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Abstract. Password-Authenticated Key Exchange (PAKE) is a method
to establish cryptographic keys between two users sharing a low-entropy
password. In its asymmetric version, one of the users acts as a server
and only stores some function of the password, e.g., a hash. Upon server
compromise, the adversary learns H(pw). Depending on the strength
of the password, the attacker now has to invest more or less work to
reconstruct pw from H (pw). Intuitively, asymmetric PAKE seems more
challenging than symmetric PAKE since the latter is not supposed to
protect the password upon compromise. In this paper, we provide three
contributions:

e Separating symmetric and asymmetric PAKE. We prove that
a strong assumption like a programmable random oracle is necessary
to achieve security of asymmetric PAKE in the Universal Compos-
ability (UC) framework. For symmetric PAKE, programmability is
not required. Our results also rule out the existence of UC-secure
asymmetric PAKE in the CRS model.

e Revising the security definition. We identify and close some gaps
in the UC security definition of 2-party asymmetric PAKE given by
Gentry, MacKenzie and Ramzan (Crypto 2006). For this, we spec-
ify a natural corruption model for server compromise attacks. We
further remove an undesirable weakness that lets parties wrongly
believe in security of compromised session keys. We demonstrate
usefulness by proving that the {2-method proposed by Gentry et
al. satisfies our new security notion for asymmetric PAKE. To our
knowledge, this is the first formal security proof of the {2-method in
the literature.

e Composable multi-party asymmetric PAKE. We showcase how
our revisited security notion for 2-party asymmetric PAKE can be
used to obtain asymmetric PAKE protocols in the multi-user setting
and discuss important aspects for implementing such a protocol.
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1 Introduction

Establishing secure communication channels in untrusted environments is an
important measure to ensure privacy, authenticity or integrity on the internet.
An important cryptographic building block for securing channels are key ex-
change protocols. The exchanged keys can be used to, e.g., encrypt messages
using a symmetric cipher, or to authenticate users. Password-authenticated key
exchange (PAKE), introduced by Bellovin and Merrit [BM92a], is a method to
establish cryptographic keys between two users sharing a password. A PAKE
manages to “convert” this possibly low-entropy password into a random-looking
key with high entropy, which is the same for both users if and only if they both
used the same password. What makes these schemes interesting for practice is
that they tie authentication solely to passwords, while other methods such as
password-over-TLS involve more authentication material such as a certificate.
The probably most prominent implementation of PAKE is the TLS-SRP cipher-
suite (specified in RFCs 2945 and 5054), which is used by GnuTLS, OpenSSL
and Apache.

In most applications, users of a PAKE actually take quite different roles.
Namely, some may act as servers, maintaining sessions with various clients, and
storing passwords of clients in a file. For better security, it seems reasonable to
not write the password to the file system in the clear, but store, e.g., a hash of the
password. A PAKE protocol that lets users take the roles of a client or a server is
called asymmetric PAKE (aPAKE) (sometimes also augmented or verifier-based
in the literature). To emphasize that we talk about a PAKE protocol without
different roles, we write symmetric PAKE.

SECURITY OF PAKE. Since a password is potentially of low entropy, an attacker
can always engage in a PAKE execution with another user by just trying a
password, resulting in key agreement with non-negligible probability. Such an
attack is called an on-line dictionary attack since the attacker only has one
password guess per run of the protocol. A security requirement for symmetric
PAKE is that an on-line dictionary attack is the “worst the adversary can do”.
Especially, the attacker should not be able to mount off-line dictionary attacks
on the password, e.g., by deriving information about the password by just looking
at the transcript. For an asymmetric PAKE, we can require more: if an attacker
gets his hands on a password file, in which case the server is called compromised,
the attacker should not learn the password directly. At least, some computation
such as hashing password guesses is required.

Is AsSYMMETRIC PAKE HARDER THAN SYMMETRIC PAKE? Intuitively, asym-
metric PAKE seems more challenging than symmetric PAKE, since asymmetric
PAKE protocols provide a guarantee on top: they are supposed to protect pass-
words whenever the storage of a server is leaked to the adversary. This claim has
evidence in the literature: there are symmetric PAKE schemes that are BPR-
secure (BPR is the most widely used game-based notion for PAKE, introduced
by Bellare et al. [BPR00]) in the standard model, while current aPAKE schemes
satisfying the asymmetric variant of BPR security are only proven in an ideal-



| Reference | Type [Sec. notion] Model ‘

[BPROO] symmetric BPR non-prog. RO
[GLOT, KOY01, [BCL*11] KVTI]| symmetric| BPR standard
[BP13] asymmetric] BPR non-prog. RO
[PW17] asymmetricl BPR GGM
| [CHKT05, [KVI1, BBCT13] | symmetric UuC standard
[GMRO6] asymmetric UucC progr. RO
[JR16] asymmetric ucC limited progr. RO
[HLI8| asymmetric UuC progr. RO
[TKX18]| asymmetric|UC, strong progr. RO
[BJX19] asymmetric| UC, strong|non-prog. RO & GGM

Table 1. Comparison of static security of different PAKE and aPAKE schemes, where
“strong” denotes schemes that prevent precomputation of password files (e.g., via pre-
computing hash tables). RO means random oracle and GGM means generic group
model.

ized model such as the non-programmable random oracle or the generic group
model. The situation is similar when considering PAKE/aPAKE in the Universal
Composability (UC) framework of Canetti [Can01]. UC-secure PAKE protocols
exist in the non-programmable random oracle model and even in the standard
model, while proofs of current aPAKE schemes additionally rely on some form
of programmability of the random oracle or the generic group model (GGM).
See Table [I] for a comparison.

To our knowledge, in none of the aforementioned models there exist any for-
mal proof of asymmetric PAKE being harder to achieve than symmetric PAKE.
A close look at Table[I|reveals that the “gap” in the assumption is bigger in case
of UC security. Can we make this gap as small as for BPR secure schemes? For
sure we would like to answer this question in the affirmative, since for asymmet-
ric PAKE, UC-security has two notable advantages over BPR security: it comes
with a composability guarantee, and it considers adversarially-chosen passwords.

1.1 Our Contributions

In this paper, we rule out the existence of UC-secure aPAKE protocols from
assumptions that are enough to obtain (even adaptively) UC-secure symmet-
ric PAKE. Namely, we show that aPAKE is impossible to achieve w.r.t a non-
programmable random oracle. To our knowledge, this is the first formal evidence
that universally composable asymmetric PAKE is harder to achieve than sym-
metric PAKE. Interestingly, our impossibility result directly extends to a setting
where parties, additionally to the non-programmable random oracle, have access
to a common reference string (CRS). Although such a CRS offers a limited form
of programmability, we can show that this is not enough to obtain UC-secure
asymmetric PAKE.



In preparation of this formal result, and as a separate contribution, we revisit
the ideal functionality Fapwke for asymmetric PAKE of Gentry, MacKenzie and
Ramzan [GMROG]. Our changes summarize as follows:

e We show that F,puke is not realizable due to an incorrect modeling of server
compromise attacks. We fix this by formally viewing server compromise as
partial corruption of the server. This was already proposed but not enforced
by Gentry et al. [GMROG].

e We show that Fpwke allows attacks on explicit authentication. In a PAKE
protocol with explicit authentication, parties are informed whether the other
party held the same password and thus computed the same session key. How-
ever, Fapwke allows the adversary to make parties believe in the security of
adversarially chosen session keys. This is clearly devastating for applications
such as secure channels. In our revisited functionality F,pake we exclude
such attacks by introducing a proper modeling of explicit authentication.

We argue plausibility of our revisited functionality F,pake by showing that
it is realized by an asymmetric PAKE protocol called the {2-method, introduced
by Gentry et al. [GMRO6]. To our knowledge, this is the first proof of security
of the 2-method in the literature. Not surprisingly, the original publication of
the f2-method did not include a proof but only a claim of security, which is
invalidated with our findings of their functionality being impossible to realize.
Finally, we showcase how our 2-party functionality F,pake can be used to obtain
multi-user asymmetric PAKE protocols. We highlight a specific artifact of UC-
security that has to be considered when implementing such a scheme. Let us
now explain our results in more detail.

SEPARATING SYMMETRIC AND ASYMMETRIC PAKE. As already mentioned,
asymmetric PAKE protocols are supposed to provide some protection of the
password in case of a server compromise. Essentially, in case of a security breach
where account data of users are leaked to the adversary, we want that the ad-
versary does not obtain all user passwords in the clear. Formally, this attack
is modeled via a partial leakage of the internal state of the server who already
stored the user’s account data. The adversary is however not allowed to control
the behaviour of the compromised server, which distinguishes compromising a
server from corrupting a server. Nevertheless, a server compromise allows the
attacker to mount an adaptive attack.

In simulation-based security notions such as ones stated in the UC model,
adaptive attacks often impose a problem. Such problems are often referred to
as “commitment problem”: they require the simulator to explain how, e.g., a
transcript that he committed to in the beginning of the protocol matches cer-
tain secrets of honest participants that are revealed only later. The first men-
tioning of such a commitment problem is the work of Nielsen [Nie02], who
showed that a non-programmable random oracle (NPRO) is not enough to ob-
tain non-committing encryption. One contribution of the paper is to formalize
non-programmable random oracles. In a nutshell, an NPRO is modeled as an
external oracle that informs the adversary about all queries, but chooses values



truly at random, especially not letting the adversary in any way influence the
outputs of the oracle.

Inspired by the work of Nielsen, we obtain the following result: UC-secure
asymmetric PAKE is impossible to achieve in the NPRO model. The intuition
is as follows: due to the adaptive nature of the server compromise attack, the
simulator needs to commit to a password file without knowing the password that
the file contains. The attacker can now test whether some password is contained
in the simulated file. Since accessing the external oracle is sufficient to compute
this test, the simulator merely learns the tested password but cannot influence
the outcome of the test.

While the result itself is not very surprising, we stress that the techniques to
prove it are actually completely different from the techniques used by Nielsen [Nie02].
For non-committing encryption, their strategy is to let the simulator commit to
“too many” ciphertexts such that there simply does not exist a secret key of
reasonable size to explain all these ciphertexts later. However, in asymmetric
PAKE there exists only one password file at the server. And indeed, there is
a bit more hope for a simulator of asymmetric PAKE to actually find a good
password file if he only guesses the password correctly. Our formal argument
thus heavily relies on the fact that, in the UC model, the simulator does not
have an arbitrary amount of runtime to simulate the password file. We formally
prove that, with high probability, he will exhaust before finding a good file.

We further investigate how our proof technique extends to more setup as-
sumptions. We find that our impossibility result directly extends to the NPRO
model where parties can access an ideal common reference string (CRS). While
the CRS can be “programmed” in the simulation, it does not resolve the simu-
lator’s commitment issue: neither does usage of the CRS provide the simulator
with any information about the server’s password prior to simulating the file, nor
does determining the CRS let the simulator influence the aforementioned test.
We can thus rule out the existence of UC-secure asymmetric PAKE protocols
plain CRS as well as the NPRO+CRS model.

Opposed to our findings for asymmetric PAKE, it is known from the literature
that UC-secure symmetric PAKE can be constructed in the NPRO model and
even in the standard model [ACCPO08, I(CHK™05, [KV11, IDHP™18|. We note
that, while also the NPRO model suffers from the uninstantiability results of
Canetti et al. [CGH98|, requiring programmability of a random oracle is crucially
strengthening the model. In a security proof w.r.t an NPRO, the reduction does
not need to determine any output values and thus could use, e.g., a hash function
like SHA-3 to answer random oracle queries. This is not possible for a reduction
that makes use of the programmability property of the random oracle. Thus, our
results indicate that, while going from symmetric to asymmetric PAKE in the
UC model, we are forced to move further away from realistic setup assumptions.

MODELING SERVER COMPROMISE. Towards separating symmetric and asymmet-
ric PAKE, we first carefully revisit the ideal functionality Fapwke (see Figure (1))
for asymmetric PAKE of Gentry et al. [GMRO06], which adopts the ideal func-
tionality for symmetric PAKE [CHK™05] to the asymmetric case. For the reader



not familiar with F,,wke, we provide the functionality and a thorough introduc-
tion to it in Appendix[C] For providing an overview of our contributions, we first
focus on how server compromise attacks are modeled by Fapwke. After learning
about a server compromise attack, Fopwke enables the adversary to (a) make
off-line password guesses against the file and (b) impersonate the server using
the file. Fopwke only allows the adversary to compromise and make password
guesses upon getting instructions from the distinguisher Z.

We show that it is necessary to revisit F,pwke by proving that restricting
the adversary to only submit off-line password guesses upon instructions from Z
results in F,owke being impossible to realize. By this, we invalidate the claimed
security of the £2-method [GMROG]. We also observe that putting restrictions
such as “only ask query x if Z tells you” on the adversary is not conform with
the UC framework and invalidates important properties of the framework such
as simulation with respect to the dummy adversary.

