
A Framework for UC-Secure Commitments from
Publicly Computable Smooth Projective Hashing

Behzad Abdolmaleki1, Hamidreza Khoshakhlagh2,?, and Daniel Slamanig3

1 University of Tartu, Estonia
behzad.abdolmaleki@ut.ee

2 Aarhus University, Denmark
hamidreza@cs.au.dk

3 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Hash proof systems or smooth projective hash functions
(SPHFs) have been proposed by Cramer and Shoup (Eurocrypt’02) and
can be seen as special type of zero-knowledge proof system for a language.
While initially used to build efficient chosen-ciphertext secure public-key
encryption, they found numerous applications in several other contexts.
In this paper, we revisit the notion of SPHFs and introduce a new feature
(a third mode of hashing) that allows to compute the hash value of an
SPHF without having access to neither the witness nor the hashing key,
but some additional auxiliary information. We call this new type publicly
computable SPHFs (PC-SPHFs) and present a formal framework along
with concrete instantiations from a large class of SPHFs.
We then show that this new tool generically leads to commitment
schemes that are secure against adaptive adversaries, assuming erasures
in the Universal Composability (UC) framework, yielding the first UC se-
cure commitments build from a single SPHF instance. Instantiating our
PC-SPHF with an SPHF for labeled Cramer-Shoup encryption gives the
currently most efficient non-interactive UC-secure commitment. Finally,
we also discuss additional applications to information retrieval based on
anonymous credentials being UC secure against adaptive adversaries.

1 Introduction

Hash proof systems or smooth projective hash functions (SPHFs) were intro-
duced by Cramer and Shoup [CS02] and can be considered as implicit designated-
verifier proofs of membership [ACP09,BPV12]. Similarly to zero-knowledge
proofs, SPHFs are defined for a NP language L and one considers membership
of words x ∈ L. In SPHFs, a verifier can generate a secret hashing key hk and
for any word x she can compute a hash value H by using the hashing key hk and
x. In addition, the verifier can derive a projection key hp from the hashing key
hk and send it to the prover. By knowing a witness w for membership of x ∈ L
and having the projection key hp, the prover is able to efficiently compute the
? Majority of this work was done while working at the University of Tartu.



projected hash pH for the word x such that it equals the hash H computed by
the verifier. The smoothness property says that if x 6∈ L one cannot guess the
hash value H by knowing hp, or in other words, H looks completely random.

One of the very fundamental tools in cryptographic protocols are commit-
ment schemes. They allow a committer C to pass an analogue of a sealed envelope
of his message m to a receiver R. When the committer C then later reveals m
with some additional opening information, R can verify whether the envelop con-
tains m. It should be guaranteed that C cannot change the committed message
m to some m′ 6= m later (binding property) and that R must not learn any
information about the committed message m in the commit phase before the
opening (hiding property). Some well known perfectly binding commitment are
the Cramer-Shoup (CS) [CS02] and ElGamal [ElG84] encryption schemes, or
Pedersen commitments [Ped92] for the case of perfectly hiding commitments.

To be suitable for the use within the universal composability (UC) frame-
work [Can01], commitment schemes need to provide strong properties and in
particular extractability and equivocability. The first one states that the simu-
lator Sim can recover the committed value m by knowing a trapdoor and the
latter means that Sim can open a commitment to any message m′ 6= m by means
of a trapdoor. Satisfying both properties turns out to be a rather difficult task.
In general, constructing efficient equivocable and extractable commitments falls
into two categories: the one following the ideas of Canetti and Fischlin [Can01]
including [ACP09,BBC+13,ABP17,ABL+19], and the ones using non-interactive
zero-knowledge proofs as the opening information as the Fischlin-Libert-Manulis
schemes [FLM11] and improvements thereof [JR13]. In this paper, we go into
latter direction, but instead of non-interactive zero-knowledge proofs, we use the
PC-SPHF which allows us to improve the communication complexity.

Our Contribution. We first introduce an extension of classical SPHFs which
we call publicly computable SPHFs (PC-SPHFs) in Section 3. Our focus is on
SPHFs for languages of ciphertexts Laux, parametrized by aux, instantiated in
the source groups of a bilinear group, i.e., which are itself pairing-free. This
covers many schemes such as (linear) ElGamal or (linear) CS. A PC-SPHF is
such an SPHF with the following additional property: there is a third mode of
hashing which allows to compute the hash value in the target group GT of a
bilinear group when neither having access to the hashing key hk nor the witness
w. This is achieved by adding some representations of the hashing key hk in the
projection key hp such that by using aux, hp, and some public values (crsLaux),
one can compute the hash value in GT .

We then in Section 4 show how one can use PC-SPHFs built from any suit-
able SPHF for a labeled IND-CCA encryption scheme to construct a generic
UC-secure commitment scheme. Following this approach, we construct the most
efficient non-interactive UC-secure commitment by using the labeled CS en-
cryption scheme (PC-SPHFCS). We compare the efficiency of PC-SPHFCS with
existing non-interactive UC-secure commitments in Table 14 and, as we discuss
4 We note that we follow existing literature and thus focus on the size of commitments
and openings and exclude the message(s) in the opening information.



in Section 4.2, this gives us an improvement of around 30% over the UC-secure
commitments in [ABP17], which to the best of our knowledge represent the
most efficient UC-secure commitments to date. Compared to the most efficient
UC-secure commitments in bilinear groups, we obtain an improvement in the
opening of a factor 4.

Scheme |Commitment| |Opening| Assumption

[CF01] 9×G 2× Zp Plain DDH
[FLM11],1 5×G1 16×G1 DLIN
[FLM11],2 37×G1 3×G1 DLIN
[JR13] 4×G1 3×G1 + 2×G2 SXDH
[JR13] 4×G1 4×G1 DLIN
[ABB+13] 8×G1 +G2 Zp SXDH
[ABP17] 7×G 2× Zp Plain DDH
PC-SPHFCS 4×G1 G1 XDH

Table 1. Comparison with some existing non-interactive UC-secure commitments with
a single global CRS when committing to a single message.

Finally, in Section 5 we show how PC-SPHFs help to improve the efficiency of
information retrieval based on anonymous credentials (as proposed in [BC16]),
which is UC secure against adaptive adversaries. In a nutshell, such protocols
use anonymous credentials to securely retrieve a message without revealing the
identity of the receiver to the sender.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. All adversaries will be stateful. By y ← A(x; r) we denote the fact
that A, given an input x and randomness r, outputs y. By x←$D we denote
that x is sampled according to distribution D or uniformly random if D is a set.
We denote by negl(λ) an arbitrary negligible function. A bilinear group gener-
ator Pgen(1λ) returns (p,G1,G2,GT , ē), where G1, G2, and GT are three cyclic
groups of prime order p, and ē : G1 × G2 → GT is a non-degenerate efficiently
computable bilinear pairing. We use the implicit bracket notation of [EHK+13],
that is, we write [a]ι to denote agι where gι is a fixed generator of Gι. We de-
note ē([a]1, [b]2) as [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We denote s[a]ι = [sa]ι
for s ∈ Zp and ι ∈ {1, 2, T}. We freely use the bracket notation together with
matrix notation, for example, if AB = C then [A]1 • [B]2 = [C]T .

