
Subversion-Resistant Commitment Schemes:

De�nitions and Constructions

Karim Baghery1,2 [0000−0001−7213−8496]

1 imec-COSIC, KU Leuven, Leuven, Belgium
2 University of Tartu, Tartu, Estonia

karim.baghery@kuleuven.be

Abstract. A commitment scheme allows a committer to create a com-
mitment to a secret value, and later may open and reveal the secret value
in a veri�able manner. In the common reference string model, (equivocal)
commitment schemes require a setup phase which is supposed to be done
by a third trusted party. Recently, various news is reported about the
subversion of trusted setup phase in mass-surveillance activities; strictly
speaking about commitment schemes, recently it was discovered that the
SwissPost-Scytl mix-net uses a trapdoor commitment scheme, that al-
lows undetectably altering the votes and breaking users' privacy, given
the trapdoor [Hae19,LPT19]. Motivated by such news and recent stud-
ies on subversion-resistance of various cryptographic primitives, this re-
search studies the security of commitment schemes in the presence of a
maliciously chosen commitment key. To attain a clear understanding of
achievable security, we de�ne a variety of current de�nitions called sub-
version hiding, subversion equivocality, and subversion binding. Then we
provide both negative and positive results on constructing subversion-
resistant commitment schemes, by showing that some combinations of
notions are not compatible while presenting subversion-resistant con-
structions that can achieve other combinations.

Keywords: Commitment schemes, subversion security, reducing trust,
CRS model

1 Introduction

The notion of commitment [Blu81] is one of the fundamental and widely used
concepts in cryptography. A commitment scheme allows a committer to create a
commitment c to a secret value of m, and later open the commitment c in a veri-
�able manner [GQ88,Ped92]. The procedure of generating c is called committing
phase, and revealing or giving a proof-of-knowledge of messagem and some secret
information used in committing phase (precisely, randomnesses) called opening.
In the Common Reference String (CRS) model, commitment schemes require a
setup phase that is done by a trusted third party [CIO98], and it is shown that
when we have a trusted setup phase, one-way functions are su�cient to construct
Non-Interactive (NI) commitment schemes [Nao91,CIO98,HILL99]. During last
decades, we have seen various elegant NI commitment schemes that are deployed
as a sub-protocol in wide range of cryptographic applications, to refer some, such

as contract signing [EGL85], multi-party computation [GMW87], zero-knowledge
proofs [GMW91,Dam90],commit-and-proof systems [GS08,Lip16,DGP+19], e-
voting [Gro05,Wik09], shu�e arguments [GL07,Wik09,FLZ16], blockchains and
their by-products (e.g. cryptocurrencies [BCG+14,FMMO18] and smart con-
tracts [KMS+16]), and many other sensitive practical applications.

On the security of setup phase. Along with developing various crypto-
graphic primitives in sensitive applications, recently there have been various
attacks or �aw reports on setup phase of cryptographic systems that rely on
public parameters supposed to be generated honestly. In some cases, attacks are
caused by maliciously (or incorrectly) generated public parameters or modifying
cryptographic protocol speci�cations to embed backdoors, with intent to violate
the security of the main system [BBG+13,PLS13,Gre14,Gab19,LPT19,Hae19].
Particularly about commitment schemes, recently two research [Hae19,LPT19]
independently discovered that the implementation of shu�e argument in the
SwissPost-Scytl mix-net uses a trapdoor commitment, which allows breaking
security of the system without being detected. Indeed, the used commitment
scheme has a trapdoor that having access to that, one can alter the votes or can
break voters' privacy. So, given such a trapdoor, a malicious party can do an un-
detectable vote manipulation by an authority who sets up the mixing network1.

To deal with such concerns, a particular sub�eld of cryptography was pro-
posed which is known as kleptography [YY96,YY97,Sim83,Sim85,RTYZ16] that
allows an adversary to replace a cryptographic algorithm with an altered ver-
sion with intend of subverting its security. To construct practical systems secure
against such adversary, one needs to develop protocols that can guarantee se-
curity against parameter subversion. Meaning that new cryptographic systems
should provide their pre-de�ned security with trusted parameters, but even if the
parameters subverted, the system can guarantee a level of security. As a com-
mon way, some works [GO07,GGJS11,KKZZ14] use MPC protocols for malicious
parameter generation which mitigates the trust on the setup phase. Initiated
by Bellare et al. [BPR14], recently subversion security has gotten considerable
attention with focus on di�erent cryptographic primitives including symmet-
ric encryption schemes [BPR14], signature schemes [AMV15], non-interactive
zero-knowledge proofs [BFS16,ABLZ17,Fuc18,Bag19], and public-key encryp-
tion schemes [ABK18]. Each of them considers achievable security in a partic-
ular family of primitives under subverted parameters. NI commitment schemes
in the CRS model are another prominent family of primitives that require a
trusted setup phase [Ped92,DF02,GOS06,Gro09,Gro10,Lip12]. As such commit-
ment schemes are deployed in various areas of cryptography, so their security is
not only important on itself but also security of other practical systems relies
on it (e.g. guaranteeing the security of shu�ing in mix-net of SwissPost-Scytl).
Thus, their security under subverting public commitment key can have a crucial
e�ect on the security of the bigger systems.

1 More details in https://people.eng.unimelb.edu.au/vjteague/SwissVote and
https://e-voting.bfh.ch/publications/2019/

2

https://people.eng.unimelb.edu.au/vjteague/SwissVote
https://e-voting.bfh.ch/publications/2019/

Our Contribution. We study the resistance of NI commitment schemes in
the case of subverting commitment key and present de�nitions, negative results,
along with some Subversion-Resistant (Sub-R) constructions as positive results.
As already mentioned, commitment schemes in the common reference string
model require a public commitment key, a.k.a. public parameters, that is sup-
posed to be generated honestly by a third party and publicly shared among
committers and veri�ers. Basically, committers and veri�ers have to trust the
setup phase. To mitigate the trust on setup phase, an alternative is to use multi-
party computation (MPC) protocols [GO07,GGJS11,KKZZ14]. But in general,
the question of what happens if public commitment key is generated maliciously,
has got little attention. In many practical applications, by default end-users ad-
mit that a trusted third party will generate the public commitment key and
will publicly share it with all users. Beside the fact that in many cases �nding a
publicly-accepted trusted party is di�cult, a natural question can be what would
happen if the public commitment key will be generated maliciously? From a com-
mitter perspective, can we still achieve the expected security guarantees if the
trusted party colludes with the veri�er? Similarly, from a veri�er's point of view,
what would happen if a malicious key generator colludes with the committer,
such that the committer will have access to secret information of setup phase.
Actually these are the main questions that we address in this research. To get
a clear understanding of achievable security, we �rst present new variations of
current de�nitions, that are de�ned to guarantee the security of committers and
veri�ers even if the setup phase of a commitment scheme is subverted. Presenting
subversion-resistant de�nitions for commitment schemes is the �rst contribution
of this paper.

Recall that in the CRS model, an equivocal NI commitment scheme Πcom

(e.g. [Gro10,Lip12]) is expected to satisfy, 1) Hiding: It is hard for any PPT
adversary A, given an honestly generated commitment key ck, to generate two
messages m0 /=m1 from message spaceM such that A can distinguish between
their corresponding commitments c0 and c1. 2) Binding: It is hard for any PPT
adversary A, given an honestly generated commitment key ck, to come up with
a collision (c,m0,op0,m1,op1), such that op0 and op1 are valid opening values of
two di�erent pre-images m0 /= m1 for c, 3) Equivocality: Given the trapdoor tk
associated with ck, it is possible to create a fake commitment that can be opened
successfully. Equivocality implies hiding, as a commitment is indistinguishable
from an equivocal commitment which can be opened to any message.

