Step 4.

7. If (pidrcv, sidrcv, rolercv) is explicitly corrupted by the adversary, then messages are forwarded to/from
the network.

8. Otherwise, if the receiver (pidrcv, sidrcv, rolercv) is honest, then first the algorithm MessagePreprocessing
is run which might edit the message body m′. If MessagePreprocessing does not end the current
activation, e.g., by sending a message, then Main is run afterwards on the modified message body m′.

Let us highlight and discuss a few aspects of the implementation in the following.
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State variable acceptedEntities ⊆ ({0, 1}∗)3 = ∅.
{

List of entities that have been accepted so far.
Mainly for use in the CheckID algorithm.

State variable initDone ∈ {true, false} = false. {Has the instance been initialized?
State variable entityInitDone ⊆ ({0, 1}∗)3 = ∅. {Set of entities that have been initialized.

State variable explicitCorr : ({0, 1}∗)3 → {true, false,⊥}.
{

Has an entity been explicitly cor-
rupted? Initially ⊥.

State variable corrStatus : ({0, 1}∗)3 → {true, false}.
{

Consider entity to be corrupted? Ini-
tially false.

State variable internalState.
{

The internal state of the machine as defined in the tem-
plate from Figure 4.

State variable transcript. {Log of all messages that were sent and received.

State variable entitycur ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥).
{

Currently active entity (which was
activated by receiving a message).

State variable entitycall ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥).
{

Sender of the last message that was
received on the I/O interface.

Upon receiving a message m = ((pidsnd, sidsnd), (pidrcv, sidrcv),m′) on an I/O tape t,
or a message m = ((pidrcv, sidrcv),m′) from a network tape t do:
Determine the receiver entity, append it to the list acceptedEntities if it is not yet included, and store it in entitycur =
(pidcur, sidcur, rolecur). If t is an I/O tape, also determine the sender entity and store it in entitycall = (pidcall, sidcall, rolecall). Let tnet
be the network tape corresponding to rolecur. {cf. §I.2.2 and §I.2.3.

if Corruption model 6= custom ∧m′ = CorruptionStatus? ∧ t is an I/O tape: {Step 1.: handle corruption status requests.
if explicitCorr[entitycur] = ⊥: {Initial corruption status has not been determined yet.

send ((pidcur, sidcur), (pidcall, sidcall), (CorruptionStatus, false)) on t.
else:

corrStatus[entitycur]← corrStatus[entitycur] ∨ explicitCorr[entitycur].
if corrStatus[entitycur] = false:

corrStatus[entitycur]← DetermineCorrStatus(entitycur).
send ((pidcur, sidcur), (pidcall, sidcall), (CorruptionStatus, corrStatus[entitycur])) on t.

if initDone = false: {Steps 2. and 3.: Initialization of internal state.
initDone← true.
Run Initialization.

if entitycur 6∈ entityInitDone:
Add entitycur to entityInitDone.
Run EntityInitialization(entitycur).

Continue in Figure 22.

Fig. 21: The Compute mode of protocol machines (part 1).

User-defined algorithms: The Compute mode makes calls to all user-defined algorithms from the template
given in Figure 4, except for CheckID which is used in the CheckAddress mode. We do not fix or restrict
how these algorithms should be defined and we allow them full access not only to the internal state but also
to all framework-specific variables such as transcript, which is a log of all sent and received messages, and
(pidcur, sidcur, rolecur), which stores the entity that has received the current message.30 While this gives great
flexibility for protocol designers, it also means that they must be careful in their definitions such that they do
not accidently disrupt the intended protocol execution. In general, all algorithms should ensure that, when
sending a message, that message has the expected format (cf. §I.2.3) including a header that specifies sender
and receiver. Note that this is automatically taken care of if our convenient syntax from §C is used, i.e.,
a protocol designer using this syntax only has to worry about the actual message payloads. The following
messages payloads should be used with care as they are also used internally by our framework:

– InitEntity
– InitEntityDone
– CorruptionStatus?
– CorruptionStatus

30 This access is kept implicit in Figures 21 and 22 as we do not want to clutter the calls to the algorithms with
several additional parameters.
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if Corruption model 6= custom:
if explicitCorr[entitycur] = ⊥: {Step 4.: Initialize corruption status of new entity.