Towards a better modeling, and towards resolving the now-open question
which security guarantees the {2-method fulfils, we revisit F.,wke and propose
our own ideal functionality F,pake. The changes are as follows: we lift the afore-
mentioned restriction on the adversary regarding off-line password guesses and
argue why the resulting security notion captures what we expect from an asym-
metric PAKE. We further propose a UC-conform modeling of server compromise
attacks as “partial” corruption queries which, in the real execution of the proto-
col, partly leak the internal state of an honest party to the adversary (i.e., the
password file).

We call our revisited functionality for asymmetric PAKE F,pake. It however
differs in another aspect from F,pwke, which we will now explain in more detail.

MODELING EXPLICIT AUTHENTICATION. A protocol is said to have explicit au-
thentication if the parties can learn whether the key agreement was successful
or not, in which case they might opt for, e.g., reporting failure. Fapuke features
a TESTABORT interface which allows the adversary to obtain information about
the authentication status and also to decide whether parties should abort if their
computed session keys do not match. The idea behind modeling explicit authen-
tication via an interface that the adversary may or may not decide to use is to
keep Fopwke flexible: both protocols with or without explicit authentication can
be proven to realize it. However, we show that this results in F,,wke providing
very weak security guarantees regarding explicit authentication. One property
that a protocol with authentication should have is that parties reliably abort if
they detect authentication failure. However, F,pwke does not enforce this prop-
erty since the adversary can simply decide not to use the TESTABORT interface.
We propose a stronger version of F,pake that enforces explicit authentication
within the functionality.

To demonstrate usefulness of our revisited functionality F,pake, we show
that the £2-method UC-realizes it. To our knowledge, this is the first full proof
of security for the 2-method.



FrOM 2-PARTY APAKE TO MULTI-PARTY APAKE. Fypuke as well as our
Fapake are two-party functionalities running with one client and one server.
But realistic scenarios for PAKE comprise thousands of users and hundreds of
servers all using the same protocol to establish secure communication chan-
nels or to authenticate clients. This however is usually not a problem: the UC
framework comes with a composition theorem, which allows to instantiate an
arbitrary number of instances of the two-party functionality with its realization.
Each client would invoke an instance of F,pake, and a server can participates
in arbitrarily many of them. To avoid that all instances use their “own” setup,
which would require a server to use, e.g., a different hash function for each client,
all functionalities could share their setups. This can be achieved by transforming
the setup, e.g., a random oracle Fro to a multi-party functionality Fro that acts
as a wrapper for multiple copies of Fro. This approach is widely used and called
UC with joint state (JUC) [CRO3].

We showcase this transformation to the multi-user setting for the {2-method.
Interestingly, a client in the multi-user {2-method is now required to remember
which is “her” copy of the random oracle. We demonstrate that this does not
hinder practicality of the scheme since we can identify a party’s random oracle
by information that this party, in any implementation, has to remember anyway
(e.g., the server’s URL and her own username).

RELATED WORK. Canetti et al. [CHK"05] show impossibility of Fapwke in the
plain model. Gentry et al. [GMRO6] show how to transform a UC-secure PAKE
into a UC-secure asymmetric PAKE (the opposite direction is trivial). However,
as we will show while proving security of their resulting aPAKE, their transfor-
mation seem to require a strong assumption such as a programmable random
oracle. Thus, this does not contradict our separation result.

Assumption-wise, there is a gap between non-programmable and programmable
random oracles. Fischlin et al. [FLR10] introduce models that are in between
both: random oracles with “limited programmability”. In a nutshell, such a ran-
dom oracle allows the adversary to influence the mapping between queries and
outputs, but the outputs are always randomly chosen. As our proof of security
of the £2-method demonstrates, for aPAKE influencing the mapping is sufficient.
This means that our impossibility result for NPRO cannot be broadened to hold
also for random oracles with limited programmability. And indeed, Jutla and
Roy [JR16] propose an aPAKE that is secure w.r.t a limited programmability
random oracle.

Canetti and Krawczyk [CK02] analyze multi-session security of UC-secure
key exchange protocols. Similar to us, they apply the JUC composition theorem
and methods to leverage single-session security to multi-party security. However,
in their work, a session refers to an exchange of a single key, while in UC notions
of PAKE a session refers to a pair of users. And indeed, all PAKE functionalities
already enable exchange of multiple keys via the use of subsession identifiers.
On the other hand, PAKE functionalities handle only two users, while the KE
functionality treated by Canetti and Krawczyk [CK02] can deal with many users



from the start. While the goal of their and our work is the same, namely achieving
“multi-party + multi-session” UC security, the starting points are different.

Since its publication, (the unrealizable) F,owke has been used to argue secu-
rity of asymmetric PAKE schemes, most notably the OPAQUE protocol [JKX18§]|,
which was recently selected as recommended asymmetric PAKE protocol by the
Crypto Forum Research Group (CFRG). The CFRG is an Internet Research
Task Force providing recommendations for IETF. To our knowledge, the proof
of security of OPAQUE can be modified to realize our revisited functionality
FaPAKE-

Finally, in a concurrently published work, Shoup [Sho20] also identifies some
of the modeling issues in F,owke pointed out in our work, but takes a differ-
ent approach in fixing them. While their approach requires restricting the UC
environment, ours requires restriction of the simulator.

ROADMAP. Section [2| gives details on how to model server compromise as partial
corruption and states our revisited functionality Fipake. Section [3| shows our
separation result. In Section [4 we use our new model to make a stronger security
statement of the f2-method. In Section [5| we discuss composable multi-party se-
curity of asymmetric PAKE schemes. The appendix recalls ideal functionalities,
gives some technical details of the UC model and contains the full proofs of
security.

2 The aPAKE Security Model, revisited

The notion of universally composable asymmetric PAKE was introduced in 2006
by Gentry, MacKenzie and Ramzan ([GMRO6]). Their two-party functionality
Fapwke augments the functionality for (symmetric) PAKE by Canetti et al.
ICHK™05] by adding an interface for server compromise attacks. The presen-
tation is slightly more involved due to the different roles that the two partici-
pating users can take in the asymmetric version of PAKE: while the client can
initiate multiple key exchange sessions by providing a fresh password each time,
the server has to register a password file once which is then used in every key
exchange session with the client. We recall Fopuke in Figure [1| and refer the
reader not familiar to it to Appendix [C] for a thorough introduction to the func-
tionality. To model a server compromise attack, F,pwke provides three interfaces
called STEALPWDFILE, OFFLINETESTPWD and IMPERSONATE, which we now
describe in more detail.

e STEALPWDFILE initiates a server compromise attack. The output is a bit,
depending on whether the server already registered a password file or not,
and the query can only be made by the simulator if Z gives the instruction
for it.

e OFFLINETESTPWD enables an off-line dictionary attack: the adversary can
test whether some password is contained in the password file. The answer is
a bit, depending on whether the guess was correct or not. The attack is called
“off-line” since it can be mounted by the adversary without interacting with



The functionality Fapwke is parameterized with a security parameter A. It interacts
with an adversary S, a client Pc and a server Ps via the following queries:

Password Registration

e On (STOREPWDFILE,sid, Pc, pw) from Pg, if this is the first STOREPWDFILE
message, record (FILE, Pc, Ps, pw) and mark it uncompromised.

Stealing Password Data

e On ’ (STEALPWDFILE, sid) ‘ from &, if there is no record (FILE, Pc, Ps, pw), return

“no password file” to S. Otherwise, if the record is marked uncompromised, mark
it compromised and

> If there is a record (OFFLINE, pw), send pw to S.

> Else, return “password file stolen” to S.

e On ’ (OFFLINETESTPWD, sid, pw’) ‘ from S, do:

> If there is a record (FILE, Pc, Ps, pw) marked compromised, do: if pw = pw’,
return “correct guess” to S; else, return “wrong guess”.
> Else, record (OFFLINE, pw’).

Password Authentication

e On (USRSESSION, sid, ssid, Ps, pw’) from Pc, send (USRSESSION, sid, ssid, Pc, Ps)
to 8. Also, if this is the first USRSESSION message for ssid, record (ssid, Pc, Ps, pw’)
and mark it fresh.

e On (SRVSESSION,sid,ssid) from Pg, ignore the query if there is no record
(FILE, Pc, Ps, pw). Else send (SRVSESSION, sid, ssid, Pc, Ps) to S and, if this is the
first SRVSESSION message for ssid, record (ssid, Ps, Pc, pw) and mark it fresh.

Active Session Attacks

e On (TeSTPWD,sid, ssid, P, pw’) from S, if there is a record (ssid, P, P’, pw) marked
fresh, do: if pw’ = pw, mark it compromised and return “correct guess” to S; else,
mark it interrupted and return “wrong guess” to S.

e On (IMPERSONATE, sid, ssid) from &, if there is a record (ssid, Pc, Ps, pw’) marked
fresh, do: if there is a record (FILE,Pc,Ps,pw) marked compromised and
pw’ = pw, mark (ssid, Pc,Ps, pw’) compromised and return “correct guess” to S;
else, mark it interrupted and return “wrong guess” to S.

Key Generation and Authentication

e On (NEWKEY,sid,ssid, P,K) from S where |[K| = A\, if there is a record
(ssid, P, P’, pw) not marked completed, do:
> If the record is marked compromised, or either P or P’ is corrupted, send
(sid, ssid, K) to P.
> Else, if the record is marked fresh, (sid, ssid, K') was sent to P’, and at that
time there was a record (ssid, P’, P, pw’) marked fresh, send (sid,ssid,K’) to
P.
> Else, pick K” & {0,1}* and send (sid, ssid, K") to P.
Finally, mark (ssid, P, P’, pw) completed.
e On (TESTABORT,sid,ssid, P) from &, if there is a record (ssid,P,P’,pw) not
marked completed, do:
> If it is marked fresh and record (ssid, P’, P, pw) exists, send “success” to S.
> Else, send “fail” to S and (ABORT,sid,ssid) to P, and mark (ssid,P,P’, pw)
completed.

Fig. 1. Ideal functionality F,pwke for asymmetric PAKE from [GMRO6], but phrased
as in [JKX18] with slight notational changes to avoid confusion between the adversary

(8) and server (Ps). can only be asked upon getting instructions

from Z.



the client. Like STEALPWDFILE, this attack can only be mounted by the
simulator if Z instructs him to do so. The adversary gets confirmation on a
correct guess only after a STEALPWDFILE query happened.

e IMPERSONATE can be used by the adversary after STEALPWDFILE was is-
sued by Z. This interface enables the adversary to engage in a key exchange
session with the client, using the stolen password file as authenticating data.
This interface is necessary since a server compromise attack (i.e., STEALP-
WDFILE query) does not allow the adversary in any way to control the be-
havior of the server. Nonetheless, a network attacker is able to engage in a
session with the client using the stolen password file, which he can do via
IMPERSONATE.

DEFINITIONAL ISSUES WITH STEALPWDFILE AND OFFLINETESTPWD INTER-
FACES OF F,pwKkE- Let us make two observations about these interfaces. Firstly,
the restriction of letting the adversary ask specific queries only upon receiving
them from Z constitutes a change of the UC framework (Gentry et al. [GMROG]
propose to change the control function of the UC framework to enforce it).
This needs to be done carefully to not invalidate important properties of the
framework such as the composition theorem and emulation w.r.t the dummy ad-
versary. Without further restrictions, at least the latter does not hold anymore.
To provide an example, consider an environment Z that asks an “encoded”
STEALPWDFILE query, e.g., (ask-STEALPWDFILE-query, sid) and sends it to the
adversary. A real-world adversary A can easily decode this query and perform
the desired attack, while the simulator in the ideal world cannot accomplish the
corruption at Fapake due to the wrong message format. This way, Z can keep
the simulator from using his interfaces, leaving him with no leverage to presume
his simulation. Clearly, such an “intelligent” real-world adversary is worse than
a dummy adversary, who would just relay the message without any effect. To get
a meaningful definition that inherits all properties of the UC framework, such
environments would have to be excluded.

Our second observation concerns the real execution of the protocol, where A
obtains STEALPWDFILE and OFFLINETESTPWD queries from Z. Gentry et al.
[GMRO6] assume that A now mounts a server-compromise attack and does not
behave as the dummy adversary, as usually assumed in the UC framework (see
[Can20], Section 4.3.1). Let us explain why this underspecification is problematic.
In the UC framework, the real-world adversary A only has influence on the
communication channel and corrupted parties, and none of this helps him to
steal a password file from the server. For analyzing UC security of a protocol
with respect to Fapwke, it is however crucial to formally specify the outputs of A
upon these queries, since A’s output has to be simulated by S. This requirement
of adding explanation of the real-world adversary A to obtain a security notion
usually does not occur in the UC framework as long as Z does not expect
meaningful output from queries other than (a) modifying/introducing messages
on communication tapes or (b) acting on behalf of corrupted parties and (c)
messages to hybrid ideal functionalities (such as Fro used in this paper) that

10



Z accesses through A. The STEALPWDFILE and OFFLINETESTPWD queries are
not of any of these three types.