Commitment schemes with subverted parameters. We modify original
de�nitions of commitments in [Gro09,Gro10,Lip12] and present a variation of
them for Sub-R equivocal commitments. The key change in new de�nitions is
that the adversary generates ck. When A generates ck, it can retain some trap-
doors tk as a "backdoor" associated with ck. In section 3.1, we formalize the fol-
lowing requirements for Sub-R commitments: 1) Sub-hiding: (subversion hiding)

Even if a PPT A generates ck, if the ck is well-formed 3, it is hard for A to gener-

3 Intuitively, the generated commitment key ck should have a well-de�ned structure.

3

Table 1: Summary of results. Each row refers to achievability of selected notions.

Standard Subversion Resistant
hiding equivocal binding sub-hiding sub-equivocal sub-binding result in

negative ✓ ✓ Thm. 1

positive 1 ✓ ✓ ✓ ✓ ✓ Thm. 2

positive 2 ✓ ✓ ✓ ✓ Thm. 3

positive 3 ✓ ✓ ✓ ✓ Thm. 4

atem0,m1 ∈M s.t. A can distinguish between their corresponding commitments
c0 and c1 where (c0,op0) ← Com(ck,m0; r) and (c1,op1) ← Com(ck,m1; r).
2) Sub-binding: (subversion binding) Even if a PPT A generates ck, if the ck
is well-formed, it is hard for A to come up with a collision (c,m0,op0,m1,op1),
s.t. op0 and op1 are valid opening values of two di�erent pre-images m0 /=m1 for
c. 3) Sub-equivocality: (subversion equivocality) Even if a PPT A generates ck,
the scheme still should satisfy equivocality.

The relations between standard and new notions are shown in Fig. 1.
Subversion-resistant variations imply the standard ones, as in the standard cases
the setup phase is trusted. For instance, sub-equivocality implies equivocality,
and as already mentioned equivocality implies hiding, as a commitment is indis-
tinguishable from an equivocal commitment that can be opened to any message.

sub-equivocality Ð→ sub-hiding sub-binding
↓ ↓ ↓

equivocality Ð→ hiding binding

Fig. 1: Relation between current and new de�ned subversion-resistant notions.

Next, we consider how much subversion security is achievable in NI commit-
ments. Our key results are summarized in Tab. 1. Each row considers construct-
ing schemes that simultaneously can achieve the indicated notions (by ✓).

Negative result. We �rst consider whether we can achieve sub-binding along
with the current notions, namely sub-binding, binding, hiding, and equivocality.
The negative result in Tab. 1, indicates that we cannot achieve even standard
equivocality and sub-binding at the same time. In Sec. 4, we show that achieving
equivocality is in contradiction with achieving sub-binding.

Positive results. Positive 1: By considering the negative result, the next best
scenario would be the case that one can achieve all notions but sub-binding. In
Thm. 2, we show that this case is possible, and we present a Sub-R commit-
ment scheme that can achieve the notions indicated in the �rst positive result in
Tab. 1. This result is established under the Bilinear Di�e-Hellman Knowledge
of Exponents (BDH-KE) assumption, de�ned in Def. 2, and Γ -Power Symmet-
ric Discrete Logarithm Assumption (Γ -PSDL), de�ned in Def. 1, assumptions
in a group equipped with bilinear map. Positive 2: Next, we consider if there
exists any practical commitment scheme that can achieve sub-binding. We al-
ready know from the negative result which sub-binding cannot be achieved by
equivocality. Second positive result in Tab. 1 which is established in Thm. 3,
shows that we can construct such commitment schemes. We show that basically
this includes already known results that one can construct a hiding and binding

4

commitment in the standard model. Positive 3: The third scenario is a com-
monly used case in practice. The scheme already satis�es hiding, equivocality,
and binding and when we consider the case that keys are generated maliciously,
it does not break completely, and indeed it still achieves hiding. In Sec. 5.3,
we show that with minimal checks, Pedersen [Ped92] commitment scheme can
achieve sub-hiding. This result might look redundant, as it is a restricted form
of Positive 1, but this result is established entirely under standard assumptions.

In many cryptographic systems, it is shown the deployed commitment
require equivocality, especially in minimizing the round complexity of zero-
knowledge proofs [BFM88], or even constructing e�cient NI zero-knowledge
proofs [GS08,Gro10,Lip12]. A direct observation of the �rst positive result is that
sub-equivocality can decrease the needed trust in such proof systems [Lip12].

On the achievability of all combinations. The main under focus question in
this paper is for X ∈ {hiding, binding, equivocality}, which combinations of X
and sub-X are achievable at the same time. In Tab. 1, we only talked about
four popular cases from 26 cases which one may think of. But one may notice
that these four cases cover many of those cases. For instance, by considering
relations between variations in Tab. 1, one may notice several trivial cases, and
more importantly, the negative result covers a set of cases that are impossible
to achieve. However, still, one can use a similar approach and go through over
other cases and evaluate achievability of each one.

Future research directions. Here we have focused on three notions hiding, equiv-
ocality, and binding. With a similar approach one may also consider stronger no-
tions such as non-malleability [DIO98,FF00] about commitment schemes. Such
research question about NIZK arguments is studied in [Bag19]. We also found
constructing commitment schemes in the updatable CRS model [GKM+18] as an
interesting (future) research question. Such sort of commitment schemes would
allow both the committer and the veri�er to update the public parameters and
bypass the needed trust in the standard CRS model.

2 Preliminaries

Let λ ∈ N be the security parameter, and 1λ denotes its unary representation; say
λ = 128. s←$S denotes picking s uniformly random from S. The empty string is
shown with {}, e.g. ck = {}. For an algorithm A, let im(A) be the image of A, i.e.,
the set of valid outputs of A, let RND(A) denote the random tape of A, and let
r ←$RND(A) denote sampling of a randomizer r of su�cient length forA's needs.
By y ← A(x; r) we denote the fact that A, given an input x and a randomizer
r, outputs y. Note that ExtA and A use internally the same randomness r. We
denote by negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary
polynomial function. For a tuple of integers Γ = (γ1, . . . , γn) with γi ≤ γi+1,
let (ai)i∈Γ = (aγ1 , . . . , aγn). We sometimes denote (ai)i∈[n] as a. We say that
Γ = (γ1, . . . , γn) ∈ Zn is an (n,λ)-nice tuple, if 0 ≤ γ1 ≤ ⋅ ⋅ ⋅ ≤ γi ≤ γn = poly(λ). In
games, Pr[G ∶ y] shows the probability that y happens for the game G.

5

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gµ, [a]µ = a [1]µ, where [1]µ is a �xed generator of Gµ. A
bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where
p (a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally,
ê ∶ G1×G2 → GT is an e�cient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 ● [b]2 = ê([a]1 , [b]2).

De�nition 1 (Γ -Power (Symmetric) Discrete Logarithm Assumption).
Let Γ be an (n,λ)-nice tuple for some n = poly(λ). We say a bilinear group
generator BGgen is (n,λ)-PDL secure in group Gt for t ∈ {1,2}, if for any
PPT adversary A, Pr[gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ), [1]t ←
Gt/{1}, x← Zp ∶ A(gk; ([xl]

t
)∈Γ)] is negligible in λ. Similarly, we say a bilinear

group generator BGgen is Γ -PSDL secure, if for any PPT adversary A,

Pr

⎡
⎢
⎢
⎢
⎢
⎣

gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ),

x← Zp ∶ A(gk, ([xl]
1
, [xl]

2
)l∈Γ) = x

⎤
⎥
⎥
⎥
⎥
⎦

= negl(λ) .

