
Marlin:
Preprocessing zkSNARKs

with Universal and Updatable SRS

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Yuncong Hu
yuncong_hu@berkeley.edu

UC Berkeley

Mary Maller
mary.maller.15@ucl.ac.uk

UCL

Pratyush Mishra
pratyush@berkeley.edu

UC Berkeley

Psi Vesely
psi@ucsd.edu

UCL

Nicholas Ward
npward@berkeley.edu

UC Berkeley

May 27, 2020

Abstract

We present a methodology to construct preprocessing zkSNARKs where the structured reference
string (SRS) is universal and updatable. This exploits a novel use of holography [Babai et al., STOC 1991],
where fast verification is achieved provided the statement being checked is given in encoded form.

We use our methodology to obtain a preprocessing zkSNARK where the SRS has linear size and
arguments have constant size. Our construction improves on Sonic [Maller et al., CCS 2019], the prior
state of the art in this setting, in all efficiency parameters: proving is an order of magnitude faster and
verification is thrice as fast, even with smaller SRS size and argument size. Our construction is most
efficient when instantiated in the algebraic group model (also used by Sonic), but we also demonstrate
how to realize it under concrete knowledge assumptions. We implement and evaluate our construction.

The core of our preprocessing zkSNARK is an efficient algebraic holographic proof (AHP) for rank-1
constraint satisfiability (R1CS) that achieves linear proof length and constant query complexity.

Keywords: succinct arguments; universal SRS; algebraic holographic proofs; polynomial commitments

1

Contents
1 Introduction 3

1.1 Our results . 5
1.2 Related work . 7

2 Techniques 10
2.1 Building block: algebraic holographic proofs . 10
2.2 Building block: polynomial commitments . 11
2.3 Compiler: from AHPs to preprocessing arguments with universal SRS . 12
2.4 Construction: an AHP for constraint systems . 13
2.5 Construction: extractable polynomial commitments . 16

3 Preliminaries 18
3.1 Indexed relations . 18

4 Algebraic holographic proofs 19

5 AHP for constraint systems 21
5.1 Algebraic preliminaries . 21
5.2 AHP for the lincheck problem . 22
5.3 AHP for R1CS . 27

6 Polynomial commitment schemes with extractability 33
6.1 Definition . 33
6.2 Construction . 35

7 Preprocessing arguments with universal SRS 39

8 From AHPs to preprocessing arguments with universal SRS 41
8.1 Construction . 41
8.2 Proof of Theorem 8.1 . 43
8.3 Proof of Theorem 8.3 . 46
8.4 Proof of Theorem 8.4 . 47

9 Marlin: an efficient preprocessing zkSNARK with universal SRS 49
9.1 Optimizations for the AHP . 49
9.2 Optimizations for the polynomial commitment scheme . 50

A Cryptographic assumptions 53
A.1 Bilinear groups . 53
A.2 Strong Diffie–Hellman . 53
A.3 Power knowledge of exponent . 53
A.4 Algebraic group model . 55
A.5 The effect of powers on security . 56

B Polynomial commitments for a single degree bound 57
B.1 Definition . 57
B.2 In the plain model . 58
B.3 In the algebraic group model . 66

C Polynomial commitments for multiple degree bounds 69
C.1 Degree-efficient construction . 69
C.2 Black-box construction . 72

D Polynomial commitments that support different query locations 75
D.1 Construction . 75
D.2 Extractability . 75
D.3 Hiding . 76

E An optimized AHP for R1CS 78

Acknowledgments 79

References 79

2

1 Introduction

Succinct non-interactive arguments (SNARGs) are efficient certificates of membership in non-deterministic
languages. Recent years have seen a surge of interest in zero-knowledge SNARGs of knowledge (zkSNARKs),
with researchers studying constructions under different cryptographic assumptions, improvements in asymp-
totic efficiency, concrete performance of implementations, and numerous applications. The focus of this
paper is SNARGs in the preprocessing setting, a notion that we motivate next.
When is fast verification possible? The size of a SNARG must be, as a minimum condition, sublinear in
the size of the non-deterministic witness, and often is required to be even smaller (e.g., logarithmic in the size
of the non-deterministic computation). The time to verify a SNARG would be, ideally, as fast as reading
the SNARG. This is in general too much to hope for, however. The verification procedure must also read
the description of the computation, in order know what statement is being verified. While there are natural
computations that have succinct descriptions (e.g., machine computations), in general the description of a
computation could be as large as the computation itself, which means that the time to verify the SNARG
could be asymptotically comparable to the size of the computation. This is unfortunate because there is a very
useful class of computations for which we cannot expect fast verification: general circuit computations.
The preprocessing setting. An approach to avoid the above limitation is to design a verification procedure
that has two phases: an offline phase that produces a short summary for a given circuit; and an online phase
that uses this short summary to verify SNARGs that attest to the satisfiability of the circuit with different
partial assignments to its input wires. Crucially, now the online phase could in principle be as fast as reading
the SNARG (and the partial assignment), and thus sublinear in the circuit size. This goal was captured by
preprocessing SNARGs [Gro10; Lip12; Gen+13; Bit+13], which have been studied in an influential line
of works that has led to highly-efficient constructions that fulfill this goal (e.g., [Gro16]) and large-scale
deployments in the real world that benefit from the online fast verification (e.g., [Zcash]).
The problem: circuit-specific SRS. The offline phase in efficient constructions of preprocessing SNARGS
consists of sampling a structured reference string (SRS) that depends on the circuit that is being preprocessed.
This implies that producing/validating proofs with respect to different circuits requires different SRSs. In
many applications of interest, there is no single party that can be entrusted with sampling the SRS, and
so real-world deployments have had to rely on cryptographic “ceremonies” [ZcashMPC] that use secure
multi-party sampling protocols [Ben+15; BGG17; BGM17; Abd+19]. However, any modification in the
circuit used in an application requires another cryptographic ceremony, which is unsustainable for many
applications.
A solution: universal SRS. The above motivates preprocessing SNARGs where the SRS is universal, which
means that the SRS supports any circuit up to a given size bound by enabling anyone, in an offline phase after
the SRS is sampled, to publicly derive a circuit-specific SRS.1 Known techniques to obtain a universal SRS
from circuit-specific SRS introduce expensive overheads due to universal simulation [Ben+14a; Ben+14b].
Also, these techniques lead to universal SRSs that are not updatable, a property introduced in [Gro+18] that
significantly simplifies cryptographic ceremonies. The recent work of Maller et al. [Mal+19] overcomes
these shortcomings, obtaining the first efficient construction of a preprocessing SNARG with universal (and
updatable) SRS. Even so, the construction in [Mal+19] is considerably more expensive than the state of the
art for circuit-specific SRS [Gro16]. In this paper we ask: can the efficiency gap between universal SRS and
circuit-specific SRS be closed, or at least significantly reduced?

1Even better than a universal SRS would be a URS (uniform reference string). However, achieving preprocessing SNARGs in the
URS model with small argument size remains an open problem; see Section 1.2.

3

Concurrent work. A concurrent work [GWC19] studies the same question as this paper. See Section 1.2
for a brief discussion that compares the two works.

construction argument size over BN-256 (bytes) argument size over BLS12-381 (bytes)

Sonic [Mal+19] 1152 1472
Marlin [this work] 704 880
Groth16 [Gro16] 128 192

zkSNARK
construction

sizes time complexity

|ipk| |ivk| |π| generator indexer prover verifier

Sonic
[Mal+19]

G1 8m — 20 8 f-MSM(M) 4 v-MSM(3m) 273 v-MSM(m)
7 pairingsG2 8m 3 — 8 f-MSM(M) — —

Fq — — 16 — O(m logm) O(m logm) O(|x|+ logm)

Marlin
[this work]

G1 4m 2 13 1 f-MSM(3M) 12 v-MSM(m) 22 v-MSM(m)
2 pairingsG2 — 2 — — — —

Fq — — 8 — O(m logm) O(m logm) O(|x|+ logm)

Groth16
[Gro16]

G1 4n O(|x|) 2 4 f-MSM(n)
N/A

4 v-MSM(n) 1 v-MSM(|x|)
G2 n O(1) 1 1 f-MSM(n) 1 v-MSM(n) 3 pairings
Fq — — — O(m+ n logn) O(m+ n logn) —

n: number of multiplication gates in the circuit
m: total number of (addition or multiplication) gates in the circuit
M : maximum supported circuit size (maximum number of addition and multiplication gates)

Figure 1: Comparison of two preprocessing zkSNARKs with universal (and updatable) SRS: the prior state of the
art and our construction. We include the current state of the art for circuit-specific SRS (in gray), for reference.
HereG1/G2/Fq denote the number of elements or operations over the respective group/field; also, f-MSM(m) and
v-MSM(m) denote fixed-base and variable-base multi-scalar multiplications (MSM) each of sizem, respectively.
The number of pairings that we report for Sonic’s verifier is lower than that reported in [Mal+19] because we
account for standard batching techniques for pairing equations.

