
A Study of Persistent Fault Analysis

Andrea Caforio and Subhadeep Banik

LASEC, École Polytechnique Fédérale de Lausanne, Switzerland
{andrea.caforio,subhadeep.banik}@epfl.ch

Abstract. Persistent faults mark a new class of injections that perturb
lookup tables within block ciphers with the overall goal of recovering
the encryption key. Unlike earlier fault types persistent faults remain
intact over many encryptions until the affected device is rebooted, thus
allowing an adversary to collect a multitude of correct and faulty ci-
phertexts. It was shown to be an efficient and effective attack against
substitution-permutation networks. In this paper, the scope of persis-
tent faults is further broadened and explored. More specifically, we show
how to construct a key-recovery attack on generic Feistel schemes in the
presence of persistent faults. In a second step, we leverage these faults to
reverse-engineer AES- and PRESENT-like ciphers in a chosen-key set-
ting, in which some of the computational layers, like substitution tables,
are kept secret. Finally, we propose a novel, dedicated, and low-overhead
countermeasure that provides adequate protection for hardware imple-
mentations against persistent fault injections.

Keywords: Fault Analysis · PFA · Feistel Networks · Reverse Engineer-
ing · AES · PRESENT · Countermeasures.

1 Introduction

Fault injections and their accompanying analysis techniques rank amongst the
most devastating attacks against cryptographic implementations. They saw their
inception in 1996 when Boneh et al. demonstrated how to use computation
errors during the CRT step of RSA to recover a prime factor of the public
modulus [5]. In the following year, Biham and Shamir gave a method to exploit
the difference between a faulty and correct DES ciphertext to gain information
about the encryption key, this type of analysis became known as differential
fault analysis [3]. Usually very few ciphertext pairs are needed to mount a DFA
attack successfully; however, the faults have to be precisely targeted, often at
rather small memory regions or specific registers, and during particular rounds
of a block cipher computation. Other attacks assume a permanent fault model
that is most commonly induced by defective hardware [9].

Persistent faults attempt to bridge the gap between short-lived and perma-
nent faults as they remain intact over multiple encryptions but vanish once the
device is rebooted. Persistent fault analysis gained traction at CHES 2018, in a
work by Zhang et al. [16]. Their attack exploits the statistical imbalance in a
collected set of ciphertexts, caused by one or more overwritten s-box elements,
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to recover the last round-key of substitution-permutation networks. The idea is
based on the fact that in most SPN ciphers, like AES, a skewed substitution
layer distribution translates directly into the ciphertexts. To see this, suppose
the element u does not appear anymore in the s-box output due to the persistent
fault injection, as a consequence, u⊕ k is an impossible ciphertext word, where
k is a last round-key word. Hence, after enough collected ciphertexts from the
faulty device, k can be uniquely identified. The authors subsequently show that
around 1500 ciphertexts are sufficient to recover the last round-key of AES in the
presence of a single overwritten s-box element. They further demonstrate how
to use the rowhammer attack [10] in order to provoke persistent fault injections
in the s-box of vulnerable AES implementations.

In this paper, we show how persistent faults can be used to attack generic
Feistel schemes where an altered s-box distribution is not directly visible in the
collected ciphertext set. In a next step, we tackle the task of reverse engineering
concealed parts of block ciphers. In particular, we demonstrate how to leverage
persistent fault injections to recover a hidden PRESENT s-box and its permu-
tation layer, as well as the substitution box of AES in a reduced-round setting.
These reverse engineering attacks take place in the chosen-key setting and ex-
ploit particular behaviours within the key-schedule routines of both PRESENT
and AES. Lastly, we propose a novel, low-overhead hardware countermeasure
that adequately protects bijective substitution boxes against persistent fault in-
jections.

2 Persistent Fault Analysis on Feistel Schemes

The standard techniques of persistent fault analysis do not apply to Feistel
networks due to the fact that the both the left and right side of the output
are masked by previous round function outputs. Indeed any Feistel round is
a permutation over bit strings of length equal to the block size of the cipher,
irrespective of whether the component s-box used in it is bijective or not. As
a consequence, the skewed distribution of a faulty substitution box does not
appear in the collected ciphertexts. However, if we loosen the ciphertext-only
requirement, persistent fault can become a feasible danger. More specifically,
we allow the attacker a single device reset and the possibility to re-encrypt
plaintexts.

Consider a generic r-round Feistel scheme whose substitution layer consists
of b identical or different n×m s-boxes S1, S2, . . . , Sb. The last round of such a
construction is depicted in Figure 1, with xl||xr being the input to the last round
and yl||yr the corresponding ciphertext. Both xl||xr and yl||yr can be further
decomposed into b blocks of m bits such that

xl = |x1l , . . . , xbl |, xr = |x1r, . . . , xbr|,
yl = |y1l , . . . , ybl |, yr = |y1r , . . . , ybr |.

For most ciphers n = m. However, for block ciphers like DES, n = 6 and m = 4.
So we first expand xr using an expansion function to a string dr of length nb
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bits. Thereafter, we can write dr = |d1r, d2r, . . . , dbr|, where each dir is of length n
bits.

S1

S2

···

Sb

k1

k2

kb

xl

yl

xr

yr

Fig. 1. Last Round of a Generic Feistel Scheme

2.1 Different S-Boxes

We first treat the case where S1, S2, . . . , Sb are pairwise different substitution
boxes. The key observation is that in the presence of persistent faults some
ciphertexts remain uncorrupted.

Suppose a single fault has been injected into one box. The probability that
this element is not accessed in each round lies at (1 − 1

2n )
r. Furthermore, the

probability that the faulty element is only accessed in the very last round is
given by 1

2n (1−
1
2n )

r−1.