Lipmaa [Lip12] has proven that the Γ -PSDL assumption holds in the generic
group model for any (n,λ)-nice tuple Γ given n = poly(λ).

De�nition 2 (BDH-KE Assumption). We say BGgen is BDH-KE secure
for R if for any λ, (R, ξR) ∈ im(R(1λ)), and PPT adversary A there exists a
PPT extractor ExtA, such that

AdvBDH−KE
BGgen,A,ExtA = Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ), r ←$RND(A),

([α1]1 , [α2]2 ∥a)← (A ∥ExtA)(R, ξR; r) ∶

[α1]1 ● [1]2 = [1]1 ● [α2]2 ∧ a ≠ α1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is negligible in λ. In above assumption, ξR is the auxiliary information related
to the underlying group. This is an asymmetric-pairing version of the original
knowledge assumption [Dam92].

3 Security of Commitments under Parameters Subversion

Let Setup be a setup algorithm that takes as input λ and outputs some setup in-
formation gk← Setup(1λ). In the basic form, a NI commitment scheme consists
of a tuple of polynomial-time algorithms (KGen,Com,Ver). We consider equiv-
ocal commitments (a.k.a. trapdoor commitments) that consists of algorithms
(KGen,Com,Ver,KGen∗,Com∗,Equiv). KGen is a PPT algorithm that given gk
generates a ck and a trapdoor key tk. As in [Gro09], the gk can describe a �nite
group over which we are working, or simply the security parameter. We assume
all parties have access to gk. The commitment key ck speci�es a message space
M, a randomizer space R and a commitment space C. It is usually assumed
that it is easy to verify membership of the message space, randomizer space,
and the commitment space and it is possible to sample randomizers uniformly
at random from R. Com takes ck, a message m, a randomizer r and outputs c

6

and an opening op. Given ck, c, m and op, Ver returns either 1 or 0. In equivocal
commitments, given tk, it is possible to open a c to any message. This property is
formalized by PPT algorithms Com∗ and Equiv, where Com∗ takes tk (generated
by KGen∗) and outputs an equivocal commitment c and an equivocation key ek.
Then, Equiv on inputs ek, c and a message m creates an opening op ∶= r of c, so
that (c,op) = Com(ck,m; r). Security requirements for equivocal commitments
under a trusted setup phase are provided in the App. A.1.

Here, we de�ne Sub-R equivocal commitment schemes and add a new algo-
rithm CKVer to the scheme that will be used to verify the well-formedness of
ck. Next, we formally de�ne a subversion-resistant commitment scheme and the
target goals.

De�nition 3 (Subversion-resistant Equivocal Commitments). A Sub-R
equivocal commitment scheme consists of eight algorithms de�ned as below,

Key Generation, ck← KGen(gk): Generates a commitment key ck and asso-
ciated trapdoor tk. It also speci�es a message spaceM, a randomness space
R, and a commitment space C.

Commitment Key Veri�cation, 0/1← CKVer(gk, ck) : CKVer is a determin-
istic algorithm that given gk and ck, returns either 1 or 0;

Committing, (c,op)← Com(ck,m; r): Outputs a c and an opening op. It spec-
i�es a function Com ∶M ×R → C. Given a m ∈M, the committer picks an
r ∈R and computes the (c,op) = Com(ck,m; r).

Opening Veri�cation, 0/1← Ver(ck, c,m,op): Outputs 1 if m ∈ M is the
committed message in c with opening op, and returns 0 otherwise.

Simulation of Key Generation, (ck, tk)← KGen∗(gk): Generates a key ck
and associated trapdoor tk. It also speci�es spacesM, R, and C.

Trapdoor Committing, (c, ek)← Com∗
(ck, tk): Given ck and tk as input,

outputs an equivocal commitment c and an equivocation key ek.
Trapdoor Opening, op← Equiv(ek, c,m, ek): On inputs ek, c and an m cre-

ates an opening op ∶= r of c, s.t. (c,op) = Com(ck,m; r) and returns op.

A (subversion-resistant) commitment scheme satis�es completeness if for
ck ← KGen(gk) and any honestly generated commitment of m ∈ M, it suc-
cessfully passes the veri�cation, i.e., Ver(ck,Com(ck,m;op),m,op) = 1.

3.1 Notions for Commitments with Subverted Parameters

As mentioned above, the de�nitions of standard notions for equivocal commit-
ments are given in the App. A.1. In the standard notions, a critical assumption is
that the commitment key ck is honestly generated by a trusted party. But as our
goal is to consider achievable security when the setup phase is compromised, so
we cannot assume such assumption and instead we de�ne subversion-resistance
analogues sub-hiding, sub-equivocality and sub-binding of the notions hiding,
equivocality and binding. In new notions, the key di�erence is that the setup is
compromised and ck is generated by an adversary (or a subverter) rather than

7

via the honest algorithm KGen prescribed by Πcom. Also, in Sub-R commitments
there is a new algorithm CKVer to verify well-formedness of ck.

In the following de�nitions, let Setup be an algorithm that takes as input the
security parameter λ and outputs some setup information gk← Setup(1λ).

De�nition 4 (Subversion Hiding (Sub-Hiding)). A commitment scheme
Πcom satis�es computationally subversion hiding if for any PPT adversary A,

∣2Pr [
(ck, (m0,m1))← A(gk) , b←${0,1}, CKVer(gk, ck) = 1 ,

rb ←$R, (cb,opb)← Com(ck,mb; rb), b
′
← A(cb) ∶ b

′
= b

] − 1∣ = negl(λ) .

The scheme is perfectly subversion hiding if the above probability is equal to 0.

By well-formedness of ck we mean the CKVer will verify ck successfully.

De�nition 5 (Subversion Binding (Sub-Binding)). A commitment
scheme Πcom satis�es computationally subversion binding if for any PPT A,

Pr [
(ck, c, (m0,op0), (m1,op1))← A(gk) ∶ CKVer(gk, ck) = 1∧

(m0 /=m1) ∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)
] = negl(λ) .

The commitment is perfectly subversion binding if the probability is equal to 0.

Intuitively, subversion binding states that an adversary A will not be able to
do double open a commitment c, even if it generates the (well-formed) key ck.

De�nition 6 (Subversion Equivocality (Sub-Equivocality)). A commit-
ment scheme Πcom satis�es subversion equivocalability if for any PPT A,

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ck,m)← A(gk) , r ←$R,

(c,op)← Com(ck,m; r) ∶

A(ck, c,op) = 1∧

CKVer(gk, ck) = 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ck, tk)← KGen∗(gk),m←M

(c, ek)← Com∗
(ck, tk),

op← Equiv(ek, c,m) ∶

A(ck, c,op) = 1∧

CKVer(gk, ck) = 1 ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

≤ negl(λ) ,

where A outputs m ∈M and KGen∗ is a key generator which also returns tk.

Intuitively, subversion equivocality states that even if A (a malicious key
generator) generates the ck, still the scheme satis�es equivocality. One may notice
that sub-equivocality implies sub-hiding and standard equivocality.

Lemma 1. A commitment scheme that satis�es a security notion with subvert-
ible setup also satis�es the security notion with honest setup.

Proof. To prove the lemma, we show that an adversary A against an honest
setup can be used to construct an adversary B against a subvertible setup.