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

In
d

e
xe

r
ti

m
e
 (

s)

Number of constraints

Groth16

Marlin

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

P
ro

v
e
r

ti
m

e
 (

s)

Number of constraints

Groth16

Marlin

 0

 2

 4

 6

 8

 10

 12

 14

 16

210 211 212 213 214 215 216 217 218 219 220

V
e
ri
fi
e
r

ti
m

e
 (

m
s)

Number of constraints

Groth16

Marlin

Figure 2: Measured performance of Marlin and [Gro16] over the BLS12-381 curve. We could not include measurements
for [Mal+19, Sonic] because at the time of writing there is no working implementation of its unhelped variant.

4

1.1 Our results

In this paper we present Marlin, a new preprocessing zkSNARK with universal (and updatable) SRS that
improves on the prior state of the art [Mal+19, Sonic] in essentially all relevant efficiency parameters.2 In
addition to reducing argument size by several group and field elements and reducing time complexity of the
verifier by over 3×, our construction overcomes the main efficiency drawback of [Mal+19, Sonic]: the cost of
producing proofs. Indeed, our construction improves time complexity of the prover by over 10×, achieving
prover efficiency comparable to the case of preprocessing zkSNARKs with circuit-specific SRS. In Fig. 1 we
provide a comparison of our construction and [Mal+19, Sonic], including argument sizes for two popular
elliptic curves; the table also includes the state of the art for circuit-specific SRS. We have implemented
Marlin in a Rust library,3 and report evaluation results in Fig. 2.

Our zkSNARK is the result of several contributions that we deem of independent interest, summarized below.
(1) A new methodology. We present a general methodology to construct preprocessing SNARGs (and
also zkSNARKs) where the SRS is universal (and updatable). The methodology in fact produces succinct
interactive arguments that can be made non-interactive via the Fiat–Shamir transformation [FS86]. Hence
belowwe focus on preprocessing arguments with universal and updatable SRS (see Section 7 for the definition).

Our key observation is that the ability to preprocess a circuit in an offline phase is closely related to
constructing “holographic proofs” [Bab+91], which means that the verifier does not receive the circuit
description as an input but, rather, makes a small number of queries to an encoding of it. These queries are in
addition to queries that the verifier makes to proofs sent by the prover. Moreover, in this paper we focus on the
setting where the encoding of the circuit description consists of low-degree polynomials and also where proofs
are themselves low-degree polynomials — this can be viewed as a requirement that honest and malicious
provers are “algebraic”. We call these algebraic holographic proofs (AHPs); see Section 4 for definitions.

We present a transformation that “compiles” any public-coin AHP into a corresponding preprocessing
argument with universal (and updatable) SRS by using suitable polynomial commitments.

Theorem 1 (informal version of Theorem 8.1). There is an efficient transformation that combines any
public-coin AHP for a relationR and an extractable polynomial commitment scheme to obtain a public-coin
preprocessing argument with universal SRS for the relationR. The transformation preserves zero knowledge
and proof of knowledge of the underlying AHP. The SRS is updatable provided the SRS of the polynomial
commitment scheme is.

The above transformation provides us with a methodology to construct preprocessing zkSNARKs with
universal SRS (see Fig. 3). Namely, to improve the efficiency of preprocessing zkSNARKs with universal
SRS it suffices to improve the efficiency of simpler building blocks: AHPs (an information-theoretic primitive)
and polynomial commitments (a cryptographic primitive).4

The improvements achieved by our preprocessing zkSNARK (see Fig. 1) were obtained by following this
methodology: we designed efficient constructions for each of these two building blocks (which we discuss
shortly), combined them via Theorem 1, and then applied the Fiat–Shamir transformation [FS86].

2Maller et al. [Mal+19] discuss two variants of their protocol, a cheaper one for the “helped setting” and a costlier one for the
“unhelped setting”. The variant that is relevant to this paper is the latter one, because it is a preprocessing zkSNARK. (The former
variant does not achieve succinct verification, and instead achieves a weaker guarantee that applies to proof batches.)

3https://github.com/scipr-lab/marlin
4The methodology also captures as a special case various folklore approaches used in prior works to construct non-preprocessing

zkSNARKs via polynomial commitment schemes (see Section 1.2), thereby providing the first formal statement that clarifies what
properties of algebraic proofs and polynomial commitment schemes are essential for these folklore approaches.

5

https://github.com/scipr-lab/marlin

Methodologies that combine information-theoretic probabilistic proofs and cryptographic tools have
played a fundamental role in the construction of efficient argument systems. In the particular setting of
preprocessing SNARGs, for example, the compiler introduced in [Bit+13] for circuit-specific SRS has paved
the way towards current state-of-the-art constructions [Gro16], and also led to constructions that are plausibly
post-quantum [Bon+17; Bon+18]. We believe that our methodology for universal SRS will also be useful in
future work, and may lead to further efficiency improvements.

public-coin
AHP

extractable
polynomial commitments

Theorem 1
(our compiler)

public-coin
preprocessing argument
with universal SRS

Fiat–Shamir
transformation

preprocessing SNARK
with universal SRS

Figure 3: Diagram of our methodology to construct preprocessing SNARGs with universal SRS.

(2) An efficient AHP for R1CS. We design an algebraic holographic proof (AHP) that achieves linear
proof length and constant query complexity, among other useful efficiency features. The protocol is for
rank-1 constraint satisfiability (R1CS), a well-known generalization of arithmetic circuits where the “circuit
description” is given by coefficient matrices (see definition below). Note that the relations that we consider
consist of triples rather than pairs, because we need to split the verifier’s input into a part for the offline phase
and a part for the online phase. The offline input is called the index, and it consists of the coefficient matrices;
the online input is called the instance, and it consists of a partial assignment to the variables. The algorithm
that encodes the index (coefficient matrices) in the offline phase is called the indexer.

Definition 1 (informal). The indexed relationRR1CS is the set of triples (i,x,w) =
(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n× n matrices over F, each containing at mostm non-zero entries, and
z := (x,w) is a vector in Fn such that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product.)

Theorem 2 (informal). There exists a constant-round AHP for the indexed relationRR1CS with linear proof
length and constant query complexity. The soundness error is O(m/|F|), and the construction is a zero
knowledge proof of knowledge. The arithmetic complexity of the indexer is O(m logm), of the prover is
O(m logm), and of the verifier is O(|x|+ logm).

The literature on probabilistic proofs contains algebraic protocols that are holographic (e.g., [Bab+91]
and [GKR15]) but none achieve constant query complexity, and so applying our methodology (Theorem 1)
to these would lead to large argument sizes (many tens of kilobytes). These prior algebraic protocols rely
on the multivariate sumcheck protocol applied to certain multivariate polynomials, which means that they
incur sizable communication costs due to (a) the many rounds of the sumcheck protocol, and (b) the fact that
applying the methodology would involve using multivariate polynomial commitment schemes that (for known
constructions) lead to communication costs that are linear in the number of variables.

In contrast, our algebraic protocol relies on univariate polynomials and achieves constant query complexity,
incurring small communication costs. Our algebraic protocol can be viewed as a “holographic variant” of the
algebraic protocol for R1CS used in Aurora [Ben+19c], because it achieves an exponential improvement in
verification time when the verifier is given a suitable encoding of the coefficient matrices; see Table 1.

