
HEAX: An Architecture for Computing on
Encrypted Data

M. Sadegh Riazi
UC San Diego

mriazi@ucsd.edu

Kim Laine
Microsoft Research

kim.laine@microsoft.com

Blake Pelton
Microsoft

blakep@microsoft.com

Wei Dai
Microsoft Research

wei.dai@microsoft.com

Abstract
With the rapid increase in cloud computing, concerns sur-
rounding data privacy, security, and confidentiality also have
been increased significantly. Not only cloud providers are
susceptible to internal and external hacks, but also in some
scenarios, data owners cannot outsource the computation
due to privacy laws such as GDPR, HIPAA, or CCPA. Fully
Homomorphic Encryption (FHE) is a groundbreaking inven-
tion in cryptography that, unlike traditional cryptosystems,
enables computation on encrypted data without ever de-
crypting it. However, the most critical obstacle in deploying
FHE at large-scale is the enormous computation overhead.
In this paper, we present HEAX, a novel hardware archi-

tecture for FHE that achieves unprecedented performance
improvements. HEAX leverages multiple levels of paral-
lelism, ranging from ciphertext-level to fine-grained modu-
lar arithmetic level. Our first contribution is a new highly-
parallelizable architecture for number-theoretic transform
(NTT) which can be of independent interest as NTT is fre-
quently used in many lattice-based cryptography systems.
Building on top of NTT engine, we design a novel architec-
ture for computation on homomorphically encrypted data.
Our implementation on reconfigurable hardware demon-
strates 164–268× performance improvement for a wide range
of FHE parameters.
CCS Concepts. • Security and privacy; • Hardware;
Keywords. Fully Homomorphic Encryption; FPGAs
ACM Reference Format:
M. Sadegh Riazi, Kim Laine, Blake Pelton, andWei Dai. 2020. HEAX:
An Architecture for Computing on Encrypted Data. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’20),
March 16–20, 2020, Lausanne, Switzerland. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3373376.3378523

1 INTRODUCTION
Cloud computing has, in a short time, fundamentally changed
the economics of computing. It allows businesses to quickly
and efficiently scale to almost arbitrary-sized workloads;
small organizations no longer need to own, secure, and main-
tain their own servers. However, cloud computing comes
with significant risks that have been analyzed in the litera-
ture over the last decade (see [26, 38, 57]). Specifically, many
of these risks revolve around data security and privacy. For
example, data in cloud storage might be exposed to both

outsider and insider threats, and be prone to both intentional
and unintentional misuse by the cloud provider. Recently,
the European Union and the State of California have passed
strong data privacy regulations. In this light, companies and
organizations that possess highly private data are hesitant
to migrate to the cloud, and cloud providers are facing in-
creasing liability concerns.

To mitigate security and privacy concerns, cloud providers
should keep customers’ data encrypted at all times. Symmetric-
key encryption schemes, such as Advanced Encryption Stan-
dard (AES) [22], allow private data to be stored securely in
a public cloud indefinitely. However, unless the customers
share their secret keys with the cloud, the cloud becomes
merely a storage provider.

In 2009, a new class of cryptosystems, called Fully Homo-
morphic Encryption (FHE) [33], was introduced that allows
arbitrary computation on encrypted data. This groundbreak-
ing invention enables clients to encrypt data and send cipher-
texts to a cloud that can evaluate functions on ciphertexts.
Final and intermediate results are encrypted, and only the
data owner who possesses the secret key can decrypt data,
providing end-to-end encryption for the client.
FHE provides provable security guarantees without any

trust assumptions on the cloud provider, and it can be used
to enable several secure and privacy-preserving cloud-based
solutions. For instance, in the context of Machine Learning
as a Service (MLaaS), FHE can be used to perform oblivious
neural network inference [25, 35]: clients send the encrypted
version of their data, the cloud server runs ML models on
the encrypted queries, and returns the result to the clients.
All intermediate and final results are encrypted and can
only be decrypted by the clients. Perhaps, the most critical
obstacle today to deploy FHE at large-scale is the enormous
computation overhead compared to a plaintext counterpart
in which data is not kept confidential.

Most FHE schemes, i.e., BGV [11], BFV [31], and TFHE [18]
schemes, perform exact computation on encrypted data. A
recently proposed FHE scheme called CKKS [17] performs
approximate computation of real numbers and supports effi-
cient truncation of encrypted values. Several works [40, 43]
have shown the benefits of choosing the CKKS scheme over
other schemes when an approximate computation is re-
quired, e.g., in Machine Learning applications. Therefore,
we focus on the CKKS scheme in this paper, even though our
core modules are applicable to most of the FHE schemes.

https://doi.org/10.1145/3373376.3378523

Encode Encrypt

Decode Decrypt

Result

Se
tu

p
Secret Key

Public Key

Evaluation Keys

Client's
Private Data

Private Output

Server's Input Data

Computation on
Encrypted Data

 Addition
 Multiplication
 KeySwitching
 Relinearization
 Rotation

Server-SideClient-Side

Figure 1. The data flow of an end-to-end encrypted computation based on homomorphic encryption.

In this paper, we introduce HEAX (stands for Homomor-
phic Encryption Acceleration): a novel high-performance
architecture for computing on (homomorphically) encrypted
data. We design several optimized core computation blocks
for fast modular arithmetic and introduce a new architecture
for high-throughput Number-Theoretic Transform (NTT).
Building on top of the NTT module we design modules to
perform high-level operations supported by FHE, thus accel-
erating any FHE-based privacy-preserving system.
Prior Art and Challenges. The ciphertext in FHE schemes
is a set (usually a pair) of polynomials with degree n − 1
(vectors of n integers) modulo a big integer. One of the main
challenges of designing an architecture for FHE is that homo-
morphic operations on ciphertexts involve computationally
intensive modular arithmetic on big integers (with several
hundred bits). These operations have convoluted data depen-
dency among different parts of the computation, making it
challenging to design a high-throughput architecture. More-
over, the degree of the underlying polynomials is enormous
(in the order of several thousand). Storing the entire inter-
mediate results on FPGA chip is prohibitive.
Prior work that propose customized hardware for non-

CKKS schemes have taken one of these approaches: (i) De-
signing co-processors that only accelerate certain low-level
ring operations [14, 19, 20, 30, 39, 61]; high-level opera-
tions are performed on the CPU-side, which makes the co-
processors of limited practical use. (ii) Storing intermediate
results on off-chip memory, which significantly degrades
the performance [51] to the extent that it can be worse than
naive software execution [53]. (iii) Designing a hardware for
a fixed modest-sized parameter, e.g., n = 212 [54]. However,
encryption parameters determine the security-level and the
maximum number of consecutive multiplications that one
can perform on ciphertext, both of which are application-
dependent. One of our primary design goals in HEAX is to
have an architecture that can be readily used for a wide range
of encryption parameters. In addition, we propose several
techniques to efficiently store and access data from on-chip
memory and minimize (or eliminate for some parameter sets)
off-chip memory accesses.

Client-Side and Server-Side Computation. Figure 1 illus-
trates the data flow and the operations involved in a typical
application based on FHE. The client encrypts her data and
sends the resulting ciphertext to the cloud. The cloud server
performs the computation on encrypted data and sends the
result back to the client. In order to perform SIMD-style
operations, an encoding step is performed by the client to
embed many numbers in a single ciphertext. Note that en-
coding/decoding and encryption/decryption are performed
on the client-side. These operations are not computationally
expensive; thus, we do not implement customized hardware
for these operations. The operations that are performed by
the server for evaluating a function on ciphertexts are com-
putationally intensive and are the focus of this work.
Contributions. In what follows, we elaborate on our major
contributions in more detail:
• We design a novel architecture for number-theoretic trans-
form which is a fundamental building block – and usu-
ally the computation bottleneck – for many lattice-based
cryptosystems including all FHE schemes. Our design can
process arbitrary-sized polynomials with an adjustable
throughput. We develop several techniques to overcome
the challenges due to the complex data-dependency and
convoluted access patterns within NTT.
• We introduce the first architecture for CKKS homomorphic
encryption. We leverage multi-layer parallelism design
starting from ciphertext-level to fine-grained optimized
modular arithmetic engines. In contrast to the prior art
for other FHE schemes, our architecture can be scaled
for different FPGA chips due to its modularity. Moreover,
HEAX is not custom-designed for specific FHE parameter
set and can be used for a broad range of parameters.
• We provide a proof-of-concept implementation on two In-
tel FPGAs that represent two different classes of FPGAs in
terms of available resources. We implement all high-level
operations supported by CKKS and evaluate our design
for three sets of FHE parameters. Our experimental re-
sults demonstrate more than two orders of magnitude per-
formance improvement compared to heavily-optimized
Microsoft SEAL library running on CPU.

2 PRELIMINARIES
CKKSScheme.The homomorphic property of FHE schemes
enables computation on encrypted data without the access
to the decryption key. For example, adding two ciphertexts
results in a ciphertext that encrypts “summation of the cor-
responding plaintext values”. Multiplication, however, is sig-
nificantly more complicated. It increases the number of poly-
nomials in the resulting ciphertext; requiring an operation,
called relinearization, to transform the ciphertext back to a
pair of polynomials. In order to avoid the underlying plain-
text values in the ciphertext to blow-up, an operation called
rescaling is performed which divides the plaintext value by a
constant number. To enable SIMD-style operations, an encod-
ing step is performed by the client to embed many numbers
in a single ciphertext. CKKS scheme supports rotation in
which the numbers encoded in a ciphertext can be rotated.

Relinearization, rescaling, and rotation operations can
be expressed as a unified operation called Key Switching
(plus certain pre- and/or post-processing steps). Modular
arithmetic operations can be computed more efficiently if
ciphertext coefficients are represented in a Residue Number
System (RNS). The full-RNS variant of the CKKS scheme was
introduced in [16]. Another orthogonal optimization based
on NTT provides a more efficient polynomial multiplication.
In what follows, we provide more background on CKKS.
Notation. Throughout the paper, integers and real numbers
are written in normal case, e.g.q. Polynomials and vectors are
written in bold, e.g. a. Vectors of polynomials and matrices
are written in upper-case bold, e.g. A. We use subscripts to
denote the indices, e.g. ai is the i-th polynomial or row of A.
We assume that n is a power-of-two integer and define a

polynomial ring R = Z[X]/(Xn + 1) whose elements have
degrees at mostn−1 sinceXn = −1 ∈ R. WewriteRq = R/qR
for the residue ring of R modulo an integer q whose elements
have coefficients in [− ⌊(q − 1)/2⌋ , ⌊q/2⌋] ∩ Z. In the actual
computation, we represent coefficients in [0, q − 1] ∩ Z. We
denote by u · v the multiplication of two polynomials where
the product is reducedmoduloXn+1 inR and further reduced
modulo q in Rq . We denote by ⟨u, v⟩ the dot product of
two vectors, which gives

∑
i ui · vi . We denote by u ⊙ v the

coefficient-wise multiplication (u0 · v0, u1 · v1, . . .).
For a real number r , ⌊r⌉ denotes the nearest integer to

r , and ⌊r⌋ is the largest integer smaller than or equal to r .
For an integer a, [a]p denotes the reduction of a modulo an
integer p to [0, p − 1]∩Z. We use a← χ to denote sampling
a according to distribution χ . For a finite set S,U (S) denotes
the uniform distribution on S.
Residue Number System (RNS). There is a well-known
technique to achieve asymptotic/practical improvements in
polynomial arithmetic over Rq with an RNS by choosing
q =

∏L
i=0 pi where pi ’s are pair-wise coprime integers, based

on the ring isomorphism Rq 7→
∏L

i=0 Rpi .

