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Abstract. Dynamic Searchable Symmetric Encryption (DSSE) enables
a client to perform updates and searches on encrypted data which makes
it very useful in practice. To protect DSSE from the leakage of updates
(leading to break query or data privacy), two new security notions, for-
ward and backward privacy, have been proposed recently. Although ex-
tensive attention has been paid to forward privacy, this is not the case for
backward privacy. Backward privacy, first formally introduced by Bost
et al., is classified into three types from weak to strong, exactly Type-III
to Type-I. To the best of our knowledge, however, no practical DSSE
schemes without trusted hardware (e.g. SGX) have been proposed so
far, in terms of the strong backward privacy and constant roundtrips
between the client and the server.

In this work, we present a new DSSE scheme by leveraging simple
symmetric encryption with homomorphic addition and bitmap index.
The new scheme can achieve both forward and backward privacy with
one roundtrip. In particular, the backward privacy we achieve in our
scheme (denoted by Type-I−) is somewhat stronger than Type-I. More-
over, our scheme is very practical as it involves only lightweight crypto-
graphic operations. To make it scalable for supporting billions of files,
we further extend it to a multi-block setting. Finally, we give the corre-
sponding security proofs and experimental evaluation which demonstrate
both security and practicality of our schemes, respectively.

Keywords: Dynamic Searchable Symmetric Encryption · Forward Pri-
vacy · Backward Privacy

1 Introduction

Cloud storage solutions become increasingly popular and economically attractive
for users who need to handle large volumes of data. To protect the data stored
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on the cloud, users normally encrypt the data before sending it to the cloud. Un-
fortunately, encryption destroys the natural structure of data and consequently,
data needs to be decrypted before processing. To solve this dilemma, searchable
symmetric encryption (SSE) has been proposed [6, 8, 16]. SSE not only protects
confidentiality of data but also permits searching over encrypted data without
a need for decryption. Furthermore, SSE is much more efficient compared to
other cryptographic techniques such as oblivious RAM (ORAM) that attract a
punishing computational overhead [20, 11].

Early SSE solutions were designed for a static setting, i.e., an encrypted
database cannot be updated. This feature of SSE severely restricts their appli-
cations. To overcome this limitation and make SSE practical, dynamic search-
able symmetric encryption (DSSE) was proposed (see [5, 13]). DSSE allows both
searching and updating. However, security analysis becomes more complicated
as an adversary can observe the behavior of the database during the updates
(addition and deletion of data). For instance, an adversary can find out if an
added/deleted file contains previously searched keywords. Cash et al. [4] argued
that updates can leak information about the contents of database as well as
about search queries and keywords involved. For example, file-injection attacks
can reveal user queries by adding to a database a small number of carefully
designed files [21].

Consequently, two new security notions called forward and backward privacy
were proposed to deal with the leakages mentioned above. They were informally
introduced by Stefanov et al. in 2014 [17]. Roughly speaking, for any adversary
who may continuously observe the interactions between the server and the client,
forward privacy is satisfied if addition of new files does not leak any information
about previously queried keywords. In a similar vein, backward privacy holds if
files that previously added and later deleted do not leak “too much” information
within any period that two search queries on the same keyword happened1.
Bost [2] formally defined forward privacy and designed a forward-private DSSE
scheme, which is resistant against file-injection attacks [21]. The scheme has been
extended by Zuo et al. [23] so it supports range queries. In contrast, backward
privacy attracted less attention. Recently, Bost et al. [3] defined three variants
of backward privacy in order from strong to weak. They are:

– Type-I – backward privacy with insertion pattern. Given a keyword w and a
time interval between two search queries on w, then Type-I leaks information
about when new files containing w were inserted and the total number of
updates on w.

– Type-II – backward privacy with update pattern. Apart from the leakages
of Type-I, it additionally leaks when all updates (including deletion) related
to w occurred.

– Type-III – weak backward privacy. It leaks information of Type-II and it also
leaks exactly when a previous addition has been canceled by which deletion.

1 The files are leaked if the second search query is issued after the files are added but
before they are deleted. This is unavoidable, since the adversary can easily tell the
difference of the search results before and after the same search query.



For example, assume that a query has the following form {time, operation,
(keyword, file)}. Given the following queries: {1, search, w}, {2, add, (w, f1)},
{3, add, (w, f2)}, {4, add, (w, f3)}, {5, del, (w, f2)} and {6, search, w}. Then after
time 6, Type-I leaks that there are 4 updates, the files f1 and f3 match the
keyword w and these two files were added at time 2 and 4, respectively. Type-II
additionally leaks time 3 and 5 when the updates related to keyword w occurred.
Type-III leaks also the fact that the addition at time 3 has been canceled by the
deletion at time 52.

Bost et al. [3] gave several constructions with different security/efficiency
trade-offs. Their FIDES scheme achieves Type-II backward privacy. Their schemes
DIANAdel and Janus provide better performance at the expense of security (they
are Type-III backward-private). Their scheme MONETA, which is based on the
recent TWORAM construction of Garg et al. [11], achieves Type-I backward
privacy. Ghareh Chamani et al. [12], however, argued that the MONETA scheme is
highly impractical due to the fact that it is based on TWORAM, and it serves
mostly as a theoretical result for the feasibility of Type-I schemes. Sun et al. [19]
proposed a new DSSE scheme named Janus++. It is more efficient than Janus

as it is based on symmetric puncturable encryption. Janus++ can only achieve
the same security level as Janus (Type-III).

