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Abstract

Trapdoor functions (TDFs) are one of the fundamental building blocks in cryptography.
Studying the underlying assumptions and the efficiency of the resulting instantiations is therefore
of both theoretical and practical interest. In this work we improve the input-to-image rate of
TDFs based on the Diffie-Hellman problem. Specifically, we present:

(a) A rate-1 TDF from the computational Diffie-Hellman (CDH) assumption, improving the
result of Garg, Gay, and Hajiabadi [EUROCRYPT 2019], which achieved linear-size outputs
but with large constants. Our techniques combine non-binary alphabets and high-rate error-
correcting codes over large fields.

(b) A rate-1 deterministic public-key encryption satisfying block-source security from the de-
cisional Diffie-Hellman (DDH) assumption. While this question was recently settled by
Döttling et al. [CRYPTO 2019], our scheme is conceptually simpler and concretely more
efficient. We demonstrate this fact by implementing our construction.

1 Introduction

Trapdoor functions (TDFs) are the public-key variant of the notion of one-way functions. In-
formally, TDFs are (families of) one-to-one functions, where each function can be computed in
the forward direction using the index key, and in the backward direction using a corresponding
trapdoor key. Moreover, without knowledge of a trapdoor, a randomly chosen function should be
one-way. Trapdoor functions, or extensions thereof such as lossy TDFs or deterministic public-
key encryption, have important applications in the construction of primitives with CCA security,
selective-opening security, and more recently in the context of designated-verifier non-interactive
zero knowledge [BFOR08, BHY09, BBN+09, MY10, BCPT13, LQR+19].
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A series of works, some quite recent, have shown how to build TDFs and related primitives
based on almost any specific assumptions from which public-key encryption (PKE) is known [PW08,
FGK+10, PW11, Wee12, GH18, GGH19]. However, all these constructions are less efficient than
those of PKE from the corresponding assumptions, in particular with respect to the sizes of public-
keys and ciphertexts. For instance, we have constructions of PKE for which ciphertext expansion
factors are small constants, sometimes even approaching 1. Yet, the situation for TDFs is different:
All TDFs either have quadratic ciphertext expansions or linear expansions with large constants.

In this work we build TDFs and deterministic-encryption schemes with rates approaching 1
based on standard assumptions in cyclic groups, specifically the Computational Diffie Hellman
(CDH) and Decisional Diffie Hellman (DDH) assumptions. Concretely, for an image y of an input
x, the ratio |x|/|y| approaches 1 as |x| grows. The first TDF constructions based on DDH [PW08,
FGK+10] resulted in schemes in which the size of the image is quadratic in the input size. In a
nutshell, the optimized TDF construction of Peikert and Waters, due to [FGK+10], computes a
linear function in the exponent on a binary encoding of the input. In particular, recall that in a
group with a generator g, if we have an encoding [M] = gM of an invertible matrix M of exponents,
then we can encode any column vector X of bits by computing M · X in the exponent. This will
allow for inversion if one possesses M−1. We can argue lossiness in a very elegant way by making
the matrix M rank-deficient. On the downside however, we need to spend an entire group element
in the output for each input bit, resulting in an expansion factor of Ω(λ).

A recent result of Garg, Gay and Hajiabadi [GGH19] shows how to construct linearly-expanding
TDFs and DE schemes based on CDH or DDH. In particular, they give schemes in which the image
expansion ratio is O(1). However, this linear expansion hides big constants — a rough estimate of
the constant is at least 20. At a high level, the constructions of [GGH19] achieve linear-expansion
rates via the following two steps:

(a) For some constant c, first build a so-called local TDF, in which the inversion algorithm for
every coordinate of the input either manages to recover the underlying bit correctly or outputs
⊥, the latter happening with probability at most 1/2c.

(b) Boost correctness of local TDFs by applying erasure-correcting codes.

Their local TDFs from step (a) already incur an expansion factor of at least 2c. Also, since erasure
corrections for strings over F2 can tolerate only relatively small erasure rates (i.e., the ratio between
the maximum number of tolerated erasures and the total length), they have to choose the constant
c bit enough in Step (a) — at least 10.

The problem of rate-1 (lossy) TDFs from DDH was recently resolved in the work of Döttling
et al. [DGI+19], who presented a construction based on the interplay of [GGH19] and techniques
developed in the context of homomorphic secret sharing [BGI16]. Their approach however results
in large index keys and does not appear to extend to the more challenging CDH settings.

Our Results. In this work, we show how to build rate-1 TDFs based on CDH or DDH, satisfying
stronger properties such as block-source deterministic-encryption security in the sense of [BBO07,
BFO08, BFOR08].1 This notion of security requires that the deterministic encryptions of any two

1We mention that building rate-1 TDFs satisfying one-wayness alone is trivial. If a TDF TDF maps n-bit inputs

to nc-bit outputs, then define a second TDF whose input is of the form (x ∈ {0, 1}n, x′ ∈ {0, 1}n
c+1

), and the output
is (TDF(x), x′). While this trivial construction achieves rate-1, it destroys stronger properties such as deterministic-
encryption security.
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distributions each having high min-entropy (more than a threshold k) should be computationally
indistinguishable. Ideally, we want k << n, where n is the bit length of the input.

At a high-level, our CDH-based construction deviates from the paradigm of [GGH19] by parsing
the input into elements from a poly-sized field F (i.e., |F| = poly(λ)). Then for every block Bi ∈ F
of the input, we provide a corresponding “hinting” block Oi in the output of almost equal size. We
then show how to perform inversion in a way which allows us to recover all except a 1/poly1(λ)
fraction of the input blocks, for some polynomial poly1. By choosing an appropriate error-correcting
code over F and by choosing poly1 appropriately based on |F|, we are able to achieve rate 1. The
main technical novelty of our work lies in providing the hints in a succinct way. See Section 1.1 for
more details.

Under the DDH assumptions, we give a more direct rate-1 construction without the need of
relying on error-correction techniques. For an input x ∈ {0, 1}n, the output of the TDF contains only
one group element plus exactly n bits. The construction has perfect correctness (i.e., can be inverted
with probability 1), is conceptually simple, and is concretely efficient. We show this by providing a
proof-concept-implementation in Python. Our implementation confirms our expectation of having
short ciphertexts and relatively fast encryption/decryption times. Both encryptions and decryption
times take less than a second on inputs of 128 Bytes (1024 bits).