Labeled Public-Key Encryption. Labeled encryption is a variant of the
public-key encryption notion where encryption and decryption take an addi-
tional label. Decryption should only work if the label used for decryption is
identical to the one used when producing the ciphertext. More formally:



Definition 1. A labeled (tagged) public-key encryption scheme Π = (KGen,Enc,
Dec), is defined by three algorithms:
– KGen(1λ) given a security parameter λ, generates a public key pk and a secret

key sk.
– Enctpk(M) given the public key pk, a label t and a message M , outputs a

ciphertext c.
– Dectsk(c) given a label t, the secret key sk and a ciphertext c, with c =

Enctpk(M), then outputs M .

For correctness it is required that for all (pk, sk) ∈ KGen(1λ), all labels t and all
messages M , Dectsk(Enc

t
pk(M)) = M . Henceforth, we use public-key encryption

schemes that provide indistinguishability under chosen plaintext and adaptive
chosen ciphertexts attacks, i.e., provide IND-CPA or IND-CCA security respec-
tively.

Decisional Diffie-Hellman (DDH) Assumption. Let ι ∈ {1, 2, T}. DDH
holds relative to Pgen, for all λ, all PPT adversariesA, |ExpDDH

A (pars)−1/2| ≈λ 0,
where ExpDDH

A (pars) :=

Pr

[
pars←$Pgen(1λ);u, v, w←$Zp; b←$ {0, 1};
b∗ ← A(pars, [u]ι, [v]ι, [b · uv + (1− b)w]ι)

: b = b∗
]
.

Smooth Projective Hash Functions. Smooth projective hash functions
(SPHFs) [CS02] are families of pairs of functions (hash, projhash) defined on a
language L. They are indexed by a pair of associated keys (hk, hp), where the
hashing key hk may be viewed as the private key and the projection key hp as the
public key. On a word x ∈ L, both functions need to yield the same result, that
is, hash(hk,L, x) = projhash(hp,L, x, w), where the latter evaluation additionally
requires a witness w that x ∈ L. Thus, they can be seen as a tool for implicit
designated-verifier proofs of membership [ACP09]. Formally SPHFs are defined
as follows (cf. [BBC+13]).

Definition 2. A SPHF for a language L is a tuple of PPT algorithms
(Pgen, hashkg, projkg, hash, projhash), which are defined as follows:

Pgen(1λ): Takes a security parameter λ and generates the global parameters pars
(we assume that all algorithms have access to pars).

hashkg(L): Takes a language L and outputs a hashing key hk for L.
projkg(hk,L, x): Takes a hashing key hk, L, and a word x and outputs a projec-

tion key hp, possibly depending on x.
hash(hk,L, x): Takes a hashing key hk, L, and a word x and outputs a hash H.
projhash(hp,L, x, w): Takes a projection key hp, L, a word x, and a witness w for

x ∈ L and outputs a hash pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(hk,L, x) = projhash(hp,L, x, w) for all x ∈ L
and their corresponding witnesses w.



Smoothness. It is required that for any pars and any word x 6∈ L, the following
distributions are statistically indistinguishable:

{(hp,H) : hk← hashkg(L), hp← projkg(hk,L, x),H← hash(hk,L, x)}
{(hp,H) : hk← hashkg(L), hp← projkg(hk,L, x),H←$Ω} .

where Ω is the set of hash values.
Depending on the definition of smoothness, there are three types of SPHFs

(cf. [BBC+13]):

GL-SPHF. The projection key hp can depend on word x and so the smoothness
is correctly defined only if x is chosen before having seen hp.

KV-SPHF. hp does not depend on word x and the smoothness holds even if x
is chosen after having seen hp.

CS-SPHF. hp does not depend on word x but the smoothness holds only if x is
chosen before having seen hp.

Trapdoor Smooth Projective Hash Functions. Benhamouda et.
al [BBC+13] proposed an extension of a classical SPHF, called TSPHF. Their
construction has an additional algorithm tsetup, which takes as input the CRS
crs (output by Pgen) and outputs an additional CRS crsτ with trapdoor τ ,
which can be used to compute the hash value of words x knowing hp and the
trapdoor τ . We refer the reader to [BBC+13] for a rigorous formal definition of
TSPHFs, and only briefly discuss their computational smoothness property.

Smoothness is the same as for SPHFs, except that after calling Pgen the
trapdoor τ of the crsτ is dropped, but crsτ is forwarded to the adversary
(together with crsL and even its trapdoor tds). Notice that since hp now needs
to contain enough information to compute the hash value of any word x, the
smoothness property of TSPHFs is no longer statistical but computational.

2.1 SPHFs on Languages of Ciphertexts

In this paper we mainly focus on SPHFs for languages of ciphertexts, whose
corresponding plaintexts verify some relations. The language parameters parse
in two parts (crsL, aux): the public part crsL, known in advance, and the pri-
vate part aux, possibly chosen later. More concretely, crsL represents the public
values: it will define the (labeled) encryption scheme (and will thus contain the
global parameters and the public key of the (labeled) encryption scheme) with
the global format of both the tuple to be encrypted and the relations it should
satisfy, and possibly additional public coefficients. While aux represents the pri-
vate values: it will specify the relations, with more coefficients or constants that
will remain private, i.e,. the message encrypted in the ciphertext in such lan-
guages. We will henceforth denote such languages by Laux. Since in this paper
we mostly focus on constructing a UC-secure commitment scheme where the
crs is independent of the ciphertext (the word of the language), we focus on
KV-SPHFs as used in [KV11,BBC+13,BBC+15].



Language Representation. Similar to [BBC+13], for a language Laux, we as-
sume there exist two positive integers k and n, a function Γ : S → Gk×n, and a
family of functions Θaux : S → G1×n, such that x ∈ S (x ∈ Laux) iff ∃λ ∈ Z1×k

p

such that Θaux(x) = λΓ (x). In other words, we assume that x ∈ Laux, if and only
if, Θaux(x) is a linear combination of (the exponents in) the rows of some matrix
Γ (x). For a KV-SPHF, Γ is supposed to be a constant function (independent of
the word x). Otherwise, one gets a GL-SPHF. We furthermore require that when
knowing a witness w of the membership x ∈ Laux, one can efficiently compute
the above linear combination λ. This may seem a quite strong requirement, but
this is actually satisfied by very expressive languages over ciphertexts such as
ElGamal, CS and variants.

