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Abstract. We address the problem of speeding up isogeny computation for supersingular
elliptic curves over finite fields using untrusted computational resources like third party
servers or cloud service providers (CSPs). We first propose new, efficient and secure dele-
gation schemes. This especially enables resource-constrained devices (e.g. smart cards, RFID
tags, tiny sensor nodes) to effectively deploy post-quantum isogeny-based cryptographic pro-
tocols. To the best of our knowledge, these new schemes are the first attempt to generalize
the classical secure delegation schemes for group exponentiations and pairing computation to
an isogeny-based post-quantum setting. Then, we apply these secure delegation subroutines
to improve the performance of supersingular isogeny-based zero-knowledge proofs of identity.
Our experimental results show that, at the 128−bit quantum-security level, the proving party
only needs about 3% of the original protocol cost, while the verifying party’s effort is fully
reduced to comparison operations. Lastly, we also apply our delegation schemes to decrease
the computational cost of the decryption step for the NIST postquantum standardization
candidate SIKE.

1 Introduction

It is a well-known fact that currently deployed public-key cryptographic primitives will be totally
insecure against the efficient implementation of Shor’s algorithm on large scale quantum computers
[32]. This has resulted in the ever increasing requirement for new candidates for quantum-resistant
cryptographic primitives, i.e. digital signatures, public-key encryption and key-establishment algo-
rithms and more advanced practical cryptographic protocols like zero-knowledge proofs and oblivious
transfers. As a consequence, at the end of 2017, the United States’ National Institute of Standards
and Technology (NIST) initiated a standardization project with an initial call for proposals for
post-quantum public-key cryptography. 17 out of 59 public-key encryption and key-establishment
algorithms have achieved to be selected for the second round in January 2019 [27]. The intractability
of chosen public-key encryption and key-establishment algorithms is based on the hardness of either
lattice-based, code-based, or supersingular elliptic curve isogeny assumptions.

Elliptic curve isogeny assumptions were first used by Stolbunov [36] to propose quantum-resistant
isogeny-based Diffie-Hellman key agreement protocols by rediscovering the original work of Cou-
veignes related to the hard homogeneous spaces [11]. However, Childs et al. proposed a quantum
algorithm that can extract private keys in subexponential time [7], if the underlying elliptic curve
is ordinary, i.e. if the endomorphism ring of the curve is commutative. Jao and De Feo [21] then
proposed a quantum-resistant isogeny-based Diffie-Hellman key agreement protocol (SIDH) using
supersingular elliptic curves over finite fields. In the same paper, Jao and De Feo propose a super-
singular isogeny-based public key encryption scheme as well as a zero-knowledge proof identification
scheme. Based on SIDH, a key encapsulation scheme SIKE [33] is submitted as a candidate to the
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NIST standardization project. SIKE is the single candidate among the above 17 algorithms whose
security assumption is based on a supersingular elliptic curve isogeny assumption, i.e. on the dif-
ficulty of computing isogenies between elliptic curves over finite fields. In particular, the security
assumption of the schemes in [21] rely on the pseudo-random walks on isogeny graphs of suitable
elliptic curves over finite fields, and the property that (unlike ordinary elliptic curves) a supersin-
gular elliptic curve over a finite field Fq has a non-abelian endomorphism ring. The latter ensures
in particular that the above-mentioned quantum attacks, which compute the isogenies of elliptic
curves in subexponential time, are not applicable to supersingular elliptic curves. Another interest-
ing application of isogeny-based cryptography is the post-quantum resistant zero-knowledge proof
of identity scheme [21].

The supersingular elliptic curve isogeny problem has also recently been used in several new
cryptographic applications including provably secure hash functions [4] and digital signatures [40].
Very recently, with its immediate applications in designing random beacons and consensus from
proof-of-resources (aiming to reduce the energy consumption of blockchains based on proof-of-work),
it is also used to construct verifiable delay functions, which take a prescribed wall-clock time to
evaluate a function f in not less than T sequential steps to produce an output y = f(x) for a given
input x [16].

Motivation. Although cryptographic protocols using supersingular isogeny-based security assump-
tions require a very small key length when compared to other post-quantum protocols, these have
the main disadvantage of being relatively slow, even after a substantial amount of recent research re-
sults addressing to improve their performance [8, 20, 28]. For instance, zero-knowledge proofs require
repeated protocol executions and have hence been described as a purely theoretical and pedagogical
application of isogeny-based cryptography in [21]. Moreover, as also highlighted by NIST [27], post-
quantum algorithms and protocols are highly required to efficiently work on resource-constrained
devices with limited processing power, storage and battery life, such as smart cards, RFID cards
and tiny sensors in order to realize quantum-resistant lightweight cryptographic primitives, e.g. in
the context of the Internet of Things (IoT).

A possible practical approach to reduce the cost of expensive computations of cryptographic
primitives is to delegate their computation to more powerful (but potentially malicious) third party
servers including cloud service providers (CSPs) in a secure and verifiable manner. Starting with
the first proposal of Hohenberger and Lysyanskaya [19], several schemes for secure and verifiable
delegation of both group exponentiations and pairing computations have been recently proposed.
These schemes help to design practically deployable, lightweight privacy- and anonymity-oriented
cryptographic protocols by reducing the resource-consuming expensive arithmetical operations for
cryptographic algorithms like group exponentiations and pairing computation, see for instance [19,
22, 37] and their references.

Our Contribution. The first contribution of this paper is to extend the classical result for secure
delegation of group exponentiation and pairing computation to the secure delegation of isogeny com-
putation. To the best of our knowledge, it is the first attempt which extends the classical delegation
schemes of cryptographic computation to the delegation of quantum-resistant cryptographic primi-
tives. Specifically, we propose two delegation algorithms for isogeny computation which are efficient
with very high verifiability probabilities using the security model of Hohenberger and Lysyanskaya
[19]. In particular,

1. We adapt the existing precomputation techniques [3, 26, 38] to the generation of elliptic curve
torsion-points for use in the main steps of our delegation algorithms.

2. We propose the public isogeny and scalar multiplication algorithm ScIso, which takes as input a
public supersingular elliptic curve E, a public kernel generator A, a hidden set of scalar factors
and three sets of elliptic curve points. The algorithm then outputs the map of these points via
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the kernel generated by A, while the delegator can optionally hide points or multiply them with
the scalar factors.

3. We propose the hidden isogeny algorithm HIso, which takes as input a public supersingular
elliptic curve E, a hidden scalar a and two public basis points PA, QA, then produces the hidden
output E/〈A〉, where A = PA + [a]QA.

Our second contribution is to use these delegation algorithms in order to improve the efficiency
of isogeny-based cryptographic applications. In particular, we improve the efficiency of the zero-
knowledge proof of identity protocol (ZKPI) presented in [21] and show, how our algorithms can be
used to delegate the shared key establishment step in the supersingular isogeny Diffie-Hellman key
exchange protocol (SIDH) as well as the decryption step within the public-key encryption scheme
from [21] and within the supersingular isogeny key encapsulation algorithm (SIKE) [1, 33]. We
effectively reduce the computational cost of a round in the ZKPI to about 3% of the original cost
over the finite field Fp2 of characteristic p751 = 23723239 − 1, while our contribution to the other
algorithms yields a gain factor of almost 2. We further show that the gain increases with larger
security p.

Our last contribution is the implementation of the new delegation schemes using the PQCrypto-
SIDH v3.0 library [23] for elliptic curves over the finite fields Fp2 with characteristics
p503 = 2250 · 3159 − 1 and p751 = 2372 · 3239 − 1, corresponding to at least 80- and 128-bit quantum
security levels, respectively. We compare the local computation of the protocols with the delegated
computation using our algorithms. In particular, these experiments show that the higher the security
level will be, the better and more visible the advantages of using delegated isogeny computations
become for resource-constrained devices when compared with their local computation.

2 Preliminaries and security model

In this section, we introduce our notation and some basic properties of isogeny-based cryptography
and revisit the supersingular zero-knowledge proof of identity protocol introduced in [21]. After-
wards, we give an overview of computational costs of common operations required in isogeny-based
cryptographic protocols. Finally, we will revisit the secure delegation model proposed in [19] and
end this section by outlining the required steps to securely delegate isogeny computations.