Example 1 (DES). The data encryption standard [8] is a 16-round Feistel net-
work whose substitution layer consists eight pairwise different 6×4 s-boxes. The
probability that a faulty element in one box is not accessed in all rounds stands
at (1 − 1

26 )
16 ≈ 0.777. Additionally, the probability that the faulty element is

only accessed in the last round is given by 1
26 (1−

1
26 )

15 ≈ 0.0123.

For illustration purposes assume that entry e of Sb has been altered. The
faulty s-box is denoted by S′b. The injected element does not need to be known
to the attacker. Let yl||yr be a ciphertext from a faultless device, i.e. one with Sb,
and y′l||y′r the encryption of the same plaintext on a faulty device, i.e. one with
S′b that only accessed faulty element of S′b in the last round. As a consequence
we have that yl ⊕ y′l is of the form

yl ⊕ y′l = |a1, a2, . . . , ab|,
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where ai is a block of m bits with the property that ai = 0 for 0 ≤ i < b and
ab = Sb(y

b
r⊕kb)⊕S′b(ybr⊕kb). In other words, incorrect ciphertexts that accessed

the faulty entry e of S′b only in the last round round can be identified when
given the corresponding correct ciphertext. In such a case kb can be recovered
via kb = ybr ⊕ e. In the case where we have l faulty elements e1, . . . , el, kb can
be recovered up-to l candidates. Note that to recover the remaining parts of the
last round-key further injections into the other s-boxes are needed. Also note
that there is a negligible probability that a false-positive, i.e. a ciphertext that
accessed the faulty element in more than just the last round, is of the desired
form.

The expected number of required ciphertexts pairs is given by the reciprocal
2n(1− 1

2n )
−(r−1). For DES this value stands at 26(1− 1

26 )
−15 ≈ 82. Algorithm 1

summarizes the developed ideas.

Algorithm 1: Feistel Scheme PFA Key-Recovery

1 p, cl, cr ← (·) // Initialize empty lists
2 for i← 0; i < n; i← i+ 1 do
3 p(i)← random plaintext
4 yl||yr ← E(p(i))
5 cl(i), cr(i)← yl, yr

6 Overwrite element e of St in E

7 for i← 0; i < n; i← i+ 1 do
8 y′l||y′r ← E(p(i))
9 |a1, . . . , ab| ← yl ⊕ y′l

10 if (aj = 0, j ∈ {1, . . . , b} \ {t}) ∧ (at 6= 0) then
11 return ytr ⊕ e

2.2 A Single S-Box

In the case where S1 = · · · = Sb the probability that the faulty element is only
accessed by ybr in the last round is now given by 1

2n (1 −
1
2n )

br−1, which can
significantly increase the number of required ciphertext pairs. However, unlike
in the previous case, one fault injection is enough to recover the entire last
round-key. Furthermore, the overwritten element does not need to be known
by the attacker either and can be brute-forced. In summary, if the attacker is
allowed slightly more powers persistent faults can be exploited to recover the
last round-key of Feistel schemes as well.

3 Reverse Engineering

The idea of leveraging fault injections for reverse-engineering, (in short FIRE),
was introduced by San Pedro et al. [14] in an attempt to use a corrupted last
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round computation of either AES or DES to recover their hidden s-boxes. The
attack itself is differential in its nature and requires many thousands of faults in
order to be successful. The attack was later improved by Le Boulder et al. [12],
their attack requires fewer faults in the penultimate instead of the last round of
DES to recover all eight hidden substitution boxes. The concept of ineffective
fault analysis where a particular byte of the intermediate state is stuck at zero
is used by Clavier et al. to recover a hidden s-box of AES [6]. Finally, Tiessen
et al. [15] used integral cryptanalysis to retrieve a secret AES substitution box
when the cipher is reduced to four rounds.

In this section, we present a chosen-key attack that, in combination with
persistent faults, aims to recover hidden substitution boxes and permutations
of block ciphers more efficiently than an ordinary exhaustive search. Consider
a PRESENT-like [4] construction in which the s-box or the permutation layer
are fixed but secret bijective functions over {0, 1}4 and {0, 1}64 respectively.
We demonstrate how persistent faults can be used to reverse-engineer such a
construction.

3.1 Brute-Force

We first consider the method of a simple exhaustive search in order to recover
the substitution box. There are 2n! bijective s-boxes over {0, 1}n, and hence
the computational complexity of exhaustive search grows out of bound very
quickly. For instance, there are 16! ≈ 244.25 possible arrangements for a small
4× 4 s-box. However, already for a 8× 8 s-box, as deployed in AES, there exist
256! ≈ 21684 possibilities. For non-bijective n × m substitution tables we have

2n!
(2n−m!)2m

potential arrangements. For one of the 6× 4 DES s-boxes this values
stands at 64!

(4!)16 ≈ 2222.64.

3.2 S-Box Recovery of 16-Round PRESENT

PRESENT is an ultra-lightweight block cipher designed by Bogdanov et al. [4]
that operates on 64-bit blocks with a key size of either 80 or 128 bits meant
for usage in low-energy and space-restricted devices. It operates over 31 rounds
with a substitution layer consisting of a single 4 × 4 s-box that is applied on
all 16 nibbles of the intermediate state. For the remainder, we will focus on the
80-bit version and in particular on its key schedule routine. Algorithm 2 depicts
its key schedule procedure. Let |k79k78 . . . k1k0| be the individual bits of the
master key in big endian notation. In each round the 64 most significant bits
yield the current round-key. The key is then rotated 61 positions to the left,
followed by the substitution of the four most significant bits |k79k78k77k76| by
S(|k79k78k77k76|). Finally, the bits |k19k18k17k16k75| are xored with the binary
representation of the round counter i.