In the following, we briefly illustrate it on a KV-SPHF for the language of
(labeled) CS ciphertexts encrypting a message [m]1 ∈ G1 and aux := [m]1.

(Labeled) CS Ciphertext Language. The CS IND-CCA2 secure public-key
encryption scheme in an abelian cyclic group G1 of order p is defined as follows:
the secret key sk is (x1, x2, y1, y2, z)←$Z5

p. Assume [g1]1, [g2]1 are two different
independent generators of G1. Let H be a collision-resistant hash function. The
public key is pk = ([g1, g2, h, c, d]1, H), where [c]1 = x1[g1]1 + x2[g2]1, [d]1 =
y1[g1]1 + y2[g2]1, h = z[g1]1. The encryption of [m]1 with randomness r←$Zp
is defined as [c]1 = [u1, u2, e, v]1 where [u1]1 = r[g1]1, [u2]1 = r[g2]1, [e]1 =
[m]1 + r[h]1, [v]1 = r([c]1 + ξ[d]1), where ξ = H([u1]1, [u2]1, [e]1). In case of
labeled CS with label t, the hash value is computed as ξ = H(t, [u1]1, [u2]1, [e]1).

Smooth Projective Hash Function for (Labeled) CS Ciphertexts. With
the notation introduced earlier, the hashing key is a vector hk = α←$Znp , while
the projection key is, for a word x, hp = [Γ (x)]1α ∈ Gk1 (if Γ depends on x, this
leads to a GL-SPHF, otherwise, one obtains a KV-SPHF). We have:

hash(hk,Laux, x) = Θaux ·α = λ · hp = projhash(hp,Laux, x, w)

The parameters Γ , λ and, Θ[m]1 immediately lead to the KV-SPHF on (labeled)
CS, introduced in [BBC+13]: with hk = (η1, η2, θ, µ, ι)←$Z5

p, the product with
Γ leads to, hp = (hp1 = η1[g1]1 + θ[g2]1 +µ[h]1 + ι[ι]1, hp2 = η2[g1]1 + ι[d]1) and,

H =hash(hk, (pk, [m]1), [c]1) = (η1 + ξη2)[u1]1 + θ[u2]1 + µ([e]1 − [m]1) + ι[v]1

=r[hp1]1 + rξ[hp2]1 = projhash(hp, (pk, [m]1), [c]1, r) = pH.

The analysis showing perfect smoothness can be found in [BBC+15].

3 Publicly Computable SPHFs

In this section we show how to construct Publicly Computable SPHFs (PC-
SPHFs) in a bilinear group from SPHFs. Our PC-SPHF framework is similar to
the generic framework for SPHFs in [BBC+13] with some slight modifications.
Conceptually, the construction of PC-SPHF is inspired by TSPHFs [BBC+15],
but with completely different motivations and algorithms. A PC-SPHF is an



extension of a classical SPHF and in particular based upon an SPHF which can
be constructed in the source groups of a bilinear group, i.e., the SPHF itself is
pairing-free. The PC-SPHF builds upon the SPHF and is then instantiated in
a bilinear group (p,G1,G2,GT , ē). The third mode of hashing provides a means
to publicly compute a representation of the hash of the underlying SPHF in
GT without having access to secret information hk and w. Also for PC-SPHFs,
the algorithm projkg takes a hashing key hk, a language Laux, and a word x and
outputs a projection key hp = (hp1, hp2) ∈ Gkι×Gn3−ι, where hp1 is the projection
key of the underlying SPHF and hp2 is some representation of the hashing key
hk. We note the the PC-SPHF is actually defined with respect to a family of
languages {Laux}aux∈AUX parametrized by aux, i.e., the message encrypted using
the encryption scheme associated to the SPHF, but we will not make this explicit
for the sake of readability and will always write Laux as well as aux.

Definition of PC-SPHFs. In the following we assume an SPHF on languages of
ciphertexts (cf. Section 2.1 for the notation) instantiated in the source groups of
a bilinear group (p,G1,G2,GT , ē) and let ι ∈ {1, 2} (depending on the concrete
SPHF). We recall that the hashing key of the SPHF is a vector hk = α←$Znp ,
while the projection key is, for a word x, hp = [Γ (x)]ια ∈ Gkι .

Definition 3. A PC-SPHF for language Laux based upon SPHF is defined by
the following algorithms:

Pgen(1λ,Laux): Takes a security parameter λ and language Laux and generates
the global parameters pars, and the crsLaux . It outputs (pars, aux, crsLaux).

hashkg(Laux): Takes a language Laux and outputs a hashing key hk = α←$Znp
for the language Laux of the underlying SPHF.

projkg(hk, crsLaux , x): Takes a hashing key hk, a CRS crs, and possibly a word x

and outputs a projection key hp = (hp1, hp2) ∈ Gkι ×Gn3−ι, possibly depending
on x, where hp1 is the projection key of the underlying SPHF and hp2 is some
representation of hk.

hash(hk, crsLaux , aux, x): Takes a hashing key hk, a CRS crs, aux, and a word x

and outputs a hash H ∈ Gι, being the hash of the underlying SPHF.
projhash(hp, crsLaux , aux, x, w): Takes a projection key hp, a CRS crsLaux , aux, a

word x, and a witness w for x ∈ Laux and outputs a hash pH ∈ Gι, being the
projective hash of the underlying SPHF.

pchash(hp, crsLaux , aux, x): Takes a projection key hp, a CRS crsLaux , aux, and
a word x, and outputs a hash pcH ∈ GT .

A PC-SPHF must satisfy the following properties:

Perfect correctness. For any (pars, aux, crsLaux) ← Pgen(1λ,Laux) and any
word x ∈ Laux with witness w, for any hk ← hashkg(Laux) and for hp ←
projkg(hk, crsLaux , x):

pH • [1]3−ι = pcH.

The (t, ε)-soundness property. For any (pars, aux, crsLaux)← Pgen(1λ,Laux),
given crsLaux and the projection key hp, no adversary running in time at



most t can produce a value aux, a word x and valid witness w such that
projhash(hp, crsLaux , aux, x, w) 6= hash(hk, crsLaux , aux, x), with probability at
least ε. Perfect soundness requires that this holds for any t and any ε > 0.