2.1 Fix no.1l: Defining the Corruption Model

To address the aforementioned issues, we first define server compromise to be
party corruption. This possibility was already pointed out by Gentry et al.
[GMRO6]. Modeling server compromise via corruption offers the following ad-
vantages:

e It captures the intuition that compromising the server, like Byzantine party
corruption, constitutes an attack that the environment Z can mount to dis-
tinguish real and ideal execution.

o [t takes care of definitional issues by using the special properties of corruption
queries in UC, e.g., that they can only be asked by S and A if Z instructs
them to do so. As a consequence, there is no need to adjust the control
function or to put restrictions on the environment, nor to consider adversaries
other than the dummy adversary.

e It lets us flexibly define the effect of server compromise in the real world
w.r.t internal state of the server. For example, one can choose whether upon
compromising the server the adversary merely learns that a password file
exists or even leak the whole file to him. We note that this leads to a UC-
conform modeling since arbitrary corruption models can be integrated into
the UC framework (see [Can20], section 7.1).

Formally, besides Byzantine party corruption that is usually modeled via a
query (CORRUPT, P, sid) from Z to A, we allow Z to issue an additional corrup-
tion query (STEALPWDFILE, sid). To formalize what happens upon this query
in the ideal world, we adopt the conventions for corruption queries from the UC
framework [Can20] (see Section 7.1) and let dummy parties in the ideal world
ignore corruption messages. Instead, these queries are handeled by the ideal
functionality, who receives them directly from S. We now detail the effect of the
two types of corruption queries that we allow Z to ask.

BYZANTINE CORRUPTION

Real world: Upon receiving a message (CORRUPT, P,sid) from Z, A delivers
the message to P who immediately sends its internal state to A and, from that
point on, is completely controlled by A.

Ideal world: Upon receiving a message (CORRUPT, P, sid) from Z, S delivers
the message to Fapwke, who marks P as corrupted. If F,,.ke already received
input from P or sent output to it, it sends all these values to S. F,pwke further
notifies S of all future inputs and outputs of P and lets S modify P’s input
values.

SERVER COMPROMISE
Real world: Let f : {0,1}* — {0,1}* be an efficiently computable function.
We denote the internal state of Pg with state, consisting of all messages received
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by and sent to the server, its random coins and current program’s state. Upon
receiving a message (STEALPWDFILE,sid) from Z, A delivers the message to
Pgs, who immediately sends f(state) to .A. This definition of corruption resem-
bles what Canetti [Can20] describes as physical “side channel” attacks since it
results in leaking a function of the internal state of a party. A natural choice
is f(state) = file, with file being the variable in the server’s code storing the
password file, which we will use in this work.

Ideal world: Upon (STEALPWDFILE,sid) from Z, S sends this message to
Fapwke- Fapuke marks Pg as compromised. If there are records (FILE, Pc, Py, pw)
(“server Pg used pw to generate password file”) and (OFFLINE, pw) (“S guessed
that file contains pw”), Fapwke sends pw to S.

Let us emphasize that, while we now model STEALPWDFILE queries formally
as corruption queries, this does not mean that the adversary gets to control the
behavior of the server afterwards. The reader should keep in mind that there are
different variants of corruption, some more severe and some less. As common
in the UC model, we refer to a party having received a Byzantine corruption
message as corrupted (acknowledging that Byzantine party corruption is the
“default” type of corruption used in the literature). Also, we refer to a server
having received a STEALPWDFILE corruption query as compromised. In line with
the aPAKE literature [GMROG6] [JKX18], we only consider static Byzantine cor-
ruption (meaning that Byzantine corruption messages are ignored after the first
party obtained input from Z). Contrarily, STEALPWDFILE corruption messages
can be asked by Z at any time. This makes server compromise an adaptive at-
tack. Obviously, static server compromise is not very interesting since it results
in leakage of an empty file.

2.2 Fix no.2: Bounding Offline Attacks

We now turn our attention to the OFFLINETESTPWD interface. If the server is
compromised, which we formalized via the corruption query STEALPWDFILE,
the adversary can query OFFLINETESTPWD to figure out the password within
the password file. Such an attack on the password file is called “off-line” to
emphasize that there is no further interaction with the client required.

Clearly, a meaningful aPAKE security notion should offer means to tell a
protocol with file = pw apart from a protocol with, e.g., file = H(pw) for some
hash function H. The latter requires the adversary to compute hashes of pass-
words until it guesses the correct password, while the former directly leaks the
password to the adversary without any computational effort. If we want to dis-
tinguish between these protocols, we need to make the number of OFFLINETEST-
PwD queries, which in this example represent computations of the function H(),
explicit to Z.

To this end, Gentry et al. [GMRO6] define Fypuke such that A is allowed to
query OFFLINETESTPWD only by relaying queries of Z. Clearly, this gives Z a
way to bound the number of OFFLINETESTPWD guesses and does not allow to
prove a protocol with file = pw secure. However, F,pwke with OFFLINETESTPWD
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instructed by Z is inherently impossible to realize for natural asymmetric PAKE
protocols even under strong assumptions such as a programmable random oracle
(see Appendix (B for a definition of this assumption). In a nutshell, the reason
is that requiring Z’s permission to issue OFFLINETESTPWD queries keeps the
simulator from using this interface and prevents successful simulation of any
aPAKE protocol. We formally prove this impossibility result in Appendix

To circumvent the impossibility result, we propose to change the model by
letting OFFLINETESTPWD constitute an interface provided to the adversary by
Fapwke Without requiring instructions from Z. Consequently, OFFLINETESTPWD
queries by Z do not have any effect nor produce any output in the real world.
Of course, we now need means to bound the simulator’s usage of this interface.
Fortunately, the UC framework provides a technical tool for this, as we will detail
now.

BOUNDING THE SIMULATOR’S COMPUTATION. Unlimited access to the OFFLINETEST-
Pwb interface lets S find out the server’s password eventually, within polynomial
time if we assume passwords to be human memorable. Knowing the password,
simulation of the server becomes trivial and even protocols that we would con-
sider insecure can be simulated (e.g., a protocol with file = pw).

One possible countermeasure is to require the simulator have runtime sim-
ilar to the real-world adversary. Letting S only issue OFFLINETESTPWD when
being instructed by Z enforces this, and was probably the reason for Gentry et
al. [GMROG] to use this limitation in the first place. However, as we show in
Theorem [7] this restriction on S is too heavy. Instead, we propose to lift this
restriction, as formalized above, and instead require that the simulator’s run-
time is linked to the runtime of the real-world adversary. In the UC model, all
entities are locally T-bounded interactive Turing machines (see Section [A| for a
formal definition of this runtime bound). Intuitively, each input bit can be seen
as a ticket. Each ticket can be used to either send T'(1) input bits to another
machine, or it can be consumed as T'(1) computation steps. Since input to the
simulator comes from the environment, Z can decide how many OFFLINETEST-
PwbD queries S is allowed to make. (This argument requires that S cannot use
the ideal functionality to augment its input bits. However, all PAKE function-
alities give only answers that are shorter than the corresponding queries. Thus,
S can obtain additional “input tickets” only from Z and each query to the ideal
functionality results in losing tickets.) Finally, let T : N — N denote the bound
of the real-world adversary. We can now link the number of OFFLINETESTPWD
guesses of the simulator to the number of guesses computed by the real-world
adversary by requiring that for every locally T-bounded real-world adversary
there exists a locally T-bounded simulator.

We are now ready to state our revisited functionality F,pake in Figure @ All
differences to Fapwke were already explained above, except for changes regarding
the TESTABORT interface concerning explicit authentication which we describe
in Section The reasons for postponing are two-fold: the changes can be best
explained when investigating security of the {2-method, and the interface is not
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relevant for our separation result in the upcoming section. To summarize, the
differences between using F,pwke or our revisited F,paxe are as follows:

e STEALPWDFILE is now a corruption query (change does not show in F,pake
but in the assumed corruption model).

e OFFLINETESTPWD can be asked without getting instructions from Z, but
a simulator interacting with F,pake can only access OFFLINETESTPWD as
long as its runtime remains locally T-bounded.

e The TESTABORT interface is removed and NEWKEY is adjusted to analyze
either protocols with or without explicit authentication.

3 The Separation Result

After revisiting the UC security notion for aPAKE and closing some of its defini-
tional gaps in the previous section, we will now turn to our main result. Namely,
we give the first formal evidence that UC secure asymmetric PAKE is indeed
harder to achieve than symmetric PAKE.

THE NON-PROGRAMMABLE RANDOM ORACLE MODEL. In his seminal paper,
Nielsen |[Nie02] formalizes the non-programmable random oracle model (NPRO)
as a variant of the UC framework where all entities (including Z) are granted
direct access to an oracle O. This oracle answers fresh values with fresh random-
ness, and maintains state to consistently answer queries that were asked before.
We recall the formalism of Nielsen to integrate such a random oracle in the UC
framework.

In the NPRO model, all interactive Touring machines (ITM) that exist in the
UC framework are equipped with additional oracle tapes, namely an oracle query
tape and an oracle input tape. To denote an ITM Z communicating with oracle
O via these tapes, we write Z°. Z can write on his oracle query tape, while the
oracle input tape is read-only. As soon as Z enters a special oracle query state,
the content of the oracle query tape is sent to O. The output of O is then written
on the oracle input tape of Z. A random oracle can be implemented by letting
O denote an ITM defining a uniformly random function A : {0,1}* — {0, 1}
We now say that a protocol @ UC-realizes a functionality F in the NPRO model
if

VA® 389 5.t. V291 Viewqo a0 (Z°) ~ Viewzo so(Z°)

VERIFIABLE PASSWORD FILES. To state our separation result, we need to for-
mally capture what it means for an aPAKE protocol formulated in the UC
framework to have a verifiable password file. In a nutshell, the definition cap-
tures whether for a password file file leaked by a compromised server, the envi-
ronment Z is provided with all necessary information and interfaces at hybrid
functionalities to determine whether any given pw is contained in file. We do
not specify how Z determines this, e.g., whether Z tries to recompute file from
pw or whether Z runs the aPAKE protocol internally on inputs pw and file. For
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The functionality Fapake is parameterized with a security parameter A. It interacts
with an adversary S and a client and a server P € {Pc, Ps} via the following queries:

Password Registration

e On (STOREPWDFILE,sid, Pc,pw) from Pg, if this is the first STOREPWDFILE
message, record (FILE, Pc, Ps, pw).

Stealing Password Data

° On‘ (STEALPWDFILE, sid) | from S, if there is no record (FILE, Pc, Ps, pw), return

“no password file” to . Otherwise, mark Pg as compromised and
> If there is a record (OFFLINE, pw), send pw to S.
> Else, return “password file stolen” to S.
e On (OFFLINETESTPWD,sid, pw’) from S, do:
> If there is a record (FILE, Pc, Ps, pw) and Ps is compromised, do: if pw = pw’,
return “correct guess” to S; else, return “wrong guess”.
> Else, record (OFFLINE, pw’).

Password Authentication
e On (USRSESSION, sid, ssid, Ps, pw’) from Pc, send (USRSESSION, sid, ssid, Pc, Ps)
to 8. Also, if this is the first USRSESSION message for ssid, record (ssid, Pc, Ps, pw’)
and mark it fresh.
e On (SRVSESSION,sid,ssid) from Pg, ignore the query if there is no record
(FILE, Pc, Ps, pw). Else send (SRVSESSION, sid, ssid, Pc, Ps) to S and, if this is the
first SRVSESSION message for ssid, record (ssid, Ps, Pc, pw) and mark it fresh.

Active Session Attacks

e On (TeSTPWD, sid, ssid, P, pw) from S, if there is a record (ssid, P, P’, pw’) marked
fresh, do: if pw’ = pw, mark it compromised and return “correct guess” to S; else,
mark it interrupted and return “wrong guess” to S.

e On (IMPERSONATE, sid, ssid) from S, if there is a record (ssid, Pc, Ps, pw’) marked
fresh, do: if there is a record (FILE, Pc, Ps, pw), Ps is compromised and pw’ = pw,
mark (ssid, Pc, Ps,pw’) compromised and return “correct guess” to S; else, mark
it interrupted and return “wrong guess” to S.

Key Generation and Authentication

e On (NEwWKEY,sid,ssid, P,K) from S where |K| = A, if there is a record
(ssid, P,P’, pw) not completed, do:
> If the record is compromised, or P or P’ is corrupted, or K = 1, send

(sid, ssid, K) to P.
> If the record is fresh, (sid, ssid, K') was sent to P’, and at that time there was
a record (ssid, P’, P, pw) marked fresh, send (sid, ssid, K') to P.
> Else if the record is interrupted or if it is fresh and there is a record
(sid, P’, P, pw’) with pw # pw’, then send (sid,ssid, L) to P and S.
> Else, pick K” & {0,1}* and send (sid, ssid, K”) to P.
Finally, mark (ssid, P,P’, pw) as completed.

Fig. 2. Our revisited ideal functionality Fapake for asymmetric PAKE, with explicit

authentication (see Section . can only be asked upon getting

instructions from Z. Gray boxes indicate queries that required instructions from Z
according to Gentry et al. [GMROG], but not in our F,pake. To be consistent with the
writing conventions for ideal functionalities, F,pake marks Pg as compromised instead
of the FILE record.



example, hashing the password results in a verifiable file H(pw) if Z posesses
the description of H() or can access a functionality computing H (

Definition 1 (Verifiable Password File). Let m be an asymmetric PAKE
protocol in an F-hybrid model, where F is an arbitrary set of ideal functionali-
ties. We say that m has a verifiable password file file if, for a given pw, Z can
efficiently determine whether file was created upon input pw, by only interacting
with the ideal functionalities F (via A).