6

construction holographic? indexer prover verifier messages proof length queries

[Ben+19c] NO N/A O(m+ n logn) O(|x|+ n) 3 O(n) O(1)

this work YES O(m logm) O(m logm) O(|x|+ logm) 7 O(m) O(1)

Table 1: Comparison of the non-holographic protocol for R1CS in [Ben+19c], and the AHP for R1CS that we
construct. Here n denotes the number of variables andm the number of non-zero coefficients in the matrices.

(3) Extractable polynomial commitments. Polynomial commitment schemes, introduced in [KZG10], are
commitment schemes specialized to work with univariate polynomials. The security properties in [KZG10],
while sufficient for the applications therein, do not appear sufficient for standalone use, or even just for the
transformation in Theorem 1. We propose a definition for polynomial commitment schemes that incorporates
the functionality and security that we believe to suffice for standalone use (and in particular suffices for
Theorem 1). Moreover, we show how to extend the construction of [KZG10] to fulfill this definition in the
plain model under non-falsifiable knowledge assumptions, or via a more efficient construction in the algebraic
group model [FKL18] under falsifiable assumptions. These constructions are of independent interest, and
when combined with our transformation, lead to the first efficient preprocessing arguments with universal
SRS under concrete knowledge assumptions, and also to the efficiency reported in Fig. 1.

We have implemented in a Rust library5 the polynomial commitment schemes, and our implementation of
Marlin relies on this library. We deem this library of independent interest for other projects.

1.2 Related work

In this paper we study the goal of constructing preprocessing SNARGs with universal SRS, which achieve
succinct verification regardless of the structure of the non-deterministic computation being checked. The
most relevant prior work is Sonic [Mal+19], on which we improve as already discussed (see Fig. 1). The
notion of updatable SRS was defined and achieved in [Gro+18], but with a less efficient construction.
Concurrent work. A concurrent work [GWC19] studies the same question as this paper, and also obtains
efficiency improvements over Sonic [Mal+19]. Below is a brief comparison.

• Similarly to our work, [GWC19] extends the polynomial commitment in [KZG10] to support batching, and
proves the extension secure in the algebraic group model. We additionally show how to prove security
in the plain model under non-falsifiable knowledge assumptions, and consider the problem of enforcing
different degrees for different polynomials (a feature that is not needed in [GWC19]).

• We show how to compile any algebraic holographic proof into a preprocessing argument with universal
SRS, while [GWC19] focus on compiling a more restricted notion that they call “polynomial protocols”.

• Our protocol natively supports R1CS, and can be viewed as a holographic variant of the algebraic protocol
in [Ben+19c]. The protocol in [GWC19] natively supports a different constraint system, and involves a
protocol that, similar to [Gro10], uses a permutation argument to attest that all variables in the same cycle
of a permutation are equal (e.g., (1)(2, 3)(4) would require that the second and third entries are equal).

Preprocessing SNARGs with a URS. Setty [Set19] studies preprocessing SNARGs with a URS (uniform
reference string), and describes a protocol that for n-gate arithmetic circuits and a chosen constant c ≥ 2

achieves proving time Oλ(n), argument size Oλ(n1/c), and verification time Oλ(n1−1/c). The protocol in

5https://github.com/scipr-lab/poly-commit

7

https://github.com/scipr-lab/poly-commit

[Set19] offers a tradeoff compared to our work: preprocessing with a URS instead of a SRS, at the cost of
asymptotically larger argument size and verification time. The question of achieving processing with a URS
while also achieving asymptotically small argument size and verification time remains open.

The protocol in [Set19] is obtained by combining the multivariate polynomial commitments of [Wah+18]
and a modern rendition of the PCP in [Bab+91] (which itself can be viewed as the “bare bones” protocol of
[GKR15] for circuits of depth 1). [Set19] lacks an analysis of concrete costs, and also does not discuss how to
achieve zero knowledge beyond stating that techniques in other papers [Zha+17a; Wah+18; Xie+19] can be
applied. Nevertheless, argument sizes would at best be similar to these other papers (tens of kilobytes), which
is much larger than our argument sizes (in the SRS model).

We conclude by noting that the informal security proof in [Set19] appears insufficient to show soundness
of the argument system, because the polynomial commitment scheme is only assumed to be binding but not
also extractable (there is no explanation of where the witness encoded in the committed polynomial comes
from). Our definitions and security proofs, if ported over to the multivariate setting, would fill this gap.

Remark 1.1. Setty [Set19] also suggests using multivariate polynomial commitments with an SRS [PST13],
which could lead to asymptotically smaller argument size and faster verification time. Perhaps because this is
not the focus of Spartan (which advocates the benefits of a URS) there are no analyses of security or concrete
efficiency for this case. By analogy to arguments with an SRS that use such commitments [Xie+19], one may
guess that Setty’s suggestion would lead to arguments with faster prover time and larger argument sizes (tens
of kilobytes) in comparison to our work. Working out the details of this suggestion is left to future work.

Non-preprocessing SNARGs for arbitrary computations. Checking arbitrary circuits without preprocess-
ing them requires the verifier to read the circuit, so the main goal is to obtain small argument size. In this
setting of non-preprocessing SNARGs for arbitrary circuits, constructions with a URS (uniform reference
string) are based on discrete logarithms [Boo+16; Bün+18] or hash functions [Ame+17; Ben+19c], while
constructions with a universal SRS (structured reference string) combine polynomial commitments and
non-holographic algebraic proofs [Gab19]; all use random oracles to obtain non-interactive arguments.6

We find it interesting to remark that our methodology from Theorem 1 generalizes protocols such as
[Gab19] in two ways. First, it formalizes the folklore approach of combining polynomial commitments and
algebraic proofs to obtain arguments, identifying the security properties required to make this approach work.
Second, it demonstrates how for algebraic holographic proofs the resulting argument enables preprocessing.
Non-preprocessing SNARGs for structured computations. Several works study SNARGs for structured
computations. This structure enables fast verification without preprocessing. A line of works [Ben+17b;
Ben+19a; Ben+19b] combines hash functions and various interactive oracle proofs. Another line of works
[Zha+17b; Zha+18; Zha+17a; Wah+18; Xie+19] combines multivariate polynomial commitments [PST13]
and doubly-efficient interactive proofs [GKR15].

While in this paper we study a different setting (preprocessing SNARGs for arbitrary computations), there
are similarities, and notable differences, in the polynomial commitments used in our work and prior works.
We begin by noting that the notion of “multivariate polynomial commitments” varies considerably across
prior works, despite the fact that most of those commitments are based on the protocol introduced in [PST13].

• The commitments used in [Zha+17b; Zha+18] are required to satisfy extractability (a stronger notion than
binding) because the security proof of the argument system involves extracting a polynomial encoding a

6The linear verification time in most of the cited constructions can typically be partially mitigated via techniques that enable an
untrusted party to help the verifier to check a batch of proofs for the same circuit faster than checking each proof individually (the
linear cost in the circuit is paid only once per batch rather than once for each proof in the batch).

8

witness. The commitment is a modification of [PST13] that uses knowledge commitments, a standard
ingredient to achieve extractability under non-falsifiable assumptions in the plain model. Neither of these
works consider hiding commitments as zero knowledge is not a goal for them.

• The commitments used in [Zha+17a; Wah+18] must be compatible with the Cramer–Damgård transform
[CD98] used in constructing the argument system. They consider a modified setting where the sender does
not reveal the value of the commitment polynomial at a desired point but, instead, reveals a commitment to
this value, along with a proof attesting that the committed value is correct. For this modified setting, they
consider commitments that satisfy natural notions of extractability and hiding (achieving zero knowledge
arguments is a goal in both papers). The commitments constructed in the two papers offer different tradeoffs.
The commitment in [Zha+17a] is based on [PST13]: it relies on a SRS (structured reference string); it
uses pairings; and for `-variate polynomials achieves Oλ(`)-size arguments that can be checked in Oλ(`)
time. The commitment in [Wah+18] is inspired from [BG12] and [Bün+18]: it relies on a URS (uniform
reference string); it does not use pairings; and for `-variate multilinear polynomials and a given constant
c ≥ 2 achieves Oλ(2`/c)-size arguments that can be checked in Oλ(2`−`/c) time.