Computational Smoothness. The computational smoothness experiment is
provided in Fig. 1. For a language Laux and adversary A, the advantage is
defined as follows:

Advcsmooth
Laux,A (λ) = |Pr[Expcsmooth−0(A, λ) = 1]− Pr[Expcsmooth−1(A, λ) = 1]|.

and we require that Advcsmooth
Laux,A (λ) ≤ negl(λ).

Expcsmooth-b(A, λ)

– (pars, aux, crsLaux) ← Pgen(1λ,Laux), x←$Xaux \ Laux, hk ← hashkg(Laux),
hp← projkg(hk, crsLaux , x);

– If b = 0, then H← hash(hk, crsLaux , aux, x), else H←$Ω;
– return A(crsLaux , x, hp,H)

Fig. 1. Experiments Expcsmooth-b for computational smoothness.

Security Analysis. The correctness and the perfect soundness are easy to verify
from the construction, and so the resulting PC-SPHF is correct and sound.
Subsequently, we prove the computational smoothness of the PC-SPHF under
the XDH assumption, i.e., the DDH assumption in Gι. For the sake of exposition,
we assume that the SPHF is instantiated in G1 below, i.e., ι = 1.

Theorem 1. Let XDH hold, then PC-SPHF is computationally smooth.

Proof. We first reduce the smoothness to the following computational assump-
tion: for all λ, pars ∈ Pgen(1λ), and PPT adversaries B, |ExpintB (pars)−1/2| ≈λ 0,
where ExpintB (pars) is depicted in Fig. 2. Let B be allowed to make only one query
to the oracle O to obtain a tuple (([Γα]1, [α]1, [x]1, [x

′
iαi]1, [x

′
iαixi]1; [α]2))i∈[n].

Let A be the adversary against computational smoothness. We now construct
the following adversary B against the intermediate assumption.

– (([Γα]1, [α]1, [x]1, [zi]1, [zixi]1; [α]2))i∈[n] ← Ob([Γ ]1); where if b = 0, zi =

x′iαi and zi←$Zp otherwise;
– hp1 ← [Γα]1; hp2 ← [α]2;
– crsLaux = [Γ ]1;
– H ←

∑n
i=1[zi]1; x← [x]1;

– bA ← A(crsLaux , hp, x, H);
– return b′ ← bA.



ExpintB (pars)

([Γ ]1,Γ )← Pgen∗(pars,Laux);
b←$ {0, 1};
b′ ← BOb(·,·)([Γ ]1);
return b = b′

O0([Γ ]1)

α←$Znp , [x]1 ←$Xaux \ Laux, [x
′]1 ←$Gn1 ;

R :=
(
([Γα]1, [α]1, [x]1, [x

′
iαi]1, [x

′
iαixi]1; [α]2)

)
i∈[n] ;

return R

O1([Γ ]1)

α←$Znp ; [x]1 ←$Xaux \ Laux, [x
′]1 ←$Gn1 ,u←$Znp ;

R :=
(
([Γα]1, [α]1, [x]1, [ui]1, [x

′
iαixi]1; [α]2)

)
i∈[n] ;

return R

Fig. 2. Experiment ExpintB (pars) for the proof of smoothness in Theorem 1.

Thus, A is successful in breaking the soundness game iff B is successful in
breaking the intermediate assumption.

We now show that the intermediate assumption can be reduced to the XDH
problem, i.e., it is hard to distinguish the two distributions, {[1, a, b, ab]1, [1]2}
and {[1, a, u, ab]1, [1]2} where a, b, u←$Zp. Let D be the adversary against this
problem, such that given T = {[1, a, z, ab]1, [1]2} it outputs 0 if z = b and 1
otherwise. Given the tuple T , D uses B as a subroutine. In particular, D plays
the role of the challenger for B in the experiment ExpintB (pars) in Fig. 2 and on
input ([Γ ]1) works as follows:

1. By random self-reducibility of DDH, generate n DDH challenges [ui, vi, wi]1,
for i ∈ [1 .. n].

2. Let [u]1 = ([u1]1, . . . , [un]1) ∈ Gn, [v]1 = ([v1]1, . . . , [vn]1) ∈ Gn, and [w]1 =
([w1]1, . . . , [wn]1) ∈ Gn.

3. Choose α←$Znp and set R← (([Γα]1, [α]1, [ui]1, [viαi]1, [αiwi]1; [α]2))i∈[n].
4. When B([Γ ]1) calls the oracle Ob, the adversary D answers with R.
5. Return B’s output.

Thus, D is successful in breaking the XDH problem iff B is successful in breaking
the intermediate assumption. This concludes the proof. ut

3.1 PC-SPHF on ElGamal Ciphertexts

We design a PC-SPHF for the ElGamal language,

L[m]1 =
{

[c]1 = ([u]1, [v]1) ∈ G2
1 : ∃r ∈ Zp : ([u]1 = r[g]1, [v]1 = [m]1 + r[h]1)

}
.

The CRS crsLaux contains the ElGamal encryption public key pk = [g, h]1 ∈
G2

1. With the hashing key hk = (η, θ)←$Z2
p and the projection key hp =

([hp1]1, [hp2]2), where [hp1]1 = η[g]1 + θ[h]1, and [hp2]2 = [η, θ]2 ∈ G2
2, and

aux = [m]1, the hash values of the PC-SPHF are defined as follows:

H =hash(hk, crsLaux , [m]1, [c]1) = η[u]1 + θ([v]1 − [m]1) ∈ G1



pH =projhash(hp, crsLaux , [m]1, [c]1, r) = r[hp1]1 ∈ G1

pcH =pchash(hp, crsLaux , [m]1, [c]1) = [u]1 • [hp21]2 + ([v]1 − [m]1) • [hp22]2 ∈ GT

where we observe that H • [1]2 = pH • [1]2 = pcH.

3.2 PC-SPHF on (Labeled) Cramer-Shoup Ciphertexts

We show how to extend the SPHF on (labeled) CS ciphertexts into a PC-SPHF.
The CRS crsLaux contains the encryption public key pk. With the hashing key
hk = (η1, η2, θ, µ, ι)←$Z5

p and the projection key hp = ([hp1]1, [hp2]2), where
[hp11]1 = η1[g1]1+θ[g2]1+µ[h]1+ι[c]1, and [hp12]1 = η2[g1]1+ι[d]1, and [hp2]2 =
[η1, η2, θ, µ, ι]2 ∈ G5

2, and aux = [m]1, the hash values of the PC-SPHF are defined
as follows:

H =hash(hk, crsLaux , [m]1, [c]1)

=(η1 + ξη2)[u1]1 + θ[u2]1 + µ([e]1 − [m]1) + ι[v]1 ∈ G1

pH =projhash(hp, crsLaux , [m]1, [c]1, r) = r[hp11]1 + rξ[hp12]1 ∈ G1

pcH =pchash(hp, crsLaux , [m]1, [c]1)

=[u1]1 • [hp21]2 + [u1]1 • ξ[hp22]2 + [u2]1 • [hp23]2 + ([e]1 − [m]1) • [hp24]2

+ [v]1 • [hp25]2 = [u1]1 • [η1]2 + [u1]1 • ξ[η2]2 + [u2]1 • [θ]2

+ ([e]1 − [m]1) • [µ]2 + [v]1 • [ι]2 ∈ GT

This PC-SPHF construction for labeled CS ciphertexts will be the core of con-
structing UC secure commitment scheme in the next section.