Comparison with [DGI+19]. The work of [DGI+19] also shows how to build lossy TDFs (and
deterministic encryption) based on DDH achieving rate 1 as in our construction. However, our
construction achieves shorter public keys, saving an additive factor of at least 3n2 group elements,
and is much simpler. In particular, the construction of [DGI+19] relies on non-trivial techniques
such as those developed in the context of homomorphic secret sharing [BGI16] as well as error-
correcting code type techniques. We rely on neither of these tools.

Open Problems. Our rate-1 primitives only provide CPA security. It would be interesting to see
if techniques from [GGH19], along with those developed in this work, yield a rate-1 CCA primitive.
One challenge is that in [GGH19] the (constant) multiplicative overhead of ciphertexts in the CCA
case is much larger than the CPA case. In particular, our current techniques do not appear to
naturally yield a rate-1 CCA primitive. We leave this as an open problem.

1.1 Technical Overview

In the following we provide an informal overview of the techniques developed in this work. We first
discuss how to construct a CDH-based trapdoor function with rate 1, then we turn our attention
to the DDH-based settings.

The Basic Building Block. The starting point of this work is the following group-based hash
function, which maps {0, 1}n into a group G

Hash(k, x) :=

n∏
j=1

gj,xj

where the key

k :=

(
g1,1, g2,1, . . . , gn,1
g1,2, g2,2, . . . , gn,2

)
$←− G2×n.
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is chosen uniformly at random and x ∈ {0, 1}n is the input. By choosing n larger than the represen-
tation size of a group element in G, this function becomes compressing. This surprisingly powerful
function plays a central role in recent constructions of identity based encryption [DG17b], trapdoor
functions [GH18], deterministic encryption and lossy trapdoor functions [GGH19].

In a first step, we increase the alphabet size of the input x, i.e instead of taking x from {0, 1}n,
we take it from Σn for an alphabet Σ := {1, . . . , σ} of size σ = poly(λ). While the definition of the
function Hash is unchanged, we need to account for the increased alphabet size by sampling the
key as

k :=


g1,1, g2,1, . . . , gn,1
g1,2, g2,2, . . . , gn,2
. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

 $←− Gσ×n.

The main effect of this modification for now is that the size of the key is increased by a σ factor.
While this modification seems insignificant at first, it will be instrumental in achieving rate 1.

Adding the Encryption. We now show how this function can be augmented with the encryption
functionality, using techniques of [GGH19]. Let y := Hash(k, x), for a certain input x ∈ Σn, our
objective is to design an encryption algorithm such that a ciphertext encrypted under an index
i ∈ [n], a symbol f ∈ Σ and y, can be decrypted with the knowledge of x only if xi = f . This is

done by sampling a uniform ρ
$←− Zp and publishing

cti,f :=


gρ1,1, gρ2,1, . . . , ⊥, . . . , gρn,1
. . . , . . . , . . . , . . . , . . . , . . .
gρ1,f , gρ2,f , . . . , gρi,f , . . . , gρn,f
. . . , . . . , . . . , . . . , . . . , . . .
gρ1,σ, gρ2,σ, . . . , ⊥, . . . , gρn,σ

 ,

as the ciphertext, and letting yρ be the underlying (secret) encapsulated value. Given x, anyone
can recover yρ by simply computing

yρ :=

m∏
j=1

gρj,xj .

It is not hard to show that recovering the yρ if xj 6= f is as hard as solving the Diffie-Hellman
problem.

Constructing Trapdoor Functions. The key observation of [GH18] (later improved in [GGH19])
is that the same value can be recovered from y using the trapdoor ρ, without the knowledge of x.
This allows us to use the above structure to construct a trapdoor function by sampling the trapdoor
as a matrix

tk :=


ρ1,1, ρ2,1, . . . , ρn,1
ρ1,2, ρ2,2, . . . , ρn,2
. . . , . . . , . . . , . . .
ρ1,σ, ρ2,σ, . . . , ρn,σ

 $←− Zσ×np
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and setting the index key as

ik := k,


ct1,1, ct2,1, . . . , ctn,1
ct1,2, ct2,2, . . . , ctn,2
. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctn,σ

 ,


a1,1, a2,1, . . . , an,1
a1,2, a2,2, . . . , an,2
. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , an,σ


where k and cti,f are defined as above and each ai,f

$←− G is a random group elements. The purpose
of these random elements is to shift the (negligible) inversion error from the random choice of x to
the random choice of ik (see [GGH19] for a detailed discussion). Given an input x, the output of
the trapdoor function is defined to be

u := (y, v1 := yρ1,x1 ⊕ a1,x1 , . . . , vn := yρn,xn ⊕ an,xn).

Note that, as discussed before, this computation can be performed without the trapdoor tk. On
the other hand, the function can be easily inverted with the knowledge of tk (and without x) by
simply recomputing each yρi,f ⊕ ai,f and comparing it with vi. If it matches, then the i-th symbol
is set to f . While this gives us a trapdoor function, its rate is far from 1: To encode one symbol
xi ∈ Σ, we need to spend one group element vi ∈ G.

Boosting the Rate. However, we can improve the rate of this construction with a surprisingly
simple idea. Namely, we will use a hardcore function (in the sense of [GL89]) H to hash the element
yρi,xi into a polynomial-size domain {0, 1}w and sample ai,f from the same domain. Image values
of the function now look as follows

u := (y, v1 := H(yρ1,x1 )⊕ a1,x1 , . . . , vn := H(yρn,xn )⊕ an,xn).

Inversion is done as before: Given y and the trapdoor key tk one can check whether vi
?
= H(yρi,f )⊕

ai,f for all possible f ∈ Σ. If one finds a unique f ∈ Σ with this property, then it must hold that
xi = f . However, as {0, 1}w is a domain of polynomial size, collisions can and will occur. That is,
there can occur false positives f ′ 6= xi which satisfy the above condition. Given that such collisions
are not too frequent, we can protect against them by pre-processing x with a suitable code which
also has high rate. Our analysis shows that the number of indices i at which such collisions occur
is at most 2n · σ/2w, where σ = |Σ| is the size of the alphabet.