• The commitments used in [Xie+19] are intended for the regular (unmodified) setting of commitment
schemes where the sender reveals the value of the polynomial, because zero knowledge is later achieved
by building on the algebraic techniques described in [CFS17]. The commitment definition in [Xie+19]
considers binding and hiding, but not extractability. However, the given security analysis for the argument
system does not seem to go through for this definition (there is no explanation of where the witness encoded
in the committed polynomial comes from). Also, no commitment construction is provided in [Xie+19], and
instead the reader is referred to [Zha+17a], which considers the modified setting described above.

In sum there are multiple notions of commitment and one must be precise about the functionality and security
needed to construct an argument system. We now compare prior notions of commitments to the one that we
use.

First, since in this paper we do not use the Cramer–Damgård transform for zero knowledge, commitments
in the modified setting are not relevant. Instead, we achieve zero knowledge via bounded independence
[Ben+16], and in particular we consider the familiar setting where the sender reveals evaluations to the
committed polynomial. Second, prior works consider protocols where the sender commits to a polynomial in
a single round, while we consider protocols where the sender commits to multiple polynomials of different
degrees in each of several rounds. This multi-polynomial multi-round setting requires suitable extensions in
terms of functionality (to enable batching techniques to save on argument size) and security (extractability
and hiding need to be strengthened), which means that prior definitions do not suffice for us.

The above discrepancies have led us to formulate new definitions of functionality and security for
polynomial commitments (as summarized in Section 2.2). We conclude by noting that, since in this paper
we construct arguments that use univariate polynomials, our definitions are specialized to commitments
for univariate polynomials. Corresponding definitions for multivariate polynomials can be obtained with
straightforward modifications, and would strengthen definitions appearing in some prior works. Similarly, we
fulfill the required definitions via natural adaptations of the univariate scheme of [KZG10], and analogous
adaptations of the multivariate scheme of [PST13] would fulfill the multivariate analogues of these definitions.

9

2 Techniques

We discuss the main ideas behind our results. First we describe the two building blocks used in Theorem 1:
AHPs and polynomial commitment schemes (described in Sections 2.1 and 2.2 respectively). We describe
how to combine these to obtain preprocessing arguments with universal SRS in Section 2.3. Next, we discuss
constructions for these building blocks: in Section 2.4 we describe our AHP (underlying Theorem 2), and in
Section 2.5 we describe our construction of polynomial commitments.

Throughout, instead of considering the usual notion of relations that consist of instance-witness pairs, we
consider indexed relations, which consist of triples (i,x,w) where i is the index, x is the instance, and w is
the witness. This is because i represents the part of the verifier input that is preprocessed in the offline phase
(e.g., the circuit description) and x represents the part of the verifier input that comes in the online phase (e.g.,
a partial assignment to the circuit’s input wires). The indexed language corresponding to an indexed relation
R, denoted L(R), is the set of pairs (i,x) for which there exists a witness w such that (i,x,w) ∈ R.

2.1 Building block: algebraic holographic proofs

Interactive oracle proofs (IOPs) [BCS16; RRR16] are multi-round protocols where in each round the verifier
sends a challenge and the prover sends an oracle (which the verifier can query). IOPs combine features
of interactive proofs [Bab85; GMR89]and probabilistically checkable proofs [Bab+91; AS98; Aro+98].
Algebraic holographic proofs (AHPs) modify the notion of an IOP in two ways.

• Holographic: the verifier does not receive its input explicitly but, rather, has oracle access to a prescribed
encoding of it. This potentially enables the verifier to run in time that is much faster than the time to read
its input in full. (Our constructions will achieve this fast verification.)

• Algebraic: the honest prover must produce oracles that are low-degree polynomials (this restricts the
completeness property), and all malicious provers must produce oracles that are low-degree polynomials (this
relaxes the soundness property). The encoded input to the verifier must also be a low-degree polynomial.

Since in this paper we only work with univariate polynomials, our definitions focus on this case, but they can
be modified in a straightforward way to be more general.

Informally, a (public-coin) AHP over a field F for an indexed relation R is specified by an indexer I,
prover P, and verifier V that work as follows.

• Offline phase. The indexer I receives as input the index i to be preprocessed, and outputs one or more
univariate polynomials over F encoding i.

• Online phase. For some instance x and witness w, the prover P receives (i,x,w) and the verifier V
receives x; P and V interact over some (in this paper, constant) number of rounds, where in each round
V sends a challenge and P sends one or more polynomials; after the interaction, V(x) probabilistically
queries the polynomials output by the indexer and the polynomials output by the prover, and then accepts
or rejects. Crucially, V does not receive i as input, but instead queries the polynomials output by I that
encode i. This enables the construction of verifiers V that run in time that is sublinear in |i|.

The completeness property states that for every (i,x,w) ∈ R the probability that P(i,x,w) convinces
VI(i)(x) to accept is 1. The soundness property states that for every (i,x) /∈ L(R) and admissible prover
P̃ the probability that P̃ convinces VI(i)(x) to accept is at most a given soundness error ε. A prover is
“admissible” if the degrees of the polynomials it outputs fit within prescribed degree bounds of the protocol.
See Section 4 for details on AHPs, including definitions of proof of knowledge and zero knowledge.

10

Remark 2.1 (prior holographic proofs). Various definitions of “holographic proofs” have been studied
in the literature on probabilistic proofs, starting with the seminal work of Babai, Fortnow, Levin, and
Szegedy [Bab+91]. Recent examples include the IPs in [GKR15], whose verifier runs in sublinear time when
given (multivariate low-degree) encodings of the circuit’s wiring predicates and of the circuit’s input; and also
the IOPs in [RRR16], where encoded provers and encoded inputs play a role in amortizing interactive proofs.

2.2 Building block: polynomial commitments

Informally, a polynomial commitment scheme [KZG10] allows a prover to produce a commitment c to a
univariate polynomial p ∈ F[X], and later “open” p(X) at any point z ∈ F, producing an evaluation proof
π showing that the opened value is consistent with the polynomial “inside” c at z. Turning this informal
goal into a useful definition requires some care, however, as we explain below. In this paper we propose a
set of definitions for polynomial commitment schemes that we believe are useful for standalone use, and in
particular suffice as a building block for our compiler described in Sections 2.3 and 8.

First, we consider constructions with strong efficiency requirements: the commitment c is much smaller
than the polynomial p (e.g., c consists of a constant number of group elements), and the proof π can be
validated very fast (e.g., in a constant number of cryptographic operations). These requirements not only
rule out natural constructions, 7but also imply that the usual binding property, which states that an efficient
adversary cannot open the same commitment to two different values, does not capture the desired security.
Indeed, even if the adversary were to be bound to opening values of some function f : F→ F, it may be that
the function f is consistent with a polynomial whose degree is higher than what was claimed. This means
that a security definition needs to incorporate guarantees about the degree of the committed function.8

Second, in many applications of polynomial commitments, an adversary produces multiple commitments
to polynomials within a round of interaction and across rounds of interaction. After this interaction, the
adversary reveals values of all of these polynomials at one or more locations. This setting motivates a
number of considerations. First, it is desirable to rely on a single set of public parameters for committing to
multiple polynomials, even if the polynomials differ in degree. A construction such as that of [KZG10] can be
modified in a natural way to achieve this is by committing both to the polynomial and its shift to the maximum
degree, similarly to techniques used to bundle multiple low-degree tests into a single one [Ben+19c]. This
modification needs to be addressed in any proof of security. Second, it would be desirable to batch evaluation
proofs across different polynomials for the same location. Again the construction in [KZG10] can support
this, but one must argue that security still holds in this more general case.