As a warm-up we consider the s-box recovery in a reduced 16-round setting of
PRESENT in the presence of persistent faults in the known-key setting such that
the last round-key can be exactly determined. Assume the faults are injected into
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Algorithm 2: 80-Bit PRESENT Key-Schedule

1 for i = 1; i ≤ 32; i← i+ 1 do
2 Ki ← |k79k78 . . . k16|
3 |k79k78 . . . k1k0| ← |k18k17 . . . k20k19|
4 |k79k78k77k76| ← S(|k79k78k77k76|)
5 |k19k18k17k16k15| ← |k19k18k17k16k15| ⊕ i

the target device before the key schedule takes place and that the encryption
key can be switched out without necessitating a reboot of the device, i.e. the
injected faults do not disappear.

Due to its simplicity, the PRESENT key schedule exhibits some peculiarities.
For instance, Hernandez et al. [11] showed that there exist keys that expand into
very similar round-keys. This is partly due to the fact that some key bits only
enter the substitution box during relatively late rounds and only appear in a few
round-keys.

We want to stress another property of the key schedule routine. It is not hard
to see that during the first 16 rounds no key bit enters the substitution box more
than once, hence all s-box accesses during the second 16 rounds only depend on
the values of the first 16 accesses. As a consequence, it is possible to compute
keys that only access a single s-box element during the first half which in turn
leads to the fact that the pattern of the latter half of s-box accesses is entirely
determined by this single s-box value that was accessed during the first half.

Definition 1 (Low-Diffusion Key). A low-diffusion key K̃ is a PRESENT
master key that, if fed into the key schedule routine, causes only one element of
the s-box table to be accessed during the first 16 key schedule rounds.

Naturally, there can only be 16 low-diffusion keys in total K̃0, . . . , K̃15 one
for each substitution box element, i.e. key K̃i only accesses s-box entry i during
the first 16 rounds of the key schedule. See Algorithm 7 in the appendix on how
to calculate all the 16 low-diffusion keys.

The existence of low-diffusion keys immediately suggests a s-box recovery
procedure in a reduced 16-round setting. Given a faulty device E, for each low-
diffusion key K̃i, 0 ≤ i < 16 we recover the last round-key k through PFA then
iterate over all possible values of S(i) = j and compare whether an offline key
schedule calculation is equal to k. Algorithm 3 depicts the described method.
Note that we assume that the faults remain intact after re-keying, if this is
not the case the persistent faults have to be injected again for each iteration.
Further note that only a few dozens of ciphertexts are required to recover the
last round-key through PFA in PRESENT with high probability.

3.3 S-Box Recovery of Full-Round PRESENT

The attack from the previous section does not directly apply to a full 31-round
setting, however we can use persistent faults to engineer a new s-box recovery
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Algorithm 3: 16-Round PRESENT S-Box Recovery

1 S(i)← 0, for 0 ≤ i < 16

2 for i = 0; i < 16; i← i+ 1 do
3 k ← PFA(EK̃i

) // Recover last round-key through PFA
4 for j = 0; j < 16; j ← j + 1 do
5 S(i) = j // Assign j to i-th s-box entry

// Offline key schedule using s-box S

// and low-diffusion key K̃i

6 if KeyScheduleS(K̃i) = k then
7 break

algorithms applicable to different fault models. The intuition is still based on the
particular behaviour of low-diffusion keys, especially their behaviour throughout
the key schedule computation.

Definition 2 (Access Rate). The access rate of a low-diffusion key, denoted
by rK̃i

(j), is the number of accessed s-box elements by the key K̃i during the key
schedule routine when S(i) = j.

Table 1 depicts each low-diffusion key alongside their respective access rates.

Table 1. Low-Diffusion Keys and their Access Rates

rK̃i
(j)

i K̃i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0x037bf04d5c0567402460 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

1 0x026ae06f7e012300ace8 16 15 13 13 11 11 11 11 16 15 13 13 11 11 11 11

2 0x0159d009180defc13570 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

3 0x0048c02b3a09ab81bdf8 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

4 0x073fb0c5d41476420640 16 15 13 13 11 11 11 11 15 14 13 14 11 11 11 11

5 0x062ea0e7f61032028ec8 16 15 14 14 11 11 11 11 15 14 12 13 11 11 11 11

6 0x051d9081901cfec31750 16 16 14 14 11 11 11 11 15 14 13 14 11 11 11 11

7 0x040c80a3b218ba839fd8 16 15 14 14 11 11 11 11 15 15 13 14 11 11 11 11

8 0x0bf3715c4c2745446020 16 15 13 13 12 12 12 11 15 14 12 13 12 12 11 11

9 0x0ae2617e6e230104e8a8 16 15 13 13 12 12 11 11 15 14 12 13 12 12 12 11

10 0x09d15118082fcdc57130 16 15 13 13 12 12 11 12 15 14 12 13 12 12 11 11

11 0x08c0413a2a2b8985f9b8 16 15 13 13 12 12 11 11 15 14 12 13 12 12 11 12

12 0x0fb731d4c43654464200 16 15 13 13 12 11 12 12 15 14 12 13 11 11 12 12

13 0x0ea621f6e6321006ca88 16 15 13 13 11 11 12 12 15 14 12 13 12 11 12 12

14 0x0d951190803edcc75310 16 15 13 13 11 12 12 12 15 14 12 13 11 11 12 12

15 0x0c8401b2a23a9887db98 16 15 13 13 11 11 12 12 15 14 12 13 11 12 12 12
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Definition 3 (Access Pattern). Denote by pK̃i
(j) the set of accessed s-box

entries during the key schedule for low-diffusion key K̃i with S(i) = j.