if t = tnet ∧m
′ = (SetCorruptionStatus, b) ∧ b ∈ {true, false}:

{
First message already
sets corruption status.

if b = true and Corruption model allows corruption of the entity at this point:
{See §3.2 for when corruption of an entity is allowed.

explicitCorr[entitycur]← AllowCorruption(entitycur).
{Use AllowCorruption to decide whether corruption succeeds.

else:
explicitCorr[entitycur]← false.

if explicitCorr[entitycur] = true:

{Return a response to the adversary. Note that this stops
the activation, none of the following steps are per-
formed.leakage ← LeakedData().

send ((pidcur, sidcur), (CorruptionStatus, true, leakage)) on tnet.
else:

send ((pidcur, sidcur), (CorruptionStatus, false,⊥)) on tnet.
else: {For all other first messages.

send responsively ((pidcur, sidcur), CorruptMe?) on tnet;
wait for ((pidcur, sidcur), (SetCorruptionStatus, b)) on tnet s.t. b ∈ {true, false}.
if b = true and Corruption model allows corruption of the entity at this point:

{See §3.2 for when corruption of an entity is allowed.
explicitCorr[entitycur]← AllowCorruption(entitycur).

{Use AllowCorruption to decide whether corruption succeeds.
else:

explicitCorr[entitycur]← false.
if explicitCorr[entitycur] = true:

{Leak information and give control to either the adversary or,
if this instance was triggered by an InitEntity command, to
entitycall.leakage ← LeakedData().

if t is an I/O tape and m′ = InitEntity:
send responsively ((pidcur, sidcur), (CorrStatusRestrict, true, leakage)) on tnet;
wait for ((pidcur, sidcur), OK) on tnet.
send ((pidcur, sidcur), (pidcall, sidcall), InitEntityDone) on t.

else:
send ((pidcur, sidcur), (CorruptionStatus, true, leakage)) on tnet.

else if explicitCorr[entitycur] = false:
{

Step 5.: Process corruption requests for already
existing entities.

if t = tnet ∧m
′ = (SetCorruptionStatus, b) ∧ b ∈ {true, false}:

if b = true and Corruption model allows corruption of entities at this point:
explicitCorr[entitycur]← AllowCorruption(entitycur).

else:
explicitCorr[entitycur]← false.

if explicitCorr[entitycur] = true:

{Return a response to the adversary. Note that this stops
the activation, none of the following steps are per-
formed.leakage ← LeakedData().

send ((pidcur, sidcur), (CorruptionStatus, true, leakage)) on tnet.
else:

send ((pidcur, sidcur), (CorruptionStatus, false,⊥)) on tnet.

Continue in Figure 23.

Fig. 22: The Compute mode of protocol machines (part 2).
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if t is an I/O tape and m′ = InitEntity:
{

Step 6.: Respond to InitEntity requests as initial-
ization of (pidcur, sidcur, rolecur) is finished now.

send ((pidcur, sidcur), (pidcall, sidcall), InitEntityDone) on t.

if Corruption model 6= custom ∧ explicitCorr[entitycur] = true:
{Step 7.: corrupted instances act as multiplexers for the adversary.

if t is an I/O tape:
send ((pidcur, sidcur), (CorrMsgForward, entitycall,m

′)) on tnet.
else if m′ = (CorrMsgForward, (pidtarget, sidtarget, roletarget),m′′): {

Handle message forwarding to entitytarget.
Let t′ be the tape connecting to roletarget (if there is no such tape, abort).
if AllowAdvMessage(entitycur, entitytarget,m

′′):
send ((pidcur, sidcur), (pidtarget, sidtarget),m′′) on t′.

else: {Message forwarding not allowed, return control to adversary.
send ((pidcur, sidcur), (CorrMsgForward, failed)) on tnet.

else: {Step 8.: Honest behavior.

Append (recv, (m, t)) to transcript.

{Update message log with non-framework specific mes-
sage. This is also done for all incoming and outgoing
messages in MessagePreprocessing and Main.

Run MessagePreprocessing(entitycall, entitycur,m
′).