The preceeding considerations require an extension of previous definitions and motivate our re-formulation
of the primitive. Informally, a polynomial commitment scheme PC is a tuple of algorithms PC = (Setup,
Trim,Commit,Open,Check). The setup algorithm PC.Setup takes as input a security parameter and
maximum supported degree bound D, and outputs public parameters pp that contain the description of a
finite field F. The “trimming” algorithm PC.Trim then deterministically specializes these parameters for a
given set of degree bounds and outputs a committer key ck and a receiver key rk. The sender can then invoke

7A natural construction would be to use a standard commitment scheme to commit to each coefficient of p, and then open to a
value by revealing the committed coefficients. However, this construction is inefficient, because the commitment c and evaluation
proof π are “long” (linear in the degree of p). An alternative construction would be to use a Merkle tree on the coefficients of p.
While c now becomes short, the evaluation proof π remains long because the receiver would need to see all coefficients to validate a
claimed evaluation. Crucially, both constructions enable the receiver to check the degree of the committed polynomial.

8This consideration motivates the strong correctness property in [KZG10], which states that if the adversary knows a polynomial
that leads to the claimed commitment c then this polynomial has bounded degree. This notion, while sufficient for the application in
[KZG10], does not seem to suffice for standalone use because there is no a priori guarantee that an adversary that can open values to
a commitment knows a polynomial inside the commitment. In some sense, a knowledge assumption is hidden in this hypothesis.

11

PC.Commit with input ck and a list of polynomials p with respective degree bounds d to generate a set of
commitments c. Subsequently, the sender can use PC.Open to produce a proof π that convinces the receiver
that the polynomials “inside” c respect the degree bounds d and, moreover, evaluate to the claimed set of
values v at a given query set Q that specifies any number of evaluation points for each polynomial. The
receiver can invoke PC.Check to check this proof.

The scheme PC is required to satisfy extractability and efficiency properties, and also, optionally, a hiding
property. We outline these properties below (see Section 6.1 for the details).
Extractability. Consider an efficient sender adversary A that can produce a commitment c and degree
bound d ≤ D such that, when asked for an evaluation at some point z ∈ F, can produce a supposed evaluation
v and proof π such that PC.Check accepts. Then PC is extractable if for every maximum degree bound D
and every sender adversary A who can produce such commitments, there exists a corresponding efficient
extractor EA that outputs a polynomial p of degree at most d that “explains” c so that p(z) = v. While for
simplicity we have described the most basic case here, our definition considers adversaries and extractors
who interact over multiple rounds, wherein the adversary may produce multiple commitments in each round
and the extractor is required to output corresponding polynomials on a per-round basis (before seeing the
query set, proof, or supposed evaluations).

In this work we rely on extractability to prove the security of our compiler (see Section 2.3); we do not
know if weaker security notions studied in prior works, such as evaluation binding, suffice. More generally,
we believe that extractability is a useful property that may be required across a range of other applications.
Efficiency. We require two notions of efficiency for PC. First, the time required to commit to a polynomial
p and then to create an evaluation proof must be proportional to the degree of p, and not to the maximum
degree D. (This ensures that the argument prover runs in time proportional to the size of the index.)

On the receiver’s side, the commitment size, proof size, and time to verify an opening must be independent
of the claimed degrees for the polynomials. (This ensures that the argument produced by our compiler is
succinct.)
Hiding. The hiding property of PC states that commitments and proofs of evaluation reveal no information
about the committed polynomial beyond the publicly stated degree bound and the evaluation itself. Namely,
PC is hiding if there exists an efficient simulator that outputs simulated commitments and simulated evaluation
proofs that cannot be distinguished from their real counterparts by any malicious distinguisher that only
knows the degree bound and the evaluation.

Analogously to the case of extractability, we actually consider a more general definition that considers
commitments to multiple polynomials within and across multiple rounds; moreover, the definition considers
the case where some polynomials are designated as not hidden (and thus given to the simulator) because in
our application we sometimes prefer to commit to a polynomial in a non-hiding way (for efficiency reasons).

2.3 Compiler: from AHPs to preprocessing arguments with universal SRS

We describe the main ideas behind Theorem 1, which uses polynomial commitment schemes to compile
any (public-coin) AHP into a corresponding (public-coin) preprocessing argument with universal SRS. In a
subsequent step, the argument can be made non-interactive via the Fiat–Shamir transformation, and thereby
obtain a preprocessing SNARG with universal SRS.

The basic intuition of the compiler follows the well-known framework of “commit to oracles and then
open query answers” pioneered by Kilian [Kil92]. However, the commitment scheme used in our compiler
leverages and enforces the algebraic structure of these oracles. While several works in the literature already

12

take advantage of algebraic commitment schemes applied to algebraic oracles, our contribution is to observe
that if we apply this framework to a holographic proof then we obtain a preprocessing argument.

Informally, first the argument indexer invokes the AHP indexer to generate polynomials, and then
deterministically commits to these using the polynomial commitment scheme. Subsequently, the argument
prover and argument verifier interact, each respectively simulating the AHP prover and AHP verifier. In each
round, the argument prover sends succinct commitments to the polynomials output by the AHP prover in that
round. After the interaction, the argument verifier declares its queries to the polynomials (of the prover and
of the indexer). The argument prover replies with the desired evaluations along with an evaluation proof
attesting to their correctness relative to the commitments.

This approach, while intuitive, must be proven secure. In particular, in the proof of soundness, we need
to show that if the argument prover convinces the argument verifier with a certain probability, then we can
find an AHP prover that convinces the AHP verifier with similar probability. This step is non-trivial: the
AHP prover outputs polynomials, while the argument prover merely outputs succinct commitments and a few
evaluations, which is much less information. In order to deduce the former from the latter requires extraction.
This motivates considering polynomial commitment schemes that are extractable, in the sense described in
Section 2.2. We do not know whether weaker security properties, such as the evaluation binding property
studied in some prior works, suffice for proving the compiler secure.

The compiler outlined above is compatible with the properties of argument of knowledge and zero
knowledge. Specifically, we prove that if the AHP is a proof of knowledge, then the compiler produces an
argument of knowledge; also, if the AHP is (bounded-query) zero knowledge and the polynomial commitment
scheme is hiding, then the compiler produces a zero knowledge argument.

See Section 8 for more details on the compiler.

2.4 Construction: an AHP for constraint systems

In prior sections we have described how we can use polynomial commitment schemes to compile AHPs
into corresponding preprocessing SNARGs. In this section we discuss the main ideas behind Theorem 2,
which provides an efficient AHP for the indexed relation corresponding to R1CS (see Definition 1). The
preprocessing zkSNARK that we achieve in this paper (see Fig. 1) is based on this AHP.

Our protocol can be viewed as a “holographic variant” of the non-holographic algebraic proof for R1CS
constructed in [Ben+19c]. Achieving holography involves designing a new sub-protocol that enables the
verifier to evaluate low-degree extensions of the coefficient matrices at a random location. While in [Ben+19c]
the verifier performed this computation in time poly(|i|) on its own, in our protocol the verifier performs it
exponentially faster, in time O(log |i|), by receiving help from the prover and having oracle access to the
polynomials produced by the indexer. We introduce notation and then discuss the protocol.
Some notation. Consider an index i = (F, n,m,A,B,C) specifying coefficient matrices, an instance
x = x ∈ F∗ specifying a partial assignment to the variables, and a witness w = w ∈ F∗ specifying an
assignment to the other variables such that the R1CS equation holds. The R1CS equation holds if and only if
Az ◦Bz = Cz for z := (x,w) ∈ Fn. Below, we let H andK be prescribed subsets of F of sizes n andm
respectively; we also let vH(X) and vK(X) be the vanishing polynomials of these two sets. (The vanishing
polynomial of a set S is the monic polynomial of degree |S| that vanishes on S, i.e.,

∏
γ∈S(X − γ).) We

assume that bothH andK are smooth multiplicative subgroups. This allows interpolation/evaluation over
H in O(n log n) operations and also makes vH(X) computable in O(log n) operations (and similarly for
K). Given an n× n matrixM with rows/columns indexed by elements of H , we denote by M̂(X,Y) the
low-degree extension ofM , i.e., the polynomial of individual degree less than n such that M̂(κ, ι) is the

13

(κ, ι)-th entry ofM for every κ, ι ∈ H .
A non-holographic starting point. We sketch a non-holographic protocol for R1CS with linear proof
length and constant query complexity, inspired from [Ben+19c], that forms the starting point of our work. In
this case the prover receives as input (i,x,w) and the verifier receives as input (i,x). (The verifier reads the
non-encoded index i because we are describing a non-holographic protocol.)