Achieving Rate 1. The crucial observation now is that we can choose Σ and {0, 1}w in such a
way that σ/2w is sublinear, but at the same time log(σ)/w approaches 1. Note that log(σ)/w is
the rate at which we encode a symbol xi ∈ Σ by H(yρi,xi )⊕ ai,xi . This is e.g. achieved by choosing
σ ≥ λ and 2w = σ · log(λ). This choice gives us σ/2w ≤ 1/ log(λ) and

log(σ)

w
=

log(σ)

log(σ) + log log(λ)
= 1− log log(λ)

log(σ) + log log(λ)
≥ 1− log log(λ)

log(λ)
,

which approaches 1. Finally, we can pre-process the input x with a code which can handle a
2 · σ/2w = 2/ log(λ) fraction of erasures, such as a [n, n− 2n/ log(λ), 2/ log(λ) + 1] Reed Solomon
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code over a field Σ of size σ ≥ n. This code has rate 1−2/ log(λ). Concluding, the image (ignoring
the group element y which causes only an additive overhead) encodes a message x at rate(

1− 2

log(λ)

)
·
(

1− log log(λ)

log(λ)

)
≥ 1− Ω

(
log log(λ)

log(λ)

)
.

The last question to address is how to instantiate H to extract enough randomness from a CDH
instance. By our choice of parameters above, w = O(log(λ)) random bits suffice, which allows us
to use the standard Goldreich-Levin [GL89] hardcore function.

DDH-Based Deterministic Encryption (DE). Recall that we say a TDF with input space
{0, 1}n has (k, n)-CPA-security if the evaluations of any two distributions with min-entropy at least
k result in computationally-indistinguishable distributions. We show how to realize this notion in
a very simple and ciphertext-compact way using DDH.

The index key of our TDF consists of a random vector g ∈ Gn together with n vectors {gi ∈
Gn}i∈[n], where each gi is an element-wise exponentiation of g to a random power ρi. To evaluate an

input x ∈ {0, 1}n, we return a group element g′ := x ·g (where · denotes the hash
∏n
j=1 g

xj
j ), as well

as an encoded bit bi := BL(x ·gi)⊕xi for the i-th bit of the input. Here BL : G→ {0, 1} is a balanced
function, meaning that the output of BL(gu) on a uniformly-random gu is a uniformly-random bit.
Inversion can be performed by knowing all the exponents ρi’s.

We show if k ≥ log p+ ω(log λ) — where p is the size of the group — then we have (k, n)-CPA
security. To argue this, first recall that an index key is of the form (g, g1, . . . , gn), where each gi
is an exponentiation of g. Say two x and x′ are siblings if x · g = x′ · g. (That is, if both result in
the same group element in the output.) We show that for any x ∈ {0, 1}n, one may sample the gi
components of the index key in a manner correlated with x to get a correlated ik∗ in such a way
that:

1. (x, ik∗)
c≡ (x, ik), where ik is a real index key; and

2. ik∗ will lose information w.r.t. all siblings of x. That is, if x′ is a sibling of x, then
TDF.F(ik∗, x) = TDF.F(ik∗, x′).

3. The joint distribution (ik∗,TDF.F(ik∗, x)) can be formed just by knowing g′ := x · g, and
especially without knowing x.

Let us first sketch why the above properties imply DE security. Let D0 and D1 be the un-

derlying high-entropy distributions. Let xb
$←− Db, g

$←− Gn and g′b = xb · g. Also, let ik∗b be
the corresponding correlated index key which by Item 3 can be formed just by knowing g′b. By

Item 1 we have (ik,TDF.F(ik, xb))
c≡ (ik∗b ,TDF.F(ik∗b , xb)). Now since by Item 3 the joint distribution

(ik∗b ,TDF.F(ik∗b , xb)) can be sampled just by knowing g′b and since we have g′0
s≡ g′1 (by the leftover

hash lemma), we have (ik∗0,TDF.F(ik∗0, x0))
s≡ (ik∗1,TDF.F(ik∗1, x1)), establishing the desired security.

Now let us explain how to sample such “lossy” index key ik∗ for x just by knowing gc = x · g.
We form ik∗ := (g, g∗1, . . . , g

∗
n), where each g∗i is formed exactly as in gi, except that we multiply

the i-th element of the vector gi := gρi with a random group element g′i which satisfies BL(gρic ) =
1 ⊕ BL(gρic · g′i). Namely, each g∗i is an “almost” exponentiation of g in that we tamper with the
i-th element of the resulting exponentiated vector.
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Using simple inspection we can verify that Property 2 follows by the particular way in which ik∗

is sampled. Also, the way ik∗ is defined allows us to sample the joint distribution (ik∗,TDF.F(ik∗, x))
just by knowing gc and ρi’s, establishing Property 3. Finally, via a sequence of hybrids, we show
how to establish Property 1 based on DDH.

2 Preliminaries

We denote the security parameter by λ. We use
c≡ to denote computational indistinguishability

between two distributions and use ≡ to denote two distributions are identical. We write
s≡ for

statistical indistinguishability and we write ≈ε to denote that two distributions are statistically

close, within statistical distance ε. For a distribution S we use x
$←− S to mean x is sampled

according to S and use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribution.

For a set S we overload the notation to use x
$←− S to indicate that x is chosen uniformly at random

from S. The set {1, . . . , n} is often abbreviated as [n]. We say that a machine is PPT if it runs in
probabilistic polynomial-time.

The min-entropy of a distribution S is H∞(S)
M
= − log(maxx Pr[S = x]). For a finite alphabet

Σ, we say a distribution S is a k-source over Σn if H∞(S) ≥ k. When the alphabet Σ is clear from
context, we say S is a (k, n)-source.

Lemma 2.1 (Chernoff Inequality). Let X be binomially distributed with parameters n ∈ N and
p ∈ [0, 1]. Let p′ > p. Then

Pr[X > 2p′n] < e−p
′n/3.

Lemma 2.2 (Leftover Hash Lemma [ILL89]). Let X be a random variable over X and h : S×X→ Y
be a 2-universal hash function, where |Y| ≤ 2m for some m > 0. If m ≤ H∞(X ) − 2 log

(
1
ε

)
, then

(h(S,X ),S) ≈ε (U ,S), where S is uniform over S and U is uniform over Y.