We emphasize that only adversarial interfaces at hybrid functionalities may
help Z in verifying correctness of the password file, and no further inputs to other
ITMs are required. This will become crucial in proving our impossibility result.
Let us emphasize that Definition [If does not actually restrict the class of asym-
metric PAKE protocols. In fact, the only asymmetric PAKE protocol formulated
in the UC framework that does not have a verifiable password file that we are
aware of is the ideal protocol Fapake itself. This protocol has a trivial password
file (“no password file” / “password file stolen” are possible outputs upon server
compromise), requires no hybrid functionalities and thus the password file is not
verifiable. And indeed, the following Theorem would not hold w.r.t the ideal
protocol Fapake, due to the well-known fact that every UC functionality realizes
itself. Let us stress though that all practical aPAKE protocols proposed in the
literature do have verifiable password files, simply because a password at the
client side and a file at the server side need to be enough to complete the key
exchange. Definition [1| should thus be viewed as a necessary formalism to prove
our separation result and not as a restriction of it.

With the NPRO model and the property of verifiable password files we now have
all tools to prove our separation result in the following theorem.

Theorem 1. The functionality F.paxe as depicted in Fig. @ 1is not realizable in
the NPRO model by any protocol with verifiable password file. More detailed, for
every such protocol w there exists a polynomial T, a locally T-bounded attacker
A and an environment Z restricted to static Byzantine corruptions and adaptive
server compromise, such that there is no locally T-bounded simulator S such that
7 UC-realizes Fapaxe in the NPRO model.

Proof. Let m be a protocol with verifiable password file that UC-realizes Fapake
in the NPRO model. Consider the following environment Z running either with
an adversary or the simulator.

! While it seems contradictory for an asymmetric PAKE protocol to not have a verifi-
able file, one could indeed build such strong protocols by shielding information from
Z. One example would be involving interaction with a third party. If this party is
involved in the registration phase but is not accessible by Z, off-line attacks can
be prevented. To put an example, sharing the role of the server among several par-
ties yields a protocol that does not have verifiable files. Such protocols are called
threshold PAKE [FJOO]. While Fpwke allows to consider such protocols, we are not
interested in analyzing them in this paper.
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e Z© starts the protocol with (STOREPWDFILE, sid, Pc, pw) as input to Pg,

where pw & {0, 1}“/5}. All parties remain uncorrupted.

e 29 sends (STEALPWDFILE, sid) to the adversary to compromise the server.

Z obtains file as answer from the adversary.

o Z9 verifies (pw, file).

e Z9 outputs 0 if verification succeeds, else it outputs 1.
Note that step 3 can be performed by Z€ without any interaction with A, simply
since it has the same oracle access as A®. To verify the file, Z runs 7 internally,
using pw as input to the client and file for the server. It outputs 0 if both client
and server compute the same session key. Due to the file verifiability of =, Z€
always outputs 0 in the real execution. It remains to compute the probability that
S9 outputs files such that Z€ outputs 0 in the ideal execution. Since Z© issues
only STOREPWDFILE and STEALPWDFILE queries (which both do not produce
any output in this case), no (OFFLINE,...) or (ssid,...) records are ever created
within F,pake. Due to the absence of these records, the only interface of F,pake
provided to S€ that produces any pw-depending output is OFFLINETESTPWD.
This interface provides S® with a bit, depending on whether the submitted
password was equal to pw or not.

The real-world adversary A considered above only needs to read its inputs
(STEALPWDFILE and file) and forward them. Thus, A is locally T-bounded
with T'(n) := n. Since S is required to be locally T-bounded as well, it has
runtime n = ny — n., ns is the number of bits written to S€’s input tapes and
n. the number of bits S© writes to other input tapes. Since S© cannot have
a negative runtime, the maximum number of password bits that he can submit
to OFFLINETESTPWD is n;. In the above attack, n; consists of the minimal
input 1%, (STEALPWDFILE,sid) from Z© as well as a bit as answer to each
STEALPWDFILE and OFFLINETESTPWD query that S issues. We now upper
bound the number of total password guesses that S€ can submit. We simplify
the analysis by ignoring names and session IDs in queries, and by assuming that
(STEALPWDFILE, sid) has the same bitsize as S©’s answer files. Additionally, we
let S© know k, i.e., the length of the password of the server. The simplifications
yield n; = A + m, where m is the number of OFFLINETESTPWD queries of S©.
Since |pw| > 1, we have m < A, and thus the maximum number of k-bit long
passwords that S© can write in queries is 2)\/k. Setting k = loga(\) + 2 , and
using the fact that Z9 draws pw at random, the probability that S© obtains
1 from OFFLINETESTPWD is at most 1/2. It follows that Pr[Z — 1| ideal | =
Pr[A° (pw) = files] < 1/2 +1/2*~1, contradicting the UC-security of .

Theorem [I] indicates that some form of programmability is required to real-
ize Fapake. However, our proof technique differs significantly from other NPRO
impossibility results such as the one from Nielsen [Nie02] for non-committing
encryption. Essentially, in non-committing encryption, simulation of arbitrar-
ily many ciphertexts are necessary, while for asymmetric PAKE as specified by
Fapake just one password file needs to be simulated. An interesting question
is thus whether a setup assumption such as a common reference string (CRS),
which offers a limited form of programmability, is enough to realize F,pake. Un-
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fortunately, we answer this question negatively by extending the impossibility
result of Theorem [1|to a setting where a common reference string (CRS) is used
as additional setup assumption.

Theorem 2. Theorem[]] holds also in a setting where all entities are additionally
granted access to an ideal common reference string (CRS).

Proof (Proof Sketch.). The argumentation is the same as before, but additionally
showing that the CRS does not help the simulator since he does not know which
password to program the CRS for.

We modify the proof of Thm [1] as follows: as a new first step, Z asks for the
CRS value. Since this completely “consumes” the CRS functionality, meaning
that no further interaction with A is necessary to verify the file, Z’s verification
result in the real world is again always 0. The analysis of the probability of file
depending on pw in the ideal world remains the same as for Theorem [I] since Z
does not provide S with any information about pw when querying the CRS.

Remark 1. Extending Thm. [1| to variants of random oracles. Since in the
above attack the oracle O is not queried before S€ provides his output, any
flavor of observability can be added without invalidating Theorem [1} That is,
even observing random oracle queries from parties and the environment does
not help the simulator to prevent the described attack. Contrarily, our result
does not apply with respect to an oracle offering limited programability such as
random or weak programmability [FLRT10]. In a nutshell, these oracles give the
adversary the freedom to assign images that are chosen by the oracle to inputs
of his choice. This seems enough to circumvent our impossibility result since the
simulator is now able to solve its commitment issue, while it does not rely on
choosing the images itself (e.g., taking a DDH challenge as image). This claim
is supported by Jutla and Roy [JR16], who construct a UC-secure asymmetric
PAKE in a limited programmability random oracle model.

We leave it as an open question to broaden or invalidate our result for more
notions of random oracles, especially different flavors of global random oracles
ICDGT1§].

PossiBiLiTy oF PAKE IN THE NPRO-MODEL. As opposed to asymmetric
PAKE, for symmetric PAKE it is possible to achieve static UC-security without
relying on programmability. A widely used PAKE protocol is DH-EKE [BM92b],
which is inspired by the Diffie-Hellman Key Exchange [DHT7G]. The two flows of
the protocol are encrypted using the password as the encryption key with an
appropriate symmetric encryption scheme. The EKE protocol has been further
formalized by Bellare et al. [BPR0O0] under the name EKE2 and proven to be UC
secure [ACCP08, [DHP™18|. By looking at the simulators for static security, it
is apparent that the internally simulated oracle is not programmed in any way.
Indeed, it is only observability of random oracle queries of Z that is required for
the security proof. Thus, EKE2 is statically secure in the NPRO-model.
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A PAKE protocol that is often referred to as the “KOY protocol” was origi-
nally introduced by [KOY01]. To enable UC security, it was later slightly modi-
fied and proven to be UC-secure in a CRS-hybrid model [CHK™05]. The protocol
makes use of a Hash Proof System which can be obtained from, e.g., standard
discrete-log based assumptions. Security of the protocol thus does not rely on
any idealized assumption. The same holds for the round-optimal PAKE of Katz
and Vaikuntanathan [KV1I] and the protocol of Benhamouda et al. [BBCT13].

Altogether, our results in this section formally demonstrate that UC-secure
asymmetric PAKE cannot be obtained from the same minimal assumptions as
UC-secure PAKE.

4 UC-Security of the £2-Method

Gentry et al. [GMROG] propose a generic method for obtaining an asymmet-
ric PAKE protocol from a symmetric PAKE protocol. Their protocol called
f2-method is a modification of the so-called “Z-method” [Mac02] for turning a
symmetric PAKE into an asymmetric PAKE. In this section, we analyze the
UC-security of the f2-method. Let us first recall the protocol in Figure [3] and
describe its phases.

e File Storage Phase: The server stores a hash of a password together with
a signing key pair. This file is then used for all further sessions with a specific
client.

¢ Key Exchange Phase: Client and server run a symmetric PAKE protocol
using password hashes as input. To obtain more than one session key, this
phase can be repeated.

e Proof Phase: For each key exchange phase, the client has to prove that
he actually knows the password. This phase is necessary since otherwise a
server compromise would enable the attacker to impersonate a client using
only the hash of the password. This is clearly undesireable and reflected in
the functionality that, upon server compromise, only allows to impersonate
the server. Using the (hash of the) password as an encryption key, the stored
signing key is encrypted and sent to the client, who decrypts it and signs the
transcript together with the session identifier. Besides proving knowledge of
the password, this step also informs both users whether their key exchange
was successful or not. In case of success, a user outputs the session key that
was computed in the key exchange phase.

We formally prove what was claimed in [GMROG], namely, UC-security of the {2-
method, executed in the UC model (see Appendix, with respect to our revis-
ited functionality and corruption model, but using the NEWKEY and TESTABORT
interfaces as in F,pwke (see Figure[l]). The full proof can be found in Appendix
The symmetric PAKE functionality Frpwke is depicted in Figure @
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Fig. 3. The 2-method [GMROG]. Slightly abusing notation, we assume Fypwke outputs
transcripts together with keys. To merge instantiations of Fro, we implicitly assume
that Fro outputs random values of length 2\ for inputs ending with 1, and random
values of length A for inputs ending with 2 or 3.

Theorem 3. The protocol depicted in Figure @ securely realizes Faipake with
NEWKEY and TESTABORT interface as in Fz'gure in the {Fro, Frowke}-hybrid
model with respect to static Byzantine corruptions and adaptive server compro-
mise.

OUTLINE OF THE PROOF The proof of the theorem is divided in four steps:
simulate on-line dictionary attacks, simulate man-in-the-middle attacks, simulate
server compromise attacks and transcripts and, if necessary, outputs of honest
parties without their passwords and random coins.

e Towards simulating on-line dictionary attacks, the simulator is allowed to
use the TESTPWD interface of F,pake once per ssid. However, note that a
dictionary attack is mounted by Z through a corrupted party, meaning that
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Z internally chooses a password and runs the party’s code internally and
then sends messages on behalf of the corrupted party. The simulator has to
extract somehow the password that Z is using in the attack. However, since
Z needs to hash the password, S can derive it from inputs to the random
oracle and the inputs that Z sends to the hybrid Fiowke. If Z does not issue
any of these queries, it is straightforward that the dictionary attack fails
with overwhelming probability.

Since the protocol uses a symmetric PAKE protocol as a building block, man-
in-the-middle attacks against this part of the protocol are already excluded
via the UC security of the PAKE scheme. This means that there are only
two messages that the environment can attack: the first is a one-time-pad
and the second a signature. Z can suppress or modify these messages, and
we show that these denial-of-service type attacks can be handled by the
simulator by calling the appropriate interfaces of F pake.

Server compromise attacks mounted by the environment require the simula-
tor to provide information that is indistinguishable of what Z sees in the real
world. In the previous section, we detailed via a new corruption model that,
in the real world, Z obtains a part of the servers internal state, which we
call the password file. To argue security, we have to show how this file can be
simulated. However, since the file contains a password hash, S can just out-
put a randomly chosen value. Now Z can “check” this value by hashing the
password and comparing it with the file. Our S relies on reprogramming the
random oracle to match password and file. To learn what he has to program,
S will input all random oracle queries of Z as OFFLINETESTPWD guesses
to Fapake. Crucially, S relies on having unlimited access to this interface as
soon as he has to simulate a password file. Lastly, if Z uses the password file
to mount a network attack on the session (by issueing a TESTPWD query to
Frpwke using the file), S asks an IMPERSONATE query. If Z uses a wrong file,
S can make sure that the key exchange fails by sending | via the NEWKEY
interface.

When simulating honest parties, S has to use simulated random coins and
passwords. For showing indistinguishability of runs with simulated and real
honest parties, we heavily rely on the usage of ideal building blocks that
output truly random values, and in the case of Frpuke especially outputting
truly random values that are different with overwhelming probability in case
of mismatching passwords.