In the first message the prover P sends the univariate polynomial ẑ(X) of degree less than n that agrees
with the variable assignment z on H , and also sends the univariate polynomials ẑA(X), ẑB(X), ẑC(X) of
degree less than n that agree with the linear combinations zA := Az, zB := Bz, and zC := Cz on H . The
prover is left to convince the verifier that the following two conditions hold:

(1) Entry-wise product: ∀κ ∈ H , ẑA(κ)ẑB(κ)− ẑC(κ) = 0 .

(2) Linear relation: ∀M ∈ {A,B,C} , ∀κ ∈ H , ẑM (κ) =
∑
ι∈H

M [κ, ι]ẑ(ι) .

(The prover also needs to convince the verifier that ẑ(X) encodes a full assignment z that is consistent with
the partial assignment x, but we for simplicity we ignore this in this informal discussion.)

In order to convince the verifier of the first (entry-wise product) condition, the prover sends the
polynomial h0(X) such that ẑA(X)ẑB(X) − ẑC(X) = h0(X)vH(X). This polynomial equation is
equivalent to the first condition (the left-hand side equals zero everywhere on H if and only if it is a multiple
of H’s vanishing polynomial). The verifier will check the equation at a random point β ∈ F: it queries
ẑA(X), ẑB(X), ẑC(X), h0(X) at β, evaluates vH(X) at β on its own, and checks that ẑA(β)ẑB(β)−ẑC(β) =
h0(β)vH(β). The soundness error is the maximum degree over the field size, which is at most 2n/|F|.

In order to convince the verifier of the second (linear relation) condition, the prover expects a random
challenge α ∈ F from the verifier, and then replies in a second message. For eachM ∈ {A,B,C}, the prover
sends polynomials hM (X) and gM (X) such that

r(α,X)ẑM (X)−rM (α,X)ẑ(X) = hM (X)vH(X)+XgM (X) for rM (Z,X) :=
∑
κ∈H

r(Z, κ)M̂(κ,X)

where r(Z,X) is a prescribed polynomial of individual degree less than n such that (r(Z, κ))κ∈H are
n linearly independent polynomials. Prior work [Ben+19c] on checking linear relations via univariate
sumchecks shows that this polynomial equation is equivalent, up to a soundness error of n/|F| over α, to the
second condition.9 The verifier will check this polynomial equation at the random point β ∈ F: it queries
ẑ(X), ẑA(X), ẑB(X), ẑC(X), hM (X), gM (X) at β, evaluates vH(X) at β on its own, evaluates r(Z,X) and
rM (Z,X) at (α, β) on its own, and checks that r(α, β)ẑM (β)− rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β).
The additional soundness error is 2n/|F|.

The above is a simple 3-message protocol for R1CS with soundness error max{2n/|F|, 3n/|F|} = 3n/|F|
in the setting where the honest prover and malicious provers send polynomials of prescribed degrees, which
the verifier can query at any location. The proof length (sum of all degrees) is linear in n and the query
complexity is constant.
Barrier to holography. The verifier in the above protocol runs in time that is Ω(|i|) = Ω(n+m). While
this is inherent in the non-holographic setting (because the verifier must read i), we now discuss how exactly
the verifier’s computation depends on i. We shall later use this understanding to achieve an exponential
improvement in the verifier’s time when given a suitable encoding of i.

9In particular, we are using the fact from [Ben+19c] that, given a multiplicative subgroup S of F, a polynomial f(X) sums to σ
over S if and only if f(X) can be written as h(X)vS(X) +Xg(X) + σ/|S| for some h(X) and g(X) with deg(g) < |S| − 1.

14

The verifier’s check for the entry-wise product is ẑA(β)ẑB(β) − ẑC(β) = h0(β)vH(β), and can be
carried out in O(log n) operations regardless of the coefficient matrices contained in the index i. In other
words, this check is efficient even in the non-holographic setting. However, the verifier’s check for the linear
relation is r(α, β)ẑM (β)− rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β), which has a linear cost. Concretely,
evaluating the polynomial rM (Z,X) at (α, β) requires Ω(n+m) operations.

In the holographic setting, a natural idea to reduce this cost would be to grant the verifier oracle access to
the low-degree extension M̂ forM ∈ {A,B,C}. This idea has two problems: the verifier still needs Ω(n)
operations to evaluate rM (Z,X) at (α, β) and, moreover, the size of M̂ is quadratic in n, which means that
the encoding of the index i is Ω(n2). We cannot afford such an expensive encoding in the offline preprocessing
phase. We now describe how we overcome both of these problems, and obtain a holographic protocol.
Achieving holography. To overcome the above problems and obtain a holographic protocol, we rely yet
again on the univariate sumcheck protocol. We introduce two additional rounds of interaction, and in each
round the verifier learns that their verification equation holds provided the sumcheck from the next round
holds. The last sumcheck will rely on polynomials output by the indexer, which the verifier knows are correct.

We address the first problem by letting the prover and verifier interact in an additional round, where we
rely on an additional univariate sumcheck to reduce the problem of evaluating rM (Z,X) at (α, β) to the
problem of evaluating M̂ at (β2, β) for a random β2 ∈ F. Namely, the verifier sends β to the prover, who
computes

σ2 := rM (α, β) =
∑
κ∈H

r(α, κ)M̂(κ, β).

Then the prover replies with σ2 and the polynomials h2(X) and g2(X) such that

r(α,X)M̂(X,β) = h2(X)vH(X) +Xg2(X) + σ2/n .

Prior techniques on univariate sumcheck [Ben+19c] tell us that this equation is equivalent to the polynomial
r(α,X)M̂(X,β) summing to σ2 on H . Thus the verifier needs to check this equation at a random β2 ∈ F:
r(α, β2)M̂(β2, β) = h2(β2)vH(β2) + β2g2(β2) + σ2/n. The only expensive part of this equation for the
verifier is computing the value M̂(β2, β), which is problematic. Indeed, we have already noted that we
cannot afford to simply let the verifier have oracle access to M̂ , because this polynomial has quadratic size (it
contains a quadratic number of terms).

We address this second problem as follows. Let uH(X,Y) := vH(X)−vH(Y)
X−Y be the formal derivative of

the vanishing poynomial vH(X), and note that uH(X,Y) vanishes on the square H ×H except for on the
diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . Moreover, uH(X,Y) can be evaluated at
any point in F × F in O(log n) operations. Using this polynomial, we can write M̂ as a sum of m = |K|
terms instead of n2 = |H|2 terms:

M̂(X,Y) :=
∑
κ∈K

uH(X, ˆrowM (κ)) · uH(Y, ĉolM (κ)) · v̂alM (κ) ,

where ˆrowM , ĉolM , v̂alM are the low-degree extensions of the row, column, and value of the non-zero entries
inM according to some canonical order overK.10

This method of representing the low-degree extension ofM suggests an idea: let the verifier have oracle
access to the polynomials ˆrowM , ĉolM , v̂alM and do yet another univariate sumcheck, but this time over the
setK. The verifier sends β2 to the prover, who computes

σ3 := M̂(β2, β) =
∑
κ∈K

uH(β2, ˆrowM (κ)) · uH(β, ĉolM (κ)) · v̂alM (κ) .

10Technicality: v̂al(κ) actually equals the value divided by uH(ˆrowM (κ), ˆrowM (κ))uH(ĉolM (κ), ĉolM (κ)).

15

Then the prover replies with σ3 and the polynomials h3(X) and g3(X) such that

uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X) = h3(X)vK(X) +Xg3(X) + σ3/m .