Example 2. The access pattern for K̃0 and S(0) = 12 is given by

pK̃0
(12) = {0, 1, 2, 3, 4, 5, 6, 7, 12, 14, 15}.

We look at the case where the adversary manages to inject a single chosen
fault at a precise position in the substitution table, i.e. one element is overwritten.
The online stage for this attack is the same as the previous one; we use the
persistent attack module with the set of known keys K̃i to extract the last
round-key.

Note that a brute-force search in this setting, to recover the secret s-box,
requires in the worst case 15! ≈ 240.25 trials in order to recover the remaining
s-box entries. This value can be significantly improved if the encryption key can
be chosen. Let the injected fault be of the form S(i) = j such that rK̃i

(j) = 11.
In this case there are only 10 remaining s-box entries in the entire key schedule
routine that are accessed for the low-diffusion key K̃i. The strategy is to ran-
domly assign values to these 10 entries, after which it is possible to compute the
last round-key from K̃i using an offline key schedule computation: the assigned
values are correct if this computed key matches the last round-key obtained
through PFA. Now, there are 15!

5! ≈ 233.34 potential arrangements that have to
be checked in the worst case since due to the low-diffusion key and the fault
injection only 10 s-box entries need to be assigned from a set of 15 potential
values. This results in a reduction by a factor of 120 compared to the brute-force
approach. The remaining 5 elements can then be safely brute-forced. Thus the
computational complexity of this method is around 233.34 + 5! ≈ 233.34 offline
key schedule computations. Algorithm 4 formally depicts the described strategy:
it makes use of the following definition.

Definition 4 (m-Permutation). Let L be a collection of n elements. A m-
permutation of L, denoted by Πn,m(L), is the set of all possible ways to choose
m elements from L without repetition.

3.4 Permutation Layer Recovery of PRESENT

On paper, recovering the permutation layer appears to be a harder task due to
the sheer amount 64! ≈ 2296 of possibilities. Let C = {c1, . . . , cn} be a set of
n ciphertexts from the faulty device. Denote by |c(i), c(j), c(k), c(l)| the nibble
that is created by extracting the bits i, j, k, l from a ciphertext c. Further, denote
by C(i, j, k, l) the set of nibbles that is generated by extracting bits i, j, k, l from
each ciphertext, i.e.

C(i, j, k, l) = {|c1(i), c1(j), c1(k), c1(l)|, . . . , |cn(i), cn(j), cn(k), cn(l)|}.

Suppose an random entry in the S-box is overwritten due to a fault. If each
bit in a nibble i, j, k, l stems from the same s-box then we have necessarily
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Algorithm 4: Single-Fault S-Box Recovery

1 Choose i ∈ {0, 1, 2, 3, 4, 5, 6, 7}
2 Overwrite S(i) = j such that rK̃i

(j) = 11

// Recover last round-key k
// and overwritten element v through PFA

3 k, v ← PFA(EK̃i
)

4 L← {0, . . . , 15} \ {v}
5 S′(l) = 0, 0 ≤ l ≤ 15; S′(i) = j

6 for each π ∈ Π15,10(L) do
7 z ← 0
8 for each p ∈ pK̃i

(j) do
9 S′(p)← π(z), z ← z + 1

10 if KeyScheduleS′(K̃i) = k then
11 return S′

|C(i, j, k, l)| < 16 due to the persistent fault injection. This is obviously due
to the fact that overwriting the entry of a bijective 4 × 4 s-box decreases the
number of unique outputs to less than 16. For all other nibbles the set is of size
16 for a large enough n. In this fashion we recover the hidden permutation up
to a reordering of the bits i, j, k, l of each nibble, which naturally gives rise to 4!
possibilities for each nibble and hence 4!16 possibilities for the entire 16 nibbles.
Furthermore a reordering of the 16 s-boxes is also required that gives rise to 16!
possibilities, which leaves us with a remaining complexity of 2416 × 16! ≈ 2118

to recover the entire permutation. Algorithm 5 depicts this strategy.

Algorithm 5: PRESENT Permutation Recovery

1 L← {0, 1, 2, . . . , 63}
2 C ← {c1, . . . , cn} // Set of n ciphertexts from faulty device

// Iterate over all permutations of size 4
3 for each π0, π1, π2, π3 ∈ Π4(L) do
4 if |C(π0, π1, π2, π3)| < 16 then
5 output |π0, π1, π2, π3|
6 L← L \ |π0, π1, π2, π3|

The question is now, how large do we have to choose n in order to guarantee
with high probability that only the correct nibbles are chosen? This is a classical
instance of the coupon collector’s problem where we want to quantify the num-
ber of uniform trials until some number of elements have been picked. In the
case of Algorithm 5, how many ciphertexts are required until |C(i, j, k, l)| = 16
with high probability for an incorrect nibble? Let T the number of trials until
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16 substitution box entries have occurred for a specific ciphertext nibble. The
expected number of picks E[T ] is given by

E[T ] = 16H16 ≈ 54.1,

whereH16 is the 16-th Harmonic number. Similarly, we can quantify the variance
Var[T ], which is upper-bounded by

Var[T ] <
π2

6
162 ≈ 421.1.

Finally, we can use the Chebyshev’s inequality to specify the bound on the error
probability.