4.1 Explicit authentication

A protocol is said to have explicit authentication if the parties learn whether the
key agreement was successful (in which case they might opt for, e.g., outputting a
failure symbol). The asymmetric PAKE functionality Fapwke (see Fig. [1]) features
a TESTABORT interface to allow analyzing protocols either with or without
explicit authentication. Essentially, an adversary querying this interface for an
ongoing key exchange session (1) learns whether the passwords matched or not
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and (2) triggers output of a failure symbol to the parties in case of mismatching
passwords.

TESTABORT 1S TOO WEAK. While it is desireable to analyze both types of
schemes since both are used in practice, the TESTABORT interface weakens an
aPAKE functionality by not clearly distinguishing which type of protocol is an-
alyzed. This results in very weak security guarantees regarding authentication:
adversary can force a party in a protocol with explicit authentication to out-
put whatever key it computed by not making use of the TESTABORT interface.
This is particularly troubling since, intuitively, a protocol featuring explicit au-
thentication should reliably inform participants whether the key exchange was
successful or not. On top of that, no security guarantee about session keys is
granted whatsoever in a session under attack. This means parties would even
faithfully use adversarially determined keys to, e.g., encrypt their secrets.

We disclose this weakness of Fypake with TESTABORT by demonstrating with
Theorem |3| that the 2-method is securely realizing F,pake with TESTABORT
even if the signature scheme is insecure. By looking at the proof of the theorem,
it becomes apparent that we do not rely on the signature scheme used for explicit
authentication to fullfil any security notion. Let us explain on a high level why
the 2-method can be shown to securely realize Fopake with TESTABORT even
when signatures are easily forgeable. The purpose of the signature is to convince
the server that the client holds the correct password. If an attacker manages to
inject a forgery as last message, it can convince the server to output a session key
in the real execution even if the client holds a different password, or only the file
and no password at all. However, this can be easily simulated in the ideal world by
letting the simulator not issue a TESTABORT query for the server (as he would
do for a protocol not featuring explicit authentication). Using this simulation
strategy in the proof, we do not have to rely on forgeries being unlikely.

Since it often leads to confusion, let us also shortly mention corrupted ses-
sions. For example, in the {2-method a corrupted client using a stolen password
file has to prove knowledge of the plain password by recovering the signing key.
An insecure signing scheme would let such a client authenticate to the server
although he does not know the password. However, this can be simulated: upon
the client sending a verifiying signature, the simulator computes the session key
of the client from the simulated password file and lets the honest server output
the same session key (by using the NEWKEY interface).

Let us emphasize. Inspired by the above simulation strategies, we make the
following claim: a modified {2-method where the client sends a text message “ac-
cept” /“do not accept” to the server also realizes F,pake with TESTABORT in the
(Fro, Frpwke)-hybrid model. Of course, we do not recommend to use this modi-
fied version of the protocol, nor to use it with a flawed signature scheme. This is
just a thought experiment to demonstrate the severe weaknesses introduced by
the TESTABORT interface.

We correct this weakness of Fpwke by equipping Fopake with a NEWKEY
interface enforcing explicit authentication, following informal recommendations
of Canetti et al. [CHK™05]. STRONG EXPLICIT AUTHENTICATION GUARANTEES.
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For proving security of a protocol featuring explicit authentication such as the
2-method, we show how to modify the functionality’s key generation and au-
thentication interfaces to provide strong authentication guarantees. We let the
functionality send a special failure symbol | to parties with mismatching pass-
words or in case of a failed online attack. The adversary gets informed about
such failure. While F,pake would be stronger without this leakage, the £2-method
requires it. Namely, in a session where none of the parties is corrupted but the
server is compromised, the verification key used by the server is leaked to the ad-
versary via the password file. The adversary can thus learn whether key exchange
succeeded by checking validity of the signature sent by the client.

An adversary can always mount a DoS attack by, e.g., injecting messages
of wrong format to make the receiving party output failure. We incorporate
this attack into Fypake by letting the adversary propose failure in his NEWKEY
response. Fapake enforcing explicit authentication is depicted in Figure m We
are now ready to state a stronger version of Theorem [3] which captures security
of the f2-method more precisely. The proof can be found in Appendix [F]

Theorem 4. If the signature scheme is EUF-CMA secure, the protocol in Fig-
ure @ securely realizes Fapake in the {Fro, Frpwke}-hybrid model with respect to
static Byzantine corruptions and adaptive server compromise.

5 Multi-Session Security

In practice, asymmetric PAKE schemes are implemented in scenarios comprising
many clients accessing various servers. In this section, we analyze how a protocol
realizing F,pake can be leveraged to obtain a UC-secure multi-party asymmetric
PAKE scheme.

Exploiting the modularity of the UC framework, we can design a multi-
party aPAKE protocol by running F,pake between each client-server pair. The
composition theorem of the framework then allows us to subsequently replace
all the ideal F,pake protocols with their realizations, say, some protocol 7wapake
in the Fro-hybrid model (see Figure [5]). However, with each such replacement,
a new set of hybrid functionalities is created that is used only by one instance
of the protocol. This results in as many Fro functionalities as there are disjoint
client-server pairs. Clearly, instantiating all these random oracles with different
hash functions does not yield a practical scheme.

UC WITH JOINT STATE. Toward a more realistic multi-party protocol, we want
all two-party aPAKE protocols to jointly use their hybrid functionalities. For
this, the UC with joint state (JUC) framework [CRO3] can be used. In a nutshell,
this framework provides a tool, the so-called multi-session ezxtension F of a
functionality F to replace many hybrid functionality invokations with a single

2 A protocol without explicit authentication can be proven to securely realize F.pake
with the NEWKEY interface of the symmetric PAKE functionality Frpwke from Fig-

ure @
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FaPAKE

FaPAKE

Fig. 4. A multi-user aPAKE scenario where instances of F,pake are subsequently re-
placed by their realization m.pake in the Fro-hybrid model.

protocol. Fisa single functionality comprising arbitrarily many instances of F,
distributing calls to and from them consistently. Replacement is handled via the
JUC composition theorem:

Theorem 5 (Universal composition with joint state [CRO3]). Let F,G
be ideal functionalities. Let m be a protocol in the F-hybrid model, and let p
be a protocol that UC-emulates F, the multi-session extension of F, in the G-
hybrid model. Then the composed protocol =7 in the G-hybrid model emulates
protocol 7 in the F-hybrid model. Here, 7777 denotes protocol ™ where each
invokation of F is replaced by a call to p.

Let us showcase the workflow for the (2-method.

(1) Find a protocol that UC-emulates the multi-session extension of Fro

(2) Modify the {2 method from Figure [5| to use this protocol instead of Fro

(3) Apply the JUC composition theorem to replace multiple instances of Fapake
(in an arbitrary application protocol) by the modified £2-method

More detailed, the multi-session extension Fro of Fro is a wrapper around many
instances of Fro. Fro is called with inputs of the form (sid, ssid, m). It distributes
the queries to the corresponding inner Fro functionality with session ID ssid.
Vice versa, sid is added to all outputs of inner functionalities before they leave
-7:—RO- The main difference between ]:—RO and FRo is that -7:—RO maintains a number
of random oracle lists which we can refer to as L[ssid]. Therefore, sending a value
m to Fro can result in different outputs, depending on the ssid of the input. It
can be easily argued that a variant of Fro that includes the ssid in the hash list
UC-emulates ]:'Ro. We call the resulting functionality Fsro and refer to it as a
shared random oracle. See Figure [7] for a formal definition.

Lemma 1. The ideal protocol IDEALF,,, UC-emulates Fro.
We now modify the 2-method execution in UC to work with Fsro. Whenever

a party issues a query (sid,m) to Fro, this query is rewritten as (s,sid, m) and
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send to Fro- Here, s is a session ID hard-coded in the protocol, i.e., the same
s is used by all instances of the protocol. We call the resulting protocol (2.
The effect of the modification is that all instances of the (25 protocol in a UC
execution will call the same random oracle functionality Fsro having session ID
s. Let us stress that (2, is still a two-party protocol.

We are now ready to investigate security of a protocol 7 invoking several
instances of the {2, protocol (7w can be thought of being the context of a two-
party aPAKE protocol, in the easiest case just a protocol invoking multiple users
running aPAKEs among them). As desired, the following theorem lets us replace
multiple instances of the ideal functionality F,pake by the £2,-method. It follows
directly from Theorem [d] Lemma [I] and the JUC composition Theorem

Theorem 6. Let w7PAKE pe g protocol in the Fapake-hybrid world and 722 pe

the protocol w7 Pk where each invokation of Fapake is replaced by an invokation
of the 25 protocol making calls to Fsgro. Then

79272 UC-realizes w7 oPAxe

We thus obtain strongly secure multi-party asymmetric PAKE schemes using
a joint setup from protocols realizing F,pake. Namely, we are guaranteed that
all single instances within the multi-party protocol behave in an ideal way. To
our knowledge, this is the first statement of UC security of a multi-party aPAKE
protocol. The same technique can be applied to the protocols from [JKXlS]El

Remark 2. As done already in [CKO02], we could apply the JUC routine also “at
the next level” and consider the multi-session extension of F,pake. The resulting
functionality Fapake would be a single setup that can be called by muliple parties
in an application protocol. However, while this does not give any new insights
regarding security (that is, security would still hold only under the assumption
introduced by the first application of JUC, e.g., a shared random oracle), it
hinders our original goal to modularly analyze multi-party protocols which use
aPAKE bilaterally. For this, we believe that the two-user Fapake is the simplest
and best option.

IMPLEMENTATION CONSIDERATIONS. Relying on a shared random oracle nat-
urally comes at a cost: instantiating Fsro requires us to hash session-specific
information along with the password, e.g., use H(pw,sid) as password file in the
2-method. Such a file “works” only for a specific sid, and the sid of the session
(Pc, Ps) is different from the one of (P¢, Pg). This has to be kept in mind: when
running key exchange session from different machines, not only does a party need
to remember its password, it also needs to remember its session identifier sid at
a specific server. While this at first glance violates our expectations of a PAKE
protocol, namely, that the user has to only remember its password to success-
fully exchange a key, it does not seem to be an obstacle in practice: the sid can
be chosen as simple as sid = (username, server-URL), since this combination is
unique per server.

3 In their protocols, switching to the shared random oracle Firo lets the server compute
session-specific OPRF keys K¢ and the password file becomes PRFk , (pw).
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A Some Details on Universal Composability

In this section we will briefly recall parts of the Universal Composability (UC)
framework of Canetti [Can01] that are needed in our proofs. We refer to the most
recent revision of the framework as [Can2(]. First, let us introduce a convention
for the textual descriptions of the UC framework in this work. We will use the
term simulator to emphasize that we talk about the adversary in the ideal world
and the term real-world adversary if we talk about the adversary who interacts
with the real protocol. If we talk about both entities, we use the term adversary.
The UC framework uses interactive Turing machines (ITM) to describe a
protocol execution, which are basically Turing machines that can send messages
to each other. Each entity in the system (parties, adversaries, ideal function-
alities) is modeled as such an ITM and is connected to various other entities.
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Technically, sending messages works via writing to the tape of an ITM. There are
different types of tapes, e.g., for providing initial input or receiving a protocol
message from another party, but we can ignore this since it is not important for
our purposes and just talk about input tapes in general.

Before proceeding, let us quickly recall the notion of a protocol UC-realizing
an ideal functionality F.

Definition 2 (UC realization, informally). A protocol m UC-realizes an
ideal functionality F if

VAIS s.t.¥Z:  Views 4(2) = Viewr s(Z)
where A, S, Z are ITMs each having private random coins available.

Of course, for the above definition to make sense one needs to bound the
resources of each ITM, in particular its runtime. Bounding the runtime of a
Turing machine is usually done by saying that it has to halt within T'(n) steps,
where T is some function 7' : N — N and n is the number of overall input bits.
Care has to be taken when formulating such a restriction for an interactive Turing
machine, since such a machine can create new input bits for other machines.
Consider for example two ITMs with runtime bounded by the constant function
T : N — 2. If the only thing that the machines do is writing one bit on the other
ITM’s input tape upon each activation, the system of these two I'TMs will never
halt. To avoid infinite runs, input bits are interpreted as “runtime tokens” that
can either be consumed by the ITM itself for local computations, or given away
to other I'TMs. This leads to the notion of locally T-bounded ITMs.

Definition 3 (Locally T-bounded ITM, Def. 5 of [Can20]). Let T : N —
N. An ITM M is locally T-bounded if, at any point during an execution of M
(namely, in any configuration of M ), the overall number of computational steps
taken by M so far is at most T(n), where n =ny—no, ny is the overall number
of bits written so far on M ’s input tape, and no is the number of bits written by
M so far on input tapes of ITM instances.

Finally, we recall execution of the f2-method in the UC model. Most of Fig-
ure [5| is taken verbatim from [GMRO6] with only adjustments to our notation.

B Ideal functionalities

We recall the Random Oracle (RO) functionality Fro as defined by Hofheinz
and Miiller-Quade in [HM04] in Figure @ the ideal functionality for symmetric
PAKE, called Frpwke in Figure [8] of Gentry et al. [GMROG].