{
Note that this algorithm might
modify m′.Run Main(entitycall, entitycur,m

′).

abort. {In the case that no message was sent.

Fig. 23: The Compute mode of protocol machines (part 3).

– CorruptMe?
– CorrStatusRestrict
– CorrMsgForward

In principle, every algorithm can end the current activation either by sending a message or using the
abort keyword. This has to be used with some care as it is quite easy to disrupt the intended protocol
execution. In particular, a protocol generally should ensure that the initialization phase can run without
interruption.

Core logic of (honest) entities: Recall that the core logic of a protocol machine is defined via the four
algorithms Initialization, EntityInitialization, MessagePreprocessing, and Main. One important
property of both initialization algorithms is that they are run before the initial corruption status of the
current entity is determined and thus before the adversary can take control of the current entity. This means
that initialization is performed even if the adversary intends to corrupt the current entity right at the start,
allowing for performing a protected setup without interference of the adversary. In particular, one can first
honestly create some internal state, and then later on decided based on this internal state whether the
adversary may actually corrupt the current entity. In contrast, both MessagePreprocessing and Main
are executed only for honest entities, so if an adversary corrupts an entity right at the beginning, they will
never be run for that entity. Instead, all messages would always be forwarded to the adversary in this case.

Corruption handling: While the general corruption related behavior and the corresponding algorithms have
already been explained in §3.2 and §3.3, we now give more details about the technical aspects of corruption
in this paragraph.

First, note that all corruption related behavior (Steps 1., 4., 5., and 7.) will be disabled and skipped
entirely if Corruption model is set to custom. Thus, all framework-specific corruption related messages,
such as CorruptionStatus?, are no longer handled automatically in such a case. Instead, a protocol designer
is able to receive those messages in MessagePreprocessing and Main and manually specify how they
are handled. For example, one can define an entirely different mechanism where corruption is not handled
per entity but rather per machine instance, while CorruptionStatus? requests are still answered in an
appropriate way to ensure interoperability with other protocols from our framework.
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If Corruption model is not set to custom, then Step 1. takes care of all CorruptionStatus? requests
from other protocols/the environment. Observe that this is done at the very start of Compute mode and the
current activation is ended directly after, without even performing any type of initialization. This ensures that
CorruptionStatus? requests, by default and depending on the definition of the DetermineCorrStatus
algorithm, are not visible to the network and do not affect the behavior of the protocol. As mentioned
previously, this is because intuitively these requests are meta messages that are supposed to allow other
protocols/the environment to obtain a snapshot of the current corruption state at any point in time, i.e., it
should not matter for the protocol execution whether/when such a snapshot was retrieved. In particular, if the
behavior of the protocol were to depend on whether a CorruptionStatus? request was received previously,
then this can create additional artificial attack vectors for the environment.

Except for CorruptionStatus? requests, all corruption related behavior is performed during Steps 4.,
5., and 7., i.e., after (honest) initialization has been completed but before MessagePreprocessing and
Main. The implementation mostly follows the behavior that has been described before and which we do
not repeat here. We want to highlight some details though: firstly, observe that, when an entity asks for
its initial corruption status in Step 4., it does so using a restricting message which the adversary must
answer immediately. This feature ensures that the adversary must decide on the corruption status without
interrupting the protocol execution by, e.g., first interacting with and changing the state of other instances.
In particular, if the adversary decides not to corrupt the entity, then the protocol execution continues without
interference. Secondly, there is a technical special case that needs to be handled differently, namely, receiving
an InitEntity request from the I/O interface (cf. Step 6.). This special message can be used by other
protocols to initialize a subroutine entity, including its corruption status, but without losing control to the
adversary in case the entity gets corrupted (cf. init macro defined in Appendix C). Thus, if the adversary
corrupts an entity that initializes itself due to InitEntity request, he is notified via a restricting message
(instead of a regular message) which includes the leakage of the entity. The adversary then has to return
control to the corrupted entity immediately, which can then respond to the initial sender of the InitEntity
request. Furthermore, if such a request is received, then the instance responds after Step 5. as then the entity
has been initialized, i.e., Step 7. in particular is not executed. Overall, this yields the desired behavior.