Algorithm 1OptimizedModular Mult. | MulRed(x, y, y ′, p)

Input: x,y ∈ Zp , p < 2w−2, and y ′ = ⌊y · 2w/p⌋
Output: z ← x · y (mod p)
1: z ← x · y (mod 2w) ▷ the lower word of the product
2: t ← ⌊x · y ′/2w ⌋ ▷ the upper word of the product
3: zϵ ← t · p (mod 2w) ▷ the lower word of the product
4: z ← z − zϵ ▷ single-word subtraction
5: if z ≥ p then
6: z ← z − p
7: end if
We denote the RNS representation of an element a ∈ Rq by

A =
(
ai = [a]pi

)
0≤i≤L

∈
∏L

i=0 Rpi . The inverse mapping is

defined based on the formula a =
∑L

i=0 aiπi
[
π−1i

]
pi
(mod q),

where πi =
q
pi
. Multiplications or additions in Rq , denoted

by c = Func(a, b), can be performed on their RNS represen-
tation: ci = Func(ai , bi) in Rpi (in parallel), i = 0, 1, . . . , L.
Gadget Decomposition. Let g ∈ Zd be a gadget vector
and q an integer. The gadget decomposition, denoted by g−1,
is a function from Rq to Rd which transforms an element
a ∈ Rq into A ∈ Rd , a vector of small polynomials such that
a = ⟨g,A⟩ (mod q). We integrate the RNS-friendly gadget
decomposition from [8, 36].
CKKS Subroutines.We briefly review relevant subroutines:
• CKKS.Setup(λ): For a security parameter λ, set a ring size
n, a ciphertext modulus q, a special modulus p coprime to q,
and a key distribution χ and an error distribution Ω over R.
• CKKS.SymEnc(m, sk): Let m ∈ R be a given plaintext and
sk = s ∈ Rqp be a secret key. Sample a ← U (Rqp) and
e ← Ω, compute b = −a · s + e ∈ Rqp , and return the
ciphertext ct = (c0, c1) = (b, a).
• CKKS.KeyGen(): Sample s← χ . Return a secret key sk = s
and a public key pk = SymEnc(0, sk).
• CKKS.KskGen(sk′, sk): Let sk = s ∈ Rqp be the gener-
ated secret key, sk′ = s′ ∈ Rqp be a different key, and a
gadget vector g ∈ Zd . Return a key switching key ksk =

(D0 | D1) ∈ R
(L+2)×2
qℓp , where (d0,i , d1,i) ← SymEnc(дi · s′, s)

for i = 0, 1, . . . , d − 1.
• CKKS.Add(ct0, ct1): Given ciphertexts ct0, ct1 ∈ R2

qℓ en-
crypting pt0, pt1 ∈ R, generate ct′ = ct0+ct1 ∈ R

2
qℓ which

is equivalent to the encryption of pt0 + pt1 ∈ R.
Two frequently used operations in homomorphic evalua-

tion are modular reduction and modular multiplication:
• Mod(x, p): Used to perform modular reduction of a single-
word or double-word integer [9]. For a modulus p with at
mostw bits, given an integer x ∈

[
0, (p − 1)2

]
, precompute

u =
⌊
22w/p

⌋
, and compute z = x (mod p). Mod(a,p) per-

forms Mod(ai , p) for all i = 0, 1, . . . , n − 1.
• MulRed(x, y, y ′, p): For w-bit words and a modulus p <
2w−2, given x, y ∈ Zp and precomputed y ′ = ⌊y · 2w/p⌋,
compute x · y (mod p) according to Algorithm 1.

3 MULT MODULE
In this section, we describe our proposed architectures for
homomorphic multiplication.
3.1 Homomorphic Multiplication Algorithm
This operation is performed in RNS and NTT form. Although
in general ciphertexts can have more than two polynomial
components, in practice, ciphertexts are usually relinearized
and the multiplication is carried out on two components as
discussed next. Nevertheless, our proposed architecture is
generic and supports any number of components.
• CKKS.Mul(ct0, ct1): Given ciphertexts ct0, ct1 ∈ R2

qℓ en-
crypting pt0, pt0 ∈ R, generate ct′ ∈ R3

qℓ according to
Algorithm 2 which encrypts pt0 · pt1 ∈ R.

Algorithm 2 Homomorphic Mult. | CKKS.Mul(ct0, ct1)

Input: ct0 = (Ã0, Ã1), ct1 = (B̃0, B̃1) ∈ (
∏ℓ

i=0 Rpi)
2

Output: ct = (C̃0, C̃1, C̃2) ∈ (
∏ℓ

i=0 Rpi)
3

1: for (i = 0; i ≤ ℓ; i = i + 1) do
2: c̃0,i ← Mod(ã0,i ⊙ b̃0,i , pi) ▷ Dyadic Core
3: c̃1,i ← Mod(ã0,i ⊙ b̃1,i + ã1,i ⊙ b̃0,i , pi)
4: c̃2,i ← Mod(ã1,i ⊙ b̃1,i , pi)
5: end for

3.2 HEAXWord Size and Native Operations
Microsoft SEAL library [56] is developed for x86 architec-
tures with 64-bit native operations. However, on FPGAs, the
bit-width of Digital Signal Processing (DSP) units that per-
form multiplication may vary, hence, it is more efficient to
have a flexible bit-width for native operations. For example,
the two FPGA chips that we have implemented our archi-
tecture on have 27-bit DSP units. Choosing 27-bit or 54-bit
words enables us to use fewer DSPs to do the same com-
putation. Naive construction of a 64-bit multiplier requires
nine 27-bit DSPs. Whereas, a 54-bit multiplier requires only
four. However, by reducing the bit-width of the RNS bases,
one may need to increase the number of RNS bases; roughly
speaking, by a factor of 64

54 ≈ 1.2. In practice, small ciphertext
moduli are usually less than 54 bits and thus, we do not need
to increase the number of moduli.

It is worth-mentioning that leveraging more sophisticated
multi-word multiplication algorithms such as Toom-Cook,
one can implement 64-bit multiplication using five 27-bit
multipliers together with more bit-level and Addition opera-
tions. Overall, by switching from 64-bit native operations to
54-bit, we observe between 1.4–2.25× reduction in the num-
ber of DSP units needed (depending on the HE parameters).
However, to support 54-bit word size, we need to make sure
that all of the ciphertext moduli (pi) are (i) less than 52-bit to
ensure the correctness of Algorithm 1 and (ii) congruent to
1 mod 2n to support NTT as described in Section 4. We have
modified the SEAL library accordingly and precomputed all
of such moduli for different parameter sets.

Ciphertext 1Ciphertext 1Ciphertext 1Ciphertext 1

MULT Module

Dyadic
Core

Dyadic
Core

...

Ciphertext 1

ME 1 ME 2

ME 3

Op1 R1

p

Res

D
ya

d
ic

 C
o

re

R2Op2

HW LW
H

HW LW

carry

HW LW

carry

L

L

CMP

0

-

-

Ciphertext 2
/Plaintext

Dyadic
Core

Dyadic
Core

Ciphertext 1
Ciphertext 1Ciphertext 1
Dyadic

Multiplication
Result

Control Unit

Address
Logic

Control
Logic

...

Figure 2. Architecture of MULT module.
3.3 MULT Architecture
The MULT module can process both ciphertext-ciphertext
(C-C) as well as ciphertext-plaintext (C-P) homomorphic
multiplications. We describe the architecture for C-C mul-
tiplication as C-P is a special case of C-C. Since ciphertexts
are in NTT form by default, homomorphic multiplication is
simply a series of dyadic products on different components.
The MULT module, as depicted in Figure 2, encompasses

ncDYD-many Dyadic Cores; thus, it can compute ncDYD dyadic
multiplication at each clock cycle (nc stands for number
of cores). Each Dyadic core takes as input two polynomial
coefficients (Op1 and Op2), two precomputed constant values
(R1 and R2), and one-word prime p and outputs the result.

Let us denote the number of components in ct0 and ct1
by α and β , respectively. The outcome of homomorphic mul-
tiplication is a ciphertext with α + β − 1 components. Each
ciphertext component is represented in a RNS form. Recall
that in homomorphic multiplication (Algorithm 2), the com-
putation can be carried out independently on each RNS basis.
We leverage this property to reduce BRAM utilization. Min-
imum BRAM utilization is achieved by storing only one
residue of one ciphertext component on FPGA chip. How-
ever, this approach significantly increases data transfer from
CPU to FPGA from (α + β) ·n words to (α · β +min(α, β)) ·n
words because we need to compute all pairwise combina-
tions of ct0 and ct1 components. Thus, we allocate α-many
memories of size n for ct0 and β-many memories for ct1 to
hold one residue of all ciphertext components. As a result, we
achieve O

(
(α + β) ·n

)
data transfer and BRAM consumption.

In order to fully utilize all ncDYD Dyadic cores – regardless
of the values of α and β – we read ncDYD coefficients from one
of the polynomials of ct0 and ct1 at every clock cycle. How-
ever, each unit of on-chip memory, i.e., Block RAMs (BRAM),
only supports one read and one write at each clock cycle. In
order to read many coefficients from one polynomial at each
cycle, we store each polynomial across ncDYD-many parallel
memory blocks that share common read/write address sig-
nals as depicted in Figure 2. Let us call the aggregation of
one row among different BRAMs as a memory element (ME).
Therefore, at every cycle, one memory element (ME1/ME2)
is read from ct0/ct1 memory banks and the result (ME3) is
written to a separate output memory.