4 UC-Secure Commitment Scheme from PC-SPHFs

In this section, we introduce a direct application of the previous PC-SPHF on
labeled CS ciphertexts to construct an efficient UC-secure commitment. Intu-
itively, the commit phase contains a labeled CS ciphertext. The projective hash
pH will be revealed in the opening phase. The verification phase can be done
by computing pcH. Finally, the simulator by having access to the trapdoor hk,
computes the hash H as the simulated proof pH. Before presenting our concrete
construction, we describe a generic UC-secure commitment scheme from any
IND-CCA secure labeled encryption scheme with an associated PC-SPHF. Our
efficient UC-secure commitment is an instantiation of this generic commitment.

4.1 Generic UC-Secure Commitment

The ideal functionality of a commitment scheme is depicted in Fig. 3. It has
been proposed by Canetti and Fischlin [CF01]. Note that the functionality now
takes another unique “commitment identifier” cid, which may be used if a sender



Fmcom, parameterized by a message space M, interacts with adversary Sim and
parties P1, . . . , Pn as follows.

– Upon receiving (commit, sid, cid, Pi, Pj ,M) from Pi, where M ∈ M, pro-
ceed as follows: if a tuple (sid, cid, . . .) with the same (sid, cid) was previ-
ously recorded, do nothing. Otherwise, record (sid, cid, Pi, Pj ,M) and send
(receipt, sid, cid, Pi, Pj) to Pj and Sim.

– Upon receiving (open, sid, cid) from Pi, proceed as follows: if
a tuple (sid, cid, Pi, Pj ,M) was previously recorded then send
(open, sid, cid, Pi, Pj ,M) to Pj and Sim. Otherwise do nothing.

– Upon receiving (corrupt, sid, cid) from the adversary, send M to the
adversary if there is already an entry (sid, cid, Pi, Pj ,M). Change the
record to (sid, cid, Pi, Pj ,M

∗), if the adversary provides some M∗ and
(receipt, sid, cid, Pi, Pj) has not yet been written on Pj ’s output tape.

Fig. 3. Functionality Fmcom for committing multiple messages

Kcrs(1
λ): Generate a secret and public key (sk, pk) for a labeled IND-CCA

encryption scheme, set crsLaux = pk. Compute hk ← hashkg(Laux) and
hp← projkg(hk, crsLaux , ·) and set crs := (crsLaux , hp).
// Commit phase:

Commit(crs,M, sid, cid, Pi, Pj): to commit to messageM ∈ G1 for party Pj , upon
receiving a command (commit, sid, cid, Pi, Pj ,M), party Pi chooses random-
ness r and computes c = Enctpk(M ; r) with t = (sid, cid, Pi) and pH ←
projhash(hp, crsLaux ,M, c, r). Pi erases r and sends c to Pj and stores pH.
Upon receiving (commit, sid, cid, Pi, Pj , c) from Pi, party Pj verifies c is well-
formed. If yes, Pj outputs (receipt, sid, cid, Pi, Pj). Otherwise, Pj ignores the
message.
// Opening phase:

Open(M, pH, sid, cid, Pi, Pj): when receiving a command (open, sid, cid, Pi, Pj ,M),
party Pi reveals M and his state information pH.
// Verification phase:

Ver(crs, (commit, sid, cid, c),M, pH, sid, cid, Pi, Pj) : Pj computes pcH ←
pchash(hp, crsLaux ,M, c) and verifies pH, i.e., whether pH • [1]2 = pcH,
and ignores the opening if verification fails. If verification succeeds, Pj out-
puts (open, sid, cid, Pi, Pj ,M) iff cid has not been used with this committer
previously. Otherwise, Pj also ignores the message.

Fig. 4. Generic UC-Secure Commitment from PC-SPHFs.

commits to the same receiver multiple times within a session. We assume that
the combination of sid and cid is globally unique. Our generic commitment,
depicted in Fig. 4, is secure in the UC framework against adaptive corruptions
(assuming reliable erasure), with a common reference string for any PC-SPHF
on the language of a valid ciphertext on a messageM under a labeled IND-CCA-
secure encryption scheme. More formally, we show the following:



Theorem 2. The commitment scheme in Fig. 4 securely realizes Fmcom in the
CRS model against adaptive corruptions (assuming reliable erasure), provided
that (i) Π = (KGen,Enc,Dec), is an IND-CCA labeled PKE; (ii) the PC-SPHF
is (t, ε)-sound and computationally smooth.

For the proof we note that the simulator Sim first generates the CRS, with an
encryption key pk, while knowing the decryption key sk for an IND-CCA-secure
labeled encryption scheme, and the parameters for the PC-SPHF.

Proof. Intuitively, we construct an ideal-world adversary Sim that runs a black-
box simulation of the real-world adversary A by simulating the protocol execu-
tion and relaying messages between A and the environment Z. Sim proceeds as
follows in experiment IDEAL:
- Upon the environment Z requires some uncorrupted party Pi to send

(commit, sid, cid, Pi, Pj ,M) to the functionality, Sim is informed that a com-
mitment operation took place, without knowing the committed message M .
Thus, Sim selects a fake randommessageM ′←$G1, and computes an encryp-
tion c of M ′ ∈ G1. Upon P ′j outputs (receipt, sid, cid, Pi, Pj), the adversary
A is given (commit, sid, cid, c). Sim allows Fmcom to proceed with the delivery
of message (commit, sid, cid, Pi, Pj) to Pj .

- If Z requires some uncorrupted party Pi to open a previously generated com-
mitment c to some message M ∈ G1, Sim learns M from Fmcom and, using
the trapdoor hk of the simulated PC-SPHF hp, generates a simulated proof
H that satisfies the verification algorithm Ver for the message M obtained
from Fmcom. The internal state of P ′i is modified to be H, which is also given
to A as the real-world opening.

