
E�cient Private PEZ Protocols

for Symmetric Functions?

Yoshiki Abe, Mitsugu Iwamoto, and Kazuo Ohta

The University of Electro-Communications,
1�5�1 Chofugaoka, Chofushi, 182�8585 Tokyo, Japan

{yoshiki,mitsugu,kazuo.ohta}@uec.ac.jp

Abstract. A private PEZ protocol is a variant of secure multi-party
computation performed using a (long) PEZ dispenser. The original pa-
per by Balogh et al. presented a private PEZ protocol for computing
an arbitrary function with n inputs. This result is interesting, but no
follow-up work has been presented since then, to the best of our knowl-
edge. We show herein that it is possible to shorten the initial string (the
sequence of candies �lled in a PEZ dispenser) and the number of moves

(a player pops out a speci�ed number of candies in each move) drastically
if the function is symmetric. Concretely, it turns out that the length of
the initial string is reduced from O(2n!) for general functions in Balogh
et al.'s results to O(n · n!) for symmetric functions, and 2n moves for
general functions are reduced to n2 moves for symmetric functions. Our
main idea is to utilize the recursive structure of symmetric functions to
construct the protocol recursively. This idea originates from a new initial
string we found for a private PEZ protocol for the three-input majority
function, which is di�erent from the one with the same length given by
Balogh et al. without describing how they derived it.

Keywords: Private PEZ protocol ·Multi-party computation · Symmet-
ric functions · Threshold functions.

1 Introduction

1.1 Background and Motivation

A private PEZ protocol is a type of implementation of secure multi-party com-
putation (MPC, [5]) that employs a (long) PEZ dispenser.1 The private PEZ
protocol is interesting not only because MPC can be implemented by physical
tools2 such as a PEZ dispenser but also because the protocol does not require

? c© IACR 2019. This article is the �nal version submitted by the authors to the IACR
and to Springer-Verlag on 2019-09-20. The version published by Springer-Verlag is
available at <doi>. This work was supported by JSPS KAKENHI Grant Numbers
JP17H01752, JP18K19780, JP18K11293, JP18H05289, and JP18H03238.

1 An ordinary PEZ dispenser can store 12 candies.
2 The other examples are card-based protocols [2, 3].

Table 1. Comparison of the lengths of initial strings

n 2 3 4 5 6 7

Balogh et al. [1] 7 72 6941 6.3 · 107 5.3 · 1015 3.8 · 1031
Recursive construction (Sect. 4) 7 31 165 1, 031 7, 243 60, 621

E�cient majdn/2en (Sect. 5) 3 13 21 131 223 1, 821

randomness for executing MPC.3 The original paper by Balogh et al. [1] pre-
sented a model of the PEZ protocol for computing a function fn with n inputs
without privacy, and they extended it to a model of the private PEZ protocol.
The paper also proposed a method for constructing private PEZ protocols for a
general function fn.

There are two major e�ciency measures of a private PEZ protocol: the length
of the initial string and the number of moves. An initial string is a sequence of
candies �lled in a PEZ dispenser at the beginning of the protocol. A move refers
to the execution step in which each player reads the candies according to the
protocol. The shorter the initial string and the smaller the number of moves, the
better. Unfortunately, Balogh et al.'s protocol is very ine�cient in terms of both
measures although the proposed protocol can compute an arbitrary function fn.

The length of an initial string for computing fn presented in [1] is O(2n!),
which does not depend on fn itself but depends only on n. The numbers of
candies for speci�c n ≤ 7 are provided in Table 1. For instance, for n = 7,
almost 3.8 × 1031 candies are required for the initial string, which is far from
practical. The other e�ciency measure is also impractical because the number
of moves in [1] is 2n − 1.

Although the initial strings are very long for computing the general function
fn, Balogh et al.'s paper also presented a private PEZ protocol with a very short
initial string for the majority function with three inputs, which is denoted by
maj23 in this paper. Surprisingly, only 13 candies are shown to be su�cient for the
initial string in this protocol, whereas 72 candies are required for an arbitrary f3.
Unfortunately, nothing was mentioned about why and how the authors obtained
this protocol, and no follow-up work on private PEZ protocols has been presented
after Balogh et al.'s original paper.

1.2 Our Contributions

E�cient protocols for symmetric functions (Section 4): Our motivation
is to propose a more e�cient private PEZ protocol. A shorter length for the
initial string and a smaller number of moves are desirable, but it is not easy to
realize these for a general function fn. We instead succeeded in making the length
of the initial strings shorter and the number of moves smaller by restricting the
class of functions to be computed to symmetric functions.

The impact of the restriction is so great that the length of the initial string
is reduced from O(2n!) for general functions in [1] to O(n · n!) for symmetric

3 Several card-based protocols, e.g., [4], do not require any randomness, either.

2

functions. For instance, the case where n = 7 in Table 1 shows us that the length
of the initial string is almost 3.8×1031 for a general function, but it is reduced to
only 60, 621 for symmetric function. Furthermore, 2n−1 moves in [1] for general
functions are considerably reduced to n2 moves for symmetric functions.

Why are 13 candies su�cient for maj23? (Sections 3 and 5): Our main
idea for constructing a private PEZ protocol for a symmetric function fn is to
utilize the recursive structure of fn to construct the protocol recursively. This
idea is suggested by observation of the new initial string with length 13 for
computing maj23, which is di�erent from the initial string with the same length
presented in [1]. We will explain how we obtained such a short initial string in
Section 3 as a preliminary step before proposing a general protocol for symmetric
functions.

As is explained in Section 4, observation of our new initial string suggests
how private PEZ protocols with much shorter initial strings for arbitrary sym-
metric functions can be constructed. Furthermore, our new initial string also
suggests that the initial string of majority functions can be further shortened,
which will be explained in Section 5. The di�erence between the constructions of
initial strings for symmetric functions in Section 4 and for majority functions in
Section 5 is that instead of constructing the initial string completely recursively,
we use the initial string for and/or functions in the middle of the recursions be-
cause these functions can be implemented by very short initial strings. As seen
from Table 1, we can further shorten the initial strings compared to the case of
recursive construction proposed in Section 4. For n = 7, only 1, 821 candies are
su�cient: i.e., our new construction requires initial strings with a length of only
4.8× 10−27% of Balogh et al.'s result!