Pr[T ≥ kE[T ]] ≤ Pr [|T − E[T ]| ≥ (k − 1)E[T ]]

≤ Var[T ]

((k − 1)E[T ])2

<
16π2

6(k − 1)2H2
16

,

where k ≥ 2. Table 2 depicts Pr[T ≥ kE[T ]] for multiple choices of k. Evidently,
a few hundred ciphertexts should suffice for a successful run of Algorithm 5.

Table 2. Pr[T ≥ kE[T ]] for several n

k 2 3 4 5 10 20

Pr[T ≥ kE[T ]] 0.1439 0.0359 0.0159 0.0089 0.0017 0.0003

Knowing the nibbles that directly originated from one s-box, it is possible
to further reduce the permutation space with multiple injections. Firstly, note
that if 0 is overwritten then the last round-key bits κ = |κ(i), κ(j), κ(k), κ(l)| is
determined exactly (where we have already determined that bits i, j, k, l emanate
from the same s-box). This is a direct consequence of the fact that all 4-bit
permutations of 0 remain 0, hence 0⊕κ does not appear in the ciphertext nibble.
The same also holds if 15 is overwritten (in that case 15⊕κ does not appear in the
ciphertext nibble). Once the last round-key has been established, the last round
substitution layer output bits s = |κ(i)⊕ c(i), κ(j)⊕ c(j), κ(k)⊕ c(k), κ(l)⊕ c(l)|
is also available. Figure 2 illustrates the situation.

Let La be the list of collected s-box outputs s for one nibble when entry a
of the s-box has been overwritten. There exists a small set of potential 4-bit
permutations that produce the values in La assuming element a never appears
in the s-box output. For example let the entry 1 in the s-box table be overwrit-
ten. Then we know that the s-box never outputs 1. We are interested in the
determining the order in which the output bits of some s-box is shuffled to map
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Fig. 2. Permutation Layer Recovery in PRESENT

to bits i, j, k, l of the ciphertext (denote this permutation by πs). Now if some
s = s0 is not present in L1, then we can reduce the search space for πs to only
those permutations that map 1 to s0. For example if s0 = 8 (the nibble which
has 1 in the msb), then πs is essentially the set of all 4 bit permutations that
map the lsb to the msb.

It is not too difficult to see that repeating the above experiments for a = 2, 4, 8
gives us the unique 4-bit permutation πs. This means with four injections we can
retrieve the 4-bit permutation after each s-box, which reduces the overall search
space down to a reordering of the s-boxes, i.e. 16! ≈ 244 possibilities. This set is
small enough to be brute forced using appropriate computational resources.

3.5 Reduced-Round AES S-Box Recovery

The ideas developed so far can be adapted in order to recover a hidden AES
s-box in a reduced-round setting. We consider the 128-bit Rijndael key schedule
procedure as it is deployed in the final AES specification [7]. The routine acts in
eleven rounds, one for each round-key, and works on 32-bit words. Let K0, K1,
K2 and K3 denote the four 32-bit words of the master key with W0, . . . ,W43

being the 32-bit round-key output words. Further, let rc be a list of ten round
constants.

The key schedule also makes use of two external transformations R and S.
R designates the rotation of a 32-bit word, consisting of four bytes |b0, b1, b2, b3|,
by one position to the left, such that

R(|b0, b1, b2, b3|) = |b1, b2, b3, b0|

while S is the substitution of each byte in a 32-bit word by its corresponding
s-box value such that

S(|b0, b1, b2, b3|) = |S(b0), S(b1), S(b2), S(b3)|.
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The key schedule then calculates each round-key word Wi as follows

Wi =


Ki, i < 4

Wi−4 ⊕R(S(Wi−1))⊕ rci/4, i ≥ 4 and i ≡ 0 mod 4

Wi−4 ⊕Wi−1, otherwise.

In the PRESENT key schedule we had the property that during the first sixteen
rounds the s-box access pattern was entirely determined by the master key thus
special keys could be found that only access a single s-box entry during those
initial rounds of the key schedule. It is obvious that no such property is given in
the AES key schedule, simply because all intermediate key states are affected by
the s-box accesses within one round. A single round contains four s-box accesses
one for each byte of current 32-bit word, hence in total there are 40 accesses
over all eleven rounds of the key schedule due to the first round not performing
no lookup. However, it is possible to find keys for which all four lookups of a
single round go to the same element for the first few rounds of the key schedule
routine.

We consider the following adapted fault model, where the 0 is injected at at
a known position i in the substitution table such that S(i) = 0, which has the
following lemma as a consequence.

Lemma 1. Given a AES master key of the form

K0 = 0x01000000, K1 = 0x02000000,

K2 = 0x02000000, K3 = |a, a, a, a|,

where a ∈ {0, 1}8 are the individual bytes of the word, and a faulty substitution
box S with S(a) = 0. The s-box access pattern during first six rounds of the key
schedule is given by

W3 = |a, a, a, a|, W7 = |a, a, a, a|,
W11 = |a, a, a, a|, W15 = |a, a, a, b |,
W19 = |a, a, c, d|, W23 = |a, e, f , g|,

where b, c, d, e, f, g ∈ {0, 1}8 are bytes and given by

b = a⊕ 0x06, c = a⊕ S(b),
d = a⊕ 0x08, e = a⊕ S(a⊕ S(b)),
f = a⊕ S(b)⊕ S(0x08), g = 0x1a.

This means that the set of input entries of the s-box accessed during the first 6
rounds is given by the byte-values a, b, c, d, e, f, g.

Proof. Due to space constraints, we present a proof in Appendix B.