2.1 Basic notation and terminology

We denote by Z∗k the multiplicative group of integers modulo k, where Zk := Z/kZ, k ∈ N>1.
Further, let Fq be a finite field of order q with characteristic p = char(Fq). Elliptic curves defined
over Fq will be written as E/Fq, or simply as E. Points on E are indicated as capital Latin letters,
while O denotes the distinct point at infinity. The m-fold successive addition of a point P with itself
is called the multiplication-by-m map [m] : P 7→ [m]P , where m ∈ Z, and is also referred to as the
scalar multiplication of P with m. The kernel of [m] is the set of all points of order dividing m, i.e.
for which it holds that [m]P = O. These kernels define subgroups, referred to as torsion groups of
E. The m-torsion group is written as E[m]. Isogenies define epimorphisms between elliptic curves
and are denoted by lowercase Greek letters, such as φ, α or β. Further, we will denote by 〈A〉, the
set generated by a point A ∈ E and by 〈P,Q〉 the set generated by all possible linear combinations
[m]P +[n]Q of P and Q, where m,n ∈ Z. If P and Q are clear from the context, we will also use the
shorthand notation A = [a1]P + [a2]Q =: (a1, a2). Finally, we denote the codomain of an isogeny φ
with kernel kerφ = G, where G is a group, by E/G. If G = 〈A〉, we also write EA := E/〈A〉.

2.2 Supersingular Isogeny Cryptography

The cryptographic systems from [21] are all based on supersingular elliptic curves defined over finite
fields Fp2 , where p = leAA leBB f ∓ 1. lA and lB are small, distinct primes and are usually chosen to be
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2 and 3, while f is a small co-factor that ensures that p is prime. Choosing p in such a way ensures
that E/Fp2 has two large torsion subgroups E[leAA ] and E[leBB ]. These torsion groups can each be

generated by two linear independent basis points Pi, Qi ∈ E[leii ] and consist of lei−1i (li + 1) distinct
cyclic subgroups of order li for i ∈ {A,B}. Each of these cyclic subgroups can be generated by a
linear combination of the basis points, e.g. 〈[m]Pi + [n]Qi〉 where at least one of n,m is necessarily
coprime to li. Every cyclic subgroup also defines the unique kernel of a separable isogeny of smooth
degree leii [34], which in turn defines a path through the isogeny graph to another supersingular
elliptic curve.

The advantage of having isogenies of smooth degree is that they can be decomposed into their
prime factors, e.g. an isogeny φ of degree le, or an le-isogeny for short, can be decomposed into a
chain of e consecutive l-isogenies φe−1 ◦ · · · ◦ φ0, enabling an efficient computation of isogenies. At
every step, we have to map the initial kernel generator along, as it will be required to generate the
next one. When computing chains of this type, there is a trade-off between scalar multiplications
and isogeny computations. The authors in [21] argue, that an optimal trade-off strategy has about
e
2 log2 e of each with a slight bias towards the cheaper of the two. The case where both occur equally
is called the balanced scenario, and only has a performance loss of a few percent to the optimal case.

The computation of isogenies, and generally the arithmetic on elliptic curves, at least for our
purposes, can be greatly improved in terms of efficiency by working with Montgomery curves [10,
24]. The general approach is to work in projective coordinates, in which Montgomery curves are
defined by the equation

E : bY 2Z = X3 + aX2Z +XZ2, with j(E) =
256(a2 − 3)3

a2 − 4
(1)

their j-invariant, and points can be expressed on the Kummer line P1 using only two coordinates,
e.g. P = (X : Z). Interestingly, like the j-invariant, neither isogeny computations, nor scalar multi-
plications or additions need the curve parameter b, so we do not need to compute it along the chain
of isogenies. Costs of operations on Montgomery curves can be found in [2, 9, 10, 21, 24, 29] and are
revisited in Section 2.4.

Supersingular isogeny zero-knowledge proof of identity. The protocol in [21] revolves around
the following commutative diagram:

E EA

EB EAB

α

β β′

α′

Let E/Fp2 be a supersingular elliptic curve with p = leAA leBB ∓ 1 and let 〈PA, QA〉 = E[leAA ] and
〈PB , QB〉 = E[leBB ] be torsion group generators. A proving party, usually called Peggy, wants to
convince a verifying party, Victor, that she knows a generator of the isogeny α : E → EA := E/〈A〉
without revealing it. The pair (E,EA) represents Peggy’s public key and at each round, she publishes
new, random EB := E/〈B〉 and EAB := E/〈A,B〉. Depending on a challenge-bit b by Victor, she
then either reveals the kernel generators (B,α(B)) of β and β′ or the kernel generator (β(A)) of
α′, for b = 0 or b = 1, respectively. Victor verifies, if these generators actually generate the correct
kernel isogenies.



Secure Delegation of Isogeny Computations and Cryptographic Applications 5

2.3 Equivalence relation

Let 〈P,Q〉 = E[le] and let R = (r1, r2) and S = (s1, s2) be points in E[le]. We define the equivalence
relation [17]

R ∼ S ⇔ ∃λ ∈ Z∗le : R = [λ]S, or

(r1, r2) ∼ (s1, s2)⇔ ∃λ ∈ Z∗le : (r1, r2) = [λ](s1, s2) = (λs1, λs2).

which implies that 〈R〉 = 〈S〉 and therefore defines the following equivalence class

[R] = {[λ]R | λ ∈ Z∗le}

As a consequence, we introduce the following normal forms3

– If r1 ∈ Z∗le , choose λ = r−11 , so that R ∼ (1, r−11 r2) =: (1, r).
– Otherwise, if r2 ∈ Z∗le , choose λ = r−12 , so that R ∼ (r1r

−1
2 , 1).

Note that for any given basis P,Q and point R = (r1, r2) ∈ E[le] it is possible to extract the
factors r1 and r2 using pairings, i.e. let e : E × E → G be a pairing and G a group, then we can
compute

e(R,Q) = e([r1]P + [r2]Q,Q) = e([r1]P,Q),

e(P,R) = e(P, [r1]P + [r2]Q) = e(P, [r2]Q),

and extract the factors r1 and r2 by computing the discrete logarithm, which is easy on supersingular
elliptic curves using the Pohlig-Hellman algorithm [39, 35]. In particular, we can always extract the
normal form by computing the factor r = r−11 r2, if it exists.

2.4 Computational costs

We define by m, s and i the computational cost of multiplication, squaring and inversion over Fp2 ,
respectively. As in [2, 21], we neglect the cost of comparisons, as well as additions and subtractions
on Fp2 , and assume that the operations on Fp2 satisfy s = 0.8m and i = 100m. On Montgomery
curves in projective coordinates, we find A = 3m + 2s = 4.6m and D = 2m + 2s = 3.6m, for the
cost of point (pseudo-)addition A and (pseudo-)doubling D [2, 9, 10, 21, 24, 29].

Let S(k) define the cost of a scalar multiplication by a factor k on E. We have S(2) = D = 3.6m
and S(3) = D+A = 8.2m. For larger scalar multiplications, we use the Montgomery ladder algorithm
[24], which costs M = 8.2m at each step in the for -loop, yielding the total [2, 10, 15]

S(k) = Mdlog2 ke −A. (2)

We further define by I(k) the computational cost of a k-isogeny. Isogeny computations between
Montgomery curves are usually composed of two parts, i.e. finding the curve parameter a of the
codomain and mapping a point to the new curve. We define by Ia(k) the former and by IP (k) the
latter, while I(k) designates the total cost. Using the results from [9, 29], we get

IP (2) = 4m, IP (3) = 4m+ 2s = 5.6m,

Ia(2) = 2s = 1.6m, Ia(3) = 4m+ 2s = 5.6m, (3)

I(2) = 4m+ 2s = 5.6m, I(3) = 8m+ 4s = 11.2m

3 Working with isogenies, we can always assume that either r1 ∈ Z∗le or r2 ∈ Z∗le , so that R is of full order.
Otherwise the isogeny generated by R would not be of maximal degree, reducing the overall security.
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For larger isogenies of smooth degree le, we can use the strategy described in [21] and decompose
the isogeny into a chain of l-isogenies, the chain being of length e. At each step of the chain, the
kernel generator has to be mapped along to be able to compute the next step. The cost of the
balanced scenario, as explained in Section 2.2 can be written as

I(le) = (I(l) + S(l))
e

2
log2 e, (4)

while the optimal cost deviates by a small percentage from this result [21].