Adversary B �rst samples a ck honestly, i.e., ck← KGen(gk) and checks that
CKVer(gk, ck) = 1. Next, sends ck to A and gets the answer and sends it to
the challenger. Similarly, follows the rest of experiment and wins the game of
subversion security with the same probability as A wins the standard game. ⊓⊔

8

4 Sub-binding with Equivocability are not Compatible

In this section, we consider if we can achieve sub-binding without degrading hid-
ing, binding, equivocality. Achieving sub-binding individually is possible (e.g. by
sending a plain message) but such a scheme will not guarantee equivocality. Here
we consider the practically-interested cases. We �rst consider the achievability
of sub-binding and (sub-)equivocality at the same time. We show that achieving
simultaneously sub-binding and (even) standard equivocality is impossible.

Theorem 1 (Impossibility of Sub-binding along with Equivocality).
There cannot exists a CRS-based commitment scheme Πcom = (KGen,CKVer,
Com,Ver,KGen∗,Com∗,Equiv) which can satisfy equivocality and sub-binding at
the same time.

Proof. Sketch. The de�nition of equivocality (in App. A.1) states that there ex-
ists KGen∗ that given gk returns (ck, tk), and given trapdoor tk there exist two
algorithms Com∗ and Equiv that allow one to create a fake commitment and a
valid opening which are indistinguishable from an honestly generated commit-
ment and opening. So, given those algorithms, an adversary of sub-binding can
�rst generate ck and tk honestly. Then, it gives ck and tk as input to Com∗

and calculates (c, ek) ← Com∗
(ck, tk). After that, it samples (m0,m1) ∈ M,

where m0 /= m1 and invokes the algorithm Equiv twice for two di�erent mes-
sages, and generates op0 ← Equiv(ek, c,m0) and op1 ← Equiv(ek, c,m1) and sends
(c, (m0,op0), (m1,op1)) to the challenger of sub-binding game and wins with
probability 1, as each of the tuples (m0,op0) and (m1,op1) are a (distinct) valid
opening for c. On the other hand, sub-binding requires that A should not be able
to double open even if he generates the ck. But, one can observe that achieving
equivocality implies that given tk one can use Com∗ and Equiv and generate two
valid opening with di�erent messages which will break sub-binding.

That was the key idea behind the proof, and the full proof is provided in the
App. A.2. ⊓⊔

5 Positive Results

Next, we consider if we can construct subversion-resistant commitment schemes
in the CRS model, which without losing current security guarantees will achieve
some of the subversion-resistant notions de�ned in section 3.1. For instance, can
we achieve sub-equivocality without losing the initial properties? We answer this
question positively in subsection 5.1, by introducing a commitment scheme in
the CRS model that can achieve sub-equivocality and binding. By considering
the negative result, this is the best case one can achieve if they want to retain
equivocality when commitment key is subverted. In the second scenario, we
consider if we can construct commitment schemes that will satisfy sub-binding?
In subsection 5.2, we show the best we can achieve while retaining sub-binding
is sub-hiding; by introducing some already known schemes that simultaneously
achieving sub-binding and sub-hiding. The �rst positive result provides sub-
equivocality and binding under a knowledge assumption. One may ask, can we

9

relax the requirement of sub-equivocality and aim to retain sub-hiding but from
weaker assumptions? This is answered positively in subsection 5.3.

5.1 Sub-equivocality and Binding

By considering the de�nition of sub-equivocality (given in Def. 6), to achieve sub-
equivocality in a commitment scheme, there must be algorithms KGen∗, Com∗

and Equiv, where KGen∗ simulates malicious setup phase, and Com∗ and Equiv
output a fake commitment and the associated valid opening, consequently. In this
case, the algorithms Com∗ and Equiv cannot get honestly generated trapdoors
of ck, and they cannot extract the trapdoors from the malicious key generator
A by rewinding, as they do not have any interaction with A. So instead, we will
rely on a knowledge assumption, which allows extracting trapdoors of ck from
a malicious key generator in a non-black-box way. Once we extracted the tk, it
will be provided to algorithms Com∗ and Equiv to generate a pair of fake but
acceptable commitment and opening. Moreover, in the case of a malicious key
generator, there is an issue with the setup information gk, e.g. groups descrip-
tion. They cannot be generated as before, as they can be subverted. Similar to
subversion-resistant NIZK arguments [BFS16], this issue is addressed by consid-
ering the gk as a part of the scheme speci�cation. More precisely, since group
generation is a deterministic and public procedure, so in subversion-resistant
commitment schemes, all parties will re-execute group generation themselves to
obtain gk. To guarantee binding, the minimal requirement is that an adversary
cannot obtain the tk of ck from a honestly generated ck.

Theorem 2 (A Sub-equivocal and Binding Commitment). Let BGgen
be a bilinear group generator. Then the commitment scheme Πcom described
in Fig. 2 which is a variation of knowledge commitment scheme introduced
in [Gro10,Lip12], is binding in Gt for t ∈ {1,2}, under the Γ -PDL assumption
and also satis�es sub-equivocality under the BDH-KE knowledge assumption.

Proof. Our proposed variation has the same ck as the original scheme, so the
proof of (knowledge) binding can be shown straightforwardly from the original
scheme, which is done in [Lip12] under the Γ -PSDL assumption in the group Gt
for t ∈ {1,2}.

To prove sub-equivocality, it was shown that the original scheme is equivocal
under a trusted setup, namely the setup phase is simulatable, and the algorithms
Com∗ and Equiv that can generate a fake commitment and valid opening are
shown in Fig. 2. In the original scheme, the algorithms Com∗ and Equiv get the
honestly generated trapdoor tk, but in our case the tk is not trustable anymore.

Let A be a malicious key generator. To prove sub-equivocality, we �rst need
to show that the setup phase is simulatable. Namely, there exists KGen∗ which
can produce the full view of key generation by A. Second, we need to describe
two algorithms Com∗ and Equiv which given the extracted trapdoor they can
produce a fake commitment and a valid opening which are indistinguishable
from the real ones. To address the �rst issue, we construct a non-black-box

10

Setup, gk← BGgen(1λ): Given 1λ, return gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2), where
p (a large prime) is the order of cyclic Abelian groups G1, G2, and GT ; ê ∶
G1 ×G2 → GT is an e�cient non-degenerate bilinear pairing.

Key Generation, ck← KGen(gk): Let Γ be an (n,λ)-nice tuple for some n =
poly(λ) with γi = i in the original version, for i ∈ [0 .. n]. Sample â, x ← Zp.
Let t ∈ {1,2}. Return the key ck = (ck1, ck2) where ckt ← {[xi]

t
, [âxi]

t
} for

i ∈ [0 .. n] and the corresponding trapdoor tk as tk = x.
Commitment Key Veri�cation, 0/1← CKVer(gk, ck): Given gk and the com-

mitment key ck, �rst parse ck ∶= ({[xi]
1
, [âxi]

1
},{[xi]

2
, [âxi]

2
}) for i ∈ [0 .. n]

and then do the following veri�cation on elements of the ck,
- Check whether [â]1 ● [1]2 = [1]1 ● [â]2
- For i ∈ [1 .. n] check:

1. [xi]
1
● [1]2 = [1]1 ● [x

i]
2

2. [âxi]
1
● [1]2 = [1]1 ● [âx

i]
2

3. [â]1 ● [x
i]

2
= [1]1 ● [âx

i]
2

4. [âx]1 ● [x
i−1]

2
= [1]1 ● [âx

i]
2

and return 1 if all checks passed successfully; otherwise return 0.