Very recently, Ghareh Chamani et al. [12] designed three DSSE schemes. The
first scheme MITRA achieves Type-II backward privacy and it is based on sym-
metric key encryption getting better performance than FIDES [3]. The second
scheme ORION achieves Type-I backward privacy. It requires O(logN) rounds of
interaction and applies ORAM [20], where N is the total number of keyword/file-
identifier pairs. The third design is HORUS. The number of interactions is reduced
to O(dw) at the expense of lower security guarantees (Type-III backward pri-
vacy), where dw is the number of deleted entries for w. Zuo et al. [23] also
constructed two DSSE schemes supporting range queries. Their first scheme
achieves forward privacy. Their second scheme (called SchemeB) uses bit string
representation and the Paillier cryptosystem which achieves backward privacy.
However, they did not provide any formal analysis for the backward privacy of
their scheme. To the best of our knowledge, no practical DSSE schemes achieve
both the high-level backward privacy and constant interactions between the
client and the server.

Our Contributions. In this paper, we propose an efficient DSSE scheme (named
FB-DSSE) with a stronger backward privacy (denoted as Type-I− backward pri-
vacy) and one roundtrip (without considering the retrieval of actual files), which
also achieves forward privacy. This scheme is based on a bitmap index and a
simple symmetric encryption with homomorphic addition. Later, we extend it
to a multi-block setting (named MB-FB-DSSE). Table 1 compares our schemes

2 In this example, there is only one addition/deletion pair. For Type-II, the server
knows which addition has been canceled by which deletion easily. However, there
may have many addition/deletion pairs, then the server cannot know which deletion
cancels which addition.



(FB-DSSE and MB-FB-DSSE) with other designs supporting backward privacy. In
particular, our contributions are as follows:

Table 1: Comparison with previous works

Scheme
Roundtrips bet. Client Forward Backward Without

Client and Server Storage Privacy Privacy ORAM

FIDES [3] 2 O(|W|log|D|) 3 Type-II 3

DIANAdel [3] 2 O(|W|log|D|) 3 Type-III 3

Janus [3] 1 O(|W|log|D|) 3 Type-III 3

Janus++ [19] 1 O(|W|log|D|) 3 Type-III 3

MITRA [12] 2 O(|W|log|D|) 3 Type-II 3

HORUS [12] O(logdw) O(|W|log|D|) 3 Type-III 7

SchemeB [23] 2 O(2|W|log|D|) 7 Unknown 3

MONETA [3] 3 O(1) 3 Type-I 7

ORION [12] O(logN) O(1) 3 Type-I 7

Our schemes 1 O(|W|log|D|) 3 Type-I− 3

N is the number of keyword/file-identifier pairs, dw is the number of deleted entries
for keyword w. |W| is the collection of distinct keywords, |D| is the total number of
files.

– We formally introduce a new type of backward privacy, named Type-I−

backward privacy. It does not leak the insertion time of each matched files
which is somewhat stronger than Type-I. More precisely, for a query with a
keyword w, it only leaks the number of previous updates associated with w,
time when these updates happened, and files that currently match w. Type-
I− leaks no information about when each file was inserted. For our example,
Type-I− only leaks that time 2, 3, 4, 5 are updates and f1, f3 currently
matching keyword w3. Although it is not clear the impact of leaking the
insertion time in practice, it is believed that the less information the scheme
leaks, the higher security it guarantees, since the leakage might be leveraged
by the adversary to launch some potential attacks.

– We design a Type-I− backward-private DSSE FB-DSSE by leveraging the
bitmap index and the simple symmetric encryption with homomorphic addi-
tion. FB-DSSE also achieves forward privacy, which is based on the framework
of [2]. In the scheme, we achieve forward privacy through a new technique
which deploys symmetric primitive instead of the public primitive [2] (one-
way trapdoor permutation), which makes our scheme more efficient.

– To support an even larger number of files with improved efficiency, we ex-
tend our first scheme to the multi-block setting. We call it MB-FB-DSSE. In
our experimental analysis, for the MB-FB-DSSE scheme with 1 billion files,
the search and update time are 5.84s and 46.41ms, respectively, where the
number of blocks is 103 and the bit length of each block is 106. For the same

3 Note that, it does not leak the insertion time of f1 and f3.



number of files, the FB-DSSE scheme consumes 9.07s for search and 125.23ms
for update (note that, bit length is 109). Finally, the security analyses are
given to show that our schemes are forward and Type-I− backward private.

Remark: We note that our scheme does not leak the insertion time of each
matched file for a search query w, but leaks the update time for each up-
date. Therefore, it achieves somewhat stronger security than Type-I, but strictly
stronger security than Type-II. In the the conference version [24], we claim that
it achieves a stronger security than Type-I, named Type-I−. In this full version,
we correct the inaccurate definition for Type-I− in Section 3.4 of the conference
version [24] and the corresponding example given in “Our Contributions”. In
general, to eliminate the update time of each update for a search query w, it
is always required to use some sort of ORAM technique [20, 12] to touch every
item in a database at the expense of low efficiency. In this work, we focus on
achieving stronger backward privacy without using ORAM.

1.1 Related Works

Song et al. [16] showed how to perform keyword search over encrypted data using
symmetric encryption. To search for a keyword w, the server compares every
encrypted keyword in a file with a token (issued by the client). The search time
is linear with the number of keyword/file-identifier pairs, which is not efficient.
Later, Curtmola et al. [8] designed an efficient SSE based on inverted index,
which achieves sub-linear search time. The authors also quantified the leakage of
an SSE and gave a formal security definition for SSE. Cash et al. [6] proposed a
highly scalable SSE, which supports large databases. Following this work, many
SSE schemes have been proposed addressing different aspects. For example, Sun
et al. [18] focused on the usage of SSE in a multi-client setting. Zuo et al.
[22] proposed an SSE scheme, which supports more general Boolean queries. To
support database updates, dynamic SSE schemes are introduced in [13, 5, 2, 3].

Early schemes have been designed under the assumption that the encrypted
database is static, i.e., it cannot be updated. Dynamic SSE schemes were intro-
duced in [13, 5]. For DSSE schemes, it is assumed that an encrypted database
can be updated, i.e. new files can be added and some existing files can be re-
moved. However, a dynamic nature of databases brings new security problems.
Two security notions, namely, forward and backward privacy, have been infor-
mally introduced in [17]. Further works concentrate on refinements of the privacy
notions for DSSE schemes [2, 3, 12, 19].