2.5 Communication costs

In order to be able to better estimate the communication cost during delegation, we denote by c(p)
the amount of information required for an element in Zp, where it holds that

c(p) ≤ 1 + blog2 pc.
In the table below, we indicate the information of different elements needed throughout this work.
Following the discussion in Section 2.2, elliptic curves can be described by their curve parameter a
only, while points on elliptic curves can be described by two coordinates (X : Z), or even one, when
Z is scaled to 1.

element in Zp or Fp: c(p),
element in Fp2 : 2c(p),

point on E/Fp2 : 4c(p); 2c(p) if Z = 1,
elliptic curve E/Fp2 : 2c(p).

2.6 Security assumptions and model

In this section, we revisit the security model for delegated cryptographic computations proposed
in [19]. Delegation algorithms are split into two parties, a trusted component T and an untrusted
server U (or multiple servers U1, . . . ,Un), to which T can make oracle queries. The idea is, that the
joint effort of T and U , denoted by T U , implements an algorithm Alg, for which T has much less
computational cost than executing Alg alone. The downside is, that a potentially malicious server U ′
may try to either (1) extract confidential information from its interaction with T , or (2) return wrong
results to T ’s queries. Thus T needs (1) to make sure, that U ′ cannot obtain any useful information,
and (2) to verify if the outputs given by U ′ are actually correct. Another adversary considered in [19]
is the environment E , representing any possible third party, including the provider/manufacturer
of U or U ′. The full adversary can thus be modeled as the pair A = (E ,U ′). A key assumption of
this model is that before T starts to use U ′, the adversaries can devise a joint strategy, but when
T starts using U ′, there will not be a direct communication channel between either E and U ′, nor
between the different U ′1, . . . ,U ′n. These considerations imply that the three parties, T , E and U ,
have distinct views and/or access to the inputs and outputs of Alg. In that sense, we distinguish
secret (hidden from U and E), protected (hidden from U) and unprotected (each entity has access)
in- and outputs. The protected and unprotected inputs can further be subdivided into honest and
adversarial, depending on whether the inputs originate from a trusted source or not. An algorithm
Alg with exactly these five inputs and three outputs is said to obey the outsource input/output
specification (or outsource-IO) [19].
E and U ′ could try to establish an indirect communication channel between them via the unpro-

tected inputs and outputs of Alg, e.g. E could send instructions to U ′ via the adversarial, unprotected
input, and U ′ could send gained information to E via the unprotected output. The first of these
attempts poses an enormous security threat to the integrity of U ′, and T should therefore ensure
that the adversarial, unprotected input stays empty. To circumvent the second problem, T has to
make sure that both U ′ and E do not gain any useful information from T ’s interaction with U . This
is formalized in the following definition:
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Definition 1 (Outsource-security). [19] Let Alg(·, ·, ·, ·, ·) be an algorithm with outsource-IO. A
pair of algorithms (T,U) is said to be an outsource-secure implementation of Alg if:

– Correctness: T U is a correct implementation of Alg.
– Security: For all probabilistic polynomial-time adversaries A = (E ,U ′), there exist probabilistic

expected polynomial-time simulators (S1,S2), such that the following pairs of random variables
are computationally indistinguishable. We assume that the honestly-generated inputs are chosen
by a process I.

• Pair One: EV IEWreal ∼ EV IEWideal (The external adversary E learns nothing.)
• Pair Two: UV IEWreal ∼ UV IEWideal (The untrusted software U ′ learns nothing.)

The details of the experiments Pair One and Pair Two can be found in Definition 2.2 of [19].
Note that if U ′ = (U ′1, . . . ,U ′n) consists of multiple servers, then there is a PPT-simulator S2,i
for each of their views.

We further formalize T ’s efficiency gain and ability to verify the returned outputs during its
interaction with U ′ in the following definitions:

Definition 2 (α-efficiency). [19] A pair of algorithms (T,U) are an α-efficient implementation
of an algorithm Alg if

– (T,U) are an outsource-secure implementation of Alg, and
– for all inputs x, the running time of T is smaller than the running time of Alg(x) by at least a

factor α.

Definition 3 (β-checkability). [19] A pair of algorithms (T,U) are a β-checkable implementation
of an algorithm Alg if

– (T,U) are an outsource-secure implementation of Alg, and
– for all inputs x, if U ′ deviates from its advertised functionality during the execution of T U (x),

then T will detect the error with probability ≥ β.

Definition 4 ((α, β)-outsource-security). [19] A pair of algorithms (T,U) are an (α, β)-outsource
secure implementation of an algorithm Alg, if they are both α-efficient and β-checkable.

There are different paradigms of delegation models, which differ along the quantity of servers
and their intentions, ranging from behaving honest, honest-but-curious to malicious.

The models we will analyze in this work are the following:

Definition 5 (Honest-but-curious). [6] The one honest-but-curious program model defines the
adversary as A = (E ,U ′) and assumes, that U ′ returns correct results, but may try to extract useful
data.

Definition 6 (OMTUP). [5, 19, 37] In the one-malicious version of a two untrusted program
model, the adversary is given by A = (E , (U ′1,U ′2)). It is assumed that at most one of the two servers
U ′1 or U ′2 deviates from its advertised functionality (for a non-negligible fraction of the inputs), while
T does not know which one.

2.7 Steps of the delegation of isogeny computations

Securely delegating isogeny computations first needs a (1) precomputation step, which we will call
GenP, that allows T to generate (pseudo-)random pairs

(κ1, κ2,K) ∈ Zle × Zle × E[le],
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where K = [κ1]P+[κ2]Q and 〈P,Q〉 = E[le]. One possibility is to assume that T either is intrinsically
able to generate those pairs or that it has a trusted server that generates them in its place. Otherwise
T can use adapted versions of preprocessing techniques similar to those in [3, 13, 26, 30, 31, 38] for
the generation of elliptic curve torsion points. We will present these techniques in Section 3.

Using the tuples (κ1, κ2,K) from GenP, T can generate new, ephemeral keys, which it can use
within the cryptographic protocols, but also new, random points. T can use these random points in
order to (2) shroud some of the secret or protected inputs, before making (3) queries to the servers.
For our intents and purposes, the servers Ui have the advertised functionality of taking an elliptic
curve E and a kernel generator A ∈ E, as well as a set of points {P1, . . . , Pr} ⊂ E and a set of pairs
{(a1, Q1), . . . , (as, Qs)} ⊆ Z× E as inputs, then computing the isogeny α : E → EA := E/〈A〉 and
returning the codomain curve EA and the maps {α(P1), . . . , α(Pr), [a1]α(Q1), . . . , [ar]α(Qr)} of the
input points. We write:

Ui(E,A; {P1, . . . , PnP
}, {(a1, Q1), . . . , (as, Qs)})

← (EA,
{
α(P1), . . . , α(Pr)}, {[a1]α(Q1), . . . , [as]α(Qs)

}
).

If the elliptic curves and the kernel generator are clear from the context, we omit them from the
notation. After the delegation, T has to (4) verify, if the outputs from the servers are correct, by
checking if they fulfill a specific verification condition. To that end, T de-randomizes the outputs
using information that only itself knows. If the verification fails, T rejects the outputs, otherwise,
T can (5) recover the result from these outputs and its own, undisclosed information. Note that the
verification step is not necessary under the honest-but-curious assumption from Definition 5.

3 Precomputation

In this section, we will present how the precomputation techniques from [3, 13, 26, 30, 31, 38] are ap-
plicable to the generation of elliptic curve torsion-points. Because of the structure of the underlying
elliptic curves, 2e2- and 3e3-torsion points are required to be generated at the precomputation step.
Since each of these torsion groups is generated by two basis points, it suggests itself to create our
lookup-tables as follows.

Preprocessing step. Let 〈P,Q〉 ∈ E[le]. Compute Pi = [li]P and Qi = [li]Q for each
i ∈ {0, . . . , e− 1}, and store (i, Pi) and (i, Qi) in a table.