Committing, (c,op)← Com(ck,m; r): Given (ck,m) for CKVer(gk, ck) = 1, to

commit to m = (m1,m2, . . . ,mn) ∈ Znp sample a random r ←$Zp, and return
(c,op ∶= r) that are de�ned as follows,

c ∶= (c1t , c2t) = (r [1]t +∑
n
i=1mi [xi]t , r [â]t +∑

n
i=1mi [âxi]t)

Opening Veri�cation, 0/1← Ver(ck, c,m,op): Given c, m and op = r, recompute

c as original one and check if it is equal to given c and return 0/1.
Simulation of Key Generation, (ck, tk)← KGen∗(gk): Use the simulation algo-

rithm SimA in Fig. 4 and generates a key pair (ck, tk ∶= (x, â)).
Trapdoor Committing, (c, ek)← Com∗(ck, tk): Given the a key pair (ck, tk),

output an equivocal commitment c = [r]t where r ← Z2
p and an equivocation

key ek = (tk, r).
Trapdoor Opening, op← Equiv(ek, c,m): On input equivocation key ek = (tk ∶=

(x, â), r ∈ Z2
p), c ∈ C2 and messages m create an opening r′ = r −∑ni=1mix

i) for
any m, so that (c,op) = Com(ck,a; r′) and return op = r′.

Fig. 2: A variation of the commitment scheme of Groth [Gro10] de�ned by
Lipmaa [Lip12] that achieves sub-equivocality and binding. We note that in this
setting, gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2) is part of the scheme speci�cation, and
in practice each party can run deterministic algorithm BGgen and re-obtain gk.

extraction algorithm ExtA that can extract the trapdoor tk from a malicious key
generator A and simulate the setup phase. Recall that the BDH-KE assumption
for bilinear groupsG1 andG2 generated by [1]1 and [1]2, respectively, states that
from any algorithm, given the group description and generators, which returns
a pair ([a]1 , [a]2), one can e�ciently extracts a. In the rest of the proof, we
construct an e�cient extractor under BDH-KE assumption which allows us to
extract the trapdoor td from A.

11

Extraction algorithm, tk← ExtA(gk, ck, ξR):
Given source code and random coins of the malicious key generator A, and some
auxiliary information ξR it extracts (x, â) ← ExtA(gk, ck, ξR) and set tk ∶= (x, â);
Finally, Return tk.

Fig. 3: A BDH-KE assumption based extraction algorithm ExtA for the sub-
equivocal commitment scheme described in Fig. 2

Simulator SimA(gk) :

gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2 , ξR)← BGgen(1λ); ck← A(gk); # as in Fig. 2
By executing CKVer(gk, ck),

Check whether [â]1 ● [1]2 = [1]1 ● [â]2
For i ∈ [1 .. n] check:
1. [xi]

1
● [1]2 = [1]1 ● [x

i]
2

2. [âxi]
1
● [1]2 = [1]1 ● [âx

i]
2

3. [â]1 ● [x
i]

2
= [1]1 ● [âx

i]
2

4. [âx]1 ● [x
i−1]

2
= [1]1 ● [âx

i]
2

if the checks pass, tk ∶= (x, â)← ExtA(gk, ck, ξR) # as in Fig. 3
Otherwise tk← �

Return (ck, tk)

Fig. 4: Simulation of the setup phase in the knowledge commitment scheme
described in Fig. 2.

Let A outputs ck = (ck1, ck2), where ckt ← {[xi]
t
, [âxi]

t
} for i ∈ [0 .. n]

and t ∈ {1,2}, as described in Fig. 2. By considering BDH-KE assumption, and
veri�cations done in CKVer, one can observe that if a malicious key generator
A manages to output a well-formed ck, it must know x and â. By well-formed
ck, we mean it must pass all checks in CKVer 4. So it implies that there exists a
polynomial time extractor ExtA that if all the veri�cations in CKVer pass for some
â and x, then the ExtA can extracts x and â; as AdvBDH−KE

BGgen,A,ExtA is negligible. A
high-level description of the extraction procedure is shown in Fig. 3. After using
the extractor ExtA, one can simulate a malicious key generation using algorithm
SimA described in Fig. 4.

Finally, using the extracted trapdoor tk, one can consider the rest of proof as
the proof of equivocality given in the original scheme [Lip12], by showing that
given the (extracted) trapdoors one can use two algorithms Com∗ and Equiv
(described in Fig. 2) and generate a fake commitment and the corresponding
valid opening that will be successfully veri�ed by Ver. ⊓⊔

4 Note that veri�cations such as [â]1 ● [1]2 = [1]1 ● [â]2 inside CKVer comes from
the de�nition of the BDH-KE. So to check the well-formedness of commitment key
ck, depending on the underlying knowledge assumption in di�erent commitment
schemes, one may construct a CKVer algorithm with di�erent veri�cation equations.

12

Remark 1. In practice, executing the CKVer algorithm on long commitment keys
might take considerable time. In such cases, to make CKVer more e�cient, one
can use batching techniques [BGR98,HHK+17] to speed up the veri�cation.

Below, we proposed a batched version of the proposed CKVer. For the sub-
equivocal commitment scheme given in Fig. 2, to execute CKVer, one needs to
compute 6n+2 parings (note that right hand of some veri�cations are the same).
But with with batched CKVer algorithm in Fig. 5, one can verify ck with only 4
parings and 8n exponentiations, that for large values of n, this takes considerably
less time. This can also be optimized by using the same randomness for the
di�erent equations, that would allow to save 2n exponentiations.

Batched Commitment Key Veri�cation, 0/1← CKVer(gk, ck): Batched CKVer is an

e�cient algorithm that given commitment key ck and public setup information gk
(that can be computed locally), does the following veri�cations on ck elements,

- Parse or recompute gk ∶= (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ);
- Samples three vector of randomnesses with length n as r,s, t,q ←${1, . . . ,2λ};
- If ([â]1 +∑

n
i=1 ri [xi]1 +∑

n
i=1 si [âxi]1) ● [1]2 + [â]1 ●

∑ni=1 ti [xi]2 + [âx]1 ● ∑ni=1 qi [xi−1]2 = [1]1 ●
([â]2 +∑

n
i=1 ri [xi]2 +∑

n
i=1 si [âxi]2 +∑

n
i=1 ti [âxi]2 +∑

n
i=1 qi [âxi]2), then

return 1 (the ck is well-formed);

- Else, return 0 (the ck is not well-formed);

Fig. 5: Batched CKVer algorithm for sub-equivocal commitment scheme in Fig. 2

5.2 Sub-binding and Sub-hiding

Next, we discuss the second positive result. Let Π2−party
com = (KGen,Com,Ver) be

a commitment that does not require a particular setup and the output of KGen
can be ignored. This includes all classical commitments that guarantee hiding
and binding and do not require a setup. In other words, all the commitments
that only need to choose some public parameters that can be agreed between
both parties, e.g., agreeing on the order and generator of the underlying group
or a particular secure and collision resistant hash function family.

We show that such hiding and binding commitment schemes also guarantee
sub-hiding and sub-binding. Intuitively, one can see that in such case (e.g. ck =
{}) there is no risk of subverting ck.

Lemma 2. Let Π2−party
com = (KGen,Com,Ver) be a commitment scheme that does

not require a particular setup phase. If Π2−party
com satis�es binding and hiding, it

also guarantees sub-binding and sub-hiding.

13

Proof. Let A be a sub-binding adversary, meaning that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), (ck, c, (m0,op0), (m1,op1))← A(gk) ∶

CKVer(gk, ck) = 1 ∧ (m0 /=m1)

∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1 − negl(λ) .

By considering the fact that in a Π2−party
com commitment, so its commitment key

can be generated by either A or the honest KGen. So in above game, one can
substitute malicious key generator A with an honest KGen, meaning that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), ck← KGen(gk) ,

(c, (m0,op0), (m1,op1))← A(gk, ck) ∶ CKVer(gk, ck) = 1∧

(m0 /=m1) ∧ (Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1−negl(λ) .

which gives us a new successful adversary for binding of the commitment scheme
Π2−party
com . As a result, if Π2−party

com guarantees binding, so it is also sub-binding.