4 NTT MODULE
NTT calculation as well as its inverse (INTT) are the most
computationally intensive low-level operations. Polynomial
multiplication is more efficiently performed by transforming
polynomials and using the convolution theorem. In what
follows, we provide an overview on NTT algorithm followed
by our proposed architecture.

4.1 Algorithms
Computing c = a · b ∈ Rp is equivalent to computing the
negacyclic convolution of their coefficient vectors in Znp : c j =∑j

i=0 aibj−i −
∑n−1

i−j+1 aibj−i+n (mod p), j = 0, 1, . . . , n − 1.
For a largen it is asymptotically better to use the convolution
theorem and perform a specific form of fast Fourier trans-
form, i.e., NTT, over a finite field. Polynomials are kept in
NTT form to reduce the number of NTT/INTT conversions.
Fast NTT algorithms are well studied in lattice-based cryp-
tography. We adapt the algorithms in [44] which analyzes
fast NTT algorithms and introduces specific optimizations
for negacyclic convolution. For a ring degree n, we choose a
prime number p = 1 mod 2n such that there exists a 2n-th
primitive root of unityψ , i.e.,ψn = −1 mod p.
• NTTp (a): Given a ∈ Znp , compute ã ∈ Znp such that ãj =∑n−1

i=0 aiψ
(2i+1)j , according to Algorithm 3.

An important operation that is used during key switching
and rescaling is called flooring which can be formalized as:
• Floor(C̃,p): Given C̃, the RNS and NTT form of c ∈ Rqℓp ,
generate C̃′, the RNS and NTT form of c′ =

⌊
p−1 · c

⌋
∈ Rqℓ

according to Algorithm 4.

4.2 NTT Architecture
In what follows, we use the term NTT to refer to both NTT
and INTT operations/modules for simplicity. At the end of
this section, we discuss the differences between these two
modules. As can be seen from Algorithm 5, in KeySwitch,
NTT is frequently used in different parts of this algorithm.
However, the number of required transformations is not
consistent in different parts of the Algorithm. In order to
have a fully-pipelined architecture, we allocate one NTT
module per each NTT operation in Algorithm 5. However,
the relative throughput-rate among different NTT instances
depends on the chosen FHE parameters, which is application-
dependent. As a result, we need to have a generic architecture
such that the throughput can be adjusted as needed. This,
in turn, is translated to the number of NTT cores that is
dedicated to a given NTT module.
NTT Core. Figure 3 shows the internal architecture of an
NTT core. Each core accepts two coefficients (cin.a and cin.b),
one twiddle factor (w), one precomputed value (wp), and a
prime number (p) as inputs and computes two transformed
coefficients as the outputs (cout.a and cout.b). The modular
arithmetic operations within NTT core are all pipelined to
maximize the throughput of the overall NTT module.

Algorithm 3 Number-Theoretic Transform (NTT) | NTTp (a)

Input: a ∈ Znp , p ≡ 1 mod 2n, Y ∈ Znp storing powers ofψ
in bit-reverse order, and Y′ = ⌊Y · 2w/p⌋.

Output: : ã← NTTp (a) in bit-reverse ordering.
1: for (m = 1; m < n; m = 2m) do
2: for (i = 0; i < m; i + +) do
3: for (j = i ·n

m ; j < (2i+1)n2m ; j + +) do
4: v = MulRed(aj+ n

m
, ym+i , y

′
m+i , p)

5: aj+ n
m
= aj −v (mod p)

6: aj = aj +v (mod p) ▷ NTT Core
7: end for
8: end for
9: end for
10: ã← a

Algorithm 4 RNS Flooring | Floor(C̃,p)

Input: C̃ = (c̃0, . . . , c̃ℓ+1) ∈ Znp0 × · · · × Z
n
pℓ × Z

n
p .

Output: C̃′ = (c̃′0, . . . , c̃
′
ℓ
) ∈ Znp0 × · · · × Z

n
pℓ .

1: a← INTTp (c̃ℓ+1) ▷ INTT Module
2: for (i = 0; i ≤ ℓ; i = i + 1) do
3: r← Mod(a, pi)
4: r̃← NTTpi (r) ▷ NTT Module
5: c̃′i ← c̃i − r̃ (mod pi)

6: c̃′i ← Mod
([
p−1

]
pi
· c̃′i , pi

)
▷ MS Module

7: end for
Figure 3 illustrates the full architecture of NTT module.

From the functionality perspective, the architecture follows
Algorithm 3. At a high-level, the NTT module computes
NTT of a polynomial of size n in log n stages. In each stage,
the module computes the transformed result of 2ncNTT coef-
ficients, thus, requiring n

2ncNTT
steps to finish one stage.

On the three corners of the NTT architecture exist data
memory, twiddle factor memories, and the output memory.
At every cycle, one ME is fetched from data memory and is
stored in MEe and MEo registers every other cycles, respec-
tively. For each input coefficient of NTT cores, i.e., cℓin.a or
cℓin.b, a set of multiplexers select the correct coefficient from
MEe and MEo (depicted as light blue boxes in Figure 3).
The throughput is proportional to the number of NTT

cores. We denote the number of NTT cores as ncNTT. Ideally
at each clock cycle, and given full utilization of NTT cores,
2ncNTT coefficients are transformed. In order to read and
write 2ncNTT coefficients at each clock cycle, we store each
polynomial across many parallel BRAMs that share common
read/write address signals as depicted in Figure 3 (similar
to the MULT module). This is possible thanks to the aligned
access pattern in NTT: while access pattern changes during
NTT, the number of consecutive accesses to the polynomial
is always a power of two. Next, we discuss the details of the
access patterns in NTT followed by our proposed solution
to select each coefficient efficiently.

Output
Memory

...

MUX 1MUX 1

MEo

Twiddle
Factors

Memories
ME 3

Data
Memory

MUX 1

M
20

k
B

R
A

M

Stage
Counter NTT

Core

Control Unit

...

x[0]

x[2 ncNTT] x[4 ncNTT - 1]

...

x[n - 2 ncNTT] x[n - 1]

MEe

MEs

MUX 2

MUX 4

MUX 3

MEw

MUX 5

Step
Counter

Address
Logic

Control
Logic

Twiddle
Factor

Memories

NTT
Core

NTT
Core

NTT
Core

ME 4 ME 5

MUX 6

MUX 7

M
20

k
B

R
A

M

M
20

k
B

R
A

M

M
20

k
B

R
A

M

M
20

k
B

R
A

M

...
...

...

NTT Module

...

M
20

k
B

R
A

M

w[ncNTT - 1]w[0]

w[ncNTT] w[2 ncNTT - 1]

w[n - ncNTT] w[n - 1]

M
20

k
B

R
A

M

M
20

k
B

R
A

M

...
...

Tw
id

d
le

 F
ac

to
r

M
em

o
ri

es
 L

ay
o

u
t

M
20

k
B

R
A

M

...
...

x[2 ncNTT - 1]

Figure 3. Architecture of NTT module.

4.3 Access Pattern
One of the main challenges in realizing the proposed NTT
architecture is that the access pattern of the coefficients
changes from one stage to another. We categorize the access
patterns into two groups as illustrated in Figure 4. During
the first (log n− logncNTT−1) stages, each pair of coefficients
for each NTT core are stored in different MEs. Let us call
these Type 1 stages. For instance, consider n = 4096 and
ncNTT = 8, during the first step of the first stage of NTT,
x[0] (in ME0) and x[2048] (in ME256) should be passed to
the first NTT core. More precisely, polynomial coefficient
x[j] (j = 0, 1, ... , n2 − 1) is passed together with x[j + n

2]

to a given NTT core. In general, during ith stage, x[j +m]
(j = 0, 1, ... , n

21+i − 1) is passed along with x[j +m + n
21+i]

wherem ∈ { h ·n2i | h = 0, 1, ..., i}. The address of the ME that
is fetched in Type 1 stages is computed in Address Logic. As
soon as n

2i = 2ncNTT, the inter-ME data dependency no longer
exists, and pairs of coefficients are selected from within each
ME independently, i.e., Type 2 stages.

In Type 1 stages, coefficients within two fetched MEs are
always accessed in the same order. For example, the second
coefficient in each ME is always passed to the second NTT
core. However, in Type 2 stages, a coefficient at specific loca-
tion of ME is passed to a different NTT core or even different
inputs of an NTT core. Therefore, coefficients have to be
reordered to be passed to NTT cores. Later in this section,
we discuss an efficient method for this task.

The access pattern for twiddle factors, i.e., Y and Y′ in
Algorithm 3, is different. At stage i , only 2i unique values of
twiddle factors, starting at index 2i of twiddle polynomial, are
used. Since in the worst-case scenario, ncNTT unique twiddle
factors are used in a single step of NTT, we store twiddle
factors in batches of size ncNTT in parallel.

4.4 Reordering Coefficients and Optimal MUXs
During Type 1 stages, once the ME is fetched, passing each
coefficient within ME to the right NTT core (and right input
wire) is straightforward and it can be summarized as follows:

cℓin.a = MEe [ℓ + (j mod 2) · ncNTT]

cℓin.b = MEo[ℓ + (j mod 2) · ncNTT]

where cℓin.a (respectively cℓin.b) is the input coefficient a (re-
spectively b) of ℓth NTT core, MEe (resp. MEo) is the mem-
ory element at “even” (“odd”) read cycles, i.e., j mod 2 = 0
(j mod 2 = 1) where j is the step number. In other words,
cℓin.a (resp. c

ℓ
in.b) is selected from one of the two positions

from MEe (resp. MEo) using multiplexer #3 (MUX3).
In Type 2 stages, first one of the MEe or MEo is selected

using 2ncNTT-many two-to-one multiplexers (MUX1) and is
stored in MEs registers. Next, cℓin.a (or c

ℓ
in.b) receive data from

one of the coefficients in MEs depending on the value of ℓ
and i . The naive approach is to use one multiplexer per each
coefficient input of every NTT core that selects one number
from 2ncNTT fetched numbers.We denote suchmultiplexer as
MUX2ncNTT . As a result, we need 2ncNTT-many MUX2ncNTT

to pass coefficients to NTT cores and the same number of
MUXs to reorder them to be written back to the memory.