There is also a line of investigation that concentrates on the design of SSE
schemes that can handle a richer (complex) queries. Cash et al. [6] proposed an
SSE scheme that handles Boolean queries. Faber et al. [9] extended the scheme
so it can handle more complex queries about ranges, substrings and wild cards.
A majority of forward private DSSE schemes support single keyword queries
only. Zuo et al. [23] proposed a forward private DSSE scheme supporting range
queries. Recently, SGX has been used to instantiate hardware-based SSE. We
refer readers to [10, 1] for more details.



1.2 Organization

The remaining sections of this paper are organized as follows. In Section 2, we
give the necessary background information and describe building blocks that
are used in this paper. In Section 3, we define DSSE and its security notions.
In Section 4, we present our DSSE schemes. Their security and experimental
analyses are given in Section 5 and Section 6, respectively. Finally, Section 7
concludes this work.

2 Preliminaries

In this paper, λ denotes the security parameter, || stands for the concatenation
and |m| denotes the bit length of m. We use bitmap index4 to represent file
identifiers [15]. More precisely, there is a bit string bs of the length `, where ` is
the maximum number of files that a scheme can support. The i-th bit of bs is
set to 1 if there exists file fi, and 0 otherwise. Fig. 1 illustrates an instance for
6 files, i.e. ` = 6. Assume that there exists file f2 and f3 (see Fig. 1.(a)). If we
want to add file f1, we need to generate the bit string 21 = 000010 and add it to
the original bit string (see Fig. 1.(b)). Now, if we want to delete file f2, we need
to generate the bit string −22 = −4 = −000100. As our index computation is
done modulo 26, we can convert −4 = 26 − 22 = 60 (mod 26), which is 111100
in binary. The string 111100 is added to the original bit string (see Fig. 1.(c)).
Note that manipulation on bitmap indexes for addition and deletion can be done
by modulo addition. In other words, the bitmap index can be (homomorphicly)
encrypted and updated (to reflect addition or deletion of files) using encryption
with homomorphic property.

0	0	1	1	0	0

f4 f2 f0

f1f3f5
(a)	Bitmap	index

0	0	1	1	0	0

0	0	0	0	1	0

0	0	1	1	1	0
mod	26

(b)	Add (c)	Delete

0	0	1	1	0	0

0	0	0	1	0	0

0	0	1	1	0	0

26
22

0	0	1	1	0	0

1	1	1	1	0	0

mod	26 mod	26

mod	26

0	0	1	0	0	0

Fig. 1: An example of our bitmap index

2.1 Simple Symmetric Encryption with Homomorphic Addition

A simple symmetric encryption with homomorphic addition Π [7] consists of the
following four algorithms Setup, Enc, Dec and Add as described below:

4 A special kind of data structure which has been widely used in database community.



– n← Setup(1λ): For the security parameter λ, it outputs a public parameter
n, where n = 2` is the message space and ` is the maximum number of files
a scheme can support.

– c← Enc(sk,m, n): For a message m, the public parameter n and a random
secret key sk (0 ≤ sk < n), it computes a ciphertext c = sk + m mod n,
where m is the message 0 ≤ m < n. Note that, for every encryption, the
secret key sk needs to be stored, and it can only be used once.

– m ← Dec(sk, c, n): For the ciphertext c, the public parameter n and the
secret key sk, it recovers the message m = c− sk mod n.

– ĉ ← Add(c0, c1, n): For two ciphertexts c0, c1 and the public parameter
n, it computes ĉ = c0 + c1 mod n, where c0 ← Enc(sk0,m0, n), c1 ←
Enc(sk1,m1, n), n← Setup(1λ) and 0 ≤ sk0, sk1 < n.

Correctness. For the correctness of this scheme, it is required that sum of
two ciphertexts ĉ = c0 + c1 mod n decrypts to m0 + m1 mod n under the ŝk =
sk0 + sk1 mod n or in other words

Dec(ŝk, ĉ, n) = ĉ− ŝk mod n = m0 +m1 mod n.

It is easy to check that this requirement holds.

Remark. For the encryption and decryption algorithms of Π, the secret key sk
can only be used once.

Perfectly Security [7]. We say Π is perfectly secure if for any PPT adversary
A, their advantage in the perfectly-security game is negligible or

AdvPS
Π,A(λ) = |Pr[A(Enc(sk,m0, n)) = 1]− Pr[A(Enc(sk,m1, n)) = 1]| ≤ ε,

where n ← Setup(1λ), the secret key sk (0 ≤ sk < n) is kept secret and A
chooses m0,m1 s.t. 0 ≤ m0,m1 < n.

2.2 Notations

Notations used in the work are given in Table 2.

3 DSSE Definition and Security Model

A database DB is a list of file-identifier/keyword-set pairs, which is denoted as
DB= (fi,Wi)

`
i=1. The file identifier is fi ∈ {0, 1}λ, Wi ⊆ {0, 1}∗ is a set of

all keywords contained in the file fi and ` is the total number of files in DB.
We also denote W = ∪`i=1Wi as all keywords in DB. We identify W as a col-
lection of all distinct keywords that occur in DB. Note that, |W| is the total

number of keywords and N =
∑`
i=1 |Wi| is denoted as the total number of file-

identifier/keyword pairs. A set of files that satisfy a query q is denoted by DB(q).