1.3 Organization of the Paper

The remaining part of this paper is organized as follows: In Section 2, the nota-
tions and models of PEZ protocols with/without privacy [1] are provided. Section
3 is devoted to �nding initial strings of private PEZ protocols for computing maj23
and maj24, which suggests how private PEZ protocols can be constructed recur-
sively. Then, we propose the recursive construction of a private PEZ protocol
for computing arbitrary symmetric functions in Section 4. Section 5 revisits a
private PEZ protocol for computing majority functions. We show how to further
shorten the (short) initial strings presented in Section 4. Section 6 concludes this
paper. Technical lemma and proofs are provided in Appendix A.

2 Preliminaries

2.1 Notations

� For integers a and b such that a ≤ b, [a : b] := {a, a+ 1, . . . , b}.
� For a bit b ∈ {0, 1}, de�ne b := 1− b.

3

Table 2. A PEZ protocol for a function fn

Player # of symbols to be read
Move

to move xij = σ1 · · · xij = σk
M1 Pi1 µ1(σ1) · · · µ1(σk)

M2 Pi2 µ2(σ1) · · · µ2(σk)
...

...
...

. . .
...

Mm Pim µm(σ1) · · · µm(σk)

� For two binary strings a, b ∈ {0, 1}∗, |a| denotes the length of a, and a ≺ b
means that the string a is a pre�x of the string b.

� λ is the empty string. Note that |λ| = 0.
� For two binary strings a, b ∈ {0, 1}∗, a ◦ b is the concatenation of a and b.

Concatenations of n identical strings of a are expressed as [a]n := a ◦ · · · ◦ a︸ ︷︷ ︸
n times

.

� For a binary string a, hw(a) is the Hamming weight of a.
� For a binary string a of length n, andn(a) and orn(a) are the results of the

conjunction and disjunction of all the elements of a, respectively.
� For two sets X and Y , the di�erence set is de�ned as X \Y := X∩Y c, where
Y c is the complement set of Y .

2.2 PEZ Protocols

Suppose that there are n(≥ 2) semi-honest players P1, P2, . . . , Pn. Each player
Pi has an input xi ∈ Σ, and the players wish to compute a function fn : Σn → Γ
while hiding their inputs from each other. The PEZ protocol for computing fn
consists of the following three steps:

Initialization Prepare a public �xed string, called an initial string, α ∈ Γ ∗

depending on only fn.
Execution Follow a sequence of moves M1,M2, . . . ,Mm: at each move Mj ,

player Pij reads the next µj(xij) symbols of α privately, where µj(σ) indi-
cates the number of symbols read at the j-th move with input σ ∈ Σ. The
sequence i1, i2, . . . , im is called the move order.

Output Read the �rst symbol of the unread string in α.

By de�ning in advance the one-to-one correspondence between the colors of
candies and symbols in α, the PEZ protocol can be interpreted as follows: Ini-
tialization consists of �lling a sequence of candies represented by α into a PEZ
dispenser. Execution consists of popping out µj(xij) candies from the dispenser
privately. Finally, we output the topmost candy left in the PEZ dispenser, which
indicates the result of fn(x1, x2, . . . , xn).

We de�ne a PEZ protocol with an initial string α that computes a function
fn : Σn → Γ , where n is the number of players of this protocol. When we denote
an initial sequence by α(fn), it means an initial sequence of the PEZ protocol
for computing the function fn.

4

De�nition 1 (PEZ protocol [1]) Let α ∈ Γ ∗ be an initial string and fn :
Σn → Γ be a function to be computed. A PEZ protocol Πα,fn is de�ned by
an initial string α and a sequence of m moves (M1,M2, . . . ,Mm). Each move
Mj consists of a pair (ij , µj), where ij is a player index specifying who moves
(i.e., reads symbols from α) and µj : Σ → {0, 1, . . . , |α| − 1} maps each input of
players to the number of symbols to be read.

Table 2 indicates how many candies are popped out by the ij-th player at
the j-th move.

2.3 Private PEZ Protocols

De�nition 2 (Private PEZ protocol [1]) For an initial string α and a func-
tion fn with n inputs, a PEZ protocol Πα,fn is called private if there exists a
mapping ν : {1, 2, . . . ,m}×Σ → Γ ∗ that satis�es the following two conditions4:

1. For all j ∈ {1, 2, . . . ,m}, and for all σ ∈ Σ, the following holds:

|ν(j, σ)| = µj(σ).

2. For any x := (x1, x2, . . . , xn) ∈ Σn, the following holds:

ν(1, xi1) ◦ ν(2, xi2) ◦ · · · ◦ ν(m,xim) ◦ fn(x) ≺ α.

Intuitively, De�nition 2 can be explained as follows: Condition 1 means that
the number of candies read by player Pij at the j-th move is speci�ed by j
and the input xij of Pij . Condition 2 requires that if we read the candies with
the number speci�ed by Condition 1, the output becomes fn(x), which implies
correctness.

Condition 2 simultaneously requires that if every player reads the candies by
following Condition 1, player Pij with input xij at the j-th move must eventually
read the same sequence ν(j, xij), which guarantees privacy. In other words, the
substrings to be read by Pi, i.e., the view of Pi, in each move depends on xi only,
so that the view contains no information about the other players' inputs.

De�nition 3 (Round in a private PEZ protocol) In a private PEZ proto-
col for computing fn, we call a series of n moves a round if the n moves satisfy
the following conditions. The `-th round is denoted by R`, ` ≥ 0.

1. Every player Pi moves only once in the n moves.5

2. During the same round, every Pi reads the same sequence if the input of Pi
is the same.

4 In [1], β was used instead of ν, but in this paper, we use β to express a string.
5 If fn is symmetric, the move order in a round does not a�ect the output.