Lemma 2.3 (Log-Many Bits Hardcore Functions [GL89]). Let f : {0, 1}n → {0, 1}m be an OWF
with respect to a distribution D. Let Bi : {0, 1}n × {0, 1}2n → {0, 1} be a function defined as
Bi(x, s) := 〈x, s[i, i+ n− 1]〉 mod 2, where s[i, i+ n− 1] := (si, . . . , si+n−1). Then for any constant
c > 0, the function H : {0, 1}n × {0, 1}2n → {0, 1}cdlogne defined as

H(x, s) := (B1(x, s), . . . ,Bcdlogne(x, s))

is a hardcore function for f. That is, (s, f(x),H(x, s))
c≡ (s, f(x),w), where s

$←− {0, 1}2n, x
$←− D and

w
$←− {0, 1}cdlogne.

2.1 Error Correcting Codes

For our constructions we will rely on efficiently correctable error correcting block codes. Fix a finite
alphabets Σ, and two parameters k and m. We will represent codes by two efficient algorithms
Encode and Decode, where Encode takes as input a message x = (x1, . . . , xk) ∈ Σk and outputs a
codeword c = (c1, . . . , cm) ∈ Σm. We refer to the support of the algorithm Encode as the code C.
The algorithm Decode takes as input a string ĉ ∈ (Σ ∪ {⊥})m and outputs a message x ∈ Σk or ⊥.
We say that such a code jointly corrects r errors and s erasures, if it holds for every ĉ ∈ (Σ∪{⊥})m
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which can be obtained from a codeword c ∈ C by changing at most r positions and erasing at most
s positions that Decode(ĉ) = Decode(c).

The specific class of codes which we use in our constructions are Reed Solomon (RS) codes
[RS60]. The alphabets of Reed Solomon codes are finite fields Fq, and an [m, k]-RS code exists
whenever m ≤ q. The encoding procedure Encode of a [m, k]-RS code represents the message
x ∈ Fkq as a polynomial P of degree k − 1 over Fq via the coefficient embedding, and computes
and outputs (P (ξ1), . . . , P (ξm)), where ξ1, . . . , ξm are pairwise distinct elements of Fq. There exists
an efficient decoding algorithm, the so-called Berlekamp-Welch decoder [WB86], which can jointly
decode r errors and s erasures given that 2r+s ≤ m−k. We say this RS code has minimum-distance
m− k + 1.

In abuse of notation, we will provide as input to the encoding algorithm a binary string, i.e. an
element from {0, 1}n. For Σ = F2κ , such a string x ∈ {0, 1}n can be mapped to a string x ∈ F2k by
chopping x into blocks of length κ and letting each block represent an element of F2κ . Finally, we
will always assume that there is a canonical enumeration of the elements in Σ. This lets us identify
each element in Σ with a corresponding element in the set {1, . . . ,Σ}.

2.2 Trapdoor Functions

We recall the definition of trapdoor function (TDFs).

Definition 2.4 (Trapdoor Functions). Let n = n(λ) be a polynomial. A family of trapdoor functions
TDF with domain {0, 1}n consists of three PPT algorithms TDF.KG, TDF.F and TDF.F−1 with the
following syntax and security properties.

• TDF.KG(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of index/trapdoor
keys.

• TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and deterministically
outputs an image element u.

• TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs a value x ∈
{0, 1}n ∪ {⊥}.

We require the following properties.

• Correctness:
Pr

(ik,tk),x
[TDF.F−1(tk,TDF.F(ik, x)) 6= x] = negl(λ), (1)

where (ik, tk)
$←− TDF.KG(1λ) and x

$←− {0, 1}n.

• One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where (ik, ∗) $←−
TDF.KG(1λ), x

$←− {0, 1}n and u := TDF.F(ik, x).

We also define a stronger security property, called CPA block-source security.

• CPA-deterministic security: We say TDF is (k, n)-CPA-secure if for any two (k, n)-

sources D0 and D1: (ik,TDF.F(ik,D0))
c≡ (ik,TDF.F(ik,D1)), where (ik, ∗) $←− TDF.KG(1λ).
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We give the definition of rate for a TDF, which captures the asymptotic input-to-image ratio.

Definition 2.5 (Rate). A TDF (TDF.KG,TDF.F,TDF.F−1) has rate ρ if for all λ ∈ N, all polyno-
mials n(λ), all ik in the support of TDF.KG(1λ), all inputs in x ∈ {0, 1}n(λ):

lim inf
λ→∞

n(λ)

|TDF.F(ik, x)|
= ρ.

2.3 The Diffie-Hellman Problems

We recall the classical Diffie-Hellman problem [DH76] both in its search and decisional version. Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G is the description of
a group, p is the order of the group which is always a prime number and g is a generator for the
group. In favor of a simpler analysis, we consider groups such that log(p) = |g| = λ.

Definition 2.6 (Diffie-Hellman Assumptions). We say G is CDH-hard if for any PPT adversary

A Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ) where (G, p, g)
$←− G(1λ) and (a1, a2)

$←− Z2
p. We

say G is DDH-hard if (G, p, g, ga1 , ga2 , ga3)
c≡ (G, p, g, ga1 , ga2 , ga1a2), where (G, p, g)

$←− G(1λ) and

(a1, a2, a3)
$←− Z3

p.

3 Smooth Recyclable OWFE

We recall the definition of recyclable one-way function with encryption (OWFE) from [GH18].
The following definitions are taken almost in verbatim from [GGH19], except that we consider a
generalized version of the primitive over any finite alphabets Σ. The notion of OWFE in turn builds
on related notions known in the literature as (chameleon) hash encryption and its variants [DG17b,
DG17a, BLSV18, DGHM18].

Definition 3.1 (Recyclable one-way function with encryption). Let Σ = {1, . . . , σ} for some integer
σ. A w-bit recyclable (k, n)-OWFE scheme consists of the PPT algorithms Gen, Hash, Enc1, Enc2
and Dec with the following syntax.

• Gen(1λ): Takes the security parameter 1λ and outputs a public parameter k (by tossing coins)
for a function Hash(k, ·) from n bits to ν bits.

• Hash(k, x): Takes a public parameter k and a preimage x ∈ Σn, and deterministically outputs
an element y.

• Enc1(k, (i, z); ρ): Takes a public parameter k, an index i ∈ [n], a word z ∈ Σ and randomness
ρ, and outputs a ciphertext ct. We implicitly assume that ct contains (i, z).