Because le-torsion points are stored in base l, the generation of 2e2 -torsion points is slightly different
from the generation of 3e3 -torsion points, the former being generated similar to the BPV-generator
in [3], while the generation of the latter is loosely based on the EBPV-generator in [26]. In analogy to
these sources, we introduce a security parameter h defining the subset size, from which T generates
the new point.

Invocation step for 2e2-torsion points. Generate two random subsets S, S′ ⊆ {0, . . . , e2 − 1}
with |S| = |S′| = h. Let κ = (κe2−1 . . . κ0)2 and κ′ = (κ′e2−1 . . . κ

′
0)2 be two scalars, where κ

(′)
i = 1

if i ∈ S(′) and κ
(′)
i = 0 otherwise. Then compute

K =
∑
i∈S

Pi +
∑
i∈S′

Qi

and return (κ, κ′,K).

Invocation step for 3e3-torsion points. Generate two random subsets S, S′ ⊆ {0, . . . , e3 − 1}
with |S| = |S′| = h. Then, generate two random subsets S2 ⊆ S and S′2 ⊆ S′ and define S1 := S\S2

and S′1 := S\S′2. Let κ(
′) = (κ

(′)
e3−1 . . . κ

(′)
0 )3 where κ

(′)
i = 2 if i ∈ S

(′)
2 , κ

(′)
i = 1 if i ∈ S

(′)
1 , and
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κ
(′)
i = 0, otherwise. Then compute

K =

∑
i∈S1

Pi +
∑
i∈S′

1

Qi

+ [2]

∑
i∈S2

Pi +
∑
i∈S′

2

Qi


and return (κ, κ′,K).

We denote the respective invocation step on an elliptic curve E as GenPE ← K = (κ, κ′). We also
assume that T is able to choose κ and κ′ explicitly in order to perform a directed point generation,
which we will denote by GenPE(κ, κ′) ← K = (κ, κ′). The subscript E can be dropped if the
underlying elliptic curve is clear from context.

The choice of working in base 2 and 3 allows T to have control over the order of the generated
point, e.g. T can generate an le−k-torsion element, for an integer k < e, by ensuring that the last

k entries of κ and κ′ in base l are all zero, (κ
(′)
k−1 . . . κ

(′)
0 )l = (0 . . . 0)l, while for full order points, T

has to ensure that κ0 6= 0 or κ′0 6= 0.

Since our point generation schemes are based on the schemes presented in [3] and [26], we assume
the security to be similar to the considerations presented in these sources. We can easily extend the
invocation steps to return truly random points, similar to the SMBL scheme proposed in [38],
by choosing κ, κ′ ∈ Zle as truly random points in base l and then continuing the corresponding
invocation steps.

We turn our attention to the computational and spatial costs of the point generation schemes
in this section. We denote by Gl(h) the cost of invoking the upper schemes, for l = 2 or l = 3,
respectively, h representing the choice of the security parameter.

We find

Gl(h) = (2h− 1)A+ (l − 2)D. (5)

If we want to generate points in the standard form, this reduces to

Gl(h) = hA+ (l − 2)D. (6)

For the truly random scheme, we can use the same results and plug in h = el for the worst case and
h = el/2 for the average case complexity.4

The tables’ storage cost amounts to 2el pairs per torsion group. If T needs both tables, then
2(e2 +e3) pairs are required to be stored. We can easily reduce the storage by increasing the number
of operations during the invocation steps, e.g. if we want to reduce the size of the table by a factor
f , we observe that the time complexity increases to

G
(f)
l (h) = G

(1)
l (h) + (f − 1)(D + (l − 2)S(3)). (7)

This time-space trade-off is depicted in Figure 1. We can see that even reducing the table size to a
tenth of the full size only increases the computational cost by about 11%. This is further reduced
for larger h. The parameter f can thus easily be chosen according to the available space of the
underlying hardware.

4 A subset size of h = 64 in [3] would correspond to h = 32 in our case, since the subset size equals
|S|+ |S′| = 2h. However, depending on the case, it suffices to generate points in their standard form, so
that the subset size reduces to h, and that we would need to choose h = 64 to yield the same security. In
both cases, we have approximately the same cost, so that we will restrict our analysis to the former case.
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Fig. 1. Spatial cost (in red) of lookup-tables versus invocation cost (in blue) for different table sizes in terms
of the table reduction factor f for l = 2 and h = 32.

4 ScIso: A delegation scheme for isogeny computations

In this section, we present a delegation algorithm, ScIso for isogeny computations which further
includes scalar multiplication.

In contrast to delegation schemes related to the computation of modular exponentiation, the
input and output domains of an isogeny computation are different. Our choice for the honest-but-
curious and OMTUP assumptions simply comes from the need to verify if the target curve of an
isogeny is correct. The problem however is that the delegator T would need to compute the isogeny
itself, eliminating the need for delegation. Furthermore, all of the current modular exponentiation
algorithms [5, 6, 19, 22, 25, 37, 38] use the fact, that the delegator T has already generated part of the
solution itself, i.e. a factor that is never transmitted to U ′, but still used as part of the computation
of the final result. In our case, not knowing the target curve beforehand, would only leave T the
option to construct linear combinations from the results of the delegation procedure. However, if
the malicious server(s) would consistently scale all results by a (previously determined) factor λ,
coprime to the order of the points,5 then there would be no way for T to detect that they are
incorrect. We can avoid this problem by ensuring that the auxiliary server is honest, i.e. returns
a correct curve, or in the case where we have two servers, that at least one consistently returns
the correct curve, so that we can simply check, if both curves match. The honest-but-curious and
OMTUP assumptions from Definitions 5 and 6 respectively exactly match those criteria.

Definition 7 (The ScIso-algorithm). The public isogeny and scalar multiplication algorithm
ScIso takes as inputs

– a supersingular elliptic curve E/Fp2 , with p = leAA leBB f ∓ 1,
– an isogeny kernel generator A ∈ E[leAA ],
– a set of points {P1, . . . , Pr} ⊆ E[leAA ] ∪ E[leBB ], where r ∈ N,
– a set of points {H1, . . . ,Hu} ⊆ E[leAA ] ∪ E[leBB ], where u ∈ N,
– a set of pairs {(a1, Q1), . . . , (as, Qs)} ⊆ ZleAA × (E[leAA ] ∪ E[leBB ]), where s ∈ N,

ScIso then produces the outputs

– EA := E/〈A〉,
– ΦP := {α(P1), . . . , α(Pr)},
– ΦH := {α(H1), . . . , α(Hu)} and

5 If λ weren’t coprime to the order of the point it is multiplied with, then the resulting point would have
lower order, which is something T could detect.
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– ΦQ := {[a1]α(Q1), . . . , [as]α(Qs)}.
The inputs E, A, {P1, . . . , Pr} and {Q1, . . . , Qs} are all honest, unprotected parameters while the
sets {a1, . . . , as} and {H1, . . . ,Hu} are secret or (honest/adversarial) protected. The outputs EA
and ΦP are unprotected while ΦH and ΦQ are secret or protected. We write

ScIso(E,A; {P1, . . . , Pr}, {H1, . . . ,Hu}, {(a1, Q1), . . . , (as, Qs)})← (EA, ΦP , ΦH , ΦQ).

4.1 OMTUP approach

We avoid computationally intensive inversions and large scalar multiplications by presenting a del-
egation scheme which enables the client T to workonly with small multiplicative factors. We define
these small factors as integers from the set {1, . . . , 2t}, where t represents a further parameter for our
delegation scheme. These small factors do not decrease the security of the scheme, since T further
shrouds its queries with random points, but do have an impact on its verifiability.

1. Precomputation.
– For each Qi ∈ E[l

ej
j ], where j ∈ {A,B}, T generates two random small integers ci, di ∈

{1, . . . , 2t} ⊂ (Z/lejj Z)∗ and two random integers fi, gi ∈ (Z/lejj Z)∗.

– For eachHi ∈ E[l
ej
j ], where j ∈ {A,B}, T generates two small integers ki,1, ki,2 ∈ {1, . . . , 2t} ⊂

(Z/lejj Z)∗ and two random points Si,1, Si,2 ∈ E[l
ej
j ], then computes [ki,1]Si,1 and [ki,2]Si,2.