5

Table 3. A private PEZ protocol Πα,andn where α := α(andn) = [0]n ◦ 1

Player # of bits to be read Substring to be read
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 0 1 � 0

Table 4. A private PEZ protocol Πα,,orn where α := α(orn) = [1]n ◦ 0

Player # of bits to be read Substring to be read
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 1 0 1 �

Example 1 (Private PEZ protocols for andn and orn [1]) We show private
PEZ protocols for computing AND and OR of n binary inputs which are denoted
by andn and orn, respectively. The private PEZ protocols for andn and orn are
useful for constructing e�cient private PEZ protocols discussed hereafter.

A private PEZ protocol for andn uses the (n+1)-bit initial string α(andn) :=
[0]n ◦ 1 and has n moves: each player Pi reads one candy of �0� from α(andn)
if the input value of Pi is 1, otherwise each Pi does not read any candy. After
round R0, i.e., n moves by P1, P2, and Pn, the �rst remaining candy of α(andn)
becomes �1� only when all the input values of Pi are 1, otherwise it becomes �0�.
This protocol Πα(andn),andn is summarized in Table 3. A private PEZ protocol for
orn can be speci�ed analogously by letting α(orn) := [1]n ◦ 0 and following the
moves in Table 4.

The privacy of andn is easy to see because every player reads �0� during R0 if
Pi inputs 1, and hence, no information leaks until the output phase. The privacy
of orn is also easy to understand.

Example 2 (Private PEZ protocol for maj23) Consider the case of a major-
ity function with three inputs denoted by maj23, which outputs 1 if two or more
inputs are 1. The initial string for maj23 is given by α(maj23) = 0010010010001,
and the protocol works as shown in Table 5.

In this example, correctness is easy to check. Privacy is easy to see as well
because every player who inputs 1 reads �001� and �0� in rounds R0 and R1,
respectively, and nothing is read by the player who inputs 0.

Remark. Note that a private PEZ protocol for maj23 with an initial string
with length 13 was presented in [1], which is di�erent from the one in Example

Table 5. A private PEZ protocol Πα,maj23
where α := α(maj23) = 0010010010001

Players # of bits to be read Substring to be read
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}3i=1 0 3 � 001

R1 {Pi}3i=1 0 1 � 0

6

2. Unfortunately, however, no description was given in [1] regarding why and
how the protocol was derived. On the other hand, in this paper, we will explain
how we derived the protocol in Example 2, which is insightful for constructing
a private PEZ protocol for symmetric functions and its improvement for majtn
that are proposed in Sections 4 and 5, respectively.

2.4 Symmetric Functions

De�nition 4 (Symmetric functions) A function fn : {0, 1}n → {0, 1} is
called symmetric if

fn(x1, x2, . . . , xn) = fn(xσ(1), xσ(2), . . . , xσ(n)) (1)

holds for all (x1, x2, . . . , xn) ∈ {0, 1}n and an arbitrary permutation σ : [n]→ [n].

Since the symmetric function does not depend on the order of x1, x2, . . . , xn,
we will sometimes regard fn as a function taking a multiset as an input. For in-
stance, a symmetric function f2(x1, x2) = f2(x2, x1) is also written as fm2 ({x1, x2}) :=
f2(x1, x2) = f2(x2, x1). Furthermore, if fn takes n binary inputs, fn depends
only on the Hamming weight of the n binary inputs. Summarizing, we use the
following equivalent expressions for symmetric functions.

De�nition 5 (Equivalent expressions for symmetric functions) For a sym-
metric function fn : {0, 1}n → {0, 1}, de�ne fmn : {{x1, x2, . . . , xn} | xi ∈
{0, 1}} → {0, 1} and fwn : [0 : n]→ {0, 1} as

fmn ({x1, x2, . . . , xn}) := fn(x1, x2, . . . , xn), (2)

fwn (w) := fn(x1, x2, . . . , xn), (3)

where {x1, x2, . . . , xn} is a multiset and x1, x2, . . . , xn are the binary inputs
satisfying w = hw(x1, x2, . . . , xn) .

Hereafter, we choose an appropriate expression for a symmetric function from
(1)�(3) depending on the context. The superscripts m and w will be omitted if
they are clear from the context.

3 Warm-Up: Private PEZ Protocols for Majority Voting

Before presenting our construction of private PEZ protocols for general sym-
metric functions, we show private PEZ protocols for n-input majority voting
(n ≥ 3).

De�nition 6 (Majority function with threshold) Let n and t be positive
integers with n ≥ t. For x1, x2, . . . , xn ∈ {0, 1}, de�ne a majority function with
threshold t by

majtn(x1, x2, . . . , xn) :=

{
1, if

∑n
i=1 xi ≥ t

0, otherwise.
(4)

7

Table 6. Truth table of maj23 classi�ed by x3

x1 x2 x3 = 0 x3 = 1

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

For t = dn/2e, majtn reduces to the ordinary majority voting.
In this section, for intuitive understanding, we construct private PEZ pro-

tocols from the perspective of each player's view and do not explicitly prove
that proposed protocols satisfy De�nition 2. Later, we directly prove that the
proposed private PEZ protocols for symmetric functions satis�es De�nition 2.

Example 3 (A private PEZ protocol for three-input majority voting)
Table 6 is the truth table of maj23 classi�ed by the value of x3 ∈ {0, 1}. Observing
the input values of x1 and x2, and the output values for x3 = 0 in Table 6, we
can see that maj23({x1, x2, 0}) can be regarded as and2({x1, x2}): i.e.,

maj23({x1, x2, 0}) = maj22({x1, x2}) = and2({x1, x2}). (5)

We can also �nd

maj23({x1, 0, x3}) = maj22({x1, x3}) = and2({x1, x3}), (6)

maj23({0, x2, x3}) = maj22({x2, x3}) = and2({x2, x3}). (7)

(5)�(7) imply that if there exists at least one input with value 0, maj23 can
be computed by and2 with two inputs obtained by eliminating 0 from three
inputs of maj23. Only when x1 = x2 = x3 = 1, maj23 is not representable by and2.
Therefore, maj23 can be represented as follows:

maj23({x1, x2, x3})

=

{
maj23({x1, x2, x3}), if x1 = x2 = x3 = 1,

maj22({x1, x2, x3} \ {0}) = and2({x1, x2, x3} \ {0}), otherwise.
(8)

Equivalently, for w ∈ [0 : 3],

maj23(w) =

{
maj23(w), if w = 3,

maj22(w − 0) = and2(w − 0), otherwise.6
(9)

We construct a private PEZ protocol for maj23 based on (8). Let α(maj23) be
an initial string for maj23.