Table 2: Notations (used in our schemes)
DB A database

λ The security parameter

STc The current search token for a keyword w

EDB The encrypted database EDB which is a map

F A secure PRF

W The set of all keywords of the database DB

CT A map stores the current search token STc and counter c for every keyword in W

fi The i-th file

bs The bit string which is used to represent the existence of files

` The length of bs

e The encrypted bit string

Sume The sum of the encrypted bit strings

sk The one time secret key

Sumsk The sum of the one time secret keys

B The number of blocks

bs The bit string array with length B

e The encrypted bit string array with length B

Sume The sum of the encrypted bit string arrays with length B

sk The one time secret key array with length B

Sumsk The sum of the one time secret key arrays with length B

Note that, in this paper, we use bitmap index to represent the file identifiers.
For a search query q, the result is a bit string bs, which represents a list of file
identifiers in DB(q). For an update query u, a bit string bs is used to update a list
of file identifiers. Moreover, we isolate the actual files from the metadata (e.g.
file identifiers). We only focus on the search of the metadata. The ways we can
retrieve the encrypted files are not described in this paper.

3.1 DSSE Definition

A DSSE scheme consists of an algorithm Setup and two protocols Search and
Update that are executed between a client and a server. They are described as
follows:

– (EDB, σ) ← Setup(1λ, DB): For a security parameter λ and a database DB,
the algorithm outputs a pair: an encrypted database EDB and a state σ. EDB
is stored by the server and σ is kept by the client.

– (I, ⊥) ← Search(q, σ; EDB): For a state σ, the client issues a query q and
interacts with the server who holds EDB. At the end of the protocol, the
client outputs a set of file identifiers I that match q and the server outputs
nothing.

– (σ′, EDB′) ← Update(σ, op, in; EDB): For a state σ, the operation op ∈
{add, del} and a collection of in = (f,w) pairs, the client requests the server
(who holds EDB) to update database by adding/deleting files specified by the



collection in. Finally, the protocol returns an updated state σ′ to the client
and an updated encrypted database EDB′ to the server.

Remark. There are two variants of result model for SSE schemes. In the first one
(considered in the work [6]), the server returns encrypted file identifiers I so the
client needs to decrypt them. In the second one (studied in the work [2]), the
server returns the file identifiers to the client directly. In our work, we consider
the first variant, where the protocol returns encrypted file identifiers.

3.2 Security Model

DSSE security is modeled by interaction between the Real and Ideal worlds called
DSSEREAL and DSSEIDEAL, respectively. The behavior of DSSEREAL is exactly the
same as the original DSSE. However, DSSEIDEAL reflects a behavior of a simulator
S, which takes the leakage of the original DSSE as input. The leakage is defined
by a function L = (LSetup,LSearch,LUpdate), which details what information the
adversary A can learn during execution of the Setup algorithm, Search and
Update protocols.

If the adversary A can distinguish DSSEREAL from DSSEIDEAL with a negli-
gible advantage, the information leakage is limited to L only. More formally, we
consider the following security game. The adversary A interacts with one of the
two worlds DSSEREAL or DSSEIDEAL and would like to guess it.

– DSSEREALA(λ): First Setup(λ, DB) is run and the adversary gets EDB. A
performs search queries q (or update queries (op, in)). Eventually, A outputs
a bit b, where b ∈ {0, 1}.

– DSSEIDEALA,S(λ): Simulator S with the input LSetup(λ, DB)) is executed.
For search queries q (or update queries (op, in)) generated by the adver-
sary A, the simulator S replies by using the leakage function LSearch(q) (or
LUpdate(op, in)). Eventually, A outputs a bit b, where b ∈ {0, 1}.

Definition 1. Given a DSSE scheme and the security game described above.
The scheme is L-adaptively-secure if for every PPT adversary A, there exists an
efficient simulator S (with the input L) such that,

|Pr[DSSEREALA(λ) = 1]− Pr[DSSEIDEALA,S(λ) = 1]| ≤ negl(λ).

Leakage Function. Before define the leakage function, we define a search query
q = (t, w) and an update query u = (t, op, (w, bs)), where t is the timestamp,
w is the keyword to be searched (or updated), op is the update operation and
bs denotes a list of file identifiers to be updated. For a list of search queries Q,
we define a search pattern sp(w) = {t : (t, w) ∈ Q}, where t is a timestamp.
The search pattern leaks the repetition of search queries on w. Result pattern
rp(w) = bs, bs represents all file identifiers that currently matching w. Note
that, after a search query, we implicitly assume that the server knows the final
result bs5.
5 After getting bs, the client may retrieve the file identifiers represented by bs which

is not described in this paper.



3.3 Forward Privacy

Informally, for any adversary who may continuously observe the interactions
between the server and the client, forward privacy guarantees that an update
does not leak information about the newly added files that match the previously
issued queries. The definition given below is taken from [2]:

Definition 2. A L-adaptively-secure DSSE scheme is forward-private if the up-
date leakage function LUpdate can be written as

LUpdate(op, in) = L′(op, {(fi, µi)}),

where {(fi, µi)} is the set of modified file-identifier/keywords pairs, µi is the
number of keywords corresponding to the updated file fi.

Remark. In this paper, the leakage function will be LUpdate(op, w, bs) = L′(op, bs).

3.4 Backward Privacy

Similarly, within any period that two search queries on the same keyword hap-
pened, backward privacy ensures that it does not leak information about the files
that have been previously added and later deleted. Note that, information about
files is leaked if the second search query is issued after the files are added but
before they are deleted. In 2017, Bost et al. [3] formulated three different levels of
backward privacy from Type-I to Type-III in decreasing level of privacy. In our
construction, we use a new data structure (see Fig. 1), which achieves a stronger
level of backward privacy. We call it Type-I−, which is somewhat stronger than
Type-I. We refer readers to [3] for more details. Type-I− and Type-I definitions
are given below.

– Type-I−: Given a time interval between two search queries for a keyword
w, then it leaks the files that currently match w and the total number of
updates for w and the update time for each update.

– Type-I: Given a time interval between two search queries for a keyword w,
then it leaks not only files that currently match w and the total number of
updates for w but additionally when the matched files were inserted.