I.2.6 Mapping the syntax from §C Interpreting the send and receive commands presented in §C as
commands in the sense of the IITM model is mostly straightforward. In particular, the tapes that are used
and the headers that are added to the message payloads can be directly computed from the sending and
receiving entities that are specified in the send and receive commands (as described in §I.2.3). However, the
send responsively; wait for and send; wait for commands need some additional explanation.

Recall that the send responsively; wait for command allows for sending messages to the network
that will be answered immediately with a specific message. In particular, the adversary is not allowed to
interact with other parts of the protocol or other entities before providing the expected response. Formally,
this command sends the restricting message (header , (Respond,m′)) on a network tape, where header is the
message header as defined in §I.2.3 and m′ is the message payload as specified in the send responsively
command. By definition of the restriction (cf. §I.1), the adversary has to respond to such a message with
a message of the format (header ,m′′), where header is the same as in the restricting message and m′′ is
some arbitrary bit string. Because the headers are identical, the same instance of a machine will receive the
response. That instance then continues where it left off, i.e., without repeating all previous steps and with all
local variables still set to the same values, and tries to match m′′ to the conditions and the message format
imposed by the wait for part. If the match fails, it repeats the whole process by re-sending the original
message (header , (Respond,m′)). Thus, an adversary must provide an expected answer if he wants the run
to continue. We note that, formally, the adversary might not provide an immediate response (or a wrong
response) with negligible probability, however, this negligible set of runs can be ignored in security proofs.

While the purpose of the send; wait for command is similar to the send responsively; wait for
command, its implementation is actually more complex. Recall that this command is also supposed to allow
a protocol designer to send some message and then wait for a response such that the run continues where it
left off, including keeping all local variables. However, unlike the send responsively; wait for command,
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the send; wait for command can be used for sending messages to both arbitrary protocols and the network;
furthermore, it is not guaranteed that such a request will indeed be answered immediately. For example, if an
instance I queries a subroutines via the send; wait for command, then this subroutine might be corrupted
such that the request is forwarded to the adversary who can decide to, e.g., not answer but rather activate
the instance I on a network tape or a different I/O tape again. Thus, we need to specify the behavior of I
while it is waiting for a response but receives another message. In particular, it should still allow for certain
meta actions, such as obtaining the current corruption status or getting corrupted, to be processed.

We use the following definition: If an instance I sends a message via the send; wait for command, then
it pushes the current values of all local variables and the current position in the program code on an internal
stack. Now, if I receives some message m while this stack is non-empty, it proceeds as follows depending on
the type of message:

– Check whether m is one of the following four types of meta messages: CorruptionStatus?, InitEntity
on the I/O interface, or SetCorruptionStatus, CorrMsgForward on the network interface.
If so, then proceed with the standard program logic while ignoring the state stored on the internal stack.
In other words, these messages are processed separately even when waiting for a response to another
request. Note that these messages might also include calls to a send; wait for command and thus push
new states to the stack.

– For all other messages m, I takes the top most state stored on the stack and continue from the stored
program position with the stored local variables. That is, the instance checks whether m matches all
criteria of the wait for command based on the stored values of local variables and the current values of
global variables (which might have changed since the state was stored on the stack!). If it does, then the
computation continues where it left of; otherwise, the state is pushed back to the stack and the instance
stops the current activation without output.

As should be obvious from this definition, it is quite easy to produce unintended behavior with the send;
wait for command. We thus emphasize again that this construct must be used with special care and only
sparely, e.g., to obtain a value from an incorruptible subroutine that responds immediately by its definition.

Besides the send and receive commands, we have also introduced two macros in §C: the corr(pid , sid , role)
and the init(pid , sid , role) macros for retrieving the corruption status of and initializing an entity, re-
spectively. Using the notation from §C, the corr(pid , sid , role) macro is just a shorthand notation for
send CorruptionStatus? to (pid , sid , role); wait for (CorruptionStatus, b) s.t. b ∈ {true, false}. Anal-
ogously, the init(pid , sid , role) macro is just a shorthand notation for send InitEntity to (pid , sid , role);
wait for InitEntityDone. Both of these are fully defined by the above explanations.