2. Shrouding.
– For each ai, T computes ri ← ai − cifi and si ← ai − digi.
– For each Hi, T computes H1,i ← Hi − [k1,i]S1,i and H2,i ← Hi − [k2,i]S2,i.

3. Query to U1. In random order of the elements in the sets

M1 = {P1, . . . , Pr, H1,1, . . . ,H1,u, S2,1, . . . , S2,u} and

N1 = {(r1, Q1), (g1, Q1), . . . , (rs, Qs), (gs, Qs)},
T delegates

U1
(
E,A; M1,N1)← (EA, Φ1, Φ2).

4. Query to U2. In random order of the elements in the sets

M2 = {P1, . . . , Pr, H2,1, . . . ,H2,u, S1,1, . . . , S1,u} and

N2 = {(s1, Q1), (f1, Q1), . . . , (ss, Qs), (fs, Qs)},
T delegates

U2
(
E,A; M2,N2)← (EA, Φ

′
1, Φ
′
2).

5. Verification. Using the outputs, T checks,
– if both returned curves EA and all elements of the respective subsets ΦP = {α(P1), . . . , α(Pr)}

are equal. If not, T returns ⊥.
– Otherwise, T verifies for each i ∈ {1, . . . , s}, if

[ri]α(Qi) + [ci]([fi]α(Qi))
?
= [si]α(Qi) + [di]([gi]α(Qi))

and for each i ∈ {1, . . . , u}, if

α(H1,i) + [k1,i]α(S1,i)
?
= α(H2,i) + [k2,i]α(S2,i)

hold. If not, T outputs ⊥.
6. Recovery. T returns (EA, ΦP , ΦH , ΦQ), where

ΦP = {α(P1), . . . , α(Pr)},
ΦH = {α(H1,i) + [k1,i]α(S1,i) | i = 1, . . . , u},
ΦQ = {[ri]α(Qi) + [ci]([fi]α(Qi)) | i = 1, . . . , s}.
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Computational cost. Setting uB := |{Hi | Hi ∈ E[leBB ]}| and using the notation introduced in
Section 2 we find the following costs:

– Delegator cost:

T (h, t) = 2u
(
(2h− 1)A+ 2Mt

)
+ 2s(m+Mt) + 2uBD.

– Server cost (per server):6

TU =
(
I(lA) + S(lA) + (r + 2u+ 2s)IP (lA)

)eA
2

log2 eA + 2sMe2.

– Local computation cost:

T̃ = (I(lA) + S(lA) + (r + u+ s)IP (lA))
eA
2

log2 eA + sMe2

– Upload cost (per server): C↑ = (6 + 4(r + 2u+ 3s))c(p).
– Download cost (per server): C↓ = (2 + 4(r + 2u+ 2s))c(p).

Theorem 1. Under the OMTUP-assumption, (T, (U ′1,U ′2)) constitutes a(
O
(

h+2.7t
eA log2 eA

)
, 1− l

(l−1)2t+1

)
-outsource-secure implementation of ScIso, where h and t are secu-

rity parameters.7,8

The proof of this theorem can be found in Appendix A.

4.2 Honest-but-curious approach

Definition 5 implies that the scalar factors ai and the points Hi can not be shrouded using small
scalars, since it strongly decreases the overall security of the delegation. Our approach is to let scalar
multiplication be computed locally in order to propose an efficient delegation scheme.

1. Precomputation. For each Hi ∈ E[l
ej
j ], where i ∈ {1, . . . , u} and j ∈ {A,B}, T runs

– GenP← Si = (s1,i, s2,i) ∈ E[l
ej
j ],

– GenP(kis1,i, kis2,i)← [ki]Si for random ki ∈ (Z/lejj Z)∗.
2. Shrouding. For each Hi, T computes H ′i ← Hi − [ki]Si.
3. Query. In random order of the elements in the set

M = {P1, . . . , Pr, H
′
1, . . . ,H

′
u, S1, . . . , Su, Q1, . . . , Qs},

T delegates
U
(
E,A; M, ∅

)
← (EA, Φ, ∅).

4. Recovery. Using the outputs, T computes

ΦH = {α(H ′i) + [ki]α(Si) | i = 1, . . . , u}, and

ΦQ = {[ai]α(Qi) | i = 1, . . . , s},

and returns (EA, ΦP , ΦH , ΦQ) with ΦP = {α(Pi) | i = 1, . . . , r}.
6 For simplicity, we assume 2e2 ≈ 3e3 , thus S(2e2) ≈ S(3e3) ≈Me2 via equation (2).
7 To simplify this expression, we assumed that r,u and s are small compared to eA.
8 The verifiability depends on whether at least one of the parameters {Q1, . . . , Qs} or {H1, . . . , Hu} is in
E[2e2 ]. If that is the case, then we set l = 2 for the verifiability, otherwise l = 3. See the proof in Appendix
A for more details.
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Computational cost. Setting uB := |{Hi | Hi ∈ E[leBB ]}|, we find the following costs:

– Delegator cost:
T (h) = u

(
4hA+ 2m+Me2

)
+ sMe2 + 2uBD.

– Server cost (per server):

TU =
(
I(lA) + S(lA) + (r + 2u+ s)IP (lA)

)eA
2

log2 eA.

– Local computation cost:

T̃ = (I(lA) + S(lA) + (r + u+ s)IP (lA))
eA
2

log2 eA + sMe2

– Upload cost (per server): C↑ = (6 + 4(r + 2u+ s))c(p).
– Download cost (per server): C↓ = (2 + 4(r + 2u+ s))c(p).

Theorem 2. Under the honest-but-curious assumption, (T,U ′) constitutes a
(
O
(

1.1h+e2
eA log2 eA

)
, 1
)

-

outsource-secure implementation of ScIso, where h is a security parameter.

The proof of this theorem can be found in Appendix A.

4.3 Special cases

The following two special cases of ScIso will be of interest in the cryptographic algorithms:

– Case A = O: In this case, ScIso reduces to a simple scalar multiplication algorithm, without

isogeny computation. The OMTUP-algorithm becomes a
(
O
(
t
eA

)
, 1− l

(l−1)2t+1

)
-outsource-

secure implementation of ScIso, while under the honest-but-curious assumption, the algorithm
becomes trivial and is not applicable anymore.

– Case s = u = 0: In this case, ScIso becomes an isogeny computation algorithm with only
unprotected parameters. Under both the OMTUP- and the honest-but-curious assumptions, we

are left with a
(
O
(

1
eA log2 eA

)
, 1
)

-outsource secure implementation of ScIso.

5 Applications

5.1 Zero-knowledge proofs of identity

In this section, we show how to apply ScIso in order to decrease the computational cost of the
supersingular isogeny-based zero-knowledge proof of identity (ZKPI), presented in [21] and in Section
2.2.

Peggy delegates.

1. Peggy invokes

GenPE ← B = (b1, b2)E ∈ E[leBB ] and

GenPEA
(b1, b2)← α(B) = (b1, b2)EA

∈ EA[leBB ].

2. Then, Peggy delegates

ScIso(E,B; ∅, {A}, ∅)← (EB ; ∅, {β(A)}, ∅)
ScIso(EA, α(B); ∅, ∅, ∅)← (EAB ; ∅, ∅, ∅)

3. Depending on Victor’s challenge, Peggy either reveals (B,α(B)) or β(A).
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Remark. Note that with the knowledge of B and β(A) and assuming PA, QA are public, it is
possible to extract A using pairings as explained in Section 2.3. Therefore, the delegator should
keep PA, QA secret in the case where U would leak B.

Victor delegates. In Victor’s case, none of the information received by Peggy is secret or (hon-
est/adversarial) protected. Thus, Victor can simply use ScIso as follows.

1. If b = 0, Victor delegates

ScIso(E,B; ∅, ∅, ∅)← (EB ; ∅, ∅, ∅),
ScIso(EA, α(B); ∅, ∅, ∅)← (EAB ; ∅, ∅, ∅).

otherwise, if b = 1, he delegates

ScIso(EB , β(A); ∅, ∅, ∅)← (EAB ; ∅, ∅, ∅).