These MUXs not only make the placement and route pro-
cess more challenging but also consume enormous number
of registers and logic blocks. Moreover, scaling the NTT
module to higher number of cores (> 32) is inefficient due
to super-linear resource consumption with respect to ncNTT.
In our case, synthesis tools failed to place and route the re-
quired resources to realize these MUXs. In contrast, we take
advantage of the observation that NTT cores’ inputs have
a different number of possibilities from which they select the
correct coefficient at a given stage. For example, during Type

Stage 0 Stage 1 Stage 2 Stage 3

Type 1 Type 2

ME0

ME1

ME2

ME3

Figure 4.Access pattern of Type 1 and Type 2 stages in NTT.
2 stages, c0in.a only receives coefficients from the first word
of the fetched ME, regardless of the stage or step number.
In the worst-case scenario, there are logncNTT different

indices from which a coefficient should be accessed from
MEs for a particular NTT core input. Therefore, instead of
using (4 ·ncNTT)-many MUX2ncNTT , we instantiate (4 ·ncNTT)-
many MUXs of size at most MUXlog 2ncNTT . These optimal
multiplexers are shows as MUX2 in Figure 3. The selection
signal of these MUXs is set to s = log n − 1 − i (i being the
stage number). The corresponding inputs (MUX{cℓin.a}(α)
and MUX{cℓin.b}(α)) from which a coefficient should be se-
lected are assigned based on the following formula:

=

MEs [(ℓ& (2s − 1)) + ((i >> s) << (s + ℓ))]

MEs [(ℓ& (2s − 1)) + ((i >> s) << (s + ℓ)) + 2s]

where MUX{cℓin.a}(α) is the α-th input wire of the MUX that
selects the corresponding input coefficient from MEs for the
ℓ-th core, thus, 0 ≤ α < logncNTT. Finally, depending on the
stage type, MUX4 selects the output of MUX2 or MUX3.

A similar set of MUXs (MUX6 and MUX7) are used to reorder
the data back before storage. Final results (ME4 and ME5) will
be stored in the data memory during two consecutive clock
cycles; except for the the last stage where they will be stored
in output memory. The optimized multiplexers for twiddle
factors is designed in a similar manner. The optimal multi-
plexers are an integral part of the design of NTT module.
For instance, this optimization reduces the number of regis-
ters used for a 8-core NTT module from 224,000 to 97,000.
Note that to synthesize the NTT module, register is the most
limited resource (see Section 7), thus, without the proposed
optimal multiplexers, one cannot scale the design properly.

4.5 NTT High-Level Pipeline
Storing polynomial coefficients across parallel memory blocks
enables simultaneous access to multiple coefficients. How-
ever, the NTT cores cannot be fully utilized due to the fol-
lowing reason. During Type 1 stages, coefficients that should

be passed to each NTT core are not located in the same ME.
Therefore, two different MEs should be read before the com-
putation can start which introduces 50% bubble in the NTT
core pipeline. More precisely, first log n− logncNTT−1 stages
face this problem. Given that NTT modules consume most
of the FPGA resources, this issue reduces the throughput of
the entire design to (log n − logncNTT − 1)/log n.
To address this problem, we propose to double the size

of MEs and store 2ncNTT consecutive coefficients in each
memory element. Meanwhile, we reduce the depth of the
memories that store the polynomial by half. Even though it
is still necessary to read two MEs before starting the com-
putation, we can now transform two MEs in the next two
cycles and store them back in the memory. This modification
results in the full utilization of NTT core. In order to have
minimal BRAM usage, all of the reads and writes during
different NTT stages are inplace, and no additional BRAM is
used to store intermediate values.
4.6 Memory Utilization and Word-Packing
Storing multiple polynomial coefficients in multiple par-
allel memory units (M20K) causes memory block under-
utilization both depth-size andwidth-size. Consider a general
scenario where β-many numbers are stored in parallel:
Depth-wise: Each M20K memory unit holds 512-many 40-bit
wide words and at any cycle, one word can be read from or
written into the memory. When fewer than 512 words are
stored in the memory, the rest of the memory rows cannot
be used to store a secondary polynomial since at any point
in time we are reading/writing one word associated with the
first polynomial. As long as n

β ≥ 512, M20K is fully utilized.
This inequality generally holds in our architecture except
when n = 212 (smallest polynomial size) and ncNTT = 16
whichmakesM20K half utilized. However, this is not an issue
since our design is not BRAM-constrained when n = 212.
Width-wise: As the polynomial-size (n) grows, our design
becomes more and more BRAM-constrained to the extent
that at n = 214, there is not enough BRAM on the chip;
thus, we have to use DRAM as well (we will discuss this
in more detail in Section 6). Therefore, it is essential that
the polynomials are efficiently stored in memory. By storing
each coefficient in a separate physical BRAM, we will only
reach 54

2·40 = 68% utilization. In contrast, we pack multiple
coefficients and store them in fewer M20K units as shown in
Figure 3 reaching memory utilization of β · 54/(⌈β · 54/40⌉ ·
40). For β = 8, BRAM utilization will reach more than 98%.
Performance.Computing theNTT of a polynomial requires
log n stages and each stage takes n

2ncNTT
cycles. Hence, it

takes n log n
2ncNTT

cycles to compute one NTT.
INTT Module. This module is identical to the NTT module
except: (i) the NTT core is replaced by the INTT core, (ii) the
control unit operates in the reverse order of stage numbers,
and (iii) twiddle factors correspond to the INTT calculations.

5 KEYSWITCH MODULE
In this section, we discuss the KeySwitch algorithm followed
by our proposed architecture and the design details.

5.1 Algorithm
Key switching is a technique to make a ciphertext decrypt-
able with a different secret key homomorphically. Various
gadget decomposition methods can be adopted to balance
noise growth and execution time. Given qd−1, the product of
coprime integers p0, . . . , pd−1, and qℓ divides qd−1, define
gadget decomposition Rqℓ 7→ Rd as g−1(a) =

(
[a]pi

)
0≤i≤d−1

,

and gadget vector as g =
(
πi

[
π−1i

]
pi

)
0≤i≤d−1

where πi =
qd−1
pi

. This choice of gadget decomposition contributes to
a fast key switching and high noise growth. With the spe-
cial modulus p and a rescaling at the end of key switching,
explained in [15], key switching is almost noise-free.
• KeySwitch(ct, ksk): Given a ciphertext ct = (c0, c1) ∈
R2
qℓ decryptable with secret key s and a key switching key

ksk = (D0 | D1) ∈ R(L+2)×2qℓp , where | appends one column
vector to another, generate a new ciphertext ct′ = (c′0, c

′
1) ∈

R2
qℓ decryptable with secret key s′. (see Algorithm 5).

5.2 KeySwitch Architecture
KeySwitch is the most computationally intensive high-level
operation in CKKS. It has several important roles, includ-
ing relinearization and ciphertext rotation. Figure 5 illus-
trates the KeySwitch architecture, which from the function-
ality perspective corresponds to Algorithm 5. To reduce on-
chip memory usage, our design takes one polynomial (one
RNS component) at a time and outputs two polynomials.
Recall that in CKKS, all polynomials are in NTT form by
default. Thus, once the input polynomial is written into the
input memory, it has to be converted back to the original
domain. This process is performed using the first INTT mod-
ule (INTT0). Next, the polynomial is transformed to the NTT
form for all other primes (including the special modulus).
Since per each INTT computation, we have to perform

k NTT, the throughput of the NTT module(s) has to be k-
times the throughput of INTT0. Here, k is the number of
RNS components of ciphertext modulus, i.e., L + 1. This
requirement can be realized in two different ways: (i) having
one NTT module with k-many more cores than INTT0 or
(ii) having multiple NTT module with fewer cores per each
module. We denote this NTT module (or a set of them) as
NTT0. We will discuss the trade-offs later in this section. In
Figure 5, the second approach (using more than one NTT
module) is chosen for n = 213 and k = 4 parameter set.
Once the NTT computations are finished, the DyadMult

module computes the dyadic product between the output of
NTT modules and the relinearization/Galois keys according
to Algorithm 5. Recall that a dyadic product on the origi-
nal input polynomial is also needed in KeySwitch; thus, a

Algorithm 5 Key Switching | KeySwitch(ct, ksk)

Input: ct = (C̃0, C̃1) ∈ (
∏ℓ

i=0 Rpi)
2, and ksk =((

D̃i ,0

)
0≤i≤L+1

�� (D̃i ,1

)
0≤i≤L+1

)
∈ (p

∏L
i=0 Rpi)

(L+2)×2

Output: ct′ = (C̃′0, C̃
′
1) ∈ (

∏ℓ
i=0 Rpi)

2

1: for (i = 0; i ≤ ℓ; i = i + 1) do
2: a← INTTpi (c̃1,i) ▷ INTT Module
3: for (j = 0; j ≤ ℓ; j = j + 1) do
4: if i , j then
5: b← Mod(a, pj)
6: b̃← NTTpj (b) ▷ NTT Module
7: else
8: b̃← ã
9: end if
10: c̃′′0, j ← c̃′′0, j + b̃ ⊙ d̃i ,0, j (mod pj)

11: c̃′′1, j ← c̃′′1, j + b̃ ⊙ d̃i ,1, j (mod pj) ▷ Dyadic Mod.
12: end for
13: b← Mod(a, p)
14: b̃← NTTp (b) ▷ NTT Module
15: c̃′′0,ℓ+1 ← c̃′′0,ℓ+1 + b̃ ⊙ d̃0,i ,L+1 (mod pj)

16: c̃′′1,ℓ+1 ← c̃′′1,ℓ+1 + b̃ ⊙ d̃1,i ,L+1 (mod pj) ▷ Dyd. M.
17: end for
18: ct′← (Floor(C̃′′0 ,p), Floor(C̃

′′
1 ,p)) ▷ INTT/NTT/MS

19: ct′← CKKS.Add(ct, ct′)

separate Dyadic module is used. After dyadic product com-
putation, the result is stored in the corresponding memory
banks. There are two sets of BRAM banks, each bank con-
taining the RNS components of one polynomial.

The computation flow described above repeats for k-many
times (one per each RNS component). The result is accumu-
lated in the BRAM banks. After k iterations, the second part
of the computation – usually referred to as Modulus Switch-
ing (developed in [12]) – is performed. In Modulus Switching
which executes Floor, the polynomial corresponding to the
special modulus has to be transformed back to the time do-
main (by INTT1) and then be transformed using every other
k primes (by NTT1). The aforementioned process is indepen-
dently performed for both sets of banks. Next, the polynomial
is multiplied by the inverse value of the associated prime
and subtracted from the result of the first half of KeySwitch
computation. The MSmodule embeds multiplication and sub-
traction operations. The output of KeySwitch is stored as
two sets of k polynomials referred to as “Output Poly 0/1”.
5.3 Balancing Throughput
Our primary goal in designing KeySwitch architecture is to
have a fully end-to-end pipelined module that can process
many key switching operations simultaneously without ex-
cessive FIFOs between different components. Thus, we have
to tune the throughput of each component carefully. As we
discussed in Section 4, this is one of the reasons to design a
flexible architecture for NTT, the throughput of which can
be adjusted. According to Algorithm 5, per each initial INTT,

KeySwitch Module

Twiddle
Factors

...