I.3 Mapping Protocols

Now that we have explained how our template can be mapped to individual machines in the sense of the IITM
model, we can explain how a complete protocol P = (rolepub1 , . . . , rolepubn | rolepriv1 , . . . , roleprivm ) is mapped to
a system of machines, where P might be built from several (sub-)protocols which are each specified using the
template. More specifically, we mainly need to explain how the tapes of individual machines are connected
and how public and private roles differ.

Let P be an arbitrary complete protocol as above. Let M1, . . . ,Ml be the machines of P that are specified
using one or more templates and which implement one or more roles each. Now, the tapes corresponding to
a role rolei implemented by a machine Mj are connected as follows (in the context of P) via suitable tape
name choices (again, the exact names are arbitrary and not important for this mapping):

– Recall that rolei has an I/O tape t for each of the subroutine roles rolesub of Mj . Since P is complete,
we have that rolesub is implemented by one of the machines of P. If (the machine implementing) rolesub
also has an I/O tape t′ to connect to rolei (because rolesub specifies rolei as a subroutine), then t and t′

are connected and we require the (bidirectional) tapes t and t′ to be identical since we need only one
(bidirectional) tape for rolei and rolesub to communicate . Otherwise, the tape t is connected to one of
the parameterized many I/O tapes of rolesub.
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– Recall that rolei also has parameterized many I/O tapes for arbitrary higher level protocols and the
environment to connect to.
• If rolei is a private role in P , then the parameter is chosen such that there are exactly as many tapes

as are needed for roles of P that want to use rolei as a subroutine. In other words, all roles of P that
use rolei as a subroutine can actually connect to rolei; however, there are no additional (unconnected)
tapes that would allow other protocols or the environment to connect to rolei.

• If rolei is a public role in P, then the parameter is still arbitrary but sufficiently large such that all
roles of P that use rolei as a subroutine can connect to it. In other words, not only can roles of P
connect to rolei (if they use this role as subroutine), but there are also arbitrarily many unconnected
tapes that can be used by other protocols or the environment to connect to rolei.

– The single network tape of rolei is left unconnected such that the environment/adversary/simulator in
the definition of the realization relation can connect to it.

The protocol P is then implemented by the system of machines {M1, . . .,Ml} that is connected as described
above. This was already illustrated by Example 1.

J Proof of the Unbounded Self-Composition Theorem

In this section we provide a proof for the unbounded self-composition theorem in iUC (cf. Corollary 6 in
Appendix F).

Let σ be an PSID function as defined for iUC in Definition 2. Suppose we have two (iUC) protocols P
and F that are σ-session protocols such that P ≤σ-single F . In the following, we want to use the unbounded
self-composition theorem of the IITM model (cf. Theorem 3 in Appendix H) to conclude that P ≤ F . For
this purpose, we have to define a PSID function σ̃ in the sense of the IITM model (cf. Appendix H), show
that P and F are σ̃-session protocols in the sense of the IITM model (cf. Appendix H), and show that
P ≤

σ̃-single F (again, in the sense of the IITM model). An important difficulty here is that a “σ-session
protocol” is a property defined for runs of the whole protocol (in some arbitrary responsive environment),
whereas “σ̃-session protocol” is a property defined for runs of individual machines of the protocol (in some
arbitrary context that might not even be responsive or runtime bounded). Thus, formally, some properties
that hold true in the context of the whole protocol, might no longer be true if the protocol is broken apart.
Dealing with this issue is the main obstacle of this proof.

Let us begin by summarizing the major differences between σ and σ̃ as well as σ-session protocols and
σ̃-session protocols in iUC and the IITM model, respectively. Firstly, σ is defined on entities, whereas σ̃
takes as input a message and a named tape and then determines the PSID of the machine instance that
sent/received this message. Thus, we have to define σ̃ such that it uses the header information contained
in messages in iUC (cf. Appendix I.2.3) and the tape to determine the entity that receives some message
and then evaluate σ for that entity. Note that importantly, for internal tapes connecting two roles of P, the
output of σ̃ is not only required to match the PSID of the receiving entity but it must also match the PSID
of the sending entity (as otherwise the sender would send a message to another session, i.e., P would not be a
σ̃-session protocol).