C Introduction to UC-secure asymmetric PAKE

We now explain the functionality Fapwke [GMROG] depicted in Figure [1} Fapwke
can be seen as a trusted third party that can be accessed by two users. One
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Setup: The protocol uses a random oracle functionality Fro and a PAKE func-
tionality Frpwke, as well as a signature scheme (SigGen, Sign, Vfy). It is executed
by a client Pc and a server Ps.

Password Storage: When Pg is activated with (STOREPWDFILE, sid, Pc, pw) for
the first time, he first sends (sid, pw||3), (sid, pw||2) to Fro and receives responses
(sid,r) and (sid, kp). He generates a signature key pair (vk,sk) < SigGen(1)
and sends (sid,sk||3) to Fro, obtaining an answer (sid,hs). He computes
¢ « kpw @ sk||hs, where @ binds stronger than ||, and sets file[sid] := (r, ¢, vk).

Protocol Steps:

e When Pc receives input (SRVSESSION,sid,ssid, Pc) he obtains 7
from file[sid] (aborting if this value is not properly defined), sends
(NEWSESSION, sid||ssid, Ps, Pc, T, server) to Frpwke and awaits a response.

e When Pc receives an input (USRSESSION,sid,ssid, Ps,pw) he sends
(sid,pw||3) to Fro and obtains a response r. He then sends
(NEWSESSION, sid||ssid, Pc, Ps, client) to Frpwke and awaits a response.

e When Py is awaiting a response from Frowke and receives (sid|[ssid, K) and
(TRANSCRIPT, sid||ssid, tr) from it, he sends (sid||ssid, K||1) and (sid||ssid, K]||2)
to Fro and receives responses (sid||ssid,K;) and (sid||ssid,K2). He re-
trieves ¢ from file[sid] and computes e < K; @ ¢ and sends the message
(flow-zero, sid, ssid, e) to Pc.

e When P¢ is awaiting a response from Frpwke and receives (sid|[ssid, K) and
(TRANSCRIPT, sid||ssid, tr) from it, he sends (sid||ssid, K||1) and (sid||ssid, K]||2)
to Fro and receives responses (sid||ssid, K1) and (sid||ssid, K2).

e When Pc receives a message (flow-zero, sid, ssid, e) he computes ¢ + K; @ e
and parses ¢ =: ci||c2 with ¢1 € {0,1}*. He sends (sid, pw||2) to Fro and
receives response kpy. He computes sk := c¢1 @ kpw and sends (sid, sk||3) to
Fro, receives response hg and verifies that hsk = co. If not, he outputs
(ABORT, sid, ssid) and terminates the session. Otherwise, he computes o <+
Signg(sid||ssid||tr), sends (flow-one,sid,ssid,o) to Ps, outputs (sid,ssid, K2)
and terminates the session.

e When Ps receives a message (flow-one,sid,ssid,o), he checks that
Vfy,, (o, sid||ssid||tr) = 1. If not, he outputs (ABORT,sid,ssid) and terminates
the session. Otherwise, he outputs (sid, ssid, K2) and terminates the session.

Fig. 5. Execution of the f2-method from Figure [3]in the UC model.

The functionality Fro proceeds as follows, running on security parameter A, with
a set of parties P1,...,P, and an adversary S:
e Fro keeps a list L (which is initially empty) of pairs of bit strings.
e Upon receiving a value (sid,m) (with m € {0,1}") from some party P; or
from S, do:
o> If there is a pair (m, k) for some h € {0,1}* in the list L, set h := h.
> If there is no such pair, choose uniformly h € {0, 1}A and store the pair
(m,h) € L.
Once h is set, reply to the activating machine (i.e., either P; or §) with (sid, h).

Fig. 6. Functionality Fro
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The functionality Fsro proceeds as follows, running on security parameter A\, with
a set of parties P1,..., P, and an adversary S:
e Fro keeps a list L (which is initially empty) of pairs of bit strings.
e Upon receiving a value (sid, ssid, m) (with m € {0,1}") from some party P; or
from S, do:
> If there is a tuple (ssid, m, fz) for some h € {0,1}* in the list L, set h := h.
> If there is no such pair, choose uniformly h € {0, l}k and store the pair
(ssid,m, h) € L.
Once h is set, reply to the activating machine (i.e., either P; or §) with (sid, k).

Fig. 7. Functionality Fsro

The functionality Frpwke is parameterized by a security parameter A. It interacts
with an adversary S and two parties P;, P1—; via the following queries:

Upon receiving (NewSession, sid, P;, Pi—;, pw,role) from party P;:
e Send (NEWSESSION,sid, P;, Pi—;,role) to S. Also, if this is the first

NEWSESSION query, or if this is the second NEWSESSION query and there is
arecord (P1—;, Ps, pw’), then record (P1—;, P;, pw) and mark this record fresh.

Upon receiving (TestPwd,sid, P;,pw’) from S:
e If there is a record (P;, P1—i, pw) which is fresh, then do:
> if pw = pw’, mark the record compromised and reply to S with “correct
guess”.
> if pw # pw’, mark the record interrupted and reply to S with ”wrong
guess ‘.

Upon receiving (NewKey,sid, P;,K) from S where |[K| = A:
e If there is a record of the form (P;, P1—i, pw) that is not marked completed,
then:
> If this record is compromised, or either P; or Pi_; is corrupted, then
output (sid, K) to P;.
> Else, if this record is fresh, and there is a record (Pi_;, P;,pw’) with
pw’ = pw, and a key K’ was sent to P1_;, and (P1_;, P;, pw) was fresh at
that time, then output (sid, K') to P;.
> In any other case, pick a new random key K’ of length A and send (sid, K’)
to P;.
Either way, mark the record (P;, Pi—i, pw) as completed.

Upon receiving (NewTranscript, sid, P;, tr) from S:

e If there is a record of the form (P;, P1—;, pw) that is marked completed, then:
> If (1) there is a record (Pi—s, Ps,pw’) for which a tuple
(NEWTRANSCRIPT, sid, P1_;,tr’") was sent to Pi_;, (2) either
(Pi, Pi—i,pw) or (P1_;, Pi,pw’) was ever compromised or interrupted,
and (3) tr = tr”, ignore this query.
> In any other case, send (TRANSCRIPT, sid, tr) to P;.

Fig. 8. Functionality Frpwke for symmetric PAKE from [GMRO06]. It was obtained by
adapting the original symmetric PAKE functionality from |[CHK™ 05| to the possiblity
of letting the parties obtain a transcript of the protocol.



of the users takes the role of a client, the other takes the role of the server.
To “start” the trusted party Fpwke, the server inputs a password pw via the
STOREPWDFILE interface. This password is persistent and cannot be changed
later. The client can now initiate a key exchange session with the server by
providing a password via the USRSESSION interface. As a trusted party, Fapwke
guarantees that, if both passwords match and both client and server follow the
protocol, they will both obtain a uniformly random session key (see second case
in NEWKEY interface). Thus, Fapwke enables a password-authenticated key ex-
change. Moreover, F,puke can be used again by client and server to exchange
more keys. Each such sub-session is equipped with a sub-session identifier ssid.
While the client can use a different password every time (reflecting the fact that
he might not fully remember his password or mistype), the server always uses
the initially registered password (reflecting the fact that he sticks to the pass-
word that the user initially registered with). For this reason, the SRVSESSION
interface which lets the server participate in a key exchange session does not
require a password.

Let us now look at the guarantees F,,wke provides when passwords mismatch
or parties misbehave. If client and server use different passwords in one of their
key exchange sessions but behave honestly (are not corrupted), Fapwke provides
both with randomly chosen session keys (see third case of NEWKEY interface)
or even lets them report failure (see second case of TESTABORT interface). The
choice here is up to the adversary, which enables analysis of protocols with ex-
plicit authentication (where parties get informed of a failed key exchange by re-
ceiving a failure symbol) as well as protocols with implicit authentication (where
a party cannot say whether the other party computed the same key). When one
of the parties misbehaves (is corrupted), then the key that is provided to the
honest party is determined by the adversary (see first case of NEWKEY). This
is motivated by the fact that a misbehaving party becomes the adversary and
might learn the session key computed by the honest party.

DISTRIBUTION OF PASSWORDS. By not choosing passwords of client and server
itself, F,pwke intentionally does not make any assumption about their length or
distribution. Indeed, F,pwke can be used with arbitrary inputs such as pw =
1 or pw =abcl23+-!. Moreover, client and server can use arbitrarily related
passwords, modeling a client forgetting his password or mistyping. By allowing
a distinguishing environment to observe runs of F,pwke started with all kinds of
passwords, the security guarantees provided by F,pwke are preserved even when
passwords come from arbitrary sources or extraneous protocol runs (a property
which is usually referred to as universal composability, hence the name of the
framework).

This concludes F,pwke’s basic functionality and description of inputs and outputs
of client and server. We now turn to attacks against asymmetric PAKE protocols
that are unavoidable even when interacting with an ideal version of the protocol.
All these attacks have to be reflected by Fipwke, and we will now consider them
one by one.
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GUESSING A PASSWORD. An essential guarantee of Fopwke is that knowledge
of the right password is enough to successfully exchange a session key with the
other party. Since the password is the only mean of authentication, this guarantee
holds with respect to interactions of honest clients and servers as well as with
the adversary. The ability of the adversary to simply engage in a protocol run
with an honest client or server using a guessed password (and eventually learn
whether the guess was correct) is hard-coded into F,pwie via the TESTPWD
interface. This interface can be used only by the adversary. Per key exchange
session, TESTPWD allows the adversary to issue at most one password guess. The
adversary gets informed about the outcome and, depending on whether the guess
was correct or not, the honest party obtains either a random or adversarially
determined session key. Limiting the interface to one usage per key exchange
session ensures that the adversary cannot exclude more than one password guess
per run of the key exchange protocol.

DEVIATING FROM THE PROTOCOL. Misbehaving clients or servers are captured
via Byzantine corruption of said party. Detailing the corruption model, i.e., what
happens upon party corruption in the real and in the ideal world, is an essential
component of the UC framework. Deviation from the protocol is usually called
Byzantine corruption. Since this is a widely used corruption model and effects in
both real protocol execution and ideal functionalities can be stated generically
for all protocols and functionalities, Fapwke can be implicitly assumed to pro-
vide an appropriate interface for such corruption. As detailed in the literature
[Can01], upon the adversary S corrupting a party, Fapwke is informed about the
corruption. All messages that were already sent through this party are handed
to S, and from now on § is put in place to receive and send messages on behalf
of the corrupted party.

STEALING A PASSWORD FILE. Besides maliciously behaving parties, a quite re-
alistic attack scenario for asymmetric PAKE is that the server’s passsword file
gets leaked to the adversary. Such an attack is called a server compromise. Es-
sentially, it enables the adversary to (a) extract the password of the client from
the password file and (b) impersonate the server towards the honest client by
using the password file in an honest protocol run. Regarding (a), a particular
goal of modeling security of asymmetric PAKE is that the password file stored
at the server should not directly reveal the password. However, the adversary
holding the file can surely test whether a specific password was used to generate
the file, e.g., by hashing a password guess and comparing the result against the
file.

Fapwke provides the adversary with three interfaces to account for the attacks
described above. Initially, to indicate that a run of the protocol is executed
where the password file is stolen by the adversary, the functionality expects to
receive a (STEALPWDFILE, sid) query. Since Fapwke does not maintain or hand
out an actual password file, it now needs to provide the adversary with an
interface to impersonate the server. This is the IMPERSONATE interface, which
lets the adversary engage in a protocol run with the client, resulting in exchange
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of an (adversarially-determined) session key in case the password used by the
honest client is equal to the one used by the server. Not handing any password-
dependent file to the adversary also enables Fapwke to control the effort of the
adversary to extract the password from the file. Namely, F.pwke enforces the
adversary S to ask one OFFLINETESTPWD query per password guess against
the file. Note that OFFLINETESTPWD can even be asked before compromising
the server via STEALPWDFILE. However, the adversary is only provided with
an accumulated answer on all his precomputed guesses upon the compromise,
modeling the fact that the adversary can precompute, e.g., hash tables and
directly learn the password upon seeing the file.

D Impossibility result for F,pu«e

In this section we formally state and prove that the aPAKE functionality of
Gentry et al. [GMROG] is inherently unrealizable due to its restriction to allow
OFFLINETESTPWD queries only upon getting instructions from Z. The Theorem
uses Definition [1] of an aPAKE protocol with verifiable password file.

Theorem 7. Let F be a set of ideal functionalities. Then Fapwke as depicted in
Fig. (1] is not realizable in the F-hybrid model by any protocol that has a verifiable
password files.

Proof. Let m be an adversarially verifiable protocol that UC-realizes Fapwke-
Consider the following environment Z running either with the real-world adver-
sary or the simulator.

e Z starts the protocol with (STOREPWDFILE, sid, Pc, pw) as input to Ps. All
parties remain uncorrupted.

e Z sends (STEALPWDFILE,sid) to the adversary to compromise the server.
Z obtains file as answer from the adversary.

e Z flips a coin b. If b = 0, set pw’ = pw, else draw pw’ # pw uniformly at
random with the same length as pw. Z now verifies (pw/,file). Z outputs 0
if verification succeeds, else it outputs 1.