Twiddle
Factors

O
u

tp
u

t
M

emB
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

NTT

NTT

Twiddle
Factors

...

Twiddle
Factors

NTT

O
u

tp
u

t
M

em
O

u
tp

u
t

M
em

O
u

tp
u

t
M

em

DyadMult

DyadMult

DyadMult

Input PolyDyadMult

DyadMult

Twiddle
Factors

...

Relin/Galois
Keys

...

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

...

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

INTT

INTT

O
u

tp
u

t
M

em

INTT

O
u

tp
u

t
M

em

O
u

tp
u

t
M

em

NTT

O
u

tp
u

t
M

em

NTT

O
u

tp
u

t
M

em

NTT

Twiddle
Factors

...

Twiddle
Factors

Twiddle
Factors

...

Twiddle
Factors

MS

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

MS

Input Poly
(in NTT form) Output Poly 0

(in NTT form)

Output Poly 1
(in NTT form)

BRAM

BRAM (Read-Only)

NTT Core

INTT Core

Dyadic Core

Figure 5. Architecture of KeySwitch module.

we have to compute k NTTs. In general, let’s denote the
number of NTT0 asm0 (assuming a power of two number).
Thus, we have: ncNTT0 = k · ncINTT0/m0.

Next, we compute the number of cores needed for DyadMult.
Recall that it takes (n log n)/(2ncNTT0) cycles for NTT mod-
ule to finish the computation. The DyadMult module has to
compute the product of NTT output with two different sets
of keys (ksk = D0 | D1). It takes (2n)/ncDYD cycles to per-
form dyadic multiplication on the output of the NTT module.
Since in general, log n is not a power of two, the throughputs
do not perfectly match. We make sure that the throughput
of Dyadic module is greater than that of (or equal to) the
NTT module by satisfying the following inequality:

2n
ncDYD

⩽
n log n

2ncNTT0
⇒ ncDYD =

⌈
4ncNTT0
log n

⌉
The throughput of INTT1 modules can be adjusted by

assigning ncINTT1 =
⌈
ncINTT0/k

⌉
. One can also determine

ncNTT1 = ncINTT0 andncMS =
⌈
(2ncNTT1)/log n

⌉
. For two FPGA

chips that we have implemented HEAX on, the optimal archi-
tecture parameters are computed and summarized in Table 5.
5.4 KeySwitch Ops. and Synchronization
Figure 6 shows the high-level pipeline of KeySwitch mod-
ule for n = 213 (third row of Table 5). All of the modules
– and their internal components – are pipelined, and the
throughput is balanced. As can be seen, multiple key switch-
ing operations are computed simultaneously in different
pipeline stages (in lighter colors). The fifth Dyadic module
that operates on input polynomial BRAM is synchronized
with the rest of the Dyadic modules even though the compu-
tation can be started as soon as the input poly is available.
The reason is that during each of the k iterations of Dyadic
product, each module computes and accumulates the results
by reading/writing from/to a separate BRAM bank. This en-
ables us to avoid any memory replication considering that

these memory banks are prohibitively large. However, this
delayed computation introduces a dependency problem in
the pipeline referred to as “Data Dependency 1”. By the time
the k-th Dyadic module starts the computation, the content
of input poly is overridden by the next key switching opera-
tion. As a result, we allocate enough BRAM to hold f1-many
polynomials where f1 =

⌈
3 + ncINTT0

ncNTT0

⌉
. Similarly, MS module

receives inputs from DyadMult modules. This is marked as
“Data Dependency 2” in Figure 6. Thus, we need to allocate
more memory to store the output of the DyadMult modules
in f2 different buffers. The value of f2 can be computed as:
f2 =

⌈
1 +m0 ·

ncINTT1
ncNTT1

+
ncINTT1 ·log n

ncMS

⌉
.

First INTT
Module

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

N

I

D

N

N

N

D

D

D

D

INTT

N

N

N

N

N

N

N

N

MM MM

MM MM

INTT INTTINTT

First Layer of
NTT Modules

First Layer of
DyadMult Modules

Second Layer of
INTT Modules

Second Layer of
NTT Modules

DyadMult Module
for Input Poly

Final Multiplication
and Subtraction

k iterations within a
single KeySwitch

next
KeySwitch

previous
KeySwitch

...

D

Data Dependency 1

Data Dependency 2

Time

O
p

er
at

io
n

s

I INTT

N NTT

D Dyadic Mult

M Mult & Sub

Figure 6. High-level pipeline of KeySwitch module.

6 SYSTEM-VIEW and DATA FLOW
In this section, we discuss a higher-level view of the com-
putation and elaborate on the data flow. Figure 7 shows a
system-view comprising host CPU and FPGA Board which
are connected via Peripheral Component Interconnect ex-
press (PCIe) bus. On FPGA board, exist the FPGA chip as well
as off-chip DRAM memory connected via DDR interface.

...

MULT

KeySwitch

NTT

DRAM
Chn 1

Control
Unit

DRAM
Chn 2

DRAM
Chn 3

DRAM
Chn 4

Shell

INTT

D
R

A
M

F
P

G
A

 C
h

ip

D
D

R

FPGA Board

SEAL

Memory Map

Schedular

Application 1

PCIe

SEAL

Application k

HOST CPU

BRAM

Figure 7. System-view of HEAX.

6.1 On-Chip vs. Off-Chip Memory Accesses
There are two main ways to store data on FPGA board: (i)
off-chip DRAM with several Gigabytes of capacity but high
response delay and (ii) on-chip BRAM with few megabits of
capacity but very fast response time and high throughput.
As has been shown by prior art [53, 54], leveraging off-chip
memory to store intermediate results significantly reduces
the overall performance due to high delays between subse-
quent reads and writes. One of our primary design goals is
to avoid off-chip memory access as much as possible. We
have introduced several techniques to use minimal on-chip
memory, re-use many BRAM units, together with data com-
paction (see Section 4 and Section 5). As a result, no off-chip
memory access is performed for n = 212 parameter set on
both Arria 10 and Stratix 10 FPGAs; which is one of the main
reasons for our unprecedented performance improvements.

For n = 213 parameter set, there is sufficient on-chip mem-
ory on Stratix 10 chip. Unfortunately, for n = 214, there is
not enough BRAM available for our design, and as a result,
we have to move some part of the data to off-chip memory.
In order to minimize the effect of off-chip memory accesses,
we choose to put key switching keys (ksk) in DRAM be-
cause of two main reasons: (i) the size of these keys grow
very rapidly with HE parameters. In general, the size of ksk
grows as O

(
n k2

)
, and roughly speaking, k grows linearly

with n which results in (almost) O
(
n3
)
. This is the highest

growth rate compared to all other memory components, in-
cluding twiddle factors which grow as O

(
n k

)
. (ii) ksk is only

read once per each KeySwitch. Note that each unique ele-
ment of twiddle factors is read k times during one KeySwitch
operation; thus, twiddle factors are less suitable candidates.

We distribute the ksk among four different DRAM banks
such that at any point in time, the full capacity of off-chip
memory bandwidth is used. In order to further mask the ef-
fect of DRAM accesses, we leverage the burst mode in which

a long sequence of data is read at the same time on each
channel. The entire process of reading ksk from DRAM is
pipelined to minimize the drop in throughput of KeySwitch.
It is worth-mentioning that DRAM bandwidth is sufficient
to match the throughput of KeySwitch. Per each KeySwitch,
two sets of ksk have to be streamed to FPGA chip. Each of
these sets, hold k · (k + 1)-many vectors of size n. Substi-
tuting n = 214, k = 8, and 64-bit per each word results in
approximately 151 megabits. We have to stream this volume
of data in 383 microseconds (please see Table 8). Therefore,
DRAM bandwidth should be higher than 49.28 GBps, which
is indeed lower than the measured bandwidth of all four
channels combined.
In addition to storing ksk, we use DRAM for one more

purpose. In some applications, it is more efficient to store
the result of computation in DRAM instead of sending them
back to CPU (in case these results are going to be used soon).
The address at which the result is stored is held on the CPU
side and is shown as “Memory Map”. The memory map is
used to point to the ciphertext(s) that are stored in DRAM
to be used later on without involving PCIe.

6.2 Data Transfer on PCIe
In order to maximize the utilization of computation blocks
on FPGA, we need to interleave computation and data trans-
fer between FPGA and CPU. We divide this design process
into two parts: CPU-side and FPGA-side. On the CPU-side,
we need to sequence and batch multiple operations in the
program (that uses SEAL) and start the data transfer process
on PCIe using multiple threads. On the FPGA-side, we need
to allocate the necessary buffers to store the received data.
In what follows, we explain these two parts in more detail.
Sequencing and Batching. Transferring data on PCIe in-
volves three main steps: (i) a memcpy is issued to copy the
content of the polynomial to pinned memory pages, (ii) CPU
signals FPGA that the data is ready, and (iii) FPGA reads the
data from PCIe. In order to reduce the data copy time, Direct
Memory Access (DMA) is used. However, even by relying on
DMA, the maximum throughput that PCIe can provide de-
pends on the message size and the number of simultaneous
data transfer requests. Therefore, we transfer (at least) a com-
plete polynomial (215 − 217 Bytes) in each request. Moreover,
we implement a multi-threaded data transfer mechanism
that uses eight threads to interleave eight separate polyno-
mials at a time to maximize the PCIe throughput and avoid
unnecessary bubbles in the computation pipeline.
Double and Quadruple Buffering. For the MULT module,
it suffices to double-buffer the input such that CPU writes to
one of these buffers and FPGA reads from the other one. For
KeySwitch module, however, we need to perform quadruple
buffering due to the data dependency on input polynomial as
discussed in Section 5. In order to make sure buffers are not
overridden before they are read, we stop the writing process
if the buffer has not been read yet.

7 IMPLEMENTATION and EXPERIMENTS
7.1 Experimental Setup
In this section, we discuss the resource consumption of
HEAX components as well as the performance comparison
with CPUs and GPUs. To illustrate the adaptability of HEAX,
we implement HEAX on two FPGAs which represent two
different classes of computational resources. Table 1 summa-
rizes the breakdown of resources of each FPGA chip. There
are three major types of resources that are available:
• Digital Signal Processing (DSP) units that are able to per-
form one 27-bit or two 18-bit multiplications.
• Adaptive Logic Modules (ALM) are core logic units with
two combinational adaptive look-up tables, a two-bit full
adder, and four 1-bit Registers (REG).
• Block RAM (BRAM) units that are on-chip memories. Each
M20K unit of BRAM holds 512-many 40-bit values.