Let β0 and β1 be strings used for computing and2({x1, x2, x3} \ {0}) and
maj23({x1, x2, x3}), in (8), respectively. The actual sequence of β0 and β1 are

6 �−0� means that the weight does not change, which is used to aid in understanding.

8

undetermined so far, but will be speci�ed below. Note here that the cases in
(8) are classi�ed by the results of and3. From Example 1, the initial string for
computing and3 is given by α(and3) = 0001, and we replace 0 and 1 in α(and3)
with β0 and β1, respectively. Then we obtain

α(maj23) = β0 ◦ β0 ◦ β0 ◦ β1 (10)

as the initial string for computing maj23. The reason of these replacements will
be explained later more clearly.

Using the initial string α(maj23) in (10), the private PEZ protocol for com-
puting maj23 can be described as follows: In round R0, each player Pi who inputs
xi = 1 reads |β0| bits: otherwise (xi = 0), Pi does not read any bit. The following
shows the remaining string α′ after round R0.

α′ �

{
β1, if x1 = x2 = x3 = 1

β0, otherwise.
(11)

After R0, several moves are added to compute maj23 using β0 or β1, which will
specify β0 and β1.

The correctness ((11) holds) and privacy (no player obtains information
about other players' inputs) in R0 are guaranteed by the correctness and pri-
vacy of the private PEZ protocol for and3, which is the reason why we replaced
0 and 1 in α(and3) with β0 and β1, respectively, to obtain (10). Therefore, to
construct the private PEZ protocol for maj23, the additional moves have to satisfy
the following requirements:

Correctness of the additional moves

C-1 Compute and2({x1, x2, x3} \ {0}) using β0(≺ α′).
C-2 Compute maj23({1, 1, 1}) using β1(≺ α′).

Privacy of the additional moves

P-1 Computation of and2({x1, x2, x3} \ {0}) is private.
P-2 Computation of maj23({1, 1, 1}) is private.
P-3 Each string read by each player for and2({x1, x2, x3} \ {0}) is the same

as the one for maj23({1, 1, 1}).

First, we discuss C-1 and P-1 to specify β0 and the additional moves. Since
0 ∈ {x1, x2, x3}, and2({x1, x2, x3} \ {0}) can compute in the same way as the
private PEZ protocol for and2. That is, using the string β0 := 001, each player
Pi, 1 ≤ i ≤ 3, reads one bit represented by �0� if xi = 1, otherwise Pi does not
read any bit. Note that there exists a bit in β0 to be output when three players
execute the move in the private PEZ protocol for and2 with α(and2) = 001,
because there exists at least one player Pj whose input xj = 0 and does not read
any bit. Therefore, and2({x1, x2, x3} \ {0}) can be computed using β0 = 001. In
addition, no player can obtain information about other players' inputs because
one bit read by a player is always �0� regardless of other players' inputs. Hence,
in summary, to satisfy C-1 and P-1, we should use β0 = 001 and add three

9

Table 7. Truth tables of maj24 and maj34 classi�ed by x4

(a) maj24
x1 x2 x3 x4 = 0 x4 = 1

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1

(b) maj34
x1 x2 x3 x4 = 0 x4 = 1

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 1
1 1 0 0 1
1 0 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 8. A private PEZ protocol Πα′,maj24
where α′ := α(maj24) =

111011101110111011110

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}4i=1 4 0 1110 �

R1 {Pi}4i=1 1 0 1 �

moves as round R1; each player Pi, 1 ≤ i ≤ 3, reads one bit from β0 if xi = 1,
which is always �0�, otherwise the player does nothing.

Next, we discuss C-2, P-2, and P-3, to specify β1. To satisfy P-3, we must
follow the moves in round R1 in the same manner as when {x1, x2, x3} contains
at least one 0. To be speci�c, every player Pi, 1 ≤ i ≤ 3, reads one bit �0� in
round R1, which determines the pre�x of β1 as 000, i.e., 000 ≺ β1. These three
moves also satisfy P-2. Since the remaining one bit is read as output after round
R1, the next bit of 000 in β1 is determined as 1(= maj23({1, 1, 1})) to satisfy C-2.
As a result, we obtain β1 = 0001.

Summarizing the above discussion, a private PEZ protocol for maj23 is shown
in Table 5, which can be implemented with the 13-bit initial string α = β0 ◦β0 ◦
β0 ◦ β1 = 0010010010001 and six moves.

Throughout Example 3, the input of a function is written as a multiset such
as maj23({x1, x2, x3}). Hereafter, an input of a symmetric function is represented
by the Hamming weight of the input such as maj23(3) (= maj23({1, 1, 1})). This is
because the Hamming weight of the input is su�cient information to compute
the symmetric function.

Example 4 (Private PEZ protocols for four-input majority voting) In
Table 7, (a) and (b) are the truth tables of maj24 and maj34, respectively. Note
that the truth values in these tables are classi�ed by the value of x4 ∈ {0, 1}. In
the following, we mainly explain the construction of a private PEZ protocol for
maj24 in the same way as for maj23 in the Example 3, but a protocol for maj34 is
obtained analogously.

Let w ∈ [0 : 4] be the Hamming weight of the four inputs of maj24.

10

When w 6= 0, i.e., when there exists at least one input whose value is 1, the
outputs of maj24(w) is equal to the outputs of or3 with input w − 1, i.e., three
inputs obtained by eliminating 1 from four inputs of maj24. Actuary, the right
column of the outputs in Table 7(a) shows the case when x4 = 1 is eliminated,
and it can be regarded as maj13(w − 1) = or3(w − 1).

Together with the case where w = 0, the following holds:

maj24(w) =

{
maj24(0), if w = 0

maj13(w − 1) = or3(w − 1), otherwise (w 6= 0).
(12)

We can construct a private PEZ protocol for maj24 based on (12) similar to
how the private PEZ protocol for maj23 was constructed in Example 3. Let β̃0
and β̃1 be the undetermined strings which are used for computing maj24(0) and
or3(w − 1), respectively.