2. Victor verifies, whether the resulting elliptic curves correspond with those given by Peggy.

Remark. If Victor wants to delegate, we have to assume that Peggy’s responses to Victor’s challenge
are honest. Otherwise, ScIso would not be outsource-secure by Theorems 1 and 2.

Cost analysis. Using the expressions from Section 4, we find the following total costs for Peggy
under the OMTUP and honest-but-curious assumptions:

– Computational cost (OMTUP):

T (h, t) = 2GlA(h) + 2GlB (h) + 4Mt.

– Computational cost (hbc):

T (h) = 2GlA(h) + 2GlB (h) + 2m+ 2A+ S(leAA ).

– Local computation:

T̃ = 2(S(leBB ) +A) + (2I(lB) + 2S(lB) + IP (lB))
eB
2

log2 eB

– Upload cost (both): C↑ = 16c(p).
– Download cost (both): C↓ = 12c(p).

For Victor, we get the same results for both assumptions.

– Computational cost: O(1).

– Local computation (b = 0): T̃ = (I(lB) + S(lB))eB log2 eB .

– Local computation (b = 1): T̃ = (I(lA) + S(lA)) eA2 log2 eA.
– Upload cost (b = 0): C↑ = 12c(p).
– Upload cost (b = 1): C↑ = 6c(p).
– Download cost (b = 0): C↓ = 4c(p).
– Download cost (b = 1): C↓ = 2c(p).

Figure 2 compares the non-delegated and delegated cost for Peggy as a function of the security
parameter p. We further present numerical results in the example below.
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Example. Let us consider some numerical examples using the finite field characteristics
p503 = 22503159 − 1, p751 = 23723239 − 1 and p964 = 24863301 − 1 from [1]. The table below shows
the gain factor of Peggy compared to the local computation of the ZKPI-protocol, both for h = 32
and for truly random point generation. The first element in the parentheses is the gain factor in the
OMTUP case for t = 16 (providing a verifiability of at least 1− 10−5), while the second represents
the honest-but-curious result. Further, we also depict the respective upload and download costs (per
server) for Peggy.

h = 32 truly random C↑ C↓

lA = 2 lA = 3 lA = 2 lA = 3

p503 (17.2,9.5) (16.5,8.9) (7.0,5.2) (6.7,5.0) 1006B 755B

p751 (27.6,11.6) (26.2,10.7) (7.8,5.6) (7.4,5.2) 1.47kB 1.10kB

p964 (36.8,12.4) (34.9,12.2) (8.3,5.7) (7.8,5.5) 1.88kB 1.41kB

One can see that OMTUP is generally the more efficient implementation in terms of computational
cost and that in both cases, the gain increases with the security parameter p.

5.2 Public-key encryption, SIDH and SIKE

In this section, we present how ScIso can be used in order to delegate parts of the computation of
the supersingular isogeny-based public-key encryption and Diffie-Hellman key exchange protocols
[21] as well as the NIST postquantum standardization candidate SIKE [33, 1]. In particular, we
show how to delegate the decryption step, also known the shared key computation step within
these protocols. Excluding the hash and the XOR computation in the former, both of these steps
reduce to the following computation. Given a secret equivalent to A = PA + [a]QA ∈ E[leAA ],
where 〈PA, QA〉 = E[leAA ], and a public key (EB , β(PA), β(QA)), where β : E → EB , compute
EAB = EB/〈β(A)〉. We propose the following algorithm:

Definition 8 (The HIso-algorithm). The hidden isogeny algorithm HIso takes as input a su-
persingular elliptic curve EB(Fp2), with p = leAA leBB f ∓ 1, a scalar a ∈ (Z/leAA Z)∗ and two basis
points 〈β(PA), β(QA)〉 = EB [leAA ], then produces the output EAB := EB/〈β(A)〉, where β(A) =
β(PA) + [a]β(QA) ∈ EB [leAA ]. The inputs EB , β(PA), β(QA) are honest, unprotected, while a is se-
cret or (honest/adversarial) protected. The output EAB is secret or protected, thus 〈β(A)〉 is also
secret or protected. We write

HIso(EB ; a, β(PA), β(QA))← EAB .

We implement HIso using ScIso as a subroutine. We also introduce a new security parameter k.

1. Precomputation. From its secret a, T computes alkA.
2. Shrouding. T invokes

ScIso(EB ,O; ∅, ∅, {(lkA, β(PA)), (alkA, β(QA))}
← (EB , ∅, ∅, {[lkA]β(PA), [alkA]β(QA)})

and computes β(Ã) = [lkA]β(PA) + [alkA]β(QA), so that 〈β(Ã)〉 = 〈[lkA]β(A)〉.
3. Query. T delegates the isogeny computations using

ScIso(EB , β(Ã); {β(PA)}, ∅, {(a, β(QA))}
← (EÃB , {α̃(β(PA))}, ∅, {[a]α̃(β(QA))})

where α̃ : EB → EÃB := EB/〈β(Ã)〉 is an leA−kA -isogeny, since |〈[lkA]A〉| = leA−kA .
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Fig. 2. Theoretical comparison of the local, non-delegated cost of the ZKPI protocol (in red) versus the
delegated cost for the prover, Peggy, assuming lA = 3. The delegator’s cost is split up into the generation
of B and α(B) (in yellow) and the invocation of ScIso (in blue). The top graph shows the OMTUP-case
where h = 32, while the middle graph shows OMTUP with truly random point generation. In both cases,
we chose t = 16. The bottom graph shows the honest-but-curious case with truly random point generation.
The costs are expressed in multiplications over the underlying finite field Fp2 .
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4. Verification. If either of the outputs of steps 2 or 3 is ⊥, then T outputs ⊥.
5. Recovery. From the outputs, T computes the kernel generator α̃(β(PA)) + [a]α̃(β(QA)), which

generates 〈α̃(β(A))〉, then computes the lkA-isogeny

ᾱ : EÃB → EAB with ker ᾱ = 〈α̃(β(A))〉,
itself. Then T returns E/〈A〉.

Remark. Note that [lkA]A = (lkAa1, l
k
Aa2) does not disclose 〈A〉 by using pairings as described in

Section 2.3, since lkA is not invertible in Z/leAA Z. A potential attack option would be to consider the

underlying isogeny graph, i.e. let α̃1 : EB → EÃB be a leA−kA -isogeny. From EÃB , there are now
exactly lkA possible paths of length k to take (without backtracking) leading to lkA distinct elliptic
curves, however only one of which is the hidden EAB . Even if the adversary could identify EAB (e.g.
by being able to decrypt an intercepted ciphertext), then it is still unfeasible to generate all possible
curves, if k is chosen to be large enough. In particular, we can consider this problem as a database
search, so that Grover’s algorithm [18] is applicable for a quantum adversary. We propose to choose
k in order to reflect the security defined by the underlying finite field characteristic p. This implies
that k ≥ 1

3 logl p. In that sense, k defines the security of the shrouding step.

Cost analysis. Using the expressions from Section 4, we find the following total costs under the
OMTUP and honest-but-curious assumptions:

– Computational cost (OMTUP):

T (t, k) = 7m+ 2A+ 6Mt+ (I(lA) + S(lA))
k

2
log2 k.

– Computational cost (hbc):

T (k) = m+ 2A+ 3S(leAA ) + (I(lA) + S(lA))
k

2
log2 k.

– Local computation cost:

T̃ = S(leAA ) +A+ (I(lA) + S(lA))
eA
2

log2(eA).

– Upload cost (OMTUP): C↑ = 48c(p).
– Download cost (OMTUP): C↓ = 32c(p).
– Upload cost (hbc): C↑ = 28c(p).
– Download cost (hbc): C↓ = 20c(p).

We note that the honest-but-curious case has a high computational cost for the delegator, and
it actually turns out, that this cost is very close to the local computation of the decryption step, so
that our proposed algorithm is no longer recommendable under the honest-but curious assumption.
Nevertheless, we still do obtain a non-negligible gain using the OMTUP assumption. Figure 3
compares the non-delegated and delegated cost of the decryption step as a function of the security
parameter p. We further present numerical results in the example below.