Board Chip
Chip Resources DRAM

DSP REG ALM BRAM #chnl. BW
bits #M20K (GBps)

Board-A Arria 10 GX 1150 1518 1.71M 427K 53Mb 2.7K 2 34
Board-B Stratix 10 GX 2800 5760 3.73M 933K 229Mb 11.7K 4 64

Table 1. Summary of FPGA boards’ specifications.

7.2 FHE Parameters and Security Guarantees
The security guarantees of HEAX directly derives from the
CKKS scheme [17] since the functionality of the scheme
is not altered. The security parameters for which we have
instantiated HEAX are borrowed from the HE security stan-
dards [2] for 128-bit classical security. Changing the under-
lying word-size in HEAX reduces the number of DSPs used
but does not affect the security since the total bitwidth of the
ciphertext modulus is preserved [2]. Similarly, we leveraged
the RNS-level parallelism which is proven to be secure [16].
We evaluate our design on a wide range of FHE parame-

ters: from ciphertext polynomial size (n) of 212 and 109-bit
ciphertext modulus (⌊logqp⌋ + 1) to 214 with 438-bit cipher-
textmodulus.We refer to these parameter sets as Set-A, Set-B,
and Set-C, respectively (summarized in Table 2). Recall that
k is the number of small RNS components of ciphertext mod-
ulus. Parameters with 128-bit post-quantum security require
slightly smaller ciphertext moduli. We select as few prime
moduli for RNS as possible for superior performance [36].
Note that parameter sets corresponding to 211 (or lower) are
almost never used in practice due to the multiplication depth
of 1 (or zero). Choosing 215 (or higher) results in enormous
computation blow-up and are also rarely used in practice.

HE Param. Set n ⌊logqp⌋ + 1 k

Set-A 212 109 2
Set-B 213 218 4
Set-C 214 438 8

Table 2. The HE parameter sets used in this paper. n is the
ciphertext polynomial size, qp is the ciphertext modulus, and
k is the number of RNS components of q.

7.3 Resource Consumption
Computation Cores. Table 3 provides a detailed resource
consumption of Dyadic, NTT, and INTT computation cores
as well as the number of pipeline stages (delay) for each core.

Core Name DSP REG ALM #Stages

Dyadic 22 4526 1663 23
NTT 10 6297 2066 50
INTT 10 5449 2119 49

Table 3. Resource consumption of each computation core.
Basic Modules. Table 4 provides a detailed resource con-
sumption of differentmodules (with various number of cores).
The BRAM utilization is reported for Set-B parameters (n =
213). The BRAM bits usage in each module does not depend
on the number of cores but the number of M20K units does.
The reason is that more coefficients are stored in parallel
M20K units. In the last column, the number of cycles that
takes for each module to process a polynomial (or pair of
polynomials in case of MULT module) is reported.

Module #Cores DSP REG ALM BRAM Cycles#bits #M20K

A10 Shell - 1 79203 39222 886496 144 -
S10 Shell - 2 86984 45612 1201096 173 -

MULT
4 88 42817 15795

11
04
38
4 65 1024

8 176 61878 22160 65 512
16 352 93594 35257 164 128
32 704 181503 62157 293 64

NTT
4 40 61670 22316

15
14
49
6 86 6144

8 80 96919 36336 185 3072
16 160 196205 67865 380 1536
32 320 387357 142300 725 768

INTT
4 40 63917 22700

15
14
49
6 86 6144

8 80 104575 37331 185 3072
16 160 182478 68645 380 1536
32 320 384267 144957 724 768

Table 4. Resource consumption of basic modules.
Complete Design. Table 6 provides a breakdown of FPGA
resource consumption for different HE parameter sets. The
complete design encompasses the KeySwitch module along
with the MULT module. For standalone NTT requests from
CPU, the NTT modules within KeySwitch is used.
7.4 Performance
Critical Paths andMaximumClock Frequency.Wehave
analyzed the critical paths of our design and have eliminated
such paths during many design iterations reaching the max-
imum clock frequency of 275 MHz and 300 MHz for Arria
10 and Stratix 10 FPGA chips, respectively.
Scalability. One of design principles of HEAX is that it
can automatically be instantiated at different scales with
no manual tuning, enabling cloud providers to seamlessly
use HEAX based on the underlying hardware resource. To
illustrate this, we have instantiated HEAX for the same HE
parameters (Set-A) but at two different scales (see Table 5).
The up-scaled version on Stratix 10 consumes (close to) twice
the resources (Table 6) and provides twice the throughput
compared to Arria 10 instantiation (see Table 8).

FPGA Device HE Param. Set KeySwitch Architecture Parameter Set

Arria10 n = 212 (Set-A) 1 × INTT(8) → 2 × NTT(8) → 3 × Dyad(4) → 2 × INTT(4) → 2 × NTT(8) → 2 ×MS(2)

Stratix10
n = 212 (Set-A) 1 × INTT(16) → 2 × NTT(16) → 3 × Dyad(8) → 2 × INTT(8) → 2 × NTT(16) → 2 ×MS(4)

n = 213 (Set-B) 1 × INTT(16) → 4 × NTT(16) → 5 × Dyad(8) → 2 × INTT(4) → 2 × NTT(16) → 2 ×MS(4)

n = 214 (Set-C) 1 × INTT(8) → 4 × NTT(16) → 5 × Dyad(8) → 2 × INTT(1) → 2 × NTT(8) → 2 ×MS(4)

Table 5. KeySwitch architecture for different HE parameter sets.

FPGA Device HE Param. Set DSP (%) REG (%) ALM (%) BRAM bits (%) BRAM #M20K (%) Freq. (MHz)

Arria10 Set-A 1185 (78) 723188 (42) 246323 (58) 26596320 (48) 1731 (64) 275

Stratix10
Set-A 2018 (35) 1554005 (42) 582148 (62) 26907592 (11) 3986 (34) 300
Set-B 2610 (45) 1976162 (53) 698884 (75) 201332624 (84) 10340 (88) 300
Set-C 2370 (41) 1746384 (47) 599715 (64) 182847524 (76) 9329 (80) 300

Table 6. Resource consumption of HEAX for different HE parameter sets.

FPGA Device HE Param. Set NTT INTT Dyadic MULT
CPU HEAX Speed-up CPU HEAX Speed-up CPU HEAX Speed-up

Arria10 Set-A 7222 89518 12.4 7568 89518 11.8 36931 1074219 29.1

Stratix10
Set-A 7222 195313 27.0 7568 195313 25.8 36931 1171875 31.7
Set-B 3437 90144 26.2 3539 90144 25.5 18362 585938 31.9
Set-C 1631 41853 25.7 1659 41853 25.2 9117 292969 32.1

Table 7. Performance comparison of HEAX with CPU. Number of operations per second for CKKS low-level operations.

FPGA Device HE Param. Set KeySwitch MULT+ReLin
CPU HEAX Speed-up CPU HEAX Speed-up

Arria10 Set-A 488 44759 91.7 420 44759 106.6

Stratix10
Set-A 488 97656 200.5 420 97656 232.5
Set-B 97 22536 232.3 84 22536 268.3
Set-C 16 2616 163.5 15 2616 174.4

Table 8. Performance comparison of HEAX with CPU. Number of operations per second for CKKS high-level operations.

Performance Comparison with GPUs. To the best of our
knowledge, there does not exist any work based on FPGAs
or GPUs for CKKS scheme. In Table 9, we compare the per-
formance of our “NTT architecture” on Stratix10 (which
holds ten 16-core NTT modules) with two NVIDIA GPUs [1].
Not only HEAX consumes significanlty less power but it is
36–81× faster compared to data-center GPUs.

Polynomial
Size

HEAX
(10×16-cores)

Tesla-K80
(2496-cores)

Tesla-P100
(3584-cores)

Performance
Comparison

212 1953130 25641 27777 70–76×
213 901440 20833 25000 36–43×
214 418530 5181 11494 36–81×

Table 9. Performance comparison (operations per second)
of HEAX with NVIDIA GPUs for NTT computation.
Performance Comparison with CPUs. We compare the
performance of HEAXwith Microsoft SEAL V3.3 [56], which
is an FHE library for BFV and CKKS schemes that has un-
dergone several years of performance optimizations. We
measure the performance of SEAL on a single-threaded Intel
Xeon(R) Silver 4108 running at 1.80 GHz; which is a simi-
lar CPU used in prior art [54]. The single-thread baseline
is used by prior art for measuring the performance (non-
CKKS schemes) [54]. In addition, SEAL is thread-safe but
not multithreaded due to the complex data dependencies,
hence, we cannot compare to a multi-threaded execution. In
general, CKKS evaluation functions do not have a balanced

parallelizable computation flow and many parts are not par-
allelizable at all. For instance, the “Modulus Switching” is not
parallelizable leading to the Data-Dependency 2 (Figure 6).
This is the reason why we cannot allocate a single NTT/INTT
module in KeySwitch and use it over time for different steps.
Instead, we design an end-to-end pipelined design and use
the chip-area proportional to the computation overhead.

Table 7 shows the performance results (number of opera-
tions per second) of HEAX for low-level operations and its
comparison with SEAL. Results are reported for processing
a single polynomial (in case of NTT/INTT) or pair of polyno-
mials (MULT). On Stratix 10, 16-core modules are instantiated.
On Arria 10, a 16-core MULT and 8-core NTT/INTTmodules are
used (see Table 5). Note that we report the performance re-
sults for low-level operation merely for completeness. These
operations are rarely used in isolation and are instead used as
part of high-level operations. For high-level operations, i.e.,
Rotation and Relinearization (using KeySwitch) and a com-
plete ciphertext multiplication (using MULT and KeySwitch),
the performance improvements are more pronounced as
shown in Table 8. As can be seen, HEAX achieves close to two
orders of magnitude performance improvement using Arria
10 compared to CPU (first row of Table 8). On a more pow-
erful FPGA, i.e., Intel Stratix 10 (Board-B), HEAX achieves
164–268× performance improvements among various HE
parameter sets (second to fourth rows of Table 8).