We define σ̃(m, t) as follows:

– If t is an external output tape of P/F (i.e., connecting to the environment or adversary), then compute
the sending entity (pidsnd, sidsnd, rolesnd). That is, parse m to obtain pid[snd] and sid[snd] of the sending
entity and compute role[snd] (if parsing m does not work, e.g., due to an invalid header format, set
σ̃(m, t) := ⊥). Output the PSID of the sending entity, i.e., σ̃ := σ(entitysnd).

– If t is an external input tape of P/F (i.e., connecting from the environment or adversary) or an internal tape
of P/F (i.e., connecting two machines of P/F), then compute the receiving entity (pidrcv, sidrcv, rolercv).
That is, parse m to obtain pid[rcv] and sid[rcv] of the receiving entity and compute role[rcv] (if parsing m
does not work, e.g., due to an invalid header format, set σ̃(m, t) := ⊥). Output the PSID of the receiving
entity, i.e., σ̃ := σ(entityrcv).

– For tapes t that are not part of P/F , set σ̃(m, t) := ⊥.

67



Observe that σ̃ is indeed a session function as it is efficiently computable. The protocols P and F are
almost σ̃-session protocols for the above definition. Consider the behavior of individual machines in runs of
the whole protocol with an arbitrary (not necessarily single-session) responsive environment. Firstly, observe
that no machine in P/F accepts messages where σ̃ is ⊥ as then either the header is malformed or σ is also
⊥. Secondly, if an instance has accepted a message with some PSID according to σ̃, then it will not accept
messages for any other PSIDs, as this would imply that it accepts two entities with different PSIDs according
to σ. Thirdly, messages sent by an instance have the same PSID according to σ̃ as those that were previously
accepted. For external tapes, this directly follows from the fact that the sending entity must have the correct
PSID according to σ. For internal tapes, this is implied by the additional requirement that the receiving
entity also has the correct PSID according to σ.

So overall, the properties of machines of σ̃-session protocols hold true but only for the specific context of
the whole protocol running with a responsive environment. However, we need those properties to also hold
true when running individual machines in an arbitrary context, which is not the case in general.31 Thus,
we have to modify P and F slightly. The new protocols P̃ and F̃ are the same as before, except for the
following changes made to each machine: Before accepting a message in mode CheckAddress, the machine
first checks that the properties of σ̃ session protocols are not violated and rejects the message otherwise.
Furthermore, before sending a message, the machine again checks that the properties of σ̃-session protocols
are fulfilled and aborts the activation without sending the message otherwise. Thus, we have that P̃ and F̃
are σ̃-session protocols and, by the above observations, they behave identical to P and F when running the
whole protocol in a responsive environment. Note that both P̃ and F̃ are still environmentally bounded as in
particular σ̃ is efficiently computable.

Now let E ∈ Env
σ̃-single(P) be a single-session environment according to σ̃. We have that E sends only

messages m on tape t such that σ̃(m, t) always outputs the same PSID, say, psid. By definition of σ̃, those
messages are always sent to entities who have PSID psid according to σ. Thus we have E ∈ Envσ-single(P). As
P ≤σ-single F by assumption, we have that there exists a simulator Ssingle such that {E ,P} ≡ {E ,Ssingle,F}.
As P and P̃ as well as F and F̃ behave identical in runs with arbitrary responsive environments, we have
that {E , P̃} ≡ {E ,Ssingle, F̃}. In summary, this implies P̃ ≤

σ̃-single F̃ .
We can now apply the unbounded self-composition theorem of the IITM model (cf. Theorem 3) to conclude

that P̃ ≤ F̃ . By the same argument as above, using that P̃ and P as well as F̃ and F behave identical in the
context of arbitrary responsive environments, this implies P ≤ F . ut

31 For example, a machine M that is used only as an internal subroutine within a protocol might, upon being activated
by a sender entity from a higher-level protocol/role of the same protocol, compute some response and return this
response to the sending entity. In the context of the whole protocol, the sender entity is always of the same session
as the receiver entity in M , and hence M would also return the message to an entity in the same session. However,
when running in an arbitrary context that can claim arbitrary sender entities, the context might choose a sender
entity that is from a different session than the receiver entity of M . Thus, M would return/send a message to an
entity in a different session, violating property 3 of σ̃-session protocols.
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