Let α(maj24) be an initial string for computing maj24. In the same way as
Example 3, set α(maj24) := [β̃1]4 ◦ β̃0, which is obtained by replacing �0� and
�1� in α(or4) = 1110 with β̃0 and β̃1, respectively. In round R0, each player Pi,
1 ≤ i ≤ 4, reads |β̃1| bits if the input xi = 0, otherwise the player does not read
any bit. Then, at the end of round R0, the remaining string α̃′ satis�es

α̃′ �

{
β̃0, if w = 0

β̃1, otherwise.
(13)

In round R1, we will add four moves for computing maj24(0) and or3(w − 1)
by using β̃0 and β̃1, respectively.

The function or3(w − 1) can be computed in the same way as the private
PEZ protocol for or3. That is, by using a string β̃1 := 1110 in round R1, each
player Pi, 1 ≤ i ≤ 4, reads one bit represented by �1� if xi = 0, otherwise the
player does not read any bit. Then, every move is speci�ed as shown in Table 8.

Now we are prepared to compute maj24(0) privately; the �rst four bits of
β̃0 have to be 1111, which is the string read in round R1. Since the next bit
of 1111 becomes the output, β̃0 is obtained by appending 0(= maj24(0)) to the
rightmost part of 1111. Therefore, we obtain β̃0 := 11110. In summary, Table
8 shows a private PEZ protocol for maj24, which uses the 21-bit initial string
α := α(maj24) = 111011101110111011110, and has eight moves.

The private PEZ protocol for computing maj34 can be derived in the same
manner starting from the truth table (b) in Table 7 and based on

maj34(w) =

{
maj34(4), if w = 4

maj33(w) = and3(w), otherwise (w 6= 4).
(14)

and the private PEZ protocol for and4. The protocol is shown in Table 9, with
eight moves and the initial string α := α(maj34) = 000100010001000100001.

11

Table 9. A private PEZ protocol Πα,maj34
where α := α(maj34) =

000100010001000100001

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}4i=1 0 4 � 0001

R1 {Pi}4i=1 0 1 � 0

4 A Private PEZ Protocol for Symmetric Functions

4.1 Recursive Structure of Symmetric Functions

We generalize the discussion in Section 3 for a general symmetric function fn
with n inputs. First, we generalize the relations (12) and (14) as follows.

Theorem 1 Let fn : {0, 1}n → {0, 1} be an arbitrary symmetric function
with n binary inputs. Then, we recursively de�ne the symmetric functions gk :
{0, 1}k → {0, 1} and hk : {0, 1}k → {0, 1}, for 1 ≤ k ≤ n, by gn := fn, hn := fn,
and

gmk−1({x1, x2, . . . , xk−1}) := gmk ({x1, x2, . . . , xk} \ {0}),
if {x1, x2, . . . , xk} contains at least one 0, (15)

hmk−1({x1, x2, . . . , xk−1}) := hmk ({x1, x2, . . . , xk} \ {1}).
if {x1, x2, . . . , xk} contains at least one 1. (16)

Then, the following holds for w ∈ [0 : k]:

gwk (w) =

{
gwk (k) = fwn (k) if w = k

gwk−1(w) otherwise,
(17)

hwk (w) =

{
hwk (0) = fwn (n− k) if w = 0

hwk−1(w − 1) otherwise,
(18)

where gw0 (0) := fwn (0) and hw0 (0) := fwn (n).

The proof is provided in Appendix A.2.

Example 5 We revisit the case of Example 4. Let f4 = h4 = maj24. Then, it is
easy to see that h3 = or3 from Table 7(a). On the other hand, for f4 = g4 = maj34,
we can choose g3 = and3 from Table 7(b). This is the reason why (8), (9), (12),
and (14) hold.

4.2 Proposed Construction for General Symmetric Functions

We propose the construction of a private PEZ protocol for computing a symmet-
ric function fn. Let α(fn) be an initial sequence of the private PEZ protocol for
computing the function fn. There are two ways of constructing α(fn), as shown
below.

12

Table 10. A private PEZ protocol for fn using α(gn) as the initial string

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 0 |α(gn−1)| � α(gn−1)

R1 {Pi}ni=1 0 |α(gn−2)| � α(gn−2)
...

...
...

...
...

...

Rn−1 {Pi}ni=1 0 |α(g0)| � α(g0)

Construction 1 Assume that a symmetric function fn is recursively decom-
posed into two cases by either (17) or (18). For 1 ≤ k ≤ n, α(gk) and α(hk) are
the initial strings for computing gk and hk, respectively. From (17) and (18),
α(gk) and α(hk) can be recursively constructed as follows:

α(gk) := [α(gk−1)]k ◦ [α(gk−2)]k ◦ · · · ◦ [α(g0)]k ◦ gwk (k), (19)

α(hk) := [α(hk−1)]k ◦ [α(hk−2)]k ◦ · · · ◦ [α(h0)]k ◦ hwk (0), (20)

where α(g0) := g0 = fwn (0) and gwk (k) = fwn (k) in (19), and α(h0) := h0 = fwn (n)
and hwk (0) = fwn (n− k) in (20). Finally, we obtain two types of the initial string
α(gn) and α(hn) recursively from (19) and (20). Then, we have

α(fn) := α(gn), (21)

α(fn) := α(hn). (22)

Note that the sequences of α(fn) obtained from (21) and (22) are not in
general the same.

First, we describe the private PEZ protocol for fn using α(fn) obtained from
(21) as the initial string. In this protocol, the sequence of n2 moves (M1,M2,
. . . ,Mn2) for computing fn is determined as follows: Each move Mj consists of
((j mod n) + 1, µj) where µj : {0, 1} → {0, |α(g0)|, |α(g1)|, · · · , |α(gn−1)|} and
µj(0) = 0, µj(1) = |α(gn−dj/ne)|. These moves can be represented as n rounds
(R0, R1, . . . , Rn−1), and each player Pi reads µrn+i(xi) bits in the r-th round.
These n rounds are shown in Table 10.