• Enc2(k, y, (i, z); ρ): Takes a public parameter k, a value y, an index i ∈ [n], a word z ∈ Σ and
randomness ρ, and outputs a string e ∈ {0, 1}w. Notice that unlike Enc1, which does not take
y as input, the algorithm Enc2 does take y as input.

• Dec(k, ct, x): Takes a public parameter k, a ciphertext ct and a preimage x ∈ Σn, and deter-
ministically outputs a string e ∈ {0, 1}w.
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We require the following properties.

• Correctness. For any choice of k ∈ Gen(1λ), any index i ∈ [n], any preimage x ∈ Σn and
any randomness value ρ,

Pr[Enc2(k, y, (i, xi); ρ) = Dec(k, ct, x)] = 1

where y := Hash(k, x) and ct := Enc1(k, (i, xi); ρ).

• (k, n)-One-wayness: For any k-source S over Σn and any PPT adversary A:

Pr[Hash(k,A(k, y)) = y] = negl(λ),

where k
$←− Gen(1λ), x

$←− S and y := Hash(k, x). If k = n, then we simply refer to an OWFE
scheme (without specifying the parameters).

• (k, n)-Smoothness: For any two (k, n)-sources S1 and S2:

(k,Hash(k, x1))
c≡ (k,Hash(k, x2))

where k
$←− Gen(1λ), x1

$←− S1 and x2
$←− S2.

• Security for Encryption: For any i ∈ [n], any x ∈ Σn, and any f ∈ Σ \ {xi}:

(x, k, ct, e)
c≡ (x, k, ct, e′)

where k
$←− Gen(1λ), ρ

$←− {0, 1}∗, ct := Enc1(k, (i, f); ρ), e := Enc2
(
k,Hash(k, x), (i, f); ρ

)
and

e′
$←− {0, 1}w.

3.1 Smooth Recyclable OWFE from CDH

We generalize the recyclable OWFE from [GH18] to any finite alphabet Σ. Although this modifica-
tion might look insignificant, it will be our main leverage to construct a rate-1 trapdoor function.

Construction 3.2 (Smooth recyclable OWFE from CDH). Let G be a CDH-hard group-generator
scheme and let Σ := {1, . . . , σ} be a finite alphabet.

• Gen(1λ): Sample (G, p, g)
$←− G(1λ). For each j ∈ [n] and f ∈ Σ, choose gj,f

$←− G. Output

k :=


g1,1, g2,1, . . . , gn,1
g1,2, g2,2, . . . , gn,2
. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

 . (2)

• Hash(k, x): Parse k as in Equation 2, and output y :=
∏
j∈[n] gj,xj .

• Enc1(k, (i, z); ρ): Parse k as in Equation 2. Given the randomness ρ
$←− Zp, proceed as follows:

– For every j ∈ [n] \ {i}, and every f ∈ Σ set cj,f := gρj,z.
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– For every f ∈ Σ \ {z} set ci,f := ⊥, then set ci,z := gρi,z.

– Output

ct :=


c1,1, c2,1, . . . , cn,1
c1,2, c2,2, . . . , cn,2
. . . , . . . , . . . , . . .
c1,σ, c2,σ, . . . , cn,σ

 . (3)

• Enc2(k, (y, i, z); ρ): Given the randomness ρ
$←− Zp, output H(yρ), where H : G → {0, 1}w

denotes a hardcore function (e.g., the function from Lemma 2.3).

• Dec(k, ct, x): Parse ct as in Equation 3, and output H
(∏

j∈[n] cj,xj

)
.

Correctness of the scheme is immediate. We now show that the construction satisfies all of the
required security properties properties.

Theorem 3.3 (One-Wayness). Let G generate a CDH-hard group, then for all n ≥ ω(log(p)),
Construction 3.2 is one-way.

Proof. This is shown with a reduction to the discrete logarithm problem. On input a challenge

random element h ∈ G, sample a random pair of indices i∗
$←− [n] and f∗

$←− Σ and set gi∗,f∗ := h.

For all i
$←− [n] and f

$←− Σ, except for the pair (i∗, f∗), set gi,f := gri,f , for a uniform ri,f
$←− Zp.

Define the public key as

k :=


g1,1, g2,1, . . . , gn,1
g1,2, g2,2, . . . , gn,2
. . . , . . . , . . . , . . .
g1,σ, g2,σ, . . . , gn,σ

 .

Then sample a uniform x
$←− Σn such that xi∗ 6= f∗ and compute y :=

∏
j∈[n] gj,xj . Give (k, y) to

the adversary and receive some x′. By Lemma 2.2, x′i∗ = f∗ with probability close to 1/σ, which
allows us to compute the discrete logarithm of h.

Theorem 3.4 ((k, n)-Smoothness). Let G generate a CDH-hard group and k ≥ log p + ω(log λ),
then Construction 3.2 is (k, n)-smooth.

Proof. Let S1 and S2 be two (k, n) sources. The smoothness is a direct consequence of Lemma 2.2.

Namely, assuming k
$←− Gen(1λ), x1

$←− S1 and x2
$←− S2, since Hash is a 2-universal hash function, by

Lemma 2.2 we know that the outputs of both Hash(k, x1) and Hash(k, x2) are statistically 1
2ω(log λ)

close to the uniform over G, and hence negligibly close (statistically) to each other.

Theorem 3.5 (Security for Encryption). Let G generate a CDH-hard group, then Construction 3.2
is secure for encryption.

Proof. Assume towards contradiction that there exists some i∗, x, and f∗ 6= xi∗ such that an
adversary can successfully distinguish on those input. Let (g, h1, h2, s) be a CDH challenge, where
s ∈ {0, 1}w is either a random string or the output of the hardcore function. For all i ∈ [n] \ i∗ and
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all f ∈ Σ set gi,f := gri,f , for a uniform ri,f
$←− Zp. Similarly, for all f ∈ Σ \ xi∗ set gi∗,f := gri∗,f ,

for a uniform ri∗,f
$←− Zp. Finally set

gi∗,xi∗ :=
h1∏

j∈[n]\i∗ gj,xj

and define k accordingly. Define

ct :=


c1,1, c2,1, . . . , cn,1
c1,2, c2,2, . . . , cn,2
. . . , . . . , . . . , . . .
c1,σ, c2,σ, . . . , cn,σ


where for i ∈ [n]\i∗ and all f ∈ Σ we have ci,f := h

ri,f
2 and ci∗,f∗ := h

ri∗,f∗
2 , whereas the other terms

are set to ⊥. The adversary is given (x, k, ct, s) and the reduction returns whatever the adversary
returns. Security follows from the fact that

Hash(k, x) =
∏
j∈[n]

gj,xj = h1.