By leveraging those keys we can device a s-box recovery attack on a reduced-
round version of AES that is similar to the algorithms in Section 3.2 and Sec-
tion 3.3. We use PFA to recover last round-key, then guess partial locations of
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Algorithm 6: 5-Round AES S-Box Recovery

1 Inject 0 at position a in substitution box of EK

2 S(i)← 0, for 0 ≤ i < 256
3 a ∈ {0, . . . , 255}
4 K0 ← 0x01000000, K1 ← 0x02000000, K2 ← 0x02000000, K3 ← |a, a, a, a|
5 K ← K0||K1||K2||K3

// Retrieve round-key k and active s-box elements L through PFA
6 k, L← PFA(EK)

7 for each x ∈ L do
8 for each y ∈ L \ {x} do
9 for each z ∈ L \ {x, y} do

10 S(a⊕ 0x06) = x, S(a⊕ 0x08) = y, S(a⊕ S(a⊕ 0x06)) = z
11 if KeyScheduleS(K) = k then
12 return S

the s-box table to do an offline key schedule to calculate the last round-key and
see if both the above keys match. Algorithm 6 shows a five-round s-box recovery,
which recovers three elements of the substitution box.

The number of key schedule operations in Algorithm 6 depends the numbers
of cipher rounds, i.e. since only one assignment is made to the s-box table for
the 4 round attack, we require 255 key schedule operations. For the 5 round
attack, 3 entries are assigned and so 255!

252! ≈ 224 offline key schedule computations.
Similarly 6 assignments are required for the 6 round attack and so and 255!

249! ≈ 248

operations are required.
The above routine needs to be repeated for multiple values of a to recover

the full S-box table. For example in both the 5/6 round attacks, we successfully
assign 2 entries (a⊕0x06) and (a⊕0x08) in each execution of the above routine.
Thus at most 128 executions of the above routine with judiciously chosen values
of a are sufficient to extract the entire table.

4 Countermeasures

We propose a novel, low-overhead and dedicated countermeasure against per-
sistent fault injections in bijective substitution boxes that is not susceptible to
further injections through redundant lookup tables. The need for this arises
through the fact that common fault injection countermeasures, like area redun-
dancy and masking of intermediate values, have been shown to be ineffective [16,
13].

We assume the fault model where one or more entries of the s-box have been
altered. In such a scenario there are necessarily at least two entries in the s-box
that bear the same value such that S(x) = S(y) with x 6= y, i.e. if two different
values enter the substitution layer and are equal after the transformation an error
is detected. This necessitates that all input and output are compared to each
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other. Figure 3 depicts such a construction. Once a fault has been detected the
device can engage in remedy procedures such as outputting random ciphertexts
until the next reboot. We will see that the number of encryptions is so low that
no information about the last round-key can be inferred through persistent fault
analysis techniques.

= = = = = = = = = =

S S S S S

= = = = = = = = = =

Comparison Bit Vector

Comparison Bit Vector

=

Fig. 3. Pairwise Comparison Network

If there is one or more overwritten elements in the substitution layer it is
possible to quantify the probability that the fault is detected in a particular
round by the following lemma.

Lemma 2. Denote by S a faulty n×n s-box with t altered entries v1, . . . , vt such
that S(vi) = S(ui) for some ui /∈ {v1, v2, . . . , vt}. Let pn,m,t be the probability
that at least one pair of equal entries is accessed in one round. The value is given
by

pn,m,t = 1−
(
2n − 2t

2n

)m

−
t∑

i=1

(
2i
(
t

i

)

×
m∑
k1

m−k1∑
k2

· · ·
m−

∑i−1
j=1∑

ki

(
m

k1

)
· · ·
(
m−

∑i−1
j=1 kj

ki

)

×
(

1

2n

)∑i
j=1 kj

(
2n − 2t

2n

)m−
∑i

j=1 kj
)

Proof. Suppose there are t pairs of equal entries. An error is not detected if
none of the 2t elements of these pairs are accessed in round, which happens with
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probability
(
2n−2t
2n

)m
, or exactly one element is accessed from i pairs, which

happens with probability

m∑
k1

m−k1∑
k2

· · ·
m−

∑i−1
j=1∑

ki

(
m

k1

)
· · ·
(
m−

∑i−1
j=1 kj

ki

)
.

Summing over all 1 ≤ i ≤ t then yields pn,m,t.

We can further calculate the probability that one or more faults are detected
over r round function invocations in a block cipher.

Corollary 1. Given a r-round block cipher whose substitution box bears t equal-
ized entries. Denote by prn,m,t the probability that an error is detected. It is given
by

prn,m,t = 1− (1− pn,m,t)
r.

The expected value of required encryption until an injected fault is detected
lies at 1

pr
n,m,t

. Table 3 shows the detection probabilities for a varying number of
overwritten elements t for both AES p108,16,t and PRESENT p314,16,t.

Table 3. prn,m,t for AES and PRESENT

prn,m,t

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

p108,16,t (AES) 0.0341 0.0671 0.0990 0.1288 0.1597 0.1884
p314,16,t (PRESENT) ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

The sixteen substitution box accesses per AES round already yield a rela-
tively good fault detection probability whose expected value is well below the
number of ciphertexts that are required for a successful persistent fault analy-
sis attack. However, it is possible to perform additional redundant accesses, i.e.
increasing m, to further increase the detection probability.

4.1 Reducing the Hardware Cost

For both AES and PRESENT it is necessary to perform
(
16
2

)
= 120 pairwise byte

or nibble comparisons. This necessitates a rather large overhead in hardware
implementations. A naive circuit that compares bytes can be built out of 8
XNOR gates and 7 AND gates, thus doing 120 comparisons would result in a
total of 1800 logic gates, which requires a significant amount of chip area. As an
alternative construction, we propose a modification in which that only adjacent
bytes are compared, as seen in Figure 4.