Second, the private PEZ protocol for fn using α(fn) obtained from (22) as
the initial string is similar to the protocol for α(fn) obtained from (21) and is
shown in Table 11.

Theorem 2 The private PEZ protocol obtained from Construction 1 satis�es
De�nition 2.

The proof is provided in Appendix A.3.

4.3 Evaluation of the Length of Initial Strings

For a symmetric function fn, let an := |α(fn)| for simplicity.

13

Table 11. A private PEZ protocol for fn using α(hn) as the initial string

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 |α(hn−1)| 0 α(hn−1) �

R1 {Pi}ni=1 |α(hn−2)| 0 α(hn−2) �
...

...
...

...
...

...

Rn−1 {Pi}ni=1 |α(h0)| 0 α(h0) �

Theorem 3 The length of the initial string of a private PEZ protocol for com-
puting a symmetric function fn is computed as

an = n · n!
n∑
i=1

1

i!
+ 1, (23)

from which we can conclude that an = O(n× n!).

The proof is provided in Appendix A.4.

5 A More E�cient Private PEZ Protocol for the

Majority Function majtn

By restricting the functions to be computed to majtn, the length of the initial
string α becomes much shorter than that for computing symmetric functions.

Consider the case t = 1 and t = n for majtn. Since maj1n and majnn are equiv-
alent to orn and andn, respectively, they can be computed with only (n+ 1)-bit
strings [1]n ◦ 0 and [0]n ◦ 1 as shown in Example 1. Therefore, |α(andn)| =
|α(orn)| = O(n) while |α(fn)| = O(n × n!) as shown in Theorem 3 for a sym-
metric function fn.

In Examples 3 and 4, α(maj23) = 13 and α(maj24) = α(maj34) = 21, whereas
|α(f3)| = 31 and |α(f4)| = 165 in Construction 1. The reason for this di�erence
is the number of times decomposition is performed by either (15) or (16). In
Construction 1, α(f3), and α(f4) are obtained by decomposing two times and
three times, respectively, to the end. On the other hand, in Examples 3 and 4,
α(maj23), α(maj24) and α(maj34) are obtained by decomposing only once. After
the one-time decomposition by (15) or (16), the functions α(maj23), α(maj24) and
α(maj34) can be computed using and2, or3, and and3, respectively.

In general, we can construct private PEZ protocols for majority functions
α(majtn) using the initial strings for {andi}ni=2 or {orn}ni=2. Therefore, the initial
string becomes shorter by reducing the number of decompositions using a private
PEZ protocol for andn or orn rather than by recursively decomposing to the end.

Let s be the number of times majtn is decomposed by (15) where 0 ≤ s ≤ n−1.
From observation of (15), we can learn that if majtn is decomposed by (15),
majtn becomes majtn−1. Therefore, after s decompositions by (15), majtn becomes

14

majtn−s. In addition, if n − s = t, i.e., s = n − t, then majtn−s = majn−sn−s is
identical to andn−s. Similarly, when (16) is used for s decompositions, majtn
becomes majt−sn−s and if t − s = 1, i.e., s = t − 1, then majtn−s = maj1n−s is
identical to orn−s.

To reduce the number of decompositions, s should be as small as possible.
Thus, if n− t ≤ t−1, i.e., t ≥ (n+1)/2, majtn should be decomposed by (15). On
the other hand, if n− t ≥ t− 1, i.e., t ≤ (n+ 1)/2, majtn should be decomposed
by (16).

Construction 2 Assume that majtn is decomposed s times by either (15) or
(16), where

s =

{
n− t if t ≥ (n+ 1)/2,

t− 1 if t ≤ (n+ 1)/2,

and we de�ne α(majtk), where n− s ≤ k ≤ n, as follows:

α(majtk) :=
[α(majtk−2)]k ◦ [α(majtk−2)]k ◦ · · · ◦ [α(majtn−s)]

k ◦ [α(majtn−s−1)]k ◦majtk(k),

if t ≥ (n+ 1)/2,

[α(majt−1k−1)]k ◦ [α(majt−2k−2)]k ◦ · · · ◦ [α(maj1n−s)]
k ◦ [α(maj0n−s−1)]k ◦majtk(0),

if t ≤ (n+ 1)/2,

(24)

where α(majtn−s−1) := 0 and α(maj0n−s−1) := 1. Then, we obtain the initial
string α(majtn) by substituting n for k in (24). Note that if n is odd, we can use
either equation.

If t ≤ (n + 1)/2, the sequence of n(s + 1) moves (M1,M2, . . . ,Mn(s+1)) for

computing majtn is determined as follows: each moveMj consists of ((j mod n)+
1, µ′j), where µ

′
j : {0, 1} → {0, |α(maj1n−s−1)|, |α(maj2n−s)|, . . . , |α(majt−1n−1)|} and

µ′j(0) = |α(maj
t−dj/ne
n−dj/ne)|, µ

′
j(1) = 0. These moves can be represented as s + 1

rounds (R0, R1, . . . , Rs), and each player Pi reads µ′rn+i(xi) bits in the r-th
round. These s + 1 rounds are shown in Table 13. The sequences of moves for
t ≥ (n+ 1)/2 are similar to those for t ≤ (n+ 1)/2 and are shown in Table 12.

Example 6 Consider the case of maj24 in Example 4. In this case, since t =
2 < 5/2 = (n + 1)/2, s = t − 1 = 1. Therefore, we decompose maj24 once by
using (15). Then, we obtain α(maj24) = [α(maj13)]4 ◦ [1]4 ◦maj24(0) and α(maj13) =
[1]3 ◦maj13(0) = 1110, which yields

α(maj24) = [1110]4 ◦ [1]4 ◦ 0. (25)

Therefore, this initial string α(maj24) coincides with the initial string obtained in
Example 4. We can also see that the moves (rounds) of this protocol obtained
by Construction 2 coincide with the rounds of the protocol for maj24 in Table 8,
which is obtained in Example 4.