We first show that Z will output b in the real execution with overwhelming
probability. If 6 = 0, then due to the adversarial verifiability of the protocol,
Z will always output 0 in the real execution. If b = 1, verification will succeed
only with negligible probability over the random coins of all involved entities.
To see this, consider an environment Z,,,4 that starts the server with pw, then
corrupts the client, honestly executes the client’s code using a randomly chosen
pw’ with pw’ # pw and finally checks equality of the output keys of both parties.
In the ideal world, where S issues a TESTPWD query to correctly simulate the
output of the honest server and learns “wrong guess” due to pw # pw', Z.qng
will see an honest server outputting a uniformly random session key, since S
acts on the (correct) assumption that the passwords do not match. In the real
world, a verifying file would let an honest server output the same session key as
computed by the corrupted client. Since Z,4,4 can tell the difference, this would
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contradict the UC-security of m and we conclude that file verifies only with
negligible probability, leading to Z outputting 1 with overwhelming probability
in case of b = 1. Altogether, with overwhelming probability, Z outputs b in the
real execution.

We now analyze the output of Z in the ideal world. Since Z issues only
STOREPWDFILE and STEALPWDFILE queries (which both do not produce any
output in this case), no (OFFLINE, ...) or (ssid, ...) records are ever created within
Fapwke- Due to the absence of these records, it can be easily checked that none
of the interfaces of Fapwke provided to S produce any output. Thus, S's view is
completely independent of b, and Z outputs b in the ideal world with probability
1/2, which contradicts the UC-security of 7.

From Theorem |7} it becomes apparent that the simulator needs more leverage
regarding off-line dictionary attacks. Indeed, involving Z in OFFLINETESTPWD
queries keeps the simulator from using this interface and prevents successful sim-
ulation. Moreover, we conjecture that providing Z with an OFFLINETESTPWD
interface is not meaningful, since this “attack” only provides Z with information
it can already compute herself. It is thus not surprising that the best strategy
for Z is to not use this interface, as the proof of Theorem [7] indicates.

E Proof of Theorem [3

Proof. We call a message adversarially generated if it was not output by any of
the honest parties, neither within the real execution nor the simulation. We refer
to a query (NEWKEY, sid, P;, K) from the adversary S with an honest party P;
as due if

e there is a fresh record of the form (P;, pw)

e there is a record (ssid, P1_;, P;, pw’) with pw = pw’ and P;_; is honest

e a key K’ was sent to the other party while (ssid, P_;, P;, pw’) was fresh at

the time.

We denote parties with Pg, Po whenever we want to specify their role in the
protocol, and with P;,P;_; whenever the role does not matter.

Game Go: The real protocol execution. The real protocol execution is
depicted in Figure [3] For a description of how to execute the protocol in the
UC model, we refer the reader to Figure 6 in [GMRO6].

Game G;: Introducing the ideal functionality. In this game we just create
new and regroup existing entities in the system which, in the UC framework,
are modeled as interactive Turing machines (ITM). Specifically, we create
two dummy ITMs, one for each party, who just relay all the messages and
are connected to the real parties and the environment. Between dummy and
real parties, we create a new I'TM that we call F. This ITM will be gradually
changed among the upcoming games and in the end be equivalent to F,pake-
For now, F connects dummy and real parties by relaying messages between
each real party and its dummy party. Lastly, we merge the real parties, the
hybrid functionalities and the real world adversary into a single I'TM and call
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it the simulator . The random tape of S is used to provide the random tapes
of all the ITMs that S comprises. The changes are depicted in Figure [T} and
since none of them impact any outputs or messages, the current and previous
game are perfectly indistinguishable.

Fig.9. Transition from Game game Gg (left) to Game game G (right), showing a
setting where Pg is corrupted.

Game Gi: F keeps records. We now let F maintain records. On receiv-
ing (STOREPWDFILE, sid, P, pw from Pg, if this is the first STOREPWD-
FILE query, then F records (file, Pc,Ps,pw). Upon receiving a message
(USRSESSION, sid, ssid, Pg, pw’) from P and this is the first USRSESSION
message for ssid, F records (ssid, P, Ps, pw’). Similarly, we record SRVSES-
SION messages as done in F,pake.

Since the changes do not influence any inputs or outputs of F, game G, and
game G are perfectly indistinguishable.

Game Gg3: adding interfaces to F. We now add all missing interfaces except
NEWKEY to the code of F, namely STEALPWDFILE, OFFLINETESTPWD,
TESTPWD, IMPERSONATE and TESTABORT exactly as in Fapake. Since S so
far does not make use of any of these interfaces, the current and last game
are perfectly indistinguishable.

Game G4: random key for interrupted sessions. We now change the sim-
ulation and let S add a NEWKEY tag and party name to the output of par-
ties. At the same time, we change F and partly add the NEWKEY interface
as follows:
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On (NEWKEY,sid, ssid, P, K) from S where |key| = A, if there is
a record (ssid, P, P’, pw’) not marked completed, do:

e If the record is marked compromised, or either P or P’ is
corrupted, send (sid, ssid, K) to P.

e If the record is marked interrupted, pick K” & {0,1}* and
send (sid, ssid, K”) to P.

e Else, send (sid, ssid, K) to P.

Finally, mark (ssid, P, P’, pw’) completed.

Note that this only changes outputs towards honest parties in case of records
that are marked interrupted. Since this will not happen in our current
simulation (S does not make use of any interfaces that mark records as
interrupted), the current and previous game are perfectly indistinguish-
able.

Game G5: ask TestPwd query upon dictionary attack. We now change
the simulation. If P; is honest and P;_; corrupted and P;_; provides an
input r to Frpwke, then S looks for an entry (pw||3,r) in L. If there is such
an entry, S submits (TESTPWD, sid, ssid, P;, pw) to F. If there is no such
entry, S submits (TESTPWD, sid, ssid, P;, 1) to F (we assume this query to
result in F marking the corresponding record as interrupted). Whenever
S receives “correct guess”, he sets the password of the simulated P; to be
pw.

Since S still uses the real passwords, overwriting them upon a “correct guess”
will not change them. Further, the output of P; remains unchanged since, due
to the changes, F keeps relaying Ky or K, respectively, from the simulation.
Note that even interrupted records do not obtain session keys determined
by F as stated in game Gpj, since the corruption status is more relevant in
the NEWKEY interface of F.

The changes are quite trivial since S still knows all real passwords. We will
change this in the end of the proof, using the current game as a preparation
step.

Game Gg: attacks against inner PAKE. If Z instructs S to send a (TESTPWD, (sid, ssid), P;, )
query to a specific instance (sid, ssid) of Frpwke, the simulation is changed as
follows:

o (Impersonation attack:) If sid is an uncorrupted session, P; is the client,
Z already issued a STEALPWDFILE query and S replied with a value
file = (r,-,-), S now sends (IMPERSONATE, sid,ssid) to F. If the answer
is “correct guess”, S continues the simulation of the client with r.

e (Dictionary attack on PAKE:) Else, if Z received r as response of some
Fro query (pw]||3), S sends (TESTPWD, sid, ssid, P;, pw) to F. If the an-
swer is “correct guess”, S continues the internal simulation of P; with
pw.

In any case, if the answer is “wrong guess”, S sends (TESTABORT, sid, ssid, P;)
to Fapake and forwards the answer of his own IMPERSONATE query as reply
to Z’s TESTPWD query.
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The output of P; is now L in case of “wrong guess”. Since in game Gj
the outputs of honest parties with non-matching passwords (in case of an
impersonation attack) or an interrupted Fwke session (in case of a dictio-
nary attack against PAKE) were drawn uniformly random upon simulating
Frowke and Fro, the output of P; was already L except in case of colliding
Frowke outputs, which happens only with negligible probability.

Game G7: man-in-the-middle against client. If Z injects an adversar-

ially generated ez as message to the client in an honest session that is
different from the corresponding message computed in the internal simula-
tion, § issues (TESTPWD,ssid, Pc, L) and then (TESTABORT,sid, ssid, P¢)
t0 FaPAKE-
In this game and considered case, Po will produce L as output due to the
combination of TESTPWD and TESTABORT queries, while in game Gg an
adversarially generated message could have made P¢ output something else.
Namely, P outputs K # L in game Gg only if ez @ k;)W parses as some
sk’, b/ such that H(sk') = h/. Since ki, is drawn uniformly random and h' is
of length A, the probability that this happens is upper bounded by 1/2*.

Game Gg: man-in-the-middle against server. We change the simulation
as follows:

e S issues a (TESTABORT,sid, ssid, Pc) query at the point where the sim-
ulated Pc checks whether hl, # c5. If S gets back “fail”, it aborts the
simulation.

e If Z injects oz as last message where Vfy,, (oz,tr) = 1 then nothing is
changed.

o If Z injects oz as last message where Vfy,, (0z,tr) = 0 then S first issues
(TESTPWD, sid, ssid, Pg, L) and then (TESTABORT, sid, ssid, Pg).

o If Z does not inject the last message, S issues (TESTABORT, sid, ssid, Pg)
when the simulated Pg runs Vfy.

We now analyze indistinguishability from game Gr. If Z does not inject any
messages, in the “success” case outputs are not modified. In the “fail” case,
where client and server hold different passwords, it holds that kpy # kl’)w
which ensures sk # sk’ and h, # h'. This means that Pc and Pg computed
Ko = Ki = 1 already in game Gr. Note that here, we assume that the
signature scheme has unique signing keys.

In case of an adversarially generated oz with Vfy,, (o, tr) = 0, the changes in
the current game will let Pg output L. However, Pg already outputs Ky = L
in game Gz in case of a non-verifying signature.

Game Gg: align session keys. We change F and add the second bullet to
the NEWKEY query: If the record is marked fresh, (sid,ssid, K') was sent
to P’, and at that time there was a record (ssid, P’, P, pw’) marked fresh,
send (sid, ssid, K’) to P.

Indistinguishability from the previous game follows by correctness of the
protocol: for an honest session, users holding the same passwords will input
the same value into Frpwke and thus Ky = Kj.

Game Gip: random session key for honest session. We now change F
and add the last bullet to the NEWKEY query: Else, pick K” & {0,1}*
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and send (sid, ssid, K"”) to P;. Note that this instruction will now comprise
the change made in game Gpg concerning interrupted records. We chose to
decouple generating random session keys for interrupted sessions since these
changes mainly concern dictionary attacks, which we analyzed already in
games Gg and Gg.
For analyzing indistinguishability, we first observe that opposed to game Gg
F now hands out random session keys for fresh records of honest sessions
where the NEWKEY query is not due. Split up even more, F now hands
out random session keys for a fresh record (ssid, P;, P1_;, pw) of an honest
session where

e no key was sent to P;_; yet

e a key was sent to P;_; but at that time there was no (ssid, P1_;, P;, pw)

record that was fresh

In the first case, note that the key output by P; in game Gg was randomly
chosen upon simulation of F,w«e and thus the ouput of P; is equally dis-
tributed. In the second case, (1) either there was a record (ssid, P1_;, P;, pw)
but it was compromised or interrupted, which happens in our simulation in
honest sessions only if Z injects ez or a non-verifying oz (see game Gpg).
Since the simulation is aborted upon an adversarially generated ez the sec-
ond case will never happen for P; being the client. If on the other hand P; is
the server, then in game Gg P; will output K/, that he obtained from Frpwke
which is uniformly random just as in game Gig. The only other possibility
for the second case is (2) mismatching passwords (i.e., there is a fresh record
(ssid, P1_;, P;, pw’) with pw # pw’), in which case indistinguishability holds
since both parties obtained freshly chosen random keys from Fipuke in the
last game, just like in the current game. Thus, both games are indistinguish-
able.
We now observe that the NEWKEY interface handles all cases before the last
instruction added in game G can trigger. We thus can remove it without
any effect, resulting in a NEWKEY interface as in F,pake. Note that now F
already resembles F,pake, the only difference being that it still relays the
passwords of the parties and informs the simulator about a STOREPWDFILE
input. We will show in the remaining games how to simulate without these.

Game Gi;: store file when needed. In this game we let S refrain from
executing the file storage part of the server simulation upon receiving a
STOREPWDFILE query from F. Instead, S only remembers pw from that
query and executes the file storage code for the server when receiving either
a STEALPWDFILE or SRVSESSION query.

Since this game only constitutes a change of the order of execution in the
simulated server’s code only inbetween two outputs and without affecting
them, game G1; and game Gq( are indistinguishable.