To define Type-I− formally, we need a new leakage functions Time. For a search
query on keyword w, Time(w) lists the timestamp t of all updates corresponding
to w. Formally, for a sequence of update queries Q′:

Time(w) = {t : (t, op, (w, bs)) ∈ Q′}.

Definition 3. A L-adaptively-secure DSSE scheme is Type-I− backward-private
iff the search and update leakage function LSearch,LUpdate can be written as:

LUpdate(op, w, bs) = L′(op),LSearch(w) = L′′(sp(w), rp(w), Time(w)),

where L′ and L′′ are stateless.



4 Our Construction

In this section, we give our Type-I− backward private DSSE scheme. To achieve
forward privacy, we follow the framework of the forward-private DSSE from [2].
To improve the efficiency of the underlying forward-private DSSE, we use a
hash function that replaces a public key primitive (i.e. one-way function in [2])
to achieve forward privacy. See Section 4.2 for more details.

4.1 Overview

To achieve backward privacy, the DSSE schemes from [3, 19] used puncturable
encryption, which can be used to “puncture” the deleted file identifiers. Then
the deleted file identifiers cannot be decrypted (searched). The schemes achieve
Type-III backward privacy only. In our construction, instead of encrypting file
identifiers independently, we use a new data structure, the bitmap index (as
illustrated in Fig. 1.(a)), where all file identifiers are represented by a single bit
string. To add or delete a file identifier, the bit string is modified as shown in
Fig. 1.(b) and Fig. 1.(c), respectively. Besides, our scheme does not leak the
update type since both addition and deletion are done by one modulo addition6.
To securely update the encrypted database, our scheme requires an additive
homomorphic encryption as the underlying encryption primitive.

The most popular additive homomorphic encryption is the Paillier cryptosys-
tem [14]. Unfortunately, the Paillier cryptosystem attracts a very large compu-
tation overhead and can support a limited number of files (up to the number of
bits in a message/ciphertext space, e.g. 1024 bits). After observing our bitmap
index, we notice that we only need the addition of ciphertexts (the bit strings).
Also, we do not need to use one key for all encryption and decryption. Therefore
we can use a simple symmetric encryption (the key can be only used once) with
homomorphic addition (Section 2.1) to add the ciphertexts (and the keys) simul-
taneously. To save the client storage, we can use a hash function with a secret
key K to generate all the one time keys. E.g. H(K, c), where c is a counter. It is
worth nothing that this technique has been used in [7] in the context of wireless
sensor networks.

4.2 DSSE with Forward and Stronger Backward Privacy

Now we are ready to give our forward and stronger backward private DSSE con-
struction FB-DSSE – see Algorithm 1. Our scheme is based on the framework of
the forward private DSSE from [2], a simple symmetric encryption with homo-
morphic addition Π = (Setup, Enc, Dec, Add), and a keyed PRF FK with key K.
The scheme is defined by the following algorithms:

– (EDB, σ = (n,K,CT)) ← Setup(1λ): The algorithm is run by a client. It
takes the security parameter λ as input. Then it chooses a secret key K

6 Deletion is by adding a negative number.



and an integer n, where n = 2` and ` is the maximum number of files that
this scheme can support. Moreover, it initializes two empty maps EDB and
CT, which are used to store the encrypted database as well as the current
search token STc and the current counter c (the number of updates) for each
keyword w ∈ W, respectively. Finally, it outputs encrypted database EDB

and the state σ = (n,K,CT), and the client keeps (K,CT) secret.

Algorithm 1 FB-DSSE

Setup(1λ)

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: return (EDB, σ = (n,K,CT))

Update(w, bs, σ; EDB)
Client:

1: Kw||K′w ← FK(w), (STc, c)← CT[w]
2: if (STc, c) =⊥ then
3: c← −1, STc ← {0, 1}λ
4: end if
5: STc+1 ← {0, 1}λ
6: CT[w]← (STc+1, c+ 1)
7: UTc+1 ← H1(Kw, STc+1)
8: CSTc ← H2(Kw, STc+1)⊕ STc
9: skc+1 ← H3(K′w, c+ 1)

10: ec+1 ← Enc(skc+1, bs, n)
11: Send (UTc+1, (ec+1, CSTc)) to server.

Server:

12: EDB[UTc+1]← (ec+1, CSTc)

Search(w, σ; EDB)
Client:

1: Kw||K′w ← FK(w), (STc, c)← CT[w]
2: if (STc, c) =⊥ then
3: return ∅

4: end if
5: Send (Kw, STc, c) to server.

Server:

6: Sume ← 0
7: for i = c to 0 do
8: UTi ← H1(Kw, STi)
9: (ei, CSTi−1)← EDB[UTi]

10: Sume ← Add(Sume, ei, n)
11: Remove EDB[UTi]
12: if CSTi−1 =⊥ then
13: Break
14: end if
15: STi−1 ← H2(Kw, STi)⊕ CSTi−1

16: end for
17: EDB[UTc]← (Sume,⊥)
18: Send Sume to client.

Client:

19: Sumsk ← 0
20: for i = c to 0 do
21: ski ← H3(K′w, i)
22: Sumsk ← Sumsk + ski mod n
23: end for
24: bs← Dec(Sumsk, Sume, n)
25: return bs

– (σ′, EDB′) ← Update(w, bs, σ; EDB): The algorithm runs between a client
and a server. The client inputs a keyword w, a state σ and a bit string bs7.
Next the client encrypts the bit string bs by using the simple symmetric
encryption with homomorphic addition to get the encrypted bit string e. To
save the client storage, the one time key skc is generated by a hash function
H3(K ′w, c), where c is the counter. Then he/she chooses a random search
token and use a hash function to get the update token. He/She also uses
another hash function to mask the previous search token. After that, the

7 Note that, we can update many file identifiers through one update query by using
bit string representation bs.



client sends the update token, e and the masked previous search token C to
the server and update CT to get a new state σ′. Finally, the server outputs
an updated encrypted database EDB′.