15

Table 12. A private PEZ protocol for majtn for t ≥ (n+ 1)/2

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 0 |α(majtn−1)| � α(majtn−1)

R1 {Pi}ni=1 0 |α(majtn−2)| � α(majtn−2)
...

...
...

...
...

...

Rs {Pi}ni=1 0 |α(majtn−s−1)| � α(majtn−s−1)

Table 13. A private PEZ protocol for majtn for t ≤ (n+ 1)/2

Players # of bits to read Substring of read bits
Round

to move xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}ni=1 |α(majt−1
n−1)| 0 α(majt−1

n−1) �

R1 {Pi}ni=1 |α(majt−2
n−2)| 0 α(majt−2

n−2) �
...

...
...

...
...

...

Rs {Pi}ni=1 |α(maj1n−s−1)| 0 α(maj1n−s−1) �

Theorem 4 The private PEZ protocol obtained from Construction 2 satis�es
De�nition 2.

The proof is omitted since it is similar to the proof of Theorem 2.
Finally, let an,t be the length of the initial string of a private PEZ protocol for

computing majtn obtained from Construction 2. From (24), the following holds:

an,t =

{
nan−1,t + nan−2,t + s+ nan−s,t + an−s−1,t if t ≤ n/2
nan−1,t−1 + nan−2,t−2 + s+ nan−s,1 + an−s−1,0 otherwise

=

{
n
∑s
i=1 an−i,t + an−s−1,t if t ≤ n/2

n
∑s
i=1 an−i,t−i + an−s−1,0 otherwise

(26)

where an−s−1,t = 1 and an−s−1,0 = 1. Then, the theorem below immediately
follows from Lemma 1 in Appendix A.1 and (24), and hence, the proof is omitted.

Theorem 5 The length of the initial string of a private PEZ protocol for com-
puting majtn is computed as

an,t = n

n∑
i=n−s

n!

i!
+ 1, where s =

{
t− 1 if t ≤ n/2
n− t otherwise

(27)

from which we can conclude that an = O(n× ns).

6 Conclusion

In the previous work [1], a general, but ine�cient private PEZ protocol was
presented. By restricting our attention to the symmetric functions, we achieved

16

the exponential improvement on a private PEZ protocol for symmetric functions
using the recursive structure of symmetric functions. Speci�cally, the double
exponential length of initial string is reduced to exponential length, and the
exponential number of moves is reduced to polynomial moves. Furthermore, in
the case of threshold functions, the length of an initial string and the number
of moves are further reduced compared with the ones for symmetric functions.
These results resolve a part of open problems suggested in [1].

Finally, we mention the relationship between our construction for symmetric
functions and the general construction [1]. A general function fn with n inputs
can be easily computed by applying our construction for symmetric function
g2n−1 with 2n − 1 inputs in the following manner.

� For w ∈ [0 : 2n − 1], g2n−1(w) := fn(w)
� For i ∈ [0 : n−1], each player Pi behaves as if Pi were Pj , j ∈ [2i−1 : 2i+1−2]

in the protocol for g2n−1.

However, the private PEZ protocol obtained from this method is di�erent from
the one obtained from the general construction in [1] although the order of an
initial string is the same: O((2n − 1) × (2n − 1)!) = O(2n!). For instance, for
n = 3, |α(g2n−1)| = |α(g7)| = 60, 621 for the above protocol, whereas |α(fn)| =
|α(f3)| = 72 for original protocol in [1], as you can see in Table 1. Therefore,
it seems that the general protocol in [1] cannot be directly obtained from our
construction.

Acknowledgements. The authors would like to thank the reviewers for their
helpful comments and suggestions. They are also grateful to Mr. Shota Ya-
mamoto for insightful discussions.

References

1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation
using a PEZ dispenser. Theoretical Computer Science 306(1-3), 69�84
(sep 2003). https://doi.org/10.1016/S0304-3975(03)00210-X, http://linkinghub.
elsevier.com/retrieve/pii/S030439750300210X

2. den Boer, B.: More e�cient match-making and satis�ability: The �ve card trick.
In: Advances in Cryptology - EUROCRYPT '89, Workshop on the Theory and
Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989,
Proceedings. Lecture Notes in Computer Science, vol. 434, pp. 208�217. Springer
(1989). https://doi.org/10.1007/3-540-46885-4_23

3. Nishida, T., Hayashi, Y.i., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: International Conference on Theory and Applications of Mod-
els of Computation. pp. 110�121. Springer (2015)

4. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based
majority voting protocols with three inputs using three cards. In: 2018 International
Symposium on Information Theory and Its Applications (ISITA). pp. 218�222. IEEE
(2018)

17

5. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (FOCS 1982). pp. 160�164. IEEE (Novem-
ber 1982). https://doi.org/10.1109/SFCS.1982.38, http://ieeexplore.ieee.org/
document/4568388/

A Technical Lemma and Proofs

A.1 Technical Lemma

Lemma 1. Let n and s (n ≥ s) be nonnegative integers such that n− s−1 ≥ 0.
For k ∈ [0 : n], let

an−s−1 = 1 and ak = k

k−1∑
i=n−s−1

ai + 1, (28)

be a recurrence relation with respect to (ai)
k−1
i=n−s−1. Then, the following holds:

an = n · n!

n∑
i=n−s

1

i!
+ 1. (29)

Proof of Lemma 1: For �xed s and n, let

Sk :=

k∑
i=n−s−1

an. (30)

Then, we have Sn−s−1 = an−s−1 = 1 and

ak = kSk−1 + 1. (31)

We also have

Sk − Sk−1 = ak = kSk−1 + 1, (32)

where the �rst and the second equalities are due to (30) and (31), respectively.

Equation (32) can be rearranged as Sk = (k + 1)Sk−1 + 1. Dividing both
sides of this equality by (k + 1)!, we obtain

Tk = Tk−1 +
1

(k + 1)!
, and Tn−s−1 =

1

(n− s)!
, (33)

18

where Tk := Sk/(k + 1)!. Equation (33) is easy to solve. That is,

Tk = Tk−1 +
1

(k + 1)!

= Tk−2 +
1

(k + 1)!
+

1

k!