4 Rate-1 CDH-Based Trapdoor Function

In this section we give a construction of rate-1 TDFs based on CDH, satisfying deterministic-
encryption security. The result of [GGH19] gives CDH-based TDF constructions with rates 1/c
for a constant c. A rough estimate of the constant c is at least 20. The main reason behind the
large constant is that [GGH19] first builds an intermediate local TDF which (1) outputs two bits
for every bit of the input (i.e., a rate less than 1/2) and (2) the TDF has a local property in
that for each bit of the input, the inversion algorithm either recovers the bit or gives up for that
particular bit, each happening with probability 1/2. The construction of [GGH19] then performs
error correction over bitstrings to boost correctness. This results in another constant blowup.

At a high level our approach for achieving rate 1 proceeds as follows. We encode the input to
the TDF block-by-block, instead of bit-by-bit. Each block is a symbol of an alphabet over a field
for which erasure correction with better rates can be done. We then show how to provide an almost
equally-sized hint for every block of the input, achieving a rate 1 at the end. The main technical
novelty of our work relies on how to form the hint in a succinct way.

Construction 4.1 (Rate-1 TDF from CDH). Let Σ = {1, . . . , σ} be a finite alphabet, let (Gen,
Hash,Enc1,Enc2,Dec) be a w-bit OWFE, and let (Encode,Decode) be an error-correcting code, where
Encode : {0, 1}n → Σm. We define our TDF construction (TDF.KG,TDF.F,TDF.F−1) as follows.

• TDF.KG(1λ):

1. Sample k := Gen(1λ).

2. For all i ∈ [m] and all f ∈ Σ:

(a) Sample ρi,f
$←− {0, 1}λ and ai,f

$←− {0, 1}w.
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(b) Compute cti,f := Enc1(k, (i, f); ρi,f ).

3. Set the trapdoor key as

tk := k,


ρ1,1, ρ2,1, . . . , ρm,1
ρ1,2, ρ2,2, . . . , ρm,2
. . . , . . . , . . . , . . .
ρ1,σ, ρ2,σ, . . . , ρm,σ

 (4)

and the index key as

ik := k,


ct1,1, ct2,1, . . . , ctm,1
ct1,2, ct2,2, . . . , ctm,2
. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctm,σ

 ,


a1,1, a2,1, . . . , am,1
a1,2, a2,2, . . . , am,2
. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , am,σ

 . (5)

• TDF.F(ik, x ∈ {0, 1}n):

1. Parse ik as in Equation 5.

2. Let z := Encode(x) ∈ Σm and y := Hash(k, z).

3. For all i ∈ [m]:

(a) Let hi := Dec(k, cti,zi , z).

(b) Set vi := hi ⊕ ai,zi ∈ {0, 1}w.

4. Return u := (y, v1, . . . , vm).

• TDF.F−1(tk, u):

1. Parse tk as in Equation 4 and u := (y, v1, . . . , vm).

2. Retrieve z′ element-by-element as follows. For i ∈ [m], to retrieve the i-th element:

(a) If there exists one and only one index f ∈ Σ such that

Enc2(k, y, (i, f); ρi,f ) = ai,f ⊕ vi, (6)

then set z′i = f .

(b) Otherwise, set z′i = ⊥.

3. Return Decode(z′).

4.1 Analysis

In the following we show that our construction is a correct and secure TDF.

Theorem 4.2 (Correctness). Let (Gen,Hash,Enc1,Enc2,Dec) be a w-bit OWFE, where 2w ≥ 2σ/η,
for some η ∈ (0, 1]. Let (Encode,Decode) be an error-correcting code resilient against a η-fraction
of erasures, where Encode : {0, 1}n → Σm and m ≥ 6λ/η. Then Construction 4.1 is correct except

with probability e−λ: Pr[∃x ∈ {0, 1}n : TDF.F−1(tk,TDF.F(ik, x)) 6= x] ≤ e−λ, where (ik, tk)
$←−

TDF.KG(1λ).
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Proof. Let (ik, tk) := TDF.KG(1λ), let u := TDF.F(ik, x) for a uniform x
$←− {0, 1}n, and let z :=

Encode(x). For all i ∈ [m], by the correctness of the OWFE we have

vi = hi ⊕ ai,zi = Dec(k, cti,zi , z)⊕ ai,zi = Enc2(k, y, (i, zi); ρi,zi)⊕ ai,zi .

Thus, the index zi satisfies Equation 6. Now we consider the probability that some f 6= zi satisfies
the same condition. Since ai,f is chosen uniformly and independently at random, the two values
Enc2(k, (y, i, f); ρi,f ) ⊕ vi and ai,f are independent. Thus, the probability that the index f 6= zi
satisfies Equation 6 is

Pr [Enc2(k, y, (i, f); ρi,f )⊕ vi = ai,f ] ≤ 1

2w
.

By a union bound, the probability that such an f 6= zi exists is at most

Pr [∃f ∈ Σ \ {zi} : Enc2(k, y, (i, f); ρi,f )⊕ vi = ai,f ] ≤ σ

2w
≤ η

2

as 2w ≥ 2σ/η. Applying the Chernoff bound (Lemma 2.1) yields that at most η ·m of the indices

contain a non unique decoding and therefore z′i is set to ⊥, except with probability e−
η·m
6 ≤ e−λ.

Let S ⊆ [m] be the set of indices for which there exists a z′i = ⊥. By the above, |S| ≤ η ·m, except
with probability e−λ. As we assume the code (Encode,Decode) is capable of handling a η-fraction
of erasures, Decode(z′) will output x with overwhelming probability.

We show that our TDF is one-way.

Theorem 4.3 (One-Wayness and DE security). Assuming (Gen,Hash,Enc1,Enc2,Dec) is an (n,m)-
OWFE scheme, then Construction 4.1 is one-way. Moreover, if (Gen,Hash,Enc1,Enc2,Dec) is
(k,m)-smooth, the resulting TDF is (k,m)-CPA indistinguishable.