Example. The table below shows the gain factor of the delegation compared to the local compu-
tation of the decryption step. Again, we also depict the respective upload and download costs (per
server) for the delegator.

lA = 2 lA = 3 C↑ C↓
p503 1.7 1.7 2.9kB 2.0kB
p751 1.8 1.8 4.4kB 2.9kB
p964 1.8 1.8 5.6kB 3.8kB
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Fig. 3. Theoretical comparison of the local, non-delegated cost of the decryption step (in red) versus the
delegated cost for T under the OMTUP assumption. The delegator’s cost is split up into the invocations of
ScIso (yellow) and the recovery step, i.e. the computation of the lkA-isogeny (green). The top graph shows
the case lA = 2, while the bottom graph shows lA = 3. In both cases, we chose t = 16 and set k = 1

3
loglA

p.
The costs are expressed in multiplications over the underlying finite field Fp2 .

Communication complexity. In our proposed scheme, the delegator has to invoke ScIso twice
leading to an elevated communication cost. Nevertheless, we note for example that tiny sensor
nodes like MICAz and TelosB require much more energy even for a single scalar multiplication than
a single round of communication [12]. Since isogeny computations require much more energy than
scalar multiplications, it seems to be still highly worthwhile to delegate the isogeny computation.
Especially in application scenarios, in which communication and bandwidth do not dominate the
overall costs, our schemes could be effectively deployed to speed up computational costs.

6 Benchmarks

In this section, we present benchmarks of the delegated versus local computation of the cryptographic
schemes presented in Section 5 in order to support our theoretical predictions. Figure 4 compares
the delegated and the local cost of the ZKPI protocol, while Figure 5 does the same for the key
decryption steps. For these results, we used the PQCrypto-SIDH v3.0 library, developed by Microsoft
Research [23], which implements SIDH on the two finite fields Fp2 with p503 = 2250 · 3159 − 1 and
p751 = 2372 · 3239 − 1. Our benchmarks were done on a 2.8GHz Intel i5-8400 running Ubuntu 18.04
LTS.
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In the ZKPI-case, we can see that the implemented results present the same behavior as our
theoretical predictions. The gain factors in the OMTUP-case are even slightly higher than predicted
in the example in Section 5.1. These results are presented in the table below, where the first entry
in each parenthesis shows the OMTUP-case while the second shows the honest-but-curious case.

h = 32 truly random

lA = 2 lA = 3 lA = 2 lA = 3

p503 (21.9,9.2) (19.7,8.3) (10.0,6.1) (9.0,5.5)

p751 (34.1,10.5) (30.1,9.3) (10.3,6.2) (9.1,5.5)

We also see that the relative performance of our ZKPI-delegation scheme does improve with
higher security levels.

In the decryption-case, however, we find slightly lower gain factors than predicted e.g. for l = 3,
we find 1.42 and 1.47 for p503 and p751, respectively. We assume that this has to do with the
efficient implementation of the local computation in the PQCrypto-SIDH v3.0 library, from which
our implementation doesn’t benefit (yet).

p
5
0
3

p
7
5
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×107

h = 32

truly random

local
p
5
0
3

p
7
5
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×107

h = 32

truly random

local

Fig. 4. Comparison of the local, non-delegated cost of the decryption step (red) versus the delegated cost
for T for h = 32 (green) and for truly random point generation (blue) assuming lA = 3. The left graph
shows the OMTUP case for t = 16, while the right graph shows the honest-but-curious assumption. The
costs are expressed in CPU cycles.

7 Conclusion

In this paper, we initiated first steps of study towards making post-quantum cryptographic primitives
efficiently deployable for resource-constrained environments by securely delegating supersingular el-
liptic curve isogeny computations to external servers with reasonable verifiability guarantees. We
propose a secure delegation algorithm, ScIso, implemented using one honest server, that may try to
extract useful information (honest-but-curious assumption) or using two servers, only one of which
is assumed to be malicious (OMTUP-assumption).
Using our algorithms as subroutines in isogeny-based zero-knowledge proofs of identity, we effec-
tively reduce the computational cost for the proving party to about 3% of the original cost at the
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Fig. 5. Comparison of the local, non-delegated cost of the decryption step (red) versus the delegated cost
for T under the OMTUP assumption (blue) and, for the sake of comparison, under the honest-but-curious
assumption (yellow), assuming lA = 3. The costs are expressed in CPU cycles.

128−bit quantum security level, while the cost of the verifying party simply reduces to communica-
tion costs with the servers and comparison operations. We also show, that this relative cost further
decreases with higher security. Even when repeating the protocol for multiple rounds (e.g. 10−20
rounds), the delegated ZKPI-protocol is computationally less expensive than a single round in the
non-delegated SIDH or SIKE protocols, at least for the delegator. Both our efficiency analysis and
experimental results show the practical deployability of our algorithms.
As a second application, we use ScIso as a subroutine of another delegation algorithm called HIso,
which computes a secret elliptic curve from a public key and can therefore be used at the decryption
step of supersingular isogeny-based public key encryption (PKE) or key encapsulation (SIKE), as
well as in the shared key computation step within SIDH. The cost of this step is more or less reduced
to 60% of the original cost at the 128−bit quantum security level.
As a next step it would suggest itself to try increase the gain of this decryption step, i.e. to find
a more efficient way of hiding the kernel and the codomain while delegating an isogeny compu-
tation, under both the OMTUP- and honest-but-curious assumptions. It would be of interest to
find delegation algorithms for the public-key generation step in SIDH or SIKE, in order to make
these protocols efficiently deployable on resource-constrained devices. Furthermore, one could ex-
plore similar algorithms for other isogeny-based protocols, such as verifiable delay functions or [16]
or cryptographic hash functions [14] based on supersingular elliptic curve isogenies. We note that
delegating the supersingular isogeny-based hash computation from [14] is trivial under the OMTUP-
and honest-but-curious assumptions if the message m is public, but not for a secret message.
Another open problem would be to extend our results to delegation assumptions without a honest
party, such as the two-untrusted-program model (TUP-assumption) and the one-untrusted-program
model (OUP-assumption) from [19] with reasonable verifiability properties, or to otherwise prove
their impossibilities.
Finally, it suggests itself to find secure delegation schemes for other post-quantum cryptographic
primitives, such as those used in lattice-based or code-based cryptography.
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A Security proofs

A.1 Proof of Theorem 1

Correctness. Because of the homomorphism property of isogenies, it holds that

[ri]α(Qi) + [ci]([fi]α(Qi)) = [ai]α(Qi), for i = 1, . . . , s and

α(H1,i) + [k1,i]α(S1,i) = α(Hi), for i = 1, . . . , u.

Correctness is trivial for ΦP .

Verifiability. Any of the two servers could only cheat if they knew any of the small parameters
used in the shrouding step. Let for example c, d ∈ {1, . . . , 2t} ⊂ (Z/leZ)∗ and f, g ∈ Z/leZ be
parameters in order to shroud a scalar factor a ∈ {ai | i = 1, . . . , s} ⊂ (Z/leZ)∗ of the public point
Q ∈ E[le] and let similarly k1, k2 ∈ {1, . . . , 2t} ⊂ (Z/leZ)∗ denote parameters used to shroud a point
H ∈ E[le] as explained in the first two steps of the algorithm in Section 4.1. Let us assume U ′1 were
the cheater and knew the security parameter t. Then, for H, U ′1 could potentially choose a point
X ∈ E[le] and return the following, wrong results

H1 7→ α(H1 + [k2]X), S2 7→ α(S2 +X),

or, similarly return
(r,Q) 7→ [r]Q+ [d]X, (g,Q) 7→ [g]Q+X,

both of which would satisfy their respective verification condition, but return wrong results to
T . However, this is only possible, if U ′1 can somehow distinguish all queries and if it knew k2 or
d, respectively. Any other combination would not satisfy the verification conditions and T would
realize the deceit. Since both parameters come from the set {1, . . . , 2t} ⊂ (Z/leZ)∗ of order l−1

l 2t,
and assuming both queries are indistinguishable to U ′1, the probability for U ′1 to correctly guess the
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respective factor is l
(l−1)2t+1 . If there are more queries by T , or if U ′1 tries to cheat on multiple

queries, this probability further decreases. We therefore assume that U ′1 tries to cheat on a single
point in order to maximize its chance for success. Given these considerations, the odds of T detecting
a wrong result by U ′1 is given by at least βl(t) = 1− l

(l−1)2t+1 . Note that β3(t) > β2(t), so that β2(t)

presents the lower bound. A server trying to cheat would ideally always try to cheat on a 2e2-torsion
element in order to increase its probability for success. Thus, if there is at least one 2e2-torsion
element within {Q1, . . . , Qs}∪{H1, . . . ,Hu}, then we assume the verifiability to be β2(t), otherwise
β3(t). For the sake of generality, we will denote the general verifiability as βl(t) in the theorems.