Game Gi,: simulate honest server without password. For an honest ses-
sion, we modify F to not relay (STOREPWDFILE, sid, P, pw) to S anymore.
This means we have to change simulation of an honest server to use a sim-
ulated password, which will in case of a successful off-line dictionary attack
be overwritten with the real password. In this case, S can hide usage of the
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“wrong” password in the beginning of the simulation by programming the
random oracle accordingly. The changes in the simulation are as follows:
e Instead of submitting a password to Fro, S directly chooses rs <«
{0, 13}, kpwg {0,132
e Upon receiving (sid, pw) from Z (intended to reach the simulated Fro), S
submits (OFFLINETESTPWD, pw) to F. Upon receiving “correct guess”,
S stores (pw|[3,7s), (pW||2, kpw ) in L.
e Upon receiving (STEALPWDFILE, sid) from Z, S relays the query to F.
> Upon “no password file” from F, S answers | to Z.
> Upon receiving pw from F, if S already created a password file in
the simulation of the honest server using 7s,kpws, S now stores
(pw|[3,75), (PW||2, kpw) in L. If S did not already create a password
file, S starts simulation of the server with pwg := pw.
> Upon “password file stolen” from F, no further changes are made.
We first analyze indistinguishability if no server compromise happens. In this
case, S simulates the server now with randomly chosen rs, kpw ¢, opposed to
obtaining them from Fgro using the real password in game Gi;. However,
this does not affect the output of the parties since F determines them. Re-
garding the transcript, e is equally distributed in both games since Kj is
uniformly random, and ¢ does not depend on the password which is used in
the simulation (it only depends on the passwords stored in F).
In case of a server compromise, the output of the server is not affected
since the NEWKEY instruction neither depends on whether Pg is marked
compromised or not, nor on the outcomes of the OFFLINETESTPWD queries.
This means that, as argued before, F will determine the outputs depending
on the passwords provided to F upon STOREPWDFILE and USRSESSION
queries. Regarding the transcript, e is again equally distributed in both
games due to K; being chosen uniformly random from {0,1}2*. The only
difference is thus simulation of Fro, but this is only a matter of timing
when the entries pw||3 and pw||2 are added to L. However, since they are in
any case stored before answering queries (sid, pw/||3) and (sid, pw||2) of Z, we
conclude that the simulation of Fgro is indistinguishable in both games.
Game Gi3: simulate honest client without password. Upon receiving
(USRSESSION, sid, ssid, Pg, pw) from P via F, if both parties are honest, in-
stead of simulating the first Fro query of the client, S directly chooses g <
{0,1}* and proceeds the simulation of the client with r%. Since S does not
make use of pw anymore, we can modify F to send only (USRSESSION, sid, ssid, Pg)
to S.
With the same argument that was used for the server, the outputs of the
honest client in game G113 and game G5 are equally distributed since they
do not depend on the password used in the simulation. Regarding the tran-
script, creation of the signature just depends on whether client and server
use the same password (and whether their transcripts from Fpwke were the
same). Since § will issue a TESTABORT query (see game Gg), it will obtain
this information from F and thus the distribution of os is equal to that in
game Gio.
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Game Gy4: simulate corrupted session without password. We change
the simulation of the honest P; when P;_; is corrupted. Namely, we omit
the first usage of the random oracle regarding all inputs depending on the
password. After receiving r from the environment as input to Frpwke and
issueing a (TESTPWD, sid, ssid, P;, pw) query (see game Gp), if the answer is
“correct guess”, we catch up on all random oracle queries using pw. If the
answer is “wrong guess” (in which case it might be that pw = L), we draw
rs € {0,131, kpwg < {0,1}?* with rs # r and proceed the simulation using
these values. Additionally, since S does not use the passwords relayed by F
anymore, we delete the password from the USRSESSION query that F sends
to §, and modify F to not send any message to S anymore upon receiving
a STOREPWDFILE query.

Regarding indistinguishability of games G4 and Gis, we first consider the
“correct guess” case. In this case, simulation of the honest party uses the
same password, and the only difference is when § issues Fro queries on behalf
of the honest party. However, since pw was found in Fgo, the corresponding
entries already exist in L and thus Z cannot distinguish both games by
distinguishing the simulation of Frp. In case of “wrong guess”, the simulation
of P; is proceeded using random rs, kpy < as before, but with overwhelming
probability there are no entries in L pointing to these values.

Regarding outputs, note that the output key K computed in the simulation
will reach P;. However, the distribution of this key is exactly as in game Gis,
since it only depends on whether the inputs to Frpwke Will match or not,
which is the same in both games.

It is now left to argue indistinguishability of the transcript using randomly
drawn rs, kpw. Note that indistinguishability even has to hold when Z
queries Fro with the password that he used as input to P;, thus learning the
true values of 7, kyy, i.e., the values that were used to generate the transcript
in game Gi3. However, note that even knowing these values, Z can never
learn K, namely what the honest party obtains as output from Fp.ke. Since
this value is uniformly random in both games due to interrupted records in
FrowkE, the transcripts are equally distributed.

By collecting the changes among the games, in game Gi4 we have F =
Fapake- Since all game hops are only noticeable by Z with negligible proba-
bility, the theorem follows. For clarity, the code of the simulator is collected
in Figures and To analyze the runtime of the simulator we restrict
our attention to the crucial OFFLINETESTPWD queries issued by S. As can
be seen in Figure S issues one (OFFLINETESTPWD, pw) for every query
(sid, pw) of the real-world adversary towards Fro, so both use the same
amount of input bits to run offline attacks on the password file.
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The simulator S is parametrized with a security parameter A. It interacts with the
environment Z and a client and a server party P € {Pc, Ps} as described below.
S internally simulates Fro as depicted in Figure [6] S forwards all instructions
from Z to A and reports all output of A towards Z. Instructions of corrupting a
player are only obeyed if they are received before the protocol started, i.e., before
S received any USRSESSION, SRVSESSION or STOREPWDFILE query from Fapake.

’ Messages from Fapake ‘

e Upon receiving a query (UsrSession,sid, Pc) from Fapake, S initializes
an ITM P¢ in the internal simulation running the code of the client in the
f2-method (see game Gm), but directly starting with s < {0,1}*, kpg &
{0,1}** in case both parties are honest (see game Gqg). If Ps is corrupted,
then the simulation of P¢ is not started (see game G).

e Upon receiving the first of the queries
{(SrvSession, sid, ssid), (StealPwdFile,sid)}, S initializes an ITM Ps
in the internal simulation running the code of the server in the §2-method
(see game Gm), but directly starting with rs & {0,1}*, kpwg <& {0,1}** in
case both parties are honest (see game Gmm). If P is corrupted, then the
simulation of Ps is not started (see game G).

’ Actions triggered by internal simulation ‘

e If an internally simulated party P; produces an output (sid,K), S sends
(NEWKEY, sid, P;, K) to FapAKE- (Cf game G@)

e When the internally simulated P¢ checks whether hl, # ch, S issues
(TESTABORT, sid, ssid, Pc) towards Fapake- If S receives back “fail”, it aborts
the simulation. (Cf. game Gg.)

e When the internally simulated Ps runs Vfy and Z did not inject the last
message, S sends (TESTABORT, sid, ssid, Ps) to Fapake. (Cf. game Gg.)

’ Messages from Z ‘

e Upon receiving r from Z intended as input of a corrupted Pi_;, S
looks for an entry (pw||3,r) in L. (Cf. game Gpg.)

> If there is such an entry, S submits (TESTPWD, sid, ssid, P;, pw) to Fapake.

If S receives back “correct guess”, he catches up on the first two usages of

Fro in the simulation of the honest P; using pw. If S receives back “wrong

guess”, he proceeds simulation of the honest P; using rs < {0, 13, kpw s &
{0,1}**. (Cf. games Gg and Grz.)

> If there is no such entry, S submits (TESTPWD, sid, ssid, P;, L) to Fapake.

Also in this case, S proceeds the simulation of the honest P; using rs &

{0, 1}, kpwg < {0,1}**. (Cf. games Gg and Gz

Fig. 10. The simulator S for the proof of Theorem
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’ Messages from Z ‘

e Upon receiving (TestPwd, (sid, ssid), P;, r) from Z, if sid is an uncorrupted

session, P; is the client, Z already issued a STEALPWDFILE query and S replied

with a value file = (r,-,-), S now sends (IMPERSONATE, sid, ssid) to F. If the

answer is “correct guess”, S continues the internal simulation of the client
with r. Else, if Z received r as response of some Fro query (pw||3), S sends

(TESTPWD, sid, ssid, P;, pw) to F. If the answer is “correct guess”, S continues

the internal simulation of P; with pw. In any case, S forwards the answer

of his own IMPERSONATE query to Z as reply to Z’s TESTPWD query. (Cf.
game Gg.)

Upon receiving ez from Z where ez is different from the interally simulated

value e, S sends (TESTPWD, ssid, Pc, L) to Fapaxe. (Cf. game Gm.)

Upon receiving oz from Z where Vfy,(oz,tr) = 0, S sends

(TESTPWD, sid, ssid, Ps, L) and afterwards (TESTABORT,sid,ssid, Ps). (Cf.

game Gg.)

Upon receiving (sid,pw) from Z, S submits (OFFLINETESTPWD, pw) to

Fapake. Upon receiving “correct guess”, S stores (pw||3,7s), (pw||2, kpwg ) in L.

(Cf. game Gmz.)

Upon receiving (StealPwdFile,sid) from Z, S relays the query to Fapake.-
> In case of receiving back “no password file” from F.pake, S sends 1 to Z.
> In case of receiving back pw from F,pake, if S already created a password

file in the simulation of the honest server using rs,kpwg, S now stores
(pWH3, T5)> (pW||2, kPWs) in L.

Fig. 11. The simulator S for the proof of Theorem [3] cont’d.




F Proof of Theorem {4

Proof. We adopt all notation from the proof of Theorem [3]and merely state how
the latter has to be adjusted to prove Theorem [4]

Games GG are adopted unchanged.

Game G is changed in terms of the NEWKEY interface that is partly added:

On (NEWKEY, sid, ssid, P, K) from S where |key| = A, if there is
a record (ssid, P, P’, pw’) not marked completed, do:
e If the record is compromised, or either P or P’ is corrupted,
or K = 1, then send (sid, ssid, K) to P.
e If the record is interrupted, send (ssid,ssid, L) to P.
e Else, send (sid, ssid, K) to P.
Finally, mark (ssid, P, P’, pw’) completed.

Note that this consitutes no change regarding outputs towards Z since F
does not mark records interrupted so far, and will thus always relay the out-
put keys from the simulation.

Game Gp is adopted.

Game Gp is only slightly changed: & does not have to ask TESTABORT queries
in case of obtaining “wrong guess”, since F outputs L in case of interrupted
records right away. Indistinguishability holds with the same arguments as before.

Game Gpis changed in the same way: S only asks TESTPWD and no TESTABORT.
Indistinguishability arguments are the same as before.

Game Gg,: abort upon signature forgery. We change the simulation. Con-
sider an honest session where the server might be compromised, Z does not send
(sid, pw||2) to Fro but injects an adversarially generated oz as last message. In
this case, we let S abort the simulation.

The current and last game are indistinguishable due to the EUF-CMA-security
of the signature scheme.

Game Gg, : man-in-the-middle against server. This game now gets much
simpler with F,pake with strong explicit authentication. We change the simula-
tion as follows:

e If Z injects oz as last message where Vfy,(oz,tr) = 0 then S issues
(TESTPWD, sid, ssid, Pg, L)

In case of an adversarially generated oz with Vfy,, (o,tr) = 0, the changes in
the current game will let Pg output L. However, Pg already outputs Ko = | in
game Gi3 in case of a non-verifying signature.
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Game Gg,: completing explicit authentication in F. We add the third
and fourth bullet to the NEWKEY interface - comprising the changes made in
game G

The fourth bullet just let F relay L from S, which already was the case in
the last game. For the case of F now deciding to output L for fresh records
with mismatching passwords, we only have to consider honest sessions without
man-in-the-middle attacks by Z, since in case of these attacks the output of
the attacked party already was L in the previous game. For fresh records, F
now outputs L in case there is a fresh record of the other party but with a
mismatching password. However, in this case parties outputted L already in the
last game with overwhelming probability in A, since Fpwke hands out values
that are different with probability 1/2\.

Game Gp is adopted unchanged.

Game Grg: random session key for honest session. The changes are
adopted. However, note that the analysis of indistinguishability becomes easier
since the only case in which this code of F is executed is when the other party
did not receive a key yet, but there are fresh records with matching passwords.
The randomness of the outputs of Fpwke is enough to argue perfect indistin-
guishability.

Game G remains unchanged.

Game G simulate honest server without password. The game remains
unchanged except that we now need to also change a part of code of S that we
added in game Gg,. There, S made use of his knowledge of the true password
of the server by comparing it with random oracle queries issued by Z. We thus
replace the change made in game Gg,_ by the following instruction:

Consider an honest session where the server might be compromised,
S never received “correct guess” from OFFLINETESTPWD and Z in-
jects an adversarially generated oz as last message. In this case, we let
S abort the simulation.

Since S only uses OFFLINETESTPWD upon random oracle inputs of Z, the re-
placement is unnoticeable: S obtains “correct guess” if and only if Z submits
the server’s password to Fro.

The rest of the changes and argumentation of indistinguishability can be adopted.

Game G simulate honest client without password. The changes in the
simulation are adopted. The argument of indistinguishability has to be slightly
changed: now, § will be automatically informed by F in case of authentication
failure at the client’s side, which is enough to let him simulate a signature that
verifies or not verifies according to the authentication status.
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Game Gpg is adopted. This concludes the proof of the theorem.
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