In such a pattern there are only fifteen comparisons, which in turn changes the
detection probability, which is now lower-bounded by pn,m,t

8 . For AES this bound
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= = = = = =

Fig. 4. Adjacent Comparison Network

is tight, the overall detection probability over 10 rounds then stands at 1− (1−
p8,16,t

8 )10 ≈ 0.004335. Hence in expectation we need 1
0.004335 ≈ 230 encryptions

until a faulty substitution box is detected. For PRESENT, this bound is not
tight, it can be shown that in a single-fault setting the detection probability for
one encryption is roughly 0.97, which means that in expectation 1 encryption
suffices to detect the fault.

We measured the effectiveness of our countermeasure in the following exper-
iment. We collected ciphertexts from a faulty device protected by our counter-
measure until the fault is detected. Persistent fault analysis is then performed
on those ciphertexts and the residual key-entropy of the last round key is eval-
uated. The experiment is further repeated for around 220 random keys in order
to obtain a probability for each entropy value. The results are tabulated as a
function of the number of persistent faults t in Table 4 for AES and Table 5 for
PRESENT. Our countermeasure offers a very strong protection of PRESENT
already in the single-fault setting. For AES, it performs well on average but it
is especially effective in the presence of more than one persistent fault injection.

Table 4. Probability of Residual Key Entropy (AES)

[0, 15) [15, 30) [30, 45) [45, 60) [60, 75) [75, 90) [90, 105) [105, 120) [120, 128]

t = 1 0.00195 0.00361 0.00856 0.01699 0.03708 0.07811 0.16763 0.35617 0.32989
t = 2 0.00000 0.00000 0.00008 0.00071 0.00343 0.01654 0.07612 0.35053 0.55261
t = 3 0.00000 0.00000 0.00000 0.00002 0.00020 0.00261 0.02669 0.26949 0.70104
t = 4 0.00000 0.00000 0.00000 0.00000 0.00001 0.00032 0.00860 0.18980 0.80127

Table 5. Probability of Residual Key Entropy (PRESENT)

[56, 57) [57, 58) [58, 59) [60, 61) [61, 62) [62, 63) [63, 64) 64

t = 1 0.00000 0.00000 0.00002 0.00032 0.00067 0.03099 0.00000 0.96798
t = 2 0.00000 0.00000 0.00000 0.00001 0.00001 0.00085 0.00000 0.99914
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5 Implementation

The countermeasure we suggest is efficiently implementable in ASIC platforms
with minimal overhead in hardware. For a round based implementation of AES,
the architecture is straightforward and is exactly as depicted in Figure 4. Com-
paring each of the adjacent bytes before and after the s-box operation to produce
15-bit vectors before and after the s-box, requires a total of 2 · 15 = 30 com-
parator blocks. Each such block can be constructed as the bitwise AND of the
XNOR of the two input bytes, i.e.

c =

7∏
i=0

(ai ⊕ bi ⊕ 1),

where a = (a0, a1, . . . , a7) and b = (b0, b1, . . . , b7) are the input bytes and c = 1
if and only if a = b. The circuit to compare the two 15-bit vectors is similar,
we perform a bitwise XNOR and compute the logical AND of the resultant bits
to get the final fault integrity bit F . If F = 1 and all previous fault integrity
checks have passed, the round function is allowed to output required result else
it is replaced with the all 0 signal. We thus must have some way of ascertaining
if all previous integrity checks have passed. To do that we introduce a fault
integrity flip-flop, that is initialized to 1 at system reset, which is updated by
ANDing the value of the current flip-flop state ft with the current value of F ,
i.e ft+1 = F · ft. The advantage of this method is that once a fault integrity
check fails, the integrity flip-flop is permanently set to 0, after which it becomes
easy to replace s-box outputs with random bytes by xoring the term (1+ ft) · θ,
where θ is the output of a random byte generator. Since a bitwise AND of a t-bit
signal requires t− 1 2-input AND gates, the above comparison network requires
2 ∗ 15 ∗ 8+ 15 = 255 two-input XNOR gates and 2 ∗ 15 ∗ 7+ 14 = 224 two-input
AND gates. The final randomizing of the round function output in case ft = 0,
requires a simple XOR of the function output with (1+ft)·θ and hence requires a
further 128 two-input AND and XOR gates. For the round based implementation
of PRESENT, the cost is similar, except that the comparison network is built
over nibbles rather than bytes.

For a serial architecture, the implementation is even more efficient and re-
quires minimal hardware overhead. take, for example the Atomic AES v 2.0 archi-
tecture proposed in [2], which performs one s-box operation in one clock cycle.
The architecture has an internal round counter constructed with 5-bit full pe-
riod LFSR that counts up from 0 to 30 for each round. Of these the 16 s-box
operations are done in cycles 15 to 30, as the state bytes are shifted out serially
through the first byte register implemented in the circuit. In each cycle labeled
t = 15+j for j ∈ [0, 14] the s-box input and output are each driven into byte reg-
isters CIN and COUT respectively as shown in Figure 5. As a result at round t+1
one can make a comparison between adjacent byte inputs by simply comparing
the values stored in CIN and the current s-box input. A similar comparison can
be made between the COUT and the current s-box output. For fault integrity,
the result of the input and output byte comparisons should be equal to each
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other which is again implemented by an XNOR gate: which naturally outputs 1
if the input-output pairs are both equal or both unequal. Moreover this equality
must hold for the 15 · 11 = 165 comparisons made during an AES encryption
operation. Thus we also have a fault integrity flip-flop which works exactly in
the same manner as described in the round based circuit.