Proof. Let x ∈ {0, 1}n be the random input to the TDF, and let z := Encode(x). Also, let y :=
Hash(k, z). We first construct a simulator Sim(k, y), which — without knowledge of x — samples a
simulated index key iksim together with a corresponding usim as follows.

• Sim(k, y):

1. For all i ∈ [m]: Sample ai
$←− {0, 1}w.

2. For all i ∈ [m] and f ∈ Σ:

(a) Sample ρi,f
$←− {0, 1}∗.

(b) Compute cti,f := Enc1(k, (i, f); ρi,f ).

(c) Compute ai,f := ai ⊕ Enc2(k, y, (i, f); ρi,f ).

3. Set the index key as

iksim := k,


ct1,1, ct2,1, . . . , ctm,1
ct1,2, ct2,2, . . . , ctm,2
. . . , . . . , . . . , . . .
ct1,σ, ct2,σ, . . . , ctm,σ

 ,


a1,1, a2,1, . . . , am,1
a1,2, a2,2, . . . , am,2
. . . , . . . , . . . , . . .
a1,σ, a2,σ, . . . , am,σ


and the image as u := (y, a1, . . . , am).
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We now show that for any distribution S over {0, 1}n

(x, ik,TDF.F(ik, x))
c≡ (x,Sim(k, y)) (7)

where x
$←− S, (ik, ∗) $←− TDF.KG(1λ), k

$←− Gen(1λ), and y := Hash(k,Encode(x)). This will yield
both the one-wayness and deterministic-encryption security claims of the lemma.

We define Sim′(k, x, y) as follows. For all i ∈ [m] and f ∈ Σ, sample cti,f exactly as in Sim(k, y),
and letting z := Encode(x), sample ai,j as follows:

• If f = zi, then set ai,f := ai ⊕ Enc2(k, y, (i, f); ρi,f ), exactly as in Sim(k, y).

• If f 6= zi, then sample ai,f
$←− {0, 1}w.

By the security-for-encryption requirement of the underlying OWFE

(x, Sim(k, y))
c≡ (x, Sim′(k, x, y)).

By simple inspection we can see that the distribution (x,Sim′(k, x, y)) is identically distributed

to (x, ik,TDF(ik, x)), where (ik, ∗) $←− TDF.KG(1λ). The proof is now complete.

4.2 Parameters

We analyze the rate of our scheme and we discuss possible instantiations for the underlying building
blocks.

Theorem 4.4 (Rate). Let σ ≥ λ and let (Encode,Decode) be an error correcting code for an
alphabet Σ of size σ that can correct a fraction of erasure η = 1/ log(λ) and has rate 1− 1/ log(λ).
Let 2w = 2 · σ/η and m ≥ 6λ/η. Then Construction 4.1 has rate 1.

Proof. By definition we have that

2w = 2 · σ/η = 2 · σ · log(λ).

Then the value vi ∈ {0, 1}w encodes the codeword symbol zi ∈ Σ of the codeword xi. Thus, each
codeword symbol is encoded at rate

log(σ)

w
=

log(σ)

log(σ) + log log(λ) + 1
≥ 1− 2

log log(λ)

log(σ)
≥ 1− 2

log log(λ)

log(λ)
.

Recall that (Encode,Decode) has rate 1− 1/ log(λ) and can efficiently decode from a η = 1/ log(λ)
fraction of errors. Taking into account that the sender message includes an additional group element
y ∈ G and assuming that log(|G|) = λ, this accounts for a decrease of the rate by a factor

m · w
m · w + log(|G|)

= 1− log(|G|)
m · w + log(|G|)

≥ 1− 1

m · log(λ)
.

Consequently, the total rate of our scheme is lower bounded by(
1− 1

m · log(λ)

)(
1− 1

log(λ)

)(
1− 2

log log(λ)

log(λ)

)
≥ 1− 3

log log(λ)

log(λ)
,

which approaches 1.
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Note that the constraints 2w = 2σ · log(λ) and σ ≥ λ require us to instantiate a hardcore
function H that extracts O(log(λ)) random bits from a CDH instance. This is well in reach of the
function given in Lemma 2.3. What is left to be shown is a code that handles a η = 1/ log(λ)
fraction of errors. A natural choice is a Reed Solomon code over the alphabet Σ2, specifically a
[m,m − m/ log(λ),m/ log(λ) + 1] Reed Solomon code. For this code, we can efficiently decode
m/ log(λ) = ηm erasures, ensuring correctness of our scheme. This code has rate 1− 1/ log(λ).

5 Rate-1 DDH-based Deterministic Encryption

In this section we show how to build TDFs satisfying DE security with the following two properties:
(a) the index key contains (n2 + 1) group elements and (b) the image contains one group element
plus exactly n bits. We mention that a recent result of Döttling et al. [DGI+19] achieve the same
image size, but at the cost of bigger index keys, containing at least 4n2 group elements. Moreover,
the construction of [DGI+19] is highly non-trivial, using techniques from [BGI16] as well as error-
correcting codes. In contrast, our construction is fairly elementary and does not need ECC-based
techniques.

We will make use of a balanced predicate during our construction, defined as follows.

Definition 5.1 (Balanced predicates). We say a predicate P : S×{0, 1}∗ → {0, 1} is balanced over

a set S if for all b1, b2 ∈ {0, 1}: Pr[P(x1; r) = b1 ∧ P(x2; r) = b2] = 1/4, where x1, x2
$←− S and

r
$←− {0, 1}∗.

An obvious example of a balanced predicate is the inner-product function mod 2. However, in
some situations one may be able to give a more direct (and sometimes a deterministic) construction.
For example, if the underlying set S is {0, 1}n, then we may simply define P(x) = x1.

Notation. For x ∈ {0, 1}n and a vector g := (g1, . . . , gn) we define x · g = Πi∈[n]g
xi
i .

Construction 5.2 (Linear-image TDF). Let G be a group scheme and let BL be a balanced predicate
for the underlying group (Definition 5.1).

We define our TDF construction (TDF.KG,TDF.F,TDF.F−1) as follows.

• TDF.KG(1λ):

1. Sample (G, p, g)
$←− G(1λ) and g := (g1, . . . , gn)

$←− Gn.