Similarly, let A be a sub-hiding adversary, meaning that

RRRRRRRRRRRRRRRR

2Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), (ck, (m0,m1))← A(gk),

b←${0,1},CKVer(gk, ck) = 1, rb ←$R,

(cb,opb)← Com(ck,mb; rb), b
′
← A(cb) ∶ b

′
= b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

RRRRRRRRRRRRRRRR

= 1 − negl(λ) .

Again, by considering the property of aΠ2−party
com commitment, one can substitute

malicious key generator A in the setup phase with an honest KGen, which results,

RRRRRRRRRRRRRRRR

2Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), ck← KGen(gk) , (m0,m1)← A(gk),

b←${0,1},CKVer(gk, ck) = 1, rb ←$R,

(cb,opb)← Com(ck,mb; rb), b
′
← A(cb) ∶ b

′
= b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

RRRRRRRRRRRRRRRR

= 1 − negl(λ) .

that gives us a new successful adversary for hiding of the commitment scheme
Π2−party
com . Hence, if Π2−party

com guarantees binding, so it is also sub-binding. Note
that when the key generation is done honestly, CKVer always returns 1. ⊓⊔

Theorem 3 (Sub-hiding and Sub-binding Commitment Schemes). Un-
der some standard assumptions, there exist commitment schemes that achieve
sub-hiding and sub-binding.

Proof. Basically all classic commitment schemes that do not require a particu-
lar setup phase and guarantee hiding and binding are a Π2−party

com commitment
scheme. For instance, a commitment scheme built using a family of collision-
resistant hash functions 5. As a result, by considering the result of Lemma 2, all
of them can also guarantee sub-hiding and sub-binding. ⊓⊔

5 A sample construction is available on https://cs.nyu.edu/courses/fall08/G22.

3210-001/lect/lecture14.pdf

14

https://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecture14.pdf
https://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecture14.pdf

5.3 Binding, Equivocality and Sub-hiding

Finally, we consider the last positive result in Tab. 1 which states that we can
have a commitment to achieving hiding, equivocality, binding, and sub-hiding
at the same time. In this result, we show that one can still achieve sub-hiding
under standard assumptions by requiring that there exist hiding, binding, and
equivocal commitment schemes.

Pedersen Commitment Scheme Achieves Sub-hiding. The Pedersen commitment
scheme [Ped92] can guarantee sub-hiding property with minimal checking. The
committer only needs to run the CKVer algorithm to verify ck before using the
key for committing, and the check for this scheme is quite simple. Basically a
committer needs to check whether both g /= 0 and h /= 0 before using ck = (g, h).

Theorem 4 (Subversion-Resistant Pedersen Commitment). The Peder-
sen commitment scheme with checking g /= 0 and h /= 0, satis�es hiding, equivocal,
binding and sub-hiding under the discrete logarithm assumption in G.

Proof. For the sub-hiding property, once CKVer(gk, ck) returned 1, we conclude
that both g and h are non-zero group elements, so one can notice that upon
random choice of r ∈ Zp, for any m ∈ Zp, c = gmhr is uniformly distributed over
G. For the binding property, as the non-subversion resistant version, one can
observe that given openings (r0, r1) for a commitment c to distinct messages

(m0,m1), the relation gm0hr0 = gm1hr1 leads to h = g
m0−m1
r1−r0 , which gives the

discrete logarithm of h in base g. Intuitively, if the discrete logarithm problem
is hard, the commitment scheme is (computationally) binding. For equivocality,
as the original scheme, given trapdoor tk of the commitment key ck, one can
generate a fake commitment and the corresponding valid opening. ⊓⊔

Acknowledgment. This work was supported in part by the Estonian Research
Council grant PRG49, by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001120C0085, and by Cyber Security Research
Flanders with reference number VR20192203. Any opinions, �ndings and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily re�ect the views of the ERC, DARPA, the US Govern-
ment or Cyber Security Research Flanders. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright annotation therein.

References

ABK18. Benedikt Auerbach, Mihir Bellare, and Eike Kiltz. Public-key encryp-
tion resistant to parameter subversion and its realization from e�ciently-
embeddable groups. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 348�377. Springer, Hei-
delberg, March 2018.

15

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3�33.
Springer, Heidelberg, December 2017.

AMV15. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-
resilient signatures: De�nitions, constructions and applications. Cryptology
ePrint Archive, Report 2015/517, 2015. http://eprint.iacr.org/2015/

517.
Bag19. Karim Baghery. Subversion-resistant simulation (knowledge) sound NIZKs.

In Martin Albrecht, editor, 17th IMA International Conference on Cryp-

tography and Coding, volume 11929 of LNCS, pages 42�63. Springer, Hei-
delberg, December 2019.

BBG+13. James Ball, Julian Borger, Glenn Greenwald, et al. Revealed: how us and
uk spy agencies defeat internet privacy and security. The Guardian, 6:2�8,
2013.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and

Privacy, pages 459�474. IEEE Computer Society Press, May 2014.
BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-

Knowledge and Its Applications. In STOC 1988, pages 103�112, Chicago,
Illinois, USA, May 2�4, 1988. ACM Press.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777�804. Springer, Heidelberg, December 2016.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch veri�cation with
applications to cryptography and checking. In Claudio L. Lucchesi and
Arnaldo V. Moura, editors, LATIN 1998, volume 1380 of LNCS, pages
170�191. Springer, Heidelberg, April 1998.

Blu81. Manuel Blum. Coin �ipping by telephone. In Allen Gersho, editor,
CRYPTO'81, volume ECE Report 82-04, pages 11�15. U.C. Santa Bar-
bara, Dept. of Elec. and Computer Eng., 1981.

BPR14. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of
symmetric encryption against mass surveillance. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 1�19. Springer, Heidelberg, August 2014.

CIO98. Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-Interactive
and Non-Malleable Commitment. In Je�rey Scott Vitter, editor, STOC
1998, pages 141�150, Dallas, Texas, USA, May 23�26, 1998.

Dam90. Ivan Damgård. On the existence of bit commitment schemes and zero-
knowledge proofs. In Gilles Brassard, editor, CRYPTO'89, volume 435 of
LNCS, pages 17�27. Springer, Heidelberg, August 1990.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO'91, volume 576
of LNCS, pages 445�456. Springer, Heidelberg, August 1992.

DF02. Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commit-
ment scheme based on groups with hidden order. In Yuliang Zheng, editor,
ASIACRYPT 2002, volume 2501 of LNCS, pages 125�142. Springer, Hei-
delberg, December 2002.

16

http://eprint.iacr.org/2015/517
http://eprint.iacr.org/2015/517

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Public-Key Cryptography -

PKC 2019 - 22nd IACR International Conference on Practice and Theory

of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceed-

ings, Part I, pages 314�343, 2019.

DIO98. Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive
and non-malleable commitment. In 30th ACM STOC, pages 141�150. ACM
Press, May 1998.

EGL85. Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Pro-
tocol for Signing Contracts. Communications of the ACM, 28(6):637�647,
June 1985.

FF00. Marc Fischlin and Roger Fischlin. E�cient non-malleable commitment
schemes. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 413�431. Springer, Heidelberg, August 2000.

FLZ16. Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A shu�e argument
secure in the generic model. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 841�
872. Springer, Heidelberg, December 2016.

FMMO18. Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi.
Quisquis: A new design for anonymous cryptocurrencies. IACR Cryptology

ePrint Archive, 2018:990, 2018.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 315�347. Springer, Heidelberg, March 2018.