⊕

⊕b

Atomic AES v2.0 registers

Roundkey

S-BOX

CIN COUT

Comparator

Fault Integrity flip-flop

ft

SET⊕ b
b
b

8

8

1

b

⊕

θ

Fig. 5. Fault Integrity check for the Atomic AES v2.0 architecture

Table 6 tabulates the results of all implementations. The following design
flow was used: first the design was implemented in VHDL. Then, a functional
verification was first done using Mentor Graphics Modelsim software. The de-
signs were synthesized using the standard cell library of the 90nm logic process
of STM (CORE90GPHVT v 2.1.a) with the Synopsys Design Compiler, with
the compiler being specifically instructed to optimize the circuit for area. A tim-
ing simulation was done on the synthesized netlist. The frequency of operation
was fixed at 10 MHz as established in [1], because at this frequency, for the
STM 90 nm logic process, the energy consumption of block ciphers was found
to be frequency-independent. The switching activity of each gate of the circuit
was collected while running post-synthesis simulation. The average power was
obtained using Synopsys Power Compiler, using the back annotated switching
activity. Energy is calculated as the product of average power and time taken
for one encryption. The table clearly shows that the overhead in terms of area,
except for the round based implementation of PRESENT is well under 8%. In
terms of other performance metrics, we see reasonably competitive figures.
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Table 6. Performance Comparison of circuits before and after implementing fault
integrity countermeasures. B refers to the basic circuit without countermeasures, C
refers to the circuit after implementing countermeasures, TPmax refers to maximum
throughput achievable on hardware. Note that the figures do not include an RNG used
for randomization

# Architecture Type Area Overhead Latency Energy TPmax

(GE) (in %) (cycles) (nJ) (Gbps)
AES

1 Round based B 12876 11 0.72 2.371
C 13615 5.7 11 0.78 1.555

2 8-bit Serial B 2060 246 3.20 0.086
C 2143 4.0 246 3.23 0.075

PRESENT
1 Round based B 1316 33 0.19 1.598

C 1713 30.2 33 0.29 1.050
2 4-bit Serial B 892 564 2.50 0.052

C 963 7.9 564 2.71 0.046

6 Conclusion

Persistent fault analysis has been shown to be an efficient and devastating attack
against substitution-permutation networks. In this paper, we further broadened
and investigated the range of these kinds of injections. In other words, we showed
how Feistel schemes can also fall prey to persistent faults and demonstrate how
they can be used to accelerated reverse engineering endeavors. Finally, we pre-
sented a low-overhead countermeasure that efficiently protects bijective substi-
tution boxes against persistent fault injections.

In conclusion, persistent faults offer an exciting new perspective on fault
attacks in various fields from key-recovery attacks to reverse engineering tasks
and the development of efficient and adequate countermeasures. It is thus an
interesting exercise in future works to see to what extent persistent faults can
be further leveraged.
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Appendix

A Calculation of Low-Diffusion Keys

Algorithm 7 depicts the routine that calculates all 16 low-diffusion keys for
PRESENT.

Algorithm 7: Calculation of Low-Diffusion Keys

1 for i = 0; i < 16; i← i+ 1 do
2 K̃i ← 0
3 for j = 0; j < 16; j ← j + 1 do
4 r ← (15 + 19j) mod 80

5 K̃i = K̃i ⊕ ((i⊕ j)� r)

6 return K̃i, 0 ≤ i < 16

B Proof of Lemma 1
Proof. The access pattern follows from a simple calculation of the intermediate
round key words. Set K0 = 0x01000000, K1 = 0x02000000, K2 = 0x02000000,
K3 = |a, a, a, a| and S(a) = 0.

W0 = K0 = 0x01000000

W1 = K1 = 0x02000000

W2 = K2 = 0x02000000

W3 = K3 = |a, a, a, a|
W4 = W0 ⊕ S(R(W3))⊕ rc1 = 0x00000000

W5 = W1 ⊕W4 = 0x02000000

W6 = W2 ⊕W5 = 0x00000000

W7 = W3 ⊕W6 = |a, a, a, a|
W8 = W4 ⊕ S(R(W7))⊕ rc2 = 0x02000000

W9 = W5 ⊕W8 = 0x00000000

W10 = W6 ⊕W9 = 0x00000000

W11 = W7 ⊕W10 = |a, a, a, a|
W12 = W8 ⊕ S(R(W11))⊕ rc3 = 0x06000000

W13 = W9 ⊕W12 = 0x06000000

W14 = W10 ⊕W13 = 0x06000000

W15 = W11 ⊕W14 = |a⊕ 0x06, a, a, a|
W16 = W12 ⊕ S(R(W15))⊕ rc4 = |0x0e, 0, 0, S(a⊕ 0x06)|
W17 = W13 ⊕W16 = |a⊕ 0x08, 0, 0, S(a⊕ 0x06)|
W18 = W14 ⊕W17 = |a⊕ 0x0e, 0, 0, S(a⊕ 0x06)|
W19 = W15 ⊕W18 = |a⊕ 0x08, a, a, a⊕ S(a⊕ 0x06)|
W20 = W16 ⊕ S(R(W19))⊕ rc5 = |0x1e, 0, S(a⊕ S(a⊕ 0x06)), S(0x0b)|
W21 = W17 ⊕W20 = |0x16, 0, S(a⊕ S(a⊕ 0x06)), S(0x0b)⊕ S(a⊕ 0x06)|
W22 = W18 ⊕W21 = |0x18, 0, S(a⊕ S(a⊕ 0x06)), S(0x0b)|
W23 = W19 ⊕W22 = |0x1a, a, a⊕ S(a⊕ S(a⊕ 0x06)), a⊕ S(a⊕ 0x06)⊕ S(0x0b)|