– bs ← Search(w, σ; EDB): The protocol runs between a client and a server.
The client inputs a keyword w and a state σ, and the server inputs EDB.
Firstly, the client gets the search token corresponding to the keyword w
from CT and generates the Kw. Then he/she sends them to the server. The
server retrieves all the encrypted bit strings e corresponding to w. To reduce
the communication overhead, the server adds them together by using the
homomorphic addition (Add) of the simple symmetric encryption to get the
final result Sume and sends it to the client. Finally, the client decrypts it and
outputs the final bit string bs which can be used to retrieve the matching
files. Note that, in order to save the server storage, for every search, the
server can remove all entries corresponding to w and store the final result
Sume corresponding to the current search token STc to the EDB.

4.3 Multi-block Extension for Large Number of Files

The number of files supported by FB-DSSE is determined by the length of the
public parameter n = 2`, which is the modulus. Theoretically, it can be of
an arbitrary length but a larger n (e.g. ` = 223) will significantly slow down
modular operations. Efficiency analysis and experiments will be given in Section
6. However, there are many applications that require a system able to manage
up to a billion of files. Therefore, we still need to find an efficient solution for
such applications.

In this section, we extend our basic scheme to multi-block setting in order
to handle a larger number of files efficiently. The idea is to split the long bit
sequence ` into multiple smaller blocks and have multiple (e.g. B) blocks bs
instead of one block bs. For every block of bs, the operations are exactly the
same as FB-DSSE. We denote the extension of FB-DSSE as MB-FB-DSSE, which is
shown in Algorithm 2. This scheme consists of following algorithms:

– (EDB, σ = (n,K,CT)) ← Setup(1λ): The algorithm is exactly same as the
one in FB-DSSE.

– (σ′, EDB′) ← Update(w,bs, σ; EDB) and bs ← Search(w, σ; EDB): The two
protocols are similar to the ones in FB-DSSE. The difference is that we use
multiple blocks bs rather than one block bs to support large number of
files, where bs is an array with length B and it stores all the bit strings
bs. For each block, the operations are exactly same as the ones in FB-DSSE.
Correspondingly, we have e, sk, Sume and Sumsk which are arrays with the
length of B. Sume and Sumsk are used to store the sum of all encrypted bit
string arrays e and secret keys sk, respectively. The length of the bit string
bs will be reduced and the computation time of these blocks will be shorter.

5 Security Analysis

In this section, we give the security analysis of our schemes.



Algorithm 2 Multi-block extension MB-FB-DSSE (Difference in red)

Setup(1λ)

1: Same as the one in FB-DSSE.

Update(w,bs, σ; EDB)
Client:

1: Same as the one in FB-DSSE.
2: for j = 0 to B do
3: skc+1[j]← H3(K′w, c+ 1||j)
4: ec+1[j]← Enc(skc+1[j],bs[j], n)
5: end for
6: Send (STc+1, (ec+1, CSTc)) to the

server.

Server:

7: EDB[STc+1]← (ec+1, CSTc)

Search(w, σ; EDB)
Client:

1: Same as the one in FB-DSSE.

Server:

2: Sume ← 0

3: for i = c to 0, j = 0 to B do
4: UTi ← H1(K′w, STi)
5: (ei, CSTi−1)← EDB[UTi]
6: Sume[j]← Add(Sume[j], ei[j], n)
7: Same as the one in FB-DSSE.
8: end for
9: EDB[STc]← (Sume,⊥)

10: Send Sume to the client.

Client:

11: Sumsk ← 0
12: for i = c to 0, j = 0 to B do
13: ski[j]← H3(K′w, i||j)
14: Sumsk[j]←

Sumsk[j] + ski[j] mod n
15: end for
16: for j = 0 to B do
17: bs[j]← Dec(Sumsk[j],Sume[j], n)
18: end for
19: return bs

Theorem 1. (Adaptive security of FB-DSSE). Let F be a secure PRF, Π =
(Setup, Enc, Dec, Add) be a perfectly secure simple symmetric encryption with ho-
momorphic addition, and H1, H2 and H3 be random oracles. We define LFB-DSSE =
(LSearchFB-DSSE,L

Update
FB-DSSE), where LSearchFB-DSSE(w) = (sp(w), rp(w), Time(w)) and

LUpdateFB-DSSE(op, w, bs) =⊥. Then FB-DSSE is LFB-DSSE-adaptively secure.

Similar to [2], we will set a set of games from DSSEREAL to DSSEIDEAL, and
we will show that every two consecutive games is indistinguishable. Finally, we
will simulate DSSEIDEAL with the leakage functions defined in Theorem 1. Due
to the page limitation, we move the full proof to the Appendix.

Corollary 1. (Adaptive forward privacy of FB-DSSE). FB-DSSE is forward-private.

From Theorem 1, we can infer that FB-DSSE achieves forward privacy, since
the leakage function LUpdate of FB-DSSE does not leak the keyword during update
as defined in Definition 2.

Corollary 2. (Adaptive Type-I− backward privacy of FB-DSSE). FB-DSSE is Type-
I− backward-private.

From Theorem 1, we can infer that FB-DSSE achieves Type-I− backward
privacy, since the leakage functions of FB-DSSE leak less information than the
leakage functions in Definition 3.

Remark. For the multi-block extension MB-FB-DSSE, the underlying construction
is almost same as FB-DSSE except that it encrypts multi-block bit string bs



rather than one bit string bs. Hence, it inherits the forward privacy and Type-I−

backward privacy of FB-DSSE.

6 Experimental Analysis

Our schemes deploy simple symmetric primitives to achieve strong backward
privacy, which are more efficient than the schemes from [3, 12] because the au-
thors of [3, 12] deploy ORAM [11, 20] to achieve strong backward privacy. The
scheme Janus++ from [19] is the most efficient backward-private scheme which is
based on the scheme Janus from [3]. However, Janus++ only achieves Type-III
backward privacy. Table 3 compares the results.