Gab19. Ariel Gabizon. On the security of the BCTV pinocchio zk-snark variant.
IACR Cryptology ePrint Archive, 2019:119, 2019.

GGJS11. Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing peo-
ple of di�erent beliefs together to do UC. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 311�328. Springer, Heidelberg, March 2011.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698�728. Springer,
Heidelberg, August 2018.

GL07. Jens Groth and Steve Lu. Veri�able shu�e of large size ciphertexts. In
Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of
LNCS, pages 377�392. Springer, Heidelberg, April 2007.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In
STOC 1987, pages 218�229, New York City, 25�27 May 1987.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Noth-
ing But Their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM, 38(3):691�729, 1991.

GO07. Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
323�341. Springer, Heidelberg, August 2007.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, vol-
ume 4117 of LNCS, pages 97�111. Springer, Heidelberg, August 2006.

17

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol �tted to security microprocessor minimizing both trasmission and
memory. In C. G. Günther, editor, EUROCRYPT'88, volume 330 of LNCS,
pages 123�128. Springer, Heidelberg, May 1988.

Gre14. Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the

US surveillance state. Macmillan, 2014.

Gro05. Jens Groth. Non-interactive zero-knowledge arguments for voting. In John
Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05, volume
3531 of LNCS, pages 467�482. Springer, Heidelberg, June 2005.

Gro09. Jens Groth. Homomorphic trapdoor commitments to group elements.
Cryptology ePrint Archive, Report 2009/007, 2009. http://eprint.iacr.
org/2009/007.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321�340. Springer, Heidelberg, December 2010.

GS08. Jens Groth and Amit Sahai. E�cient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415�432. Springer, Heidelberg, April 2008.

Hae19. Rolf Haenni. Swiss post public intrusion test: Undetectable attack again-
stvote integrity and secrecy https://e-voting.bfh.ch/app/download/

7833162361/PIT2.pdf?t=1552395691. 2019.

HHK+17. Gottfried Herold, Max Ho�mann, Michael Klooÿ, Carla Ràfols, and Andy
Rupp. New techniques for structural batch veri�cation in bilinear groups
with applications to groth-sahai proofs. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1547�1564. ACM Press, October / November 2017.

HILL99. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. 1999.

KKZZ14. Jonathan Katz, Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Dis-
tributing the setup in universally composable multi-party computation. In
Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages
20�29. ACM, July 2014.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and

Privacy, pages 839�858. IEEE Computer Society Press, May 2016.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169�189. Springer, Heidelberg,
March 2012.

Lip16. Helger Lipmaa. Prover-E�cient Commit-And-Prove Zero-Knowledge
SNARKs. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, AFRICACRYPT 2016, volume 9646 of LNCS, pages 185�
206, Fes, Morocco, April 13�15, 2016. Springer, Heidelberg.

LPT19. Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Trapdoor com-
mitments in the swisspost e-voting shu�e proof, https://people.eng.

unimelb.edu.au/vjteague/SwissVote. 2019.

Nao91. Moni Naor. Bit Commitment using Pseudorandom Generators. J. Cryp-

tology, 4(2):151�158, 1991.

18

http://eprint.iacr.org/2009/007
http://eprint.iacr.org/2009/007
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://people.eng.unimelb.edu.au/vjteague/SwissVote
https://people.eng.unimelb.edu.au/vjteague/SwissVote

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
i�able secret sharing. In Joan Feigenbaum, editor, CRYPTO'91, volume
576 of LNCS, pages 129�140. Springer, Heidelberg, August 1992.

PLS13. Nicole Perlroth, Je� Larson, and Scott Shane. Nsa able to foil basic safe-
guards of privacy on web. The New York Times, 5, 2013.

RTYZ16. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Clip-
tography: Clipping the power of kleptographic attacks. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 34�64. Springer, Heidelberg, December 2016.

Sim83. Gustavus J. Simmons. The prisoners' problem and the subliminal channel.
In David Chaum, editor, CRYPTO'83, pages 51�67. Plenum Press, New
York, USA, 1983.

Sim85. Gustavus J. Simmons. The subliminal channel and digital signature. In
Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, editors, EURO-
CRYPT'84, volume 209 of LNCS, pages 364�378. Springer, Heidelberg,
April 1985.

Wik09. Douglas Wikström. A commitment-consistent proof of a shu�e. In Colin
Boyd and Juan Manuel González Nieto, editors, ACISP 09, volume 5594
of LNCS, pages 407�421. Springer, Heidelberg, July 2009.

YY96. Adam Young and Moti Yung. The dark side of �black-box� cryptography,
or: Should we trust capstone? In Neal Koblitz, editor, CRYPTO'96, volume
1109 of LNCS, pages 89�103. Springer, Heidelberg, August 1996.

YY97. Adam Young and Moti Yung. The prevalence of kleptographic attacks
on discrete-log based cryptosystems. In Burton S. Kaliski Jr., editor,
CRYPTO'97, volume 1294 of LNCS, pages 264�276. Springer, Heidelberg,
August 1997.

A Appendix

A.1 Standard Notions for Equivocal Commitment Schemes

An equivocal commitment scheme Πcom = (KGen,Com,Ver,KGen∗,Com∗,Equiv)
satis�es hiding, binding and equivocality that are de�ned below.

De�nition 7 (Hiding). A commitment scheme Πcom is computationally hid-
ing if for any PPT adversary A,

RRRRRRRRRRRRRRRR

2Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), ck← KGen(gk),

(m0,m1)← A(ck), b←${0,1}, rb ←$R,

(cb,opb)← Com(ck,mb; rb), b
′
← A(ck, cb) ∶ b

′
= b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

RRRRRRRRRRRRRRRR

= negl(λ) .

The commitment is perfectly hiding if the above probability is equal to 0.

De�nition 8 (Binding). A commitment scheme Πcom is computationally
binding if for any PPT adversary A,

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gk← Setup(1λ), ck← KGen(gk),

(c, (m0,op0), (m1,op1))← A(ck) ∶ (m0 /=m1)∧

(Ver(ck, c,m0,op0) = 1) ∧ (Ver(ck, c,m1,op1) = 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= negl(λ) .

19

The commitment is perfectly binding if the above probability is equal to 0.

De�nition 9 (Equivocality). A commitment scheme Πcom = (KGen,Com,
Ver,KGen∗,Com∗,Equiv) is equivocal if there exist PPT algorithms Com∗ and
Equiv that given the trapdoor of the commitment key, can come up with a fake
commitment and a valid opening s.t. they would be indistinguishable from the
real ones. More formally, for gk← Setup(1λ), for any PPT adversary A,

RRRRRRRRRRRRRRRRRRRRRRRRRRR

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ck← KGen(gk),

m← A(ck), r ←$R,

(c,op)← Com(ck,m; r) ∶

A(ck, c,op) = 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ck, tk)← KGen∗(gk),

m← A(ck),

(c, ek)← Com∗
(ck, tk),

op← Equiv(ek, c,m) ∶

A(ck, c,op) = 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRRRRRRRRRRRRRR

≤ negl(λ)

where A outputs m ∈M.

Equivocality implies hiding, as a commitment is indistinguishable from an equiv-
ocal commitment that can be opened to any message [Gro09].