- When A delivers (commit, sid′, cid′, c′) for P ′i to P ′j , (and P ′j still has not
received a commitment with cid′ from P ′i ), Sim proceeds as follows:
(a) If P ′i is uncorrupted, Sim notifies Fmcom that the commitment (sid′, cid′)

can be delivered. The receipt message from Fmcom is delivered to the
dummy Pj as soon as the simulated P ′j outputs his own receiptmessage.

(b) If Pi is a corrupted party, then c′ has to be extracted. Indeed, Sim checks
if c′ is well-formed. It uses sk corresponding to pk to decrypt c′.

(c) For an invalid c′, the commitment is ignored. Otherwise, Sim receives
M and sends (commit, sid′, cid′, Pi, Pj ,M) to Fmcom, which causes Fmcom

to prepare a receipt message for Pj . The latter is delivered by Sim as
soon as P ′j produces his own output.

- If A gets a simulated corrupted P ′i to correctly open a commitment
(commit, sid′, cid′, c′) to M ′, Sim compares M ′ to M that was previ-
ously extracted from c′ and aborts if M 6= M ′. Otherwise, Sim sends
(open, sid, cid, Pi, Pj ,M) on behalf of Pi to Fmcom. If A provides an incorrect
opening, Sim ignores this opening.

- If A decides to corrupt some party P ′i , Sim corrupts the corresponding party
Pi in the ideal world and obtains all his internal information. In order to
match the received opening information of Pi, Sim modifies all opening in-
formation about the unopened commitments generated by P ′i . This modified
internal information is given to A. For each commitment intended for Pj but



for which Pj did not receive (commit, sid, cid, Pi, Pj), the newly corrupted P ′i
is allowed to decide what the committed message will be. A new message
M is thus provided by A and Sim informs Fmcom that M supersedes the
message chosen by Pi before his corruption.
We consider a sequence of hybrid games between the real and ideal worlds

and show that the commitment scheme emulates the ideal functionality against
adaptive corruptions with erasures. This is a general approach which one can
follow to prove the security of a commitment scheme in the UC model. The
games starts from the real game, adversary A interacts with real parties, and
ends up with the ideal game. In the ideal game, we build Sim that interfaces
between adversary A and ideal functionality Fmcom.

Game0: This is called real game (HybridFmcom), which corresponds to the real
world in the CRS model. In this game, the real protocol is executed between
committer Pi and receiver Pj . Environment Z adaptively chooses the input for
honest committer Pi and receives output of the honest parties. Naturally, there is
an adversary A that attacks the real protocol in the real world, i.e., it can corrupt
some parties and see all flows from parties. In the case of corruption, A can read
the current inner state of the corrupted party and also can fully control it. In
this game, environment Z can control adversary A and see exchanged messages
among all honest parties, and all of A’s interactions with other parties.

Game1: In the setup phase of this game, simulator Sim chooses hk←$Znp , and
generates hp ← projkg(hk, crs), crsLaux and sets crs = (crsLaux , hp). In the
commit phase, upon receiving a query (commit, sid, cid, Pi, Pj ,M) from Z, cor-
rupted party P ′i computes c using the labeled IND-CCA encryption scheme
and sends (commit, sid, cid, c) to receiver Pj . In the commit phase, after receiv-
ing (commit, sid, cid, Pi, Pj , c), Sim decrypts and stores M ′ = Dectsk(c), where
t ← (sid, cid, Pi). In the opening phase, when P ′i successfully opens to message
M , simulator Sim outputs (reveal, t,M ′) to environment Z.

Lemma 1. If Π = (KGen,Enc,Dec), the labeled PKE is IND-CCA secure, and
PC-SPHF is computationally smooth, the output of Z in Game0 and Game1 is
computationally indistinguishable.

Proof. In Game1, we observed that after P ′i opened commitment to message M ,
Sim reveals decrypted messageM ′. Suppose that bad defines the case that sender
P ′i successfully opened message M but M 6= M ′. Now, the claim states that if
bad happens, that is the smoothness of PC-SPHF is broken; which it happens
with a negligible probability. More precisely, let M ′ 6= M . Then, in the opening
phase it uses π = pH and successfully opens the commitment to M ′. The case
impels party P ′i comes up with a valid proof for PC-SPHF where it turns that
smoothness of PC-SPHF is broken.

Hence, the case bad happens only with a negligible probability and two games
Game0 and Game1 are computationally indistinguishable in a view of Z. ut



Game2: This game is the same with Game1, the only difference is that simulator
Sim modifies the simulation of an honest sender Pi. In the commit phase, after
receiving a query (commit, sid, cid, Pi, Pj ,M) from Z, the simulator Sim computes
[c]1 and sends (commit, sid, cid, c) to Pj (note that we assume that Sim knowsM).
In the opening phase, upon getting an Open query, Sim uses simulates a proof π
by computing the hash value H. Finally, simulator Sim outputs (reveal, π,M)
to the environment Z.

Lemma 2. The output of Z in Game1 and Game2 is computationally indistin-
guishable.

Proof. The proof of this lemma is straightforward and lies in the soundness
property of the PC-SPHF. Following the mentioned property, Z’s views are
statistically close in both games. ut

Game3: In this game, similar to last one, Sim again modifies the simulation of
an honest sender Pi. But, in the commitment phase, Sim commits to message
M = [0]1 = 1. Accurately, upon receiving a query (commit, sid, cid, Pi, Pj ,M)
from Z, the simulator Sim computes c withM = 1 and sends (commit, sid, cid, c)
to Pj . In the opening phase, similar to Game2, upon getting Open query, Sim
simulates a π by computing the hash value H using the trapdoor keys (hk, τ).
Finally, simulator Sim outputs (reveal, π,M) to the environment Z.

Lemma 3. Let Π = (KGen,Enc,Dec), a labeled PKE, be IND-CCA. Then, the
Z’s view in Game2 is computationally indistinguishable from Game3.

Proof. From the description of Game3, we observe that the only difference with
Game2 is that, in this game the simulator Sim computes c with 1 instead of M .
Actually, by having the trapdoor keys of the PC-SPHF, Sim can commit 1 in the
commitment phase, and opens to M in the opening phase. Also by considering
the IND-CCA property, we can say that Game2 and Game3 are statically close.
As analyzed in Game1, Pr[bad0] = Pr[bad1] = negl(λ). Similarly, in analysis of
Game2, we observed that Game1 and Game2 are statistically indistinguishable,
so Pr[bad2] = Pr[bad1] = negl(λ). As already Game2 and Game3 are statically
close, we conclude that the Pr[bad2] ≈ Pr[bad3] = negl(λ). ut

Game4: This game corresponds to the ideal world in the CRS model. In the
ideal world, there exists an ideal functionality Fmcom and the task of the honest
parties in the ideal world simply convey inputs from environment Z to the ideal
functionalities and vice versa. In ideal word, the ideal honest parties interact
only with the environment Z and the ideal functionalities. In this game, the
ideal-world adversary Sim proceeds as follows:

- Initialization step: Sim chooses hk←$Znp , and generates hp ←
projkg(hk, crs), crsLaux and sets crs = (crsLaux , hp). In addition, it chooses
a collision-resistant hash function H.