Table 3: Comparison of computing overhead
Scheme Search Update

Janus [3] O(nw + dw) · tPE.Dec O(1) · (tPE.Enc or tPE.Punc)

Janus++ [19] O(nw + dw) · tSPE.Dec O(1) · (tSPE.Enc or tSPE.Punc)

MONETA [3] Ô(awlogN + log3N) · tSKE Ô(log2N) · tSKE
ORION [12] O(nwlog

2N) · tSKE O(log2N) · tSKE
FB-DSSE [Sec. 4.2] O(aw) · tma O(1) · tma

MB-FB-DSSE [Sec. 4.3] O(aw) · tma ·B O(1) · tma ·B
N is the number of keyword/file-identifier pairs, nw is the number of files currently
matching keyword w, dw is the number of deleted entries for keyword w, and aw is the
total number of updates corresponding to keyword w. tPE.Enc, tPE.Dec and tPE.Punc are the
encryption, decryption and puncture time of a public puncturable encryption. tSPE.Enc,
tSPE.Dec and tSPE.Punc are the encryption, decryption and puncture time of a symmetric
puncturable encryption. tSKE is the encryption and decryption time of a symmetric key
encryption. tma is the computational time of a modular addition, and B is the number
of blocks. Ô notation hides polylogarithmic factors.

Now we are ready to give the experimental evaluation. We evaluate the per-
formance of our schemes in a test bed of one workstation. This machine plays
the roles of client and server. The hardware and software of this machine are
as follows: Mac Book Pro, Intel Core i7 CPU @ 2.8GHz RAM 16GB, Java Pro-
gramming Language, and macOS 10.13.2. Note that, we use the bitmap index to
denote file identifiers and we tested the search and update time for one keyword.
We use the “BigInteger” with different bit length to denote the bitmap index
with different size which acts as the database with different number of files. The
relation between the i-th bit and the actual file is out of our scope.

For every keyword, we run the update operation Update for this keyword 20
times. In other words, every keyword has 20 entries. The update time includes the
client token generation time and server update time, and the search time includes
the token generation time, the server search time and the client decryption time.
Note that the result only depends on the maximum number of files supported
by the system (the bit length), but not the actual number of files in the server.



First, we give the search and update time of FB-DSSE with different bit length
in Fig. 2(a). The bit length refers to `, which is equal to the maximum number
of files supported by the system. From Fig. 2(a), we can see that the update and
search time grow with the increasing of bit length. We also can observe that the
update time with the bit length from 105 to 106 does not increase a lot. This is
because the addition and modular have not contributed too much when the bit
length is less than 106.

In Fig. 2(b), we evaluate the search and update time of MB-FB-DSSE with
different number of blocks, where the total bit length is 109. When we divide one
bit string (109) into different blocks, we can see that the running time is lesser
than one block in Fig. 2(a). For the number of blocks from 10 to 103, it can be
seen that the update and search time decrease. However, when the number of
blocks is 104, the update and search time increase, due to the fact that when
the bit string decreases to a certain length, the addition and modular time do
not decrease too much.

To support an extreme large number of files (such as 1 billion), MB-FB-DSSE
may be preferred than FB-DSSE. For example, the search and update time of
MB-FB-DSSE are 5.84s and 46.41ms, respectively, where the number of blocks is
103 and the bit length of each block is 106. However, the search and update time
of FB-DSSE supporting 1 billion files (bit length = 109) are 9.07s and 125.23ms,
respectively.
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Fig. 2: The running time of our schemes

7 Conclusion

In this paper, we gave a DSSE scheme with stronger (named Type-I−) backward
privacy which also achieves forward privacy efficiently. Moreover, to make it
scalable for supporting billions of files with high efficiency, we extended our



first scheme to the multi-block setting. From the experimental analysis, we can
see that the efficiency of the first scheme with extreme large bit length can be
improved by splitting a long bit string into multiple short bit strings. Currently,
our schemes only support single keyword queries. In the future, we will make
our schemes support multiple keywords queries.
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Appendix

Theorem 1. (Adaptive security of FB-DSSE). Let F be a secure PRF, Π =
(Setup, Enc, Dec, Add) be a perfectly secure simple symmetric encryption with
homomorphic addition, and H1, H2 and H3 be random oracles and output λ bits.
We define LFB-DSSE = (LSearchFB-DSSE,L

Update
FB-DSSE), where LSearchFB-DSSE(w) =(sp(w), rp(w), Time(w))

and LUpdateFB-DSSE(op, w, bs) =⊥. Then FB-DSSE is LFB-DSSE-adaptively secure.

Proof. In this proof, the server is the adversary A who tries to break the security
of our FB-DSSE. The challenger C is responsible for generating the search tokens
and ciphertexts, and the simulator S simulates the transcripts between A and
C at the end.

Game G0: G0 is exactly same as the real world game DSSEREALFB-DSSEA (λ),
such that



Pr[DSSEREALFB-DSSEA (λ) = 1] = Pr[G0 = 1].

Game G1: In G1, when querying F to generate a key for a keyword w, the
challenger C chooses a new random key if the keyword w is never queried before,
and stores it in a table Key. Otherwise return the key corresponding to w in
the table Key. If an adversary A is able to distinguish between G0 and G1, we
can then build an adversary B1 to distinguish between F and a truly random
function. More formally,

Pr[G0 = 1]− Pr[G1 = 1] ≤ Advprf
F,B1

(λ).