The verifier can then check this equation at a random β3 ∈ F, which only requires O(logm) operations.
The above idea almost works; the one remaining problem is that h3(X) has degree Ω(nm) (be-

cause the left-hand size of the equation has quadratic degree), which is too expensive for our tar-
get of a quasilinear-time prover. We overcome this problem by letting the prover run the univariate
sumcheck protocol on the unique low-degree extension f̂(X) of the function f : K → F defined as
f(κ) := uH(β2, ˆrowM (κ))uH(β, ĉolM (κ))v̂alM (κ). Observe that f̂(X) has degree less thanm. The verifier
checks that f̂(X) and uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X) agree onK.
From sketch to protocol. In the above discussion we have ignored a number of technical aspects, such as
proof of knowledge and zero knowledge (which are ultimately needed in the compiler if we want to construct
a preprocessing zkSNARK). We have also not discussed time complexities of many algebraic steps, and we
omitted discussion of how to batch multiple sumchecks into fewer ones, which brings important savings in
argument size. For details, see our detailed construction in Section 5.

2.5 Construction: extractable polynomial commitments

We now sketch how to construct a polynomial commitment scheme that achieves the strong functionality and
security requirements of our definition in Section 2.2. Our starting point is the PolyCommitDL construction
of Kate et al. [KZG10], and then describe a sequence of natural and generic transformations that extend
this construction to enable extractability, commitments to multiple polynomials, and the enforcement of
per-polynomial degree bounds. In fact, once we arrive at a scheme that supports extractability for committed
polynomials at a single point (Appendix B), our transformations build on this construction in a black box way
to first support per-polynomial degree bounds (Appendix C), and then query sets that may request multiple
evaluation points per polynomial (Appendix D). Indeed, it is sufficient to produce a polynomial commitment
scheme that satisfies the much more simple interface and definitions in Appendix B.1, and apply these black
box transformations to obtain a polynomial commitment scheme that satisfies the interface of and provides
the properties described in Section 6.1 ultimately needed by our compiler.
Starting point: PolyCommitDL. The setup phase samples a cryptographically secure bilinear group
(G1,G2,GT , q, G,H, e) and then samples a committer key ck and receiver key rk for a given degree bound
D. The committer key consists of group elements encoding powers of a random field element β, namely,
ck := {G, βG, . . . , βDG} ∈ GD+1

1 . The receiver key consists of the group elements rk := (G,H, βH) ∈
G1 ×G2

2. Note that the SRS, which consists of the keys ck and rk, is updatable because the coefficients of
group elements in the SRS are all monomials (see Remark 7.1).

To commit to a polynomial p ∈ Fq[X], the sender computes c := p(β)G. To subsequently prove
that the committed polynomial evaluates to v at a point z, the sender computes a witness polynomial
w(X) := (p(X)− p(z))/(X − z), and provides as proof a commitment to w: π := w(β)G. The idea is that
the witness function w is a polynomial if and only if p(z) = v; otherwise, it is a rational function, and cannot
be committed to using ck.

Finally, to verify a proof of evaluation, the receiver checks that the commitment and proof of evaluation
are consistent. That is, it checks that the proof commits to a polynomial of the form (p(X)− p(z))/(X − z)
by checking the equality e(c− vG,H) = e(π, βH − zH).
Achieving extractability. While the foregoing construction guarantees correctness of evaluations, it does
not by itself guarantee that a commitment actually “contains” a suitable polynomial of degree at most D. We

16

study two methods to address this issue, and thereby achieve extractability. One method is to modify the
construction to use knowledge commitments [Gro10], and rely on a concrete knowledge assumption. The
main disadvantage of this approach is that each commitment doubles in size. The other method is to move
away from the plain model, and instead conduct the security analysis in the algebraic group model (AGM)
[FKL18]. This latter method is more efficient because each commitment remains a single group element.
Committing to multiple polynomials at once. We enable the sender to simultaneously open multiple
polynomials [pi]

n
i=1 at the same point z as follows. Before generating a proof of evaluation for [pi]

n
i=1, the

sender requests from the receiver a random field element ξ, which he uses to take a random linear combination
of the polynomials: p :=

∑n
i=1 ξ

ipi, and generates a proof of evaluation π for this polynomial p.
The receiver verifies π by using the fact that the commitments are additively homomorphic. The receiver

takes a linear combination of the commitments and claimed evaluations, obtaining the combined commitment
c =

∑n
i=1 ξ

ici and evaluation v =
∑n

i=1 ξ
ivi. Finally, it checks the pairing equations for c, π, and v.

Completeness of this check is straightforward, while soundness follows from the fact that if any polynomial
does not match its evaluation, then the combined polynomial will not match its evaluation with high probability.
Enforcing multiple degree bounds. The construction so far enforces a single boundD on the degrees of all
the polynomials pi. To enforce a different degree bound di for each pi, we require the sender to commit not
only to each pi, but also to “shifted polynomials” p′i(X) := XD−dipi(X). The proof of evaluation proves
that, if pi evaluates to vi at z, then p

′
i evaluates to z

D−divi.
The receiver checks that the commitment for each p′i corresponds to an evaluation zD−divi so that, if z is

sampled from a super-polynomial subset of Fq, the probability that deg(pi) 6= di is negligible. This trick is
similar to the one used in [BS08; Ben+19c] to derive low-degree tests for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness polynomial for p′i has
Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it requires Ω(D)
scalar multiplications (instead of O(di)). To work around this, we instead produce a proof that the related
polynomial p?i (X) := p′i(X) − pi(z)X

D−di evaluates to 0 at z. As we show in Lemma C.2, the witness
polynomial for this claim has O(di) non-zero coefficients, and so constructing the evaluation proof can be
done in O(di) scalar multiplications. Completeness is preserved because the receiver can check the correct
evaluation of p?i by subtracting pi(z)(β

D−diG) from the commitment to the shifted polynomial p′i, thereby
obtaining a commitment to p?i , while security is preserved because p

′
i(z) = zD−divi ⇐⇒ p?i (z) = 0.

Evaluating at a query set instead of a single point. To support the case where the polynomials [pi]
n
i=1 are

evaluated at a set of points Q, the sender proceeds as follows. Say that there are k different points [zi]
k
i=1 in

Q. The sender partitions the polynomials [pi]
n
i=1 into different groups such that every polynomial in a group

is to be evaluated at the same point zi. The sender runs PC.Open on each group, and outputs the resulting list
of evaluation proofs.
Achieving hiding. To additionally achieve hiding, we follow the above blueprint, replacing PolyCommitDL
with the hiding scheme PolyCommitPed described in [KZG10].

17

3 Preliminaries

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the tuple (a1, . . . , an),

and [ai]
n
i=1 = [[ai,j]

m
j=1]ni=1 as a short-hand for the tuple (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes

the number of entries in a. If x is a binary string then |x| denotes its bit length. IfM is a matrix then ‖M‖
denotes the number of nonzero entries inM . If S is a finite set then |S| denotes its cardinality and x← S
denotes that x is an element sampled at random from S. We denote by F a finite field, and whenever F is an
input to an algorithm we implicitly assume that F is represented in a way that allows efficient field arithmetic.
Given a finite set S, we denote by FS the set of vectors indexed by elements in S. We denote by F[X] the ring
of univariate polynomials over F inX , and by F<d[X] the set of polynomials in F[X] with degree less than d.

We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable n, we implicitly
assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in λ (namely, a
function that vanishes faster than the inverse of any polynomial in λ). When a function can be expressed
in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that A is an efficient adversary
we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the adversary consists of
multiple circuit families A1,A2, . . . then we write A = (A1,A2, . . .).

Given two interactive algorithms A and B, we denote by 〈A(x), B(y)〉(z) the output of B(y, z) when
interacting with A(x, z). Note that this output could be a random variable. If we use this notation when A or
B is a circuit, we mean that we are considering a circuit that implements a suitable next-message function to
interact with the other party of the interaction.

3.1 Indexed relations

An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance, andw is the witness;
the corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a witness w such
that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits consists of triples where i
is the description of a boolean circuit, x is a partial assignment to its input wires, and w is an assignment to
the remaining wires that makes the circuit to output 0. Given a size bound N ∈ N, we denote by RN the
restriction ofR to triples (i,x,w) with |i| ≤ N.