· · ·

= Tn−s−1 +
1

(k + 1)!
+ · · · 1

(n− s+ 1)!

=

k+1∑
i=n−s

1

i!
. (34)

Therefore, we have Sk = (k + 1)!Tk = (k + 1)!
∑k+1
i=n−s 1/i!. Substituting this

into (31), we obtain (29). 2

A.2 Proof of Theorem 1

We prove (17). Equation (18) can be proved similarly.
For the weight w ∈ [0 : k], �x the input (x1, x2, . . . , xk) arbitrarily such that

hw(x1, x2, . . . , xk) = w. Then, gwk (w) = gk(x1, x2, . . . , xk) holds. If w = k, the
following holds:

gwk (w) = gwk (k) = gmk ({1, 1, . . . , 1︸ ︷︷ ︸
k

}) (a)
= gmn ({1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k

}) (b)
= fwn (k)

(35)

where the marked equalities are due to the following reasons:

(a): From (15), the value of gk equals to the value of gn if the Hamming weights
of inputs are equal.

(b): De�nition of gn: gn := fn, given in Theorem 1.

If w 6= k, there exists an index i ∈ [0 : k − 1] such that xi = 0, and we have

gwk (w) = gk(x1, x2, . . . , xk)

= xkgk(x1, x2, . . .
i

0̌, . . . , xk−1, 1) + xkgk(x1, x2, . . . , xk−1, 0)

(c)
= xkgk(x1, x2, . . . ,

i

1̌, . . . , xk−1, 0) + xkfk(x1, x2, . . . , xk−1, 0)

(d)
= xkgk−1(x1, x2, . . . ,

i

1̌, . . . , xk−1) + xkgk−1(x1, x2, . . . , xk−1)

(e)
= gwk−1(w), (36)

where the marked equalities are due to the following reasons:

19

(c): Symmetry of gk.
(d): De�nition of gk−1 given by (15).

(e): For xk = 1, hw(x1, x2, . . . ,
i

1̌, . . . , xk−1) = w holds, otherwise hw(x1, x2, . . . ,
xk−1) = w holds. 2

A.3 Proof of Theorem 2

We show the proof for the private PEZ protocol constructed by using (19) in
Construction 1. If (20) is used, the proof is similar to that for (19).

Let Σ = {0, 1} and Γ = {0, 1}. Let ν : {1, 2, . . . , n2} × {0, 1} → {0, 1}∗
be a mapping such that ν(j, 0) = λ, and ν(j, 1) = α(gn−dj/ne) for all j ∈
{1, 2, . . . , n2}. From the de�nition of ν and µ, we obtain for all j ∈ {1, 2, · · · , n2},

|ν(j, 0)| = |λ| = 0 = µj(0) (37)

|ν(j, 1)| = |α(gn−dj/ne)| = µj(1) (38)

Therefore, ν satis�es the �rst condition in De�nition 2.
Next, we show that ν also satis�es the second condition in De�nition 2. Let w

be a Hamming weight of n inputs where 0 ≤ w ≤ n, and N(w) be the substring
read by players throughout n rounds when the Hamming weight of n inputs is
w. Since the substring read in the j-th round can be represented by [α(gn−j)]

w,
we have

N(w) = [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(g0)]w. (39)

Note that fn is symmetric, and therefore it is not necessary to care about the
move order in each round, but it is necessary to care about the Hamming weight
of n inputs. Using N(w), the second condition in De�nition 2 can be rewritten
as follows: For all w ∈ {0, 1, . . . , n},

N(w) ◦ fwn (w) = [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(g0)]w ◦ fwn (w) ≺ α(gn). (40)

Noting that gww(w) = fwn (w) and (19), we have

α(gw) = [α(gw−1)]w ◦ [α(gw−2)]w ◦ · · · ◦ [α(g0)]w ◦ fwn (w). (41)

Hence, N(w) ◦ fwn (w) is written as follows:

N(w) ◦ fwn (w)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)]w ◦ α(gw)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)](w+1)

≺ [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)](w+1)

◦ [α(gw−1)](w+1) ◦ · · · ◦ [α(g0)](w+1) ◦ fwn (w + 1)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+2)]w ◦ [α(gw+1)]w ◦ α(gw+1)

· · ·
≺ [α(gn−1)]w ◦ α(gn−1)

= [α(gn−1)]w+1, (42)

20

where the �rst and the third equalities are due to (41). Therefore, for all w ∈ [0 :
n−1], N(w)◦fwn (w) ≺ [α(gn−1)]w+1 ≺ [α(gn−1)]n ≺ α(gn) holds. In addition, for
w = n, N(w) ◦ fwn (w) = α(gn). Thus, for all w ∈ [0 : n], N(w) ◦ fwn (w) ≺ α(gn).

Therefore, there exists a mapping ν for a PEZ protocol of Construction 1
using an initial string α(gn) such that ν satis�es the two condition in De�nition
2. 2

A.4 Proof of Theorem 3

From (19) and (20), we obtain the length of the initial string |α(gn)| and |α(hn)|
as follows:

|α(gn)| = n|α(gn−1)|+ n|α(gn−2)|+ · · ·+ n|α(g0)|+ 1

= n

n−1∑
i=0

|α(gi)|+ 1, (43)

|α(hn)| = n|α(hn−1)|+ n|α(hn−2)|+ · · ·+ n|α(h0)|+ 1

= n

n−1∑
i=0

|α(hi)|+ 1, (44)

where |α(g0)| = |fwn (0)| = 1 and |α(h0)| = |fwn (n)| = 1. Therefore, we obtain the
same relation between |α(gn)| and |α(hn)|. Summarizing the above, and noting
that an = |α(fn)| = |α(gn)| = |α(hn)|, {ai}ni=0 satis�es the following recurrence
relation:

a0 = 1, an = n

n−1∑
i=0

ai + 1, (45)

which is a special case of (28) in Theorem 1 with s = n − 1. Thus, we obtain
(23).

In addition, the following relations hold:

n∑
i=1

1

i!
<

n−1∑
i=0

1

2i
= 2− (1/2)n < 2 (46)

Therefore, an < 2n · n! + 1, which yields an = O(n× n!). 2

21