8 RELATEDWORK
The CKKS scheme is one of the most recently proposed FHE
schemes that allows homomorphic operations on fixed-point
numbers; making it the prime candidate for machine learning
applications. To the best of our knowledge, no hardware
architecture has been proposed for the CKKS scheme, and in
this paper, we propose the first of its kind. As a result, it is
not fair to compare the performance of HEAX with previous
designs that focus on non-CKKS schemes. In what follows,
we briefly review the research effort related to FPGA, ASIC,
and GPU-based acceleration for non-CKKS schemes.
HardwareAcceleration for non-CKKS Schemes. In [53],
a system based on FPGA is proposed for BFV scheme to pro-
cess ciphertext polynomial sizes of 215. However, due to the
massive off-chip data transfer, their design does not yield
superior performance compared to CPU execution.
Perhaps, the closest work to ours is by Roy et al. [54] in

which authors propose an architecture for BFV scheme and
implement their design on Xilinx Zynq UltraScale+ MPSoC
ZCU102. In order to avoid off-chip memory accesses, authors
focus on n = 212 ciphertext sizes and report 13× speed-up
(using two instances of their proposed processors) compared
to the FV-NFLlib [32] executing on an Intel i5 processor run-
ning at 1.8 GHz. However, compared to a more optimized
Microsoft SEAL library [55], FV-NFLlib is 1.2× slower [7]. In
addition, our design is significantly more modular and scal-
able. We have instantiated HEAX for three different set of HE
parameters with no manual tuning (polynomial sizes of 212,
213, and 214). Moreover, HEAX has a multi-layer pipelined
design and is drastically more efficient, offering more than
two orders of magnitude performance improvement com-
pared to Microsoft SEAL running on Intel Xeon Silver 4108
at 1.8 GHz (note that similar processor is used compared
with [54] running at identical frequency).
FPGA-based Co-Processors. Designing co-processors has
also been studied in the literature. These co-processors work
in conjunction with CPUs and accelerate one or more of
the homomorphic operations [20, 37, 39, 41, 46, 47]. In [46]
and [37, 47], authors focus on designing hardware architec-
ture for the encryption operation only, by leveraging Karat-
suba and Comba multiplication algorithms, respectively. In
[20], a Homomorphic Encryption Processing Unit (HEPU) is
proposed for LTV scheme [45]. Authors focus on accelerat-
ing the Chinese Remainder Transform (CRT) for power-of-2
cyclotomic rings and report 3.2–4.4× performance improve-
ments for homomorphic multiplication using Xilinx Virtex-7.
Large-Integer Multiplication Hardware Acceleration.
A line of research focuses on designing very large integer
multipliers (768K-bit to 1.18M-bit multiplications) – based on
FPGAs or ASICs – that can be used to accelerate homomor-
phic operations [13, 28, 29, 61, 62]. In [14], a large-integer
multiplier and a Barrett modular reduction are proposed that
can accelerate HE operations by 11×.

GPU-based Acceleration. GPU is an alternative comput-
ing platform to accelerate evaluation functions [6, 21, 24,
42, 48, 59]. Wang et al. [59] have proposed the first GPU
acceleration of FHE that targets Gentry-Halevi [34] scheme.
Subsequent improvements are reported in [60]. In [58], a
GPU-based implementation of BGV scheme [11] is intro-
duced. In [6], a comprehensive study is reported for multi-
threaded CPU execution as well as GPU for the BFV scheme.
To the best of our knowledge, there is no GPU-accelerated
implementation of the CKKS scheme. GPUs normally offer
less performance per watt of power than FPGAs by design.
Therefore, FPGAs are more suitable candidates for high-
performance and low-power secure computation.
Acceleration of YASHEandLTVSchemes. Several works
[19, 20, 23, 27, 49, 50] focus on improving the performance of
YASHE [10] and LTV [45] schemes or their variants. These
constructions – based on an overstretched NTRU assump-
tion – are subject to a subfield lattice attack [3] and are no
longer secure. In [52], an architecture for YASHE scheme is
proposed that provides 25× performance improvement over
CPU. However, authors assume unlimited memory band-
width which renders off-chip memory accesses free of cost
and is not a realistic assumption. Pöppelmann et al. [51]
have also proposed an architecture for YASHE scheme. Since
ciphertexts are prohibitively large to be stored on on-chip
memory, authors propose to leverage the idea of Cached-
NTT [4, 5] to reduce off-chip memory accesses. In contrast,
HEAX relies on the ring isomorphism property and perform
independent computation on RNS components. This, in turn,
allows us to avoid off-chip memory accesses for small HE
parameters and minimize such accesses for large parameters.

9 CONCLUSION
In this paper, we introduced a novel set of architectures
for Fully Homomorphic Encryption (FHE). To the best of
our knowledge, HEAX is the first architecture and fully-
implemented hardware acceleration for the CKKS FHE scheme.
CKKS is the prime candidate for machine learning on en-
crypted data due to floating-point support of this scheme.
The components designed inHEAX can also be used for other
lattice-based cryptosystems and other FHE/HE schemes. The
proposed architecture provides a unique degree of flexibility
that can be readily adjusted for various FPGA chips. As a
proof-of-concept, we have implemented HEAX on two differ-
ent FPGAs with contrasting hardware resources. Moreover,
unlike prior FPGA-based acceleration for BFV scheme, our
design is not tied to a specific FHE parameter set. We evalu-
ate HEAX on a wide range of FHE parameters demonstrating
more than two orders of magnitude performance improve-
ments. We hope that HEAX paves the way for large-scale
deployment of privacy-preserving computation in clouds.
Acknowledgments
We would like to thank our shepherd Dr. Timothy Sherwood
and our reviewers for their valuable suggestions.

References
[1] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin

Mi Mi Aung. 2018. High-performance FV somewhat homomorphic en-
cryption on GPUs: An implementation using CUDA. IACR Transactions
on Cryptographic Hardware and Embedded Systems (2018), 70–95.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-
wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan. 2018. Homomorphic
Encryption Security Standard. Technical Report. HomomorphicEncryp-
tion.org, Toronto, Canada.

[3] Martin R. Albrecht, Shi Bai, and Léo Ducas. 2016. A Subfield Lat-
tice Attack on Overstretched NTRU Assumptions - Cryptanalysis of
Some FHE and Graded Encoding Schemes. In Advances in Cryptology
– CRYPTO 2016, Part I (Lecture Notes in Computer Science), Matthew
Robshaw and Jonathan Katz (Eds.), Vol. 9814. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA, 153–178. https://doi.org/10.1007/978-
3-662-53018-4_6

[4] Bevan M Baas. 1999. An approach to low-power, high-performance, fast
Fourier transform processor design. Ph.D. Dissertation. Citeseer.

[5] Bevan M Baas. 2005. A generalized cached-FFT algorithm. In Proceed-
ings.(ICASSP’05). IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2005., Vol. 5. IEEE, v–89.

[6] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj
Veeravalli, and Kurt Rohloff. 2019. Implementation and Performance
Evaluation of RNS Variants of the BFV Homomorphic Encryption
Scheme. IEEE Transactions on Emerging Topics in Computing (2019),
1–1. https://doi.org/10.1109/TETC.2019.2902799

[7] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin
Mi Mi Aung. 2018. High-Performance FV Somewhat Homomorphic
Encryption on GPUs: An Implementation using CUDA. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2018, 2
(2018), 70–95. https://doi.org/10.13154/tches.v2018.i2.70-95 https:
//tches.iacr.org/index.php/TCHES/article/view/875.

[8] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent
Zucca. 2016. A Full RNS Variant of FV Like Somewhat Homomorphic
Encryption Schemes. In SAC 2016: 23rd Annual International Workshop
on Selected Areas in Cryptography (Lecture Notes in Computer Science),
Roberto Avanzi and Howard M. Heys (Eds.), Vol. 10532. Springer,
Heidelberg, Germany, St. John’s, NL, Canada, 423–442. https://doi.
org/10.1007/978-3-319-69453-5_23

[9] Paul Barrett. 1987. Implementing the Rivest Shamir and Adleman Pub-
lic Key Encryption Algorithm on a Standard Digital Signal Processor.
In Advances in Cryptology – CRYPTO’86 (Lecture Notes in Computer
Science), Andrew M. Odlyzko (Ed.), Vol. 263. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA, 311–323. https://doi.org/10.1007/3-
540-47721-7_24

[10] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013.
Improved Security for a Ring-Based Fully Homomorphic Encryp-
tion Scheme. In 14th IMA International Conference on Cryptogra-
phy and Coding (Lecture Notes in Computer Science), Martijn Stam
(Ed.), Vol. 8308. Springer, Heidelberg, Germany, Oxford, UK, 45–64.
https://doi.org/10.1007/978-3-642-45239-0_4

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Lev-
eled) fully homomorphic encryption without bootstrapping. In ITCS
2012: 3rd Innovations in Theoretical Computer Science, Shafi Goldwasser
(Ed.). Association for Computing Machinery, Cambridge, MA, USA,
309–325. https://doi.org/10.1145/2090236.2090262

[12] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Efficient Fully
Homomorphic Encryption from (Standard) LWE. In 52nd Annual
Symposium on Foundations of Computer Science, Rafail Ostrovsky
(Ed.). IEEE Computer Society Press, Palm Springs, CA, USA, 97–106.
https://doi.org/10.1109/FOCS.2011.12

[13] Xiaolin Cao, Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, and Neil
Hanley. 2013. Accelerating Fully Homomorphic Encryption over the
Integers with Super-size Hardware Multiplier and Modular Reduction.
IACR Cryptology ePrint Archive 2013 (2013), 616.

[14] Xiaolin Cao, Ciara Moore, Máire O’Neill, Neil Hanley, and Elizabeth
O’Sullivan. 2014. High-speed fully homomorphic encryption over the
integers. In International Conference on Financial Cryptography and
Data Security. Springer, 169–180.

[15] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019. Efficient
Multi-Key Homomorphic Encryption with Packed Ciphertexts with
Application to Oblivious Neural Network Inference. Cryptology ePrint
Archive, Report 2019/524. https://eprint.iacr.org/2019/524.

[16] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. 2019. A Full RNS Variant of Approximate Homomorphic
Encryption. In SAC 2018: 25th Annual International Workshop on Se-
lected Areas in Cryptography (Lecture Notes in Computer Science), Carlos
Cid and Michael J. Jacobson Jr: (Eds.), Vol. 11349. Springer, Heidelberg,
Germany, Calgary, AB, Canada, 347–368. https://doi.org/10.1007/978-
3-030-10970-7_16

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017.
Homomorphic Encryption for Arithmetic of Approximate Numbers.
In Advances in Cryptology – ASIACRYPT 2017, Part I (Lecture Notes
in Computer Science), Tsuyoshi Takagi and Thomas Peyrin (Eds.),
Vol. 10624. Springer, Heidelberg, Germany, Hong Kong, China, 409–
437. https://doi.org/10.1007/978-3-319-70694-8_15

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. 2016. Faster Fully Homomorphic Encryption: Bootstrapping
in Less Than 0.1 Seconds. InAdvances in Cryptology – ASIACRYPT 2016,
Part I (Lecture Notes in Computer Science), Jung Hee Cheon and
Tsuyoshi Takagi (Eds.), Vol. 10031. Springer, Heidelberg, Germany,
Hanoi, Vietnam, 3–33. https://doi.org/10.1007/978-3-662-53887-6_1

[19] David Bruce Cousins, John Golusky, Kurt Rohloff, and Daniel Sumorok.
2014. An FPGA co-processor implementation of homomorphic encryp-
tion. In 2014 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1–6.