A.2 Full Proof of Theorem 1

Proof. In the rest, we say the veri�cation of a commitment scheme is trivial if
the veri�cation algorithm can decide about the validity of commitment c and
opening information op on its own. Let Πcom be a NI commitment scheme in
the CRS model which guarantees sub-binding and equivocality. A commitment-
opening instance generator COG is a polynomial algorithm that on input group
description gk returns a pair (c, (m,op)), where c is a commitment, m is a
committed message, and op is an opening information. Here c is a challenge
commitment that may or may not be a valid commitment for (m,op), and
(m,op) should be a valid opening (it means Ver will accept them) if c is a valid
commitment. Let DP be an algorithm (decision procedure) that on inputs gk and
c returns a Boolean, showing whether or not it thinks c is valid commitment.
Now, consider experiment DEC as below associated to a commitment-opening
instance generator COG, veri�cation algorithm Ver and decision procedure DP,

Experiment DECCOG,Ver,DP(gk):
(c, (m,op))←$COG(gk); d1 ← Ver(ck, c, (m,op));
If (c is valid and d1 = false) then return false;
d0 ←$DP(gk, c);
Return d0 /= d1;

Let AdvDEC
COG,Ver,DP(gk) = Pr[DECCOG,Ver,DP(gk)]. Now, we say that algorithm DP

decides Ver if for every polynomial time COG the function AdvDEC
COG,Ver,DP(gk)

is negl(λ). We say that veri�cation by Ver is trivial if there is a polynomial
time algorithm DP that decides Ver. Intuitively, in experiment DEC, think of
COG as an adversary trying to make DP fail. The experiment returns true when

20

COG succeeds, meaning that DP returns the wrong decision (as the experiment
returns d0 /= d1). A technical point is if COG generates a valid commitment c,
the game forces it to lose if (m,op) are not valid opening. Thus we are asking
that DP is able to decide the validity of commitment c in polynomial time for
challenge commitment c that can be e�ciently generated with valid (m,op) if
the commitment is valid.

Equivocality of commitment scheme Πcom implies that given tk generated
as (ck, tk) ← KGen∗(gk), for an arbitrary m ← M, there are two algorithms
Com∗ and Equiv that can generate acceptable (c,op) as the following: (c, ek) ←
Com∗

(ck, tk), op← Equiv(ek, c,m, ek). Without loss of generality, in the rest, we
consider a notion of equivocality which states that given the trapdoor tk, the
algorithm Equiv can open any valid commitments, instead of only commitments
output by Com∗. This is sort of a stronger notion of equivocality. By this in
mind, consider the following decision procedure DP,

Algorithm DP(gk, c)

(ck, tk)←$KGen∗(gk); (c, ek)← Com∗(ck, tk); m←M, op← Equiv(ek, c,m, ek);
Returns Ver(ck, c,m,op)

Thus, to decide if c is a valid commitment, algorithm DP runs the simulator
of key generations KGen∗ to obtain simulated ck and corresponding trapdoor tk.
Then the algorithm uses tk to generate the commitment c and equivocal key ek.
Next, it uses ek, c and m and generates opening op, and �nally by veri�cation
algorithm decides whether (c, (m,op)) are valid commitment and opening. Let
COG be any polynomial time commitment-opening generator. We will show that
AdvDEC

COG,Ver,DP(gk) is negligible. This shows veri�cation Ver is trivial. To show

AdvDEC
COG,Ver,DP(gk) is negligible, below we will de�ne polynomial-time adversaries

A and B such that

AdvDECCOG,Ver,DP(gk) ≤ AdvequivocalityCOG,Ver,A (gk) +Advsub−bindingCOG,Ver,B (gk)

for all λ ∈ N (note that λ is in description of group gk). By as-
sumption, the commitment scheme satis�es equivocality and sub-binding,
so both AdvequivocalityCOG,Ver,A (gk) and Advsub−bindingCOG,Ver,B (gk) are negligible. Thus,

AdvdecCOG,Ver,DP(gk) in left side of above inequality is negligible, as desired. Con-
sider experiments Exp0,Exp1 and Exp2 as described below. Experiments Exp0
and Exp1 split up the veri�cation (decision) process depending on whether c is
valid or not.

Exp0:

(c, (m1,op1))←$COG(gk); d1 ← Ver(ck, c, (m1,op1));
(ck, tk)←$KGen∗(gk);
(c, ek)← Com∗(ck, tk); m2 ←M; op2 ← Equiv(ek, c,m2, ek);
d0 ← Ver(ck, c,m2,op2); b← ((c is not valid) ∧(d0 = true))
Return b

21

Exp1:

(c, (m1,op1))←$COG(gk); d1 ← Ver(ck, c, (m1,op1));
(ck, tk)←$KGen∗(gk);
(c, ek)← Com∗(ck, tk); m2 ←M; op2 ← Equiv(ek, c,m2, ek);
d0 ← Ver(ck, c,m2,op2); b← ((d1 = true) ∧ (d0 = false)) ;
Return b

Exp2:

(c, (m1,op1))←$COG(gk); d1 ← Ver(ck, c, (m1,op1)); (ck, tk)←$KGen(gk) ;
m2 ←M; (c,op2)← Com(ck,m2; r2) ;
d0 ← Ver(ck, c,m2,op2); b← ((d1 = true) ∧ (d0 = false));
Return b

Experiment Exp2 switches to the honest key and commitment generations,
that can be done as the commitment-opening instance generator COG provided
an opening. Experiment DEC returns true i�,

(c is not valid) ∧ (d0 = true) OR (c is valid) ∧ (d1 = true) ∧ (d0 = false).

The �rst condition (left one), is equivalent to the case that experiment
Exp0 returns true, and the second condition (right one) is equivalent to
(d1 = true) ∧ (d0 = false) (as valid commitments always are accepted), which is
equivalent to the case when experiment Exp1 returns true.
Furthermore the conditions are mutually exclusive and cannot both occur at the
same time. Therefore, we have

AdvDECCOG,Ver,DP(gk) = Pr[Exp0] +Pr[Exp1]

= Pr[Exp0] +Pr[Exp2] + (Pr[Exp1] −Pr[Exp2]) (1)

Notice that by completeness of commitment schemeΠcom, we know Pr[Exp2] = 0.
As a result, the advantage AdvDECCOG,Ver,DP(gk)

AdvdecCOG,Ver,DP(gk) = Pr[Exp0] + (Pr[Exp1] −Pr[Exp2]) (2)

Now we construct two adversaries A and B as shown below,

Adversary Aequivocality(gk, ck): Adversary Bsub−binding(gk):
(c, (m1,op1))←$COG(gk);
d1 ← Ver(ck, c, (m1,op1));
m2 ←M; (c,op2)← Com(ck,m2;op2);
d0 ← Ver(ck, c,m2,op2);
If (d1 = true) ∧ (d0 = false) then b′ = 0;
Else b′ = 1;
Return b′

(c, (m1,op1))←$COG(gk);
(ck, tk)←$KGen∗(gk);
(c, ek)← Com∗(ck, tk);
m2 ←M, op2 ← Equiv(ek, c,m2, ek);
Return (ck, c, (m1,op1), (m2,op2))

Note that in constructing adversary B we used the assumption that given tk,
the algorithm Equiv can open any valid commitment. One could also use a more
general approach by invoking Equiv twice to open the equivocal commitment to
two di�erent messages. By considering adversaries A and B we have,

Pr[Exp0] ≤ Advsub−bindingCOG,Ver,B (gk)

22

Pr[Exp1] −Pr[Exp2] ≤ AdvequivocalityCOG,Ver,A (gk).

Next, by substituting last two inequalities in equation (2), we get to

AdvdecCOG,Ver,DP(gk) ≤ AdvequivocalityCOG,Ver,A (gk) +Advsub−bindingCOG,Ver,B (gk).

This results the theorem. ⊓⊔

23

	Subversion-Resistant Commitment Schemes: Definitions and Constructions