- Simulating the communication with Z: Every input value that Sim receives
from Z is written on A’s input tape (as if coming from Z) and vice versa.



- Simulating the commit phase when committer Pi is honest: Upon receiving
the receipt message (receipt, sid, cid, Pi, Pj) from Fmcom, Sim computes c
with M = [0]1 and sends (commit, sid, cid, c) to Pj .

- Simulating the opening phase when Pi is honest: Upon receiving input
(open, sid, cid, Pi, Pj ,M) from Fmcom, simulator computes proof π = pH, and
sends (sid, cid, Pi,M, π) to Pj .

- Simulating adaptive corruption of Pi after the commit phase but before the
opening phase: When Pi is corrupted, Sim can immediately read ideal Pi’s
inner state and obtainM . Then, Sim produces c as in the case of the opening
phase when Pi is honest and outputs (reveal, sid, cid, c, π,M) to the Pj .

- Simulating the commit phase when committer P̂i is corrupted and the receiver
Pj is honest: After receiving (commit, sid, cid, c) from P̂i controlled by A in
the commit phase, Sim decrypts M ′ = Dectsk(c), where t← (sid, cid, Pi) and
sends (com, t, Pj ,M

′) to Fmcom.
- Simulating the opening phase when committer P̂i is corrupted and re-
ceiver Pj is honest: Upon receiving, (open, sid, cid,M, π) from corrupted
committer P̂i controlled by A, as it expects to send to Pj , Sim
sends (open, sid, cid) to Fmcom. (Fmcom follows its codes: If a tuple
(sid, cid, P ′i , Pj ,M

′) with the same (sid, cid) was previously stored by Fmcom,
Fmcom sends (reveal, sid, cid, P ′i ,M

′) to ideal receiver Pj and Sim. Then,
ideal receiver Pj convey it to Z).

- Simulating adaptive corruption of Pj after the commit phase but be-
fore the opening phase: When Pj is corrupted, Sim simply outputs
(reveal, sid, cid, c).

By construction, Game4 is identical to the Game3. ut

4.2 Efficient Instantiation

Let us now instantiate this generic commitment with the labeled CS encryption
scheme and our PC-SPHF on labeled CS ciphertexts. The resulting scheme is
depicted in Fig 5. The commitment consists of 4 elements in G1 and the opening
of one element in G1, which, to the best of our knowledge, makes it the most
efficient non-interactive UC-secure commitment scheme.

For concrete figures, we compare our instantiation to the most efficient in-
stantiation under the plain DDH assumption in [ABP17]. For the comparison
let us assume a type 3 bilinear group with a desired security level of 128 bit. A
popular choice are Baretto-Naehrig (BN) or Barreto-Lynn-Scott (BLS) curves.
A conservative estimate for this security level yields elements in G1, G2 and GT
of size 2 · 384, 4 · 384 and 12 · 384 bits for BN and BLS12 and 2 · 320, 4 · 320 and
24 · 320 for BLS24 (without point compression) respectively [MSS16]. Assuming
that we use elliptic curves over prime fields to instantiate the plain DDH setting,
elements of G will have at least 2·256 bits (without point compression) when tar-
geting 128 bit security. Consequently, assuming point compression is used in both
schemes, the commitment and opening size of the UC-commitment in [ABP17]
is 1799 and 512 bits respectively. Our UC-secure commitment has a commitment



and opening size of 1284 and 321 bit respectively, improving [ABP17] by about
30%. Furthermore, compared to the most efficient construction in bilinear groups
(i.e., [ABB+13]), we obtain an improvement in the opening size of a factor 4.

Kcrs(1
λ): Compute and return hp and the CRS crs = (pk, hp). // similar to Fig 4

// Commit phase:
Commit(crs,M, sid, cid,C,R): to commit to message M = [m]1 ∈ G1 for R, upon

receiving a command (commit, sid, cid,C,R,M), C does the following,
(a) Choose r←$Zp and compute [c]1 = [u1, u2, e, v]1 ∈ G4

1 where [u1]1 =
r[g1]1, [u2]1 = r[g2]1, [e]1 = [m]1 + r[h]1, [v]1 = r([c]1 + ξ[d]1), where
ξ = H(t, [u1]1, [u2]1, [e]1) and t = (sid, cid, Pi).;

(b) Compute pH = r[hp11]1 + rξ[hp12]1 ∈ G1;
(c) Send (commit, sid, cid,C,R, [c]1) to R. Securely erase randomness r and

store π = pH.
(d) Upon receiving (commit, sid, cid,C,R, [c]1), R checks that [c]1 ∈ G4

1. If yes,
outputs (receipt, sid, cid,C,R) and stores [c]1. Otherwise, R ignores it.

// Opening phase:
Open([m]1, pH, sid, cid,C,R): when receiving a command (open, sid, cid,C,

R, [m]1), party C reveals [m]1 and his state information π = pH.
// Verification phase:

Ver(crs, (commit, sid, cid, [c]1), [m]1, pH, sid, cid,C,R) : computes pcH = [u1]1 •
[η1]2 + [u1]1 • ξ[η2]2 + [u2]1 • [θ]2 + ([e]1 − [m]1) • [µ]2 + [v]1 • [ι]2 ∈ GT
and verifies π • [1]2 = pcH. R ignores the opening if the verification fails. If
verification succeeds, R outputs (open, sid, cid,C,R, [m]1) iff cid has not been
used with this committer previously. Otherwise, R also ignores the message.

Fig. 5. UC-Secure commitment from PC-SPHF for the labeled CS encryption scheme.

5 Anonymous Credential System-Based Message
Transmission

Anonymous credentials (ACs) were introduced in the seminal work of
Chaum [Cha86], and allow users to anonymously authenticate to a variety of
services. Typical use-cases of ACs involve three main parties, users, authori-
ties (organizations), and verifiers (servers). Each user can receive credentials
(which can be a set of attributes) from authorities, and register pseudonyms
with authorities and verifiers. Then users can prove to verifiers that a subset
of their attributes verifies some policy P . The pseudonyms associated to the
identity of the user should be unlinkable to its exact identity, i.e., another entity
should not be able to check whether two pseudonyms are associated with the
same identity. Due to their wide range of real-world applications, anonymous
credentials have received a lot of attention from the cryptographic community,
e.g., [Cha86,CL01,CL03,CL04,BCC+09,CKL+16,FHS19].