[20] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. 2016. Design-
ing an FPGA-accelerated homomorphic encryption co-processor. IEEE
Transactions on Emerging Topics in Computing 5, 2 (2016), 193–206.

[21] cuFHE [n.d.]. cuFHE. https://github.com/vernamlab/cuFHE. Vernam
Group.

[22] Joan Daemen and Vincent Rijmen. 2013. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media.

[23] Wei Dai, Yarkın Doröz, and Berk Sunar. 2014. Accelerating NTRU based
homomorphic encryption using GPUs. In 2014 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–6.

[24] Wei Dai and Berk Sunar. 2016. cuHE: A Homomorphic Encryption
Accelerator Library. In Cryptography and Information Security in the
Balkans, Enes Pasalic and Lars R. Knudsen (Eds.). Springer Interna-
tional Publishing, Cham, 169–186.

[25] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2018. Chet:
Compiler and runtime for homomorphic evaluation of tensor programs.
arXiv preprint arXiv:1810.00845 (2018).

[26] Tharam Dillon, Chen Wu, and Elizabeth Chang. 2010. Cloud comput-
ing: issues and challenges. In 2010 24th IEEE international conference
on advanced information networking and applications. Ieee, 27–33.

[27] Yarkın Doröz, Erdinç Öztürk, Erkay Savaş, and Berk Sunar. 2015. Ac-
celerating LTV based homomorphic encryption in reconfigurable hard-
ware. In International Workshop on Cryptographic Hardware and Em-
bedded Systems. Springer, 185–204.

[28] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. 2013. Evaluating the
hardware performance of a million-bit multiplier. In 2013 Euromicro
Conference on Digital System Design. IEEE, 955–962.

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.13154/tches.v2018.i2.70-95
https://tches.iacr.org/index.php/TCHES/article/view/875
https://tches.iacr.org/index.php/TCHES/article/view/875
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1109/FOCS.2011.12
https://eprint.iacr.org/2019/524
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://github.com/vernamlab/cuFHE

[29] Yarkın Doröz, Erdinç Öztürk, and Berk Sunar. 2014. Accelerating fully
homomorphic encryption in hardware. IEEE Trans. Comput. 64, 6
(2014), 1509–1521.

[30] Yarkın Doröz, Erdinç Öztürk, and Berk Sunar. 2014. A million-bit mul-
tiplier architecture for fully homomorphic encryption. Microprocessors
and Microsystems 38, 8 (2014), 766–775.

[31] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical
Fully Homomorphic Encryption. Cryptology ePrint Archive, Report
2012/144. http://eprint.iacr.org/2012/144.

[32] FV-NFLlib [n.d.]. FV-NFLlib. https://github.com/CryptoExperts/FV-
NFLlib. CryptoExperts.

[33] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices.
In 41st Annual ACM Symposium on Theory of Computing, Michael
Mitzenmacher (Ed.). ACM Press, Bethesda, MD, USA, 169–178. https:
//doi.org/10.1145/1536414.1536440

[34] Craig Gentry and Shai Halevi. 2011. Implementing gentry’s fully-
homomorphic encryption scheme. In Annual international conference
on the theory and applications of cryptographic techniques. Springer,
129–148.

[35] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying
neural networks to encrypted data with high throughput and accuracy.
In International Conference on Machine Learning. 201–210.

[36] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved
RNS Variant of the BFV Homomorphic Encryption Scheme. In Topics in
Cryptology – CT-RSA 2019 (Lecture Notes in Computer Science), Mitsuru
Matsui (Ed.), Vol. 11405. Springer, Heidelberg, Germany, San Francisco,
CA, USA, 83–105. https://doi.org/10.1007/978-3-030-12612-4_5

[37] Shakirah Hashim and Mohammed Benaissa. 2018. Accelerating Inte-
ger Based Fully Homomorphic Encryption Using Frequency Domain
Multiplication. In International Conference on Information and Com-
munications Security. Springer, 161–176.

[38] Jay Heiser and Mark Nicolett. 2008. Assessing the security risks of
cloud computing. Gartner report 27 (2008), 29–52.

[39] Cedric Jayet-Griffon, M-A Cornelie, Paolo Maistri, PH Elbaz-Vincent,
and Régis Leveugle. 2015. Polynomial multipliers for fully homo-
morphic encryption on FPGA. In 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). IEEE, 1–6.

[40] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018.
Secure Outsourced Matrix Computation and Application to Neural
Networks. In ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 1209–
1222. https://doi.org/10.1145/3243734.3243837

[41] Alhassan KHEDR and Glenn Gulak. 2019. Homomorphic processing
unit (HPU) for accelerating secure computations under homomorphic
encryption. US Patent App. 10/298,385.

[42] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. 2016.
SHIELD: Scalable Homomorphic Implementation of Encrypted Data-
Classifiers. IEEE Trans. Comput. 65, 9 (Sep. 2016), 2848–2858. https:
//doi.org/10.1109/TC.2015.2500576

[43] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee
Cheon. 2018. Logistic regression model training based on the approxi-
mate homomorphic encryption. BMC Medical Genomics 11, 4 (11 Oct
2018), 83. https://doi.org/10.1186/s12920-018-0401-7

[44] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number
Theoretic Transform for Faster Ideal Lattice-Based Cryptography. In
CANS 16: 15th International Conference on Cryptology and Network
Security (Lecture Notes in Computer Science), Sara Foresti and Giuseppe
Persiano (Eds.), Vol. 10052. Springer, Heidelberg, Germany, Milan, Italy,
124–139. https://doi.org/10.1007/978-3-319-48965-0_8

[45] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012.
On-the-fly multiparty computation on the cloud via multikey fully
homomorphic encryption. In 44th Annual ACM Symposium on Theory

of Computing, Howard J. Karloff and Toniann Pitassi (Eds.). ACM
Press, New York, NY, USA, 1219–1234. https://doi.org/10.1145/2213977.
2214086

[46] Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre,
Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier.
2017. A high-speed accelerator for homomorphic encryption using
the karatsuba algorithm. ACM Transactions on Embedded Computing
Systems (TECS) 16, 5s (2017), 138.

[47] Ciara Moore, Máire O’Neill, Neil Hanley, and Elizabeth O’Sullivan.
2014. Accelerating integer-based fully homomorphic encryption using
Comba multiplication. In 2014 IEEE Workshop on Signal Processing
Systems (SiPS). IEEE, 1–6.

[48] nuFHE NuCypher. nuFHE. https://github.com/nucypher/nufhe.
[49] Erdinç Öztürk, Yarkın Doröz, Erkay Savaş, and Berk Sunar. 2016. A

custom accelerator for homomorphic encryption applications. IEEE
Trans. Comput. 66, 1 (2016), 3–16.

[50] Erdinç Öztürk, Yarkin Doröz, Berk Sunar, and Erkay Savas. 2015. Ac-
celerating Somewhat Homomorphic Evaluation using FPGAs. IACR
Cryptology ePrint Archive 2015 (2015), 294.

[51] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian
Macias. 2015. Accelerating homomorphic evaluation on reconfigurable
hardware. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 143–163.

[52] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dim-
itrov, and Ingrid Verbauwhede. 2015. Modular hardware architec-
ture for somewhat homomorphic function evaluation. In International
Workshop on Cryptographic Hardware and Embedded Systems. Springer,
164–184.

[53] Sujoy Sinha Roy, Kimmo Järvinen, Jo Vliegen, Frederik Vercauteren,
and Ingrid Verbauwhede. 2018. HEPCloud: An FPGA-based multicore
processor for FV somewhat homomorphic function evaluation. IEEE
Trans. Comput. 67, 11 (2018), 1637–1650.

[54] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren,
and Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Par-
allel Architecture for Homomorphic Computing on Encrypted Data.
In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 387–398.

[55] SEAL [n.d.]. Microsoft SEAL (release 2.3). https://github.com/
Microsoft/SEAL. Microsoft Research, Redmond, WA.

[56] SEAL 2019. Microsoft SEAL (release 3.3). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

[57] Subashini Subashini and Veeraruna Kavitha. 2011. A survey on security
issues in service delivery models of cloud computing. Journal of
network and computer applications 34, 1 (2011), 1–11.

[58] WeiWang, Zhilu Chen, andXinmingHuang. 2014. Accelerating leveled
fully homomorphic encryption using GPU. In 2014 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2800–2803.

[59] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar.
2012. Accelerating fully homomorphic encryption using GPU. In 2012
IEEE conference on high performance extreme computing. IEEE, 1–5.

[60] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar.
2013. Exploring the feasibility of fully homomorphic encryption. IEEE
Trans. Comput. 64, 3 (2013), 698–706.

[61] Wei Wang and Xinming Huang. 2013. FPGA implementation of a
large-number multiplier for fully homomorphic encryption. In 2013
IEEE International Symposium on Circuits and Systems (ISCAS2013).
IEEE, 2589–2592.

[62] Wei Wang, Xinming Huang, Niall Emmart, and Charles Weems. 2013.
VLSI design of a large-number multiplier for fully homomorphic en-
cryption. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 22, 9 (2013), 1879–1887.

http://eprint.iacr.org/2012/144
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1109/TC.2015.2500576
https://doi.org/10.1109/TC.2015.2500576
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://github.com/nucypher/nufhe
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	3 MULT MODULE
	3.1 Homomorphic Multiplication Algorithm
	3.2 HEAX Word Size and Native Operations
	3.3 MULT Architecture

	4 NTT MODULE
	4.1 Algorithms
	4.2 NTT Architecture
	4.3 Access Pattern
	4.4 Reordering Coefficients and Optimal MUXs
	4.5 NTT High-Level Pipeline
	4.6 Memory Utilization and Word-Packing

	5 KEYSWITCH MODULE
	5.1 Algorithm
	5.2 KeySwitch Architecture
	5.3 Balancing Throughput
	5.4 KeySwitch Ops. and Synchronization

	6 SYSTEM-VIEW and DATA FLOW
	6.1 On-Chip vs. Off-Chip Memory Accesses
	6.2 Data Transfer on PCIe

	7 IMPLEMENTATION and EXPERIMENTS
	7.1 Experimental Setup
	7.2 FHE Parameters and Security Guarantees
	7.3 Resource Consumption
	7.4 Performance

	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References