Security. Let A = (E ,U ′1,U ′2) be a PPT adversary that interacts with a PPT algorithm T in the
OMTUP model. Since the procedure is exactly the same for each point (or pair) in the three input
sets, we will reduce our analysis to a single point per set. Furthermore, we will analyze the security
of the three sets individually for the sake of overview. Note, that the security of E, A and the sets
{P1, . . . , Pr} and {Q1, . . . , Qs} are trivially given, since all of these parameters are unprotected. We
therefore reduce the rest of this analysis to points in the sets {H1, . . . ,Hu} and {a1, . . . , as}.

Pair One: EV IEWreal ∼ EV IEWideal

Let H ∈ E[le] be a point in {H1, . . . ,Hu}. If the input H is anything but secret, the simulation is
trivial and the PPT simulator S1 behaves exactly as in the real execution. If H is secret, then on
receiving the input on round i, S1 ignores it and generates four random points X1, . . . , X4 ∈ E[le]
and makes the queries

U1(E,A; {X1, X2}, {. . . })← (EA, {α(X1), α(X2)}, {. . . }),
U2(E,A; {X3, X4}, {. . . })← (EA, {α(X3), α(X4)}, {. . . }),

to the servers, then verifies if all the outputs are correct. If they are, S1 returns
(Y ip , Y

i
u, replace

i) = (∅, ∅, 0). Otherwise, if the curves EA do not match, S1 returns

(Y ip , Y
i
u, replace

i) = (”error”, ∅, 1), else S1 generates a random ξ ∈ {1, . . . , (1− l−1B )2t+1}. If ξ 6= 1, it

returns (Y ip , Y
i
u, replace

i) = (”error”, ∅, 1), otherwise it generates a random Y ∈ EA[le] and returns

(Y ip , Y
i
u, replace

i) = (Y, ∅, 1). In either case, S1 saves the appropriate states.
The input distributions to (U ′1,U ′2) in the real and ideal experiments are computationally indis-

tinguishable. In the real scenario, we generate two random points using our lookup-tables, which
are either truly random or computationally indistinguishable from random, while S1 chooses the
inputs uniformly at random. We now have four scenarios to consider. (1) If (U ′1,U ′2) behave honestly
in the ith round, then EV IEW i

real ∼ EV IEW i
ideal, because in the real experiment T (U ′

1,U
′
2) perfectly

executes ScIso and in the ideal experiment S1 chooses not to replace the output of ScIso. If however
one of (U ′1,U ′2) returns a wrong results in the ith round, then it will be caught by both T and S1 with
probability 1 or 1− lB

(lB−1)2t+1 , in the case of the (2) wrong elliptic curve or (3) wrong point image,

respectively, resulting in an output of ”error”. (4) Otherwise, the servers would actually succeed in
returning an undetected wrong output. Since in the real scenario, the output would look wrong, but
random to E , S1 returns a random le-torsion point on the codomain curve.

Similar arguments hold for a scalar factor a ∈ Z/leZ from {a1, . . . , as}, except that in each
round, S1 produces four random factors x1, . . . , x4 ∈ Z/leZ as queries, then proceeds analogously
to the case with the point H. We assume the factors to be randomly generated by T , and are thus
indistinguishable from the real experiment.

In both cases, even when one of (U ′1,U ′2) behaves dishonestly in the ith round, we have
EV IEW i

real ∼ EV IEW i
ideal. By the hybrid argument, we can then conclude, that

EV IEWreal ∼ EV IEWideal.
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Pair Two: UV IEWreal ∼ UV IEWideal

Whether H is secret or (honest/adversarial) protected, the same PPT simulator S2 will work. On
receiving the input on round i, S2 ignores it and generates four random points X1, . . . , X4 ∈ E[le]
and makes the following queries to the servers:

U1(E,A; {X1, X2}, {. . . })← (EA, {α(X1), α(X2)}, {. . . }),
U2(E,A; {X3, X4}, {. . . })← (EA, {α(X3), α(X4)}, {. . . }),

Then S2 saves its own state and the states of (U ′1,U ′2). Similarly, for a, S2 produces four random
factors x1, . . . , x4 ∈ Z/leZ as queries, which are indistinguishable from the real experiment. E
can easily distinguish between the real and ideal experiments, but it can not communicate that
information to (U ′1,U ′2), since in the ith round, T always re-randomizes his inputs to (U ′1,U ′2) and in
the ideal experiment, S2 always creates new, random queries for (U ′1,U ′2).

Thus, for each round, we have UV IEW i
real ∼ UV IEW i

ideal, which, by the hybrid argument yields
UV IEWreal ∼ UV IEWideal.

Efficiency. The efficiency gain can be computed as the fraction of the delegator cost and the local
computation cost as follows.

α(h, t) =
T (h, t)

T̃
=

2u
(
(2h− 1)A+ 2Mt

)
+ 2s(m+Mt) + 2uBD

(I(lA) + S(lA) + (r + u+ s)IP (lA)) eA2 log2 eA + sMe2

Assuming the factors r, u, s are small and of similar value (in cryptosystems, generally
r, u, s ∈ {0, 1, 2}), we can simplify this expression to

α(h, t) = O

(
4hA+ 6Mt

eA log2 eA

)
= O

(
h+ 2.7t

eA log2 eA

)
.

ut

A.2 Proof sketch of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1. Rather than give the full proof
here, we will simply sketch it and point out the major differences to the OMTUP case. Note that
the verifiability is always equal to 1 in the honest-but-curious case.

Correctness. Because of the homomorphism property of isogenies, it holds that

α(H ′i) + [ki]α(Si) = α(Hi), for i = 1, . . . , u.

Correctness is trivial for ΦP and ΦQ.

Security. Let A = (E ,U) be a PPT adversary that interacts with a PPT algorithm T in the
honest-but-curious model. As in the OMTUP case the security of E, A and the sets {P1, . . . , Pr}
and {Q1, . . . , Qs} are trivially given, since all of these parameters are unprotected. Similarly the
security of the secret or protected parameters {a1, . . . , as} are given, since they are never disclosed
to either U or E . Our analysis therefore reduces to points in the sets {H1, . . . ,Hu}.
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Pair One: EV IEWreal ∼ EV IEWideal

This case works completely analogous to the proof in the OMTUP-case, except that S1 generates
two random points X1, X2 ∈ E[le] and queries

U(E,A; {X1, X2}, {. . . })← (EA, {α(X1), α(X2)}, {. . . }),

then outputs (Y ip , Y
i
u, replace

i) = (∅, ∅, 0) and saves the appropriate states. As noted in the OMTUP-
case, the input distributions to U ′ in the real and ideal experiments are computationally indistin-
guishable. Since we assume U ′ to behave honestly, it perfectly executes ScIso in the ith round and
by the hybrid argument, we have, that EV IEWreal ∼ EV IEWideal.

Pair Two: UV IEWreal ∼ UV IEWideal

This case also works completely analogous to the proof in the OMTUP-case, except that S2 generates
two random points X1, X2 ∈ E[le] and queries

U(E,A; {X1, X2}, {. . . })← (EA, {α(X1), α(X2)}, {. . . }),

then saves its own state and the state of U ′. Since the input distributions to U ′ are computa-
tionally indistinguishable in the real and ideal experiments and U ′, the hybrid argument yields
UV IEWreal ∼ UV IEWideal.

Efficiency. We find

α(h, t) =
T (h)

T̃
=

u
(
4hA+ 2m+Me2

)
+ sMe2 + 2uBD

(I(lA) + S(lA) + (r + u+ s)IP (lA)) eA2 log2 eA + sMe2

Again, assuming small r, u, s, we simplify this expression to

α(h) = O

(
4hA+ 2Me2
eA log2 eA

)
= O

(
1.1h+ e2
eA log2 eA

)
.

ut