In this section, we revisit the use of anonymous credentials for message re-
covery proposed in [BC16]. Similar to [BC16], we present a constant-size, round-
optimal protocol that allows to use an anonymous credential to retrieve a mes-
sage without revealing the identity of the receiver in a UC secure way, but more
efficient than the one proposed in [BC16]. We follow the scenario of [BC16], and
assume that different organization issue credentials to users. The full construc-
tion is shown in Fig. 6.

CRS generation. Run Kcrs(1
λ) and generate hp and the CRS crsLaux and set

crs = (crsLaux , hp). // similar to Section 3.2

Pre-flow. The server generates a key pair (pk, sk) of a CPA secure encryption
scheme. It stores sk and sends pk to user U .

Credential use by user Ui. The user Ui does the following:
(a) Choose a random value J . Compute JF ← F (J) and cJ = Enccpapk (J), as

an encryption of J under pk.
(b) Choose r←$Zp and compute the CS ciphertext [c]1 = [u1, u2, e, v]1 ∈ G4

1.
Compute pH = (r[hp11]1 + rξ[hp12]1) ∈ G1 and cCred = Enccpapk ([Credi]1).

(c) Send (cJ , [c]1, cm) to the server. Store pH (as the new witness) and JF ,
and securely erase J and the randomnesses used in the encrypting pro-
cesses.

Database input Doc with policy P . When receiving the messages (cJ , [c]1, cm)
from Ui , the server S decrypts J ← Deccpask (cJ), [m]1 ← Deccpask (cm), and
computes F (J) and does the following:
(a) Compute pcH ∈ GT . Choose s←$Zp and compute HS = s · pcH ∈ GT

and hpS = s[1]2. Compute cS = F (J)⊕ HS ⊕ Doc.
(b) Erase everything except (cS , hpS) and send them over a secure channel.

Data recovery. When receiving the tuple (cS , hpS), the user Ui, first computes
pHD = pH • hpS ∈ GT , and then retrieves Doc = cS ⊕ JF ⊕ pHD.

Fig. 6. UC-Secure Anonymous Credential System-Based Message Transmission from
an PC-SPHF.

For the security analyzing, we first describe the ideal functionality Fac for
Anonymous Credential-Based Message Transmission proposed by [BC16]. It is
depicted in Fig. 7. The user Ui received Doc form the server S when her creden-
tials Cred comply with the policy P .

Theorem 3. The Anonymous Credential System-Based Message Transmission
protocol described in Fig. 6 is UC secure in the presence of adaptive adversaries,
assuming reliable erasures and authenticated channels.

Proof. From a high level point of view, in the case of adaptive corruptions and
for the simulating procedure we use an extractable and equivocable commitment,
which allows the simulator Sim to simply open the commitment to any message
(credential). Intuitively, the equivocability property of the commitment enables



Fac, parameterized by a message space D ∈ {0, 1}λ, interacts with adversary Sim
and parties P1, . . . , Pn as follows.

– Upon receiving (send, sid, cid, Pi, Pj ,Doc) from Pi, where Doc ∈ D, proceed
as follows: if a tuple (sid, cid, Pi, Pj ,Doc) with the same (sid, cid) was previ-
ously recorded, do nothing. Otherwise, record (sid, cid, Pi, Pj ,M) and reveal
(send, sid, cid, Pi, Pj) to Sim.

– Upon receiving (receive, sid, cid,Cred) from Pj , proceed as follows:
if a tuple (sid, cid, Pi, Pj ,Doc) was previously recorded then send
(receive, sid, cid, Pi, Pj) to Sim, and send (receive, sid, cid, Pi, Pj ,Doc

′) to
PJ , where Doc′ = Doc if the credentials comply with the policy P , and
Doc′ = ⊥ otherwise. Ignore further receive messages with the same cid from
Pj .

Fig. 7. Functionality Fac for Ideal Functionality for Anonymous Credential-Based Mes-
sage Transmission

Sim to adapt the incorrect credential and the used randomness such that they
seem to be in the language. By extractability property, when simulating the
sever, Sim knows whether it has to send the correct message. Recall that by
adaptive corruption we mean the adversary A is able to corrupt any player at
any time during the execution of the protocol. Notice that the simulator Sim first
generates the CRS crs and the PC-SPHF parameters. As usual, we can construct
an ideal-world adversary Sim that runs a black-box simulation of the real-world
adversary A by simulating the protocol execution and relaying messages between
A and the environment Z. Sim proceeds as follows in experiment IDEAL. The
sketch of the proof is as follows,
- In pre-flow phase, upon receiving the send query from Fac, Sim generates a
key pair (pk, sk) (he knows it from an honest sender has sent a pre-flow).

- Upon receiving receivequery from Fac, by using an equivocable commit-
ment, Sim computes the tuple (pH, [c]1, cm) with label (sid, cid, Pi, Pj) and
a ciphertext cJ ← Enccpapk (J) where JF is a random value. Note that Sim
already has received a pre-flow pk from an honest or a corrupted sender.

- If Z requires uncorrupted server S who received the tuple (cJ , [c]1, cCred)
from a corrupted Ui, Sim decrypts the ciphertexts cJ , and cCred, and obtains
J and [Credi]1. Sim, and then computes F (J). It extracts the committed
values (Cred) and check if it is correct and sends receive to Fac.

- When Z requires uncorrupted user Ui who received the tuple (cS , hpS) from
a corrupted S, Sim computes pHD and obtains Doc and uses this value in a
send query to Fac.

- In the case of an honest server, when Sim receives a receive query and Doc
from Fac, it sends Doc to the corrupted user.

- When Z requires uncorrupted server S who is interacting with an uncor-
rupted user Ui, Sim sets Doc = 0 and choose JF randomly instead of com-
puting it correctly by F (J). It computes the commitment (cJ , [c]1, cCred).



In case of corruption afterwards, due to equivocability property of the com-
mitment the value JF can be be adapted during the simulation such that
it gives the message Doc received by the user in case his credentials comply
with the policy. ut

6 Open Problem

In [KV09], Katz and Vaikuntanathan constructed the first (approximate) SPHF
for a lattice-based language: the language of ciphertexts of some given plaintext
for an LWE-based IND-CCA encryption scheme. Later, by using harmonic analy-
sis, Benhamouda et. al [BBDQ18] improved the Katz-Vaikuntanathan construc-
tion, where the construction is over a tag-based IND-CCA encryption scheme a
la Micciancio-Peikert [MP12]. An interesting open question is the construction
of PC-SPHFs for the class of lattice-based languages.
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