Game G2: In G2, as depicted in Algorithm 3, in the Update protocol, we
pick random strings for the update token UT and store it in table UT. Then,
in the Search protocol, we program these random strings to the output of the
random oracle H1 where H1(Kw, STc) = UT[w, c]. When A queries H1 with the
input (Kw, STc), C will output UT[w, c] to A and store this entry in table H1 for
future queries. If the entry (Kw, STc+1) already in table H1, UT[w, c+ 1] cannot
be programed to the output of H1(Kw, STc+1) and this game aborts. Now, we
will show that the possibility of the game aborts is negligible. The search token
is chosen randomly by the challenger C, then the possibility that the adversary
guesses the right search token STc+1 is 1/2λ. Assume A makes polynomial p
queries, then the possibility is p/2λ. So we have

Pr[G1 = 1]− Pr[G2 = 1] ≤ p/2λ

Game G3: In G3, we model the H2 as a random oracle which is similar to
H1 in G2. Then we have

Pr[G2 = 1]− Pr[G3 = 1] ≤ p/2λ

Game G4: In G4, similar to G2, we model the H3 as a random oracle. A
does not know the key K ′w, then the possibility that he guesses the right key is
1/2λ (we set the length of K ′w to λ). Assume A makes polynomial p queries, the
possibility is p/2λ. So we have

Pr[G3 = 1]− Pr[G4 = 1] ≤ p/2λ

Game G5: In G5, we replace the bit string bs with an all 0 bit string, and
the length of the all 0 bit string is `. If an adversary A is able to distinguish
between G5 and G4, then we can build a reduction B2 to break the perfectly
security of the simple symmetric encryption with homomorphic addition Π. So
we have

Pr[G4 = 1]− Pr[G5 = 1] ≤ AdvPS
Π,B2

(λ).

Simulator Now we can replace the searched keyword w with sp(w) in G5

to simulate the simulator S in Algorithm 4, S uses the first timestamp ŵ ← min



Algorithm 3 G2

Setup(1λ)

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: return (EDB, σ = (n,K,CT))

Update(w, bs, σ; EDB)
Client:

1: Kw||K′w ← Key(w)
2: (ST0, · · · , STc, c)← CT[w]
3: if (STc, c) =⊥ then
4: c← −1, STc ← {0, 1}λ
5: end if
6: STc+1 ← {0, 1}λ
7: CT[w]← (ST0, · · · , STc+1, c+ 1)
8: UTc+1 ← {0, 1}λ
9: UT[w, c+ 1]← UTc+1

10: CSTc ← H2(Kw, STc+1)⊕ STc
11: skc+1 ← H3(K′w, c+ 1)
12: ec+1 ← Enc(skc+1, bs, n)
13: Send (UTc+1, (ec+1, CSTc)) to server.

Server:

14: EDB[UTc+1]← (ec+1, CSTc)

Search(w, σ; EDB)
Client:

1: Kw||K′w ← Key(w)
2: (ST0, · · · , STc, c)← CT[w]
3: if (STc, c) =⊥ then
4: return ∅

5: end if
6: for i = 0 to c do
7: H1(Kw, STi)← UT[w, i]
8: end for
9: Send (Kw, STc, c) to server.

Server:

10: Sume ← 0
11: for i = c to 0 do
12: UTi ← H1(Kw, STi)
13: (ei, CSTi−1)← EDB[UTi]
14: Sume ← Add(Sume, ei, n)
15: Remove EDB[UTi]
16: if CSTi−1 =⊥ then
17: Break
18: end if
19: STi−1 ← H2(Kw, STi)⊕ CSTi−1

20: end for
21: EDB[UTc]← (Sume,⊥)
22: Send Sume to client.

Client:

23: Sumsk ← 0
24: for i = c to 0 do
25: ski ← H3(K′w, i)
26: Sumsk ← Sumsk + ski mod n
27: end for
28: bs← Dec(Sumsk, Sume, n)
29: return bs

sp(w) for the keyword w. We remove the useless part of Algorithm 3 which will
not influence the view of A.

Now we are ready to show that G5 and Simulator are indistinguishable. For
Update, it is obvious since we choose new random strings for each update in G5.
For Search, S starts from the current search token STc and choose a random
string for previous search token. Then S embeds it to the ciphertext C through
H2. Moreover, S embeds the bs to the STc and all 0s to the remaining search
tokens through H3. Finally, we map the pairs (w, i) to the globe update count
t. Then we can map the values in table UT, C and sk that we chose randomly in
Update to the corresponding values for the pair (w, i) in the Search. Hence,

Pr[G5 = 1] = Pr[DSSEIDEALFB-DSSEA,S (λ) = 1]



Finally,

Pr[DSSEREALFB-DSSEA (λ) = 1]− Pr[DSSEIDEALFB-DSSEA,S (λ) = 1]

≤ Advprf
F,B1

(λ) + AdvPS
Π,B2

(λ) + 3p/2λ

which completes the proof.

Algorithm 4 Simulator S
S.Setup(1λ)

1: n← Setup(1λ)
2: CT, EDB← empty map
3: return (EDB,CT, n)

S.Update()
Client:

1: UT[t]← {0, 1}λ
2: C[t]← {0, 1}λ
3: sk[t]← {0, 1}λ
4: e[t]← Enc(sk[t], 0s, n)
5: Send UT[t], (e[t], C[t])) to the server.
6: t← t+ 1

S.Search(sp(w), rp(w), Time(w))
Client:

1: ŵ ← min sp(w)
2: Kŵ||K′ŵ ← Key(ŵ)
3: (STc, c)← CT[ŵ]
4: parse rp(w) as bs.

5: Parse Time(w) as (t0, · · · , tc).
6: if (STc, c) =⊥ then
7: return ∅
8: end if
9: for i = c to 0 do

10: STi−1 ← {0, 1}λ
11: Program H1(Kŵ, STi)← UT[ti]
12: Program H2(Kŵ, STi) ← C[ti] ⊕

STi−1

13: if i = c then
14: Program H3(K′ŵ, i) ← sk[ti] −

bs
15: else
16: Program H3(K′ŵ, i)← sk[ti]
17: end if
18: end for
19: Send (Kŵ, STc, c) to the server.