2. For all i ∈ [n], sample ρi
$←− Zp and set gi := gρi, where gρi denotes element-wise

exponentiation to the power of ρi.

3. For each i ∈ [n] sample random coins ri
$←− {0, 1}∗ for BL.3

4. Set tk := (ρ1, . . . , ρn, {ri}) as the trapdoor key and ik := (g, g1, . . . , gn, (ri)i∈[n]) as the
index key.

2By increasing the the size of Σ to e.g. the next power of 2, the bit representation of each symbol in Σ grows by
at most one bit, i.e., the rate of such an encoding is 1− 1/λ

3We can also prove security just by sampling a single r, but the proof will be more complicated.
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• TDF.F(ik, x ∈ {0, 1}n): Parse ik := (g, g1, . . . , gn, (ri)i∈[n]). Return

u := (x · g,BL(x · g1; r1)⊕ x1, . . . ,BL(x · gn; rn)⊕ xn) ∈ G× {0, 1}n. (8)

• TDF.F−1(tk, u):

1. Parse tk := (ρ1, . . . , ρn, (ri)i∈[n]) and u := (gc, b
′
1, . . . , b

′
n).

2. Return (BL(gρ1c ; r1)⊕ b′1, . . . ,BL(gρnc ; rn)⊕ b′n).

5.1 Analysis

The correctness of the scheme is immediate.

Lemma 5.3 (Deterministic-encryption security). Assuming the underlying group is DDH-hard,
then for any k ≤ n such that k ≥ log p + ω(log λ), the TDF given in construction 5.2 provides
(k, n)-CPA security.

Proof. For any two (k, n)-sourcesD0 andD1 we need to show (ik,TDF.F(ik,D0))
c≡ (ik,TDF.F(ik,D1)),

where (ik, ∗) $←− TDF.KG(1λ). We do this via a series of hybrids, where in each hybrid we sample
(ik, u) as follows.

• Hybb [Real game for Db]: sample g
$←− Gn and set gi := gρi , for ρi

$←− Zp. Set ik :=

(g, g1, . . . , gn). Sample x
$←− Db and return (ik,TDF.F(ik, x)).

• Hyb′b:

1. Sample g
$←− Gn, x

$←− Db, and set gc := x · g.

2. For i ∈ [n] sample ρi
$←− Zp and set g′i := gρi .

3. Set gi := g′i · vi, where
vi := (1, . . . , 1, g′i︸︷︷︸

ith position

, 1, . . . , 1) (9)

and

(a) sample g′i
$←− G in such a way that 1⊕BL(g′′i · g′i; ri) = BL(g′′i ; ri), where g′′i := x · g′i.

4. Set ik := (g, g1, . . . , gn) and u := TDF.F(ik, x).

Note 1 about Hyb′b. For x and ik sampled as in Hyb′b, we have the following relation: TDF.F(ik, x) =
(gc,BL(gρ1c ; r1), . . . ,BL(gρnc ; rn)). In particular, the output of TDF.F(ik, x) can be sampled without
knowing x, and just by knowing gc and ρi’s. Notice that the value of g′′i := x · g′i (Item 3a above)
can alternatively be computed as g′′i = gρic , without knowing x. We will make use of this fact in our
proofs below.

Indistinguishability in Hyb′: We have Hyb′0
c≡ Hyb′1. This follows from two facts. First, by Note

1 above, Hyb′b can be sampled by just knowing gc and ρi’s and especially without knowing x. The
second fact is that the distributions of gc in Hyb′0 and Hyb′1 are statistically indistinguishable, by the

leftover hash lemma and the fact that H∞(Db) ≥ k. These two facts together imply Hyb′0
c≡ Hyb′1.
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Proof of Hybb
c≡ Hyb′b for both b ∈ {0, 1}: We prove this for b = 0, and the proof for the other

case is the same. To prove Hyb0
c≡ Hyb′′0, define the following two hybrids:

• HybRnd0: same as Hyb0 except for every i we replace gi with a random vector chosen uniformly
from Gn.

• HybRnd′0: same as Hyb′0 except for every i we replace g′i with a random vector chosen uniformly
from Gn.

We will now show Hyb0
c≡ HybRnd0

c≡ HybRnd′0
c≡ Hyb′0, and this will complete the proof.

Proof for Hyb0
c≡ HybRnd0. The proof follows from DDH, by considering the fact that either

hybrid can be simulated just by knowing gi and that in one hybrid we have gi := gρi for a random

exponent ρi, and in the other exponent gi
$←− Gn.

Proof for HybRnd0
c≡ HybRnd′0. These two distributions are identical, because in either distribu-

tion gi is uniformly random.

Proof for HybRnd′0
c≡ Hyb′0. The proof follows from DDH, by considering the fact that either

hybrid can be simulated just by knowing x and g′i’s, and that in one hybrid we have g′i
$←− Gn, and

in the other hybrid g′i := gρi for a random exponent ρi.

6 Experimental Results

In this section we report proof-of-concept implementations of our DDH-based TDF construction
(Construction 5.2) using Python. We report the resulting parameters of the scheme in Table 1.

Our group is an elliptic curve group on Ed25519 and the size of a group element in our implemen-
tation is 32 Bytes (B) = 256 bits. The encryption and decryption algorithms take less than a second.
The table shows the growth of ciphertext size based on input size. We have not optimized our code
for achieving more compact ciphertexts. Essentially, we used a serialization package (Pickle) which
resulted in extra overhead in ciphertext size. As expected, the key-generation algorithm is main
bottleneck in our implementation, together with the resulting index/trapdoor keys.

The machine specifications are as follows.

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 4

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6
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msg ct tk ik KG time Enc time Dec time

64 B 274 B 18 KB 19 MB 15.6 s 0.11 s 0.04 s

128 B 338 B 35 KB 75 MB 62.3 s 0.42 s 0.07 s

Table 1: Experimental results of our TDF construction. Here B denotes bytes (8 bits). The size of
the group element is 32 B.

Model: 6

Model name: QEMU Virtual CPU version 2.5+

Stepping: 3

CPU MHz: 2599.998

BogoMIPS: 5199.99

Hypervisor vendor: KVM

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 4096K

L3 cache: 16384K

NUMA node0 CPU(s): 0-3
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