18

4 Algebraic holographic proofs

We define algebraic holographic proofs (AHPs), the notion of proofs that we use. For simplicity, the formal
definition below is tailored to univariate polynomials, because our AHP construction is in this setting. The
definition can be modified in a straightforward way to consider the general case of multivariate polynomials.

We represent polynomials through the coefficients that define them, as opposed to through their evaluation
over a sufficiently large domain (as is typically the case in probabilistic proofs). This definitional choice is
due to the fact that we will consider verifiers that may query the polynomials at any location in the field
of definition. Moreover, the field of definition itself can be chosen from a given field family, and so we
make the field an additional input to all algorithms; this degree of freedom is necessary when combining
this component with polynomial commitment schemes (see Section 8). Finally, we consider the setting of
indexed relations (see Section 3.1), where the verifier’s input has two parts, the index and the instance; in the
definition below, the verifier receives the index encoded and the instance explicitly.

Formally, an algebraic holographic proof (AHP) over a field family F for an indexed relation R is
specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of interaction rounds, s
specifies the number of polynomials in each round, and d specifies degree bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a field F ∈ F and an index i for
R, and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0))
respectively. Note that the offline phase does not depend on any particular instance or witness, and merely
considers the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P receives
(F, i,x,w) and the verifier V receives (F,x) and oracle access to the polynomials output by I(F, i). The
prover P and the verifier V interact over k = k(|i|) rounds.

For i ∈ [k], in the i-th round of interaction, the verifier V sends a message ρi ∈ F∗ to the prover P; then
the prover P replies with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. The verifier may query any of the
polynomials it has received any number of times. A query consists of a location z ∈ F for an oracle pi,j , and
its corresponding answer is pi,j(z) ∈ F. After the interaction, the verifier accepts or rejects.

The function d determines which provers to consider for the completeness and soundness properties of
the proof system. In more detail, we say that a (possibly malicious) prover P̃ is admissible for AHP if, on
every interaction with the verifier V, it holds that for every round i ∈ [k] and oracle index j ∈ [s(i)] we have
deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be admissible under this definition.

We say that AHP has perfect completeness and soundness error ε if the following holds.

• Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R, the probability that
P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and admissible prover P̃, the
probability that P̃ convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is at most ε.

The proof length l is the sum of all degree bounds in the offline and online phases, l(|i|) :=∑k(|i|)
i=0

∑s(i)
j=1 d(|i|, i, j). The intuition for this definition is that in a probabilistic proof each oracle would

consist of the evaluation of a polynomial over a domain whose size (in field elements) is linearly related to its
degree bound, so that the resulting proof length would be linearly related to the sum of all degree bounds.

19

The query complexity q is the total number of queries made by the verifier to the polynomials. This
includes queries to the polynomials output by the indexer and those sent by the prover.

All AHPs that we construct achieve the stronger property of knowledge soundness (against admissible
provers), and optionally also zero knowledge. We define both of these properties below.
Knowledge soundness. We say thatAHP has knowledge error ε if there exists a probabilistic polynomial-time
extractor E for which the following holds. For every field F ∈ F , index i, instance x, and admissible prover
P̃, the probability that EP̃(F, i,x, 1l(|i|)) outputs w such that (i,x,w) ∈ R is at least the probability that P̃

convinces VI(F,i)(F,x) to accept minus ε. Here the notation EP̃ means that the extractor E has black-box
access to each of the next-message functions that define the interactive algorithm P̃. (In particular, the
extractor E can “rewind” the prover P̃.) Note that since E receives the proof length l(|i|) in unary, E has
enough time to receive, and perform efficient computations on, polynomials output by P̃.
Zero knowledge. We say that AHP has (perfect) zero knowledge with query bound b and query checker C
if there exists a probabilistic polynomial-time simulator S such that for every field F ∈ F , index-instance-
witness tuple (i,x,w) ∈ R, and (b,C)-query algorithm Ṽ the random variables View(P(F, i,x,w), Ṽ)

and SṼ(F, i,x), defined below, are identical. Here, we say that an algorithm is (b,C)-query if it makes at
most b queries to oracles it has access to, and each query individually leads the checker C to output “ok”.

• View(P(F, i,x,w), Ṽ) is the view of Ṽ, namely, is the random variable (r, a1, . . . , aq) where r is Ṽ’s
randomness and a1, . . . , aq are the responses to Ṽ’s queries determined by the oracles sent by P(F, i,x,w).

• SṼ(F, i,x) is the output of S(F, i,x) when given straightline access to Ṽ (S may interact with Ṽ, without
rewinding, by exchanging messages with Ṽ and answering any oracle queries along the way), prepended
with Ṽ’s randomness r. Note that r could be of super-polynomial size, so S cannot sample r on Ṽ’s behalf
and then output it; instead, as in prior work, we restrict S to not see r, and prepend r to S’s output.

A special case of interest. We only consider AHPs that satisfy the following properties.

– Public coins: AHP is public-coin if each verifier message to the prover is a uniformly random string of some
prescribed length (or an empty string). Hence the verifier’s randomness is its messages ρ1, . . . , ρk ∈ F∗ and
possibly additional randomness ρk+1 ∈ F∗ used after the interaction. All verifier queries can be postponed,
without loss of generality, to a query phase that occurs after the interactive phase with the prover.

– Non-adaptive queries: AHP is non-adaptive if all of the verifier’s query locations are solely determined by
the verifier’s randomness and inputs (the field F and the instance x).

Given these properties, we can view the verifier as two subroutines that execute in the query phase: a query
algorithm QV that produces query locations based on the verifier’s randomness, and a decision algorithm
DV that accepts or rejects based on the answers to the queries (and the verifier’s randomness). In more detail,
QV receives as input the field F, the instance x, and randomness ρ1, . . . , ρk, ρk+1, and outputs a query set Q
consisting of tuples ((i, j), z) to be interpreted as “query pi,j at z ∈ F”; and DV receives as input the field F,
the instance x, answers (v((i,j),z))((i,j),z)∈Q, and randomness ρ1, . . . , ρk, ρk+1, and outputs the decision bit.

While the above properties are not strictly necessary for the compiler that we describe in Section 8,
all “natural” protocols that we are aware of (including those that we construct in this paper) satisfy these
properties, and so we restrict our attention to public-coin non-adaptive protocols for simplicity.

20

5 AHP for constraint systems

We construct an AHP for rank-1 constraint satisfiability (R1CS) that has linear proof length and constant
query complexity. Below we define the indexed relation that represents this problem, and then state our result.

Definition 5.1 (R1CS indexed relation). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(F, H,K,A,B,C), x, w

)
where F is a finite field, H and K are subsets of F, A,B,C are H × H matrices over F with |K| ≥
max{‖A‖, ‖B‖, ‖C‖}, and z := (x,w) is a vector in FH such that Az ◦Bz = Cz.

Theorem 5.2. There exists an AHP for the indexed relationRR1CS that is a zero knowledge proof of knowledge
with the following features. The indexer uses O(|K| log |K|) field operations and outputs O(|K|) field
elements. The prover and verifier exchange 7 messages. To achieve zero knowledge against b queries (with a
query checker C that rejects queries in H), the prover uses O((|K|+ b) log(|K|+ b)) field operations and
outputs a total of O(|H|+ b) field elements. The verifier makes O(1) queries to the encoded index and to the
prover’s messages, has soundness error O((|K|+ b)/|F|), and uses O(|x|+ log |K|) field operations.

Remark 5.3 (restrictions on domains). Our protocol uses the univariate sumcheck of [Ben+19c] as a subroutine,
and in particular inherits the requirement that the domains H and K must be additive or multiplicative
subgroups of the field F. For simplicity, in our descriptions we use multiplicative subgroups because we use
this case in our implementation; the case of additive subgroups involves only minor modifications. Moreover,
the arithmetic complexities for the indexer and prover stated in Theorem 5.2 assume that the domainsH and
K are “FFT-friendly” (e.g., they have smooth sizes); this is not a requirement, since in general the arithmetic
complexities will be that of an FFT over the domains H and K. Note that we can assume without loss of
generality that |H| = O(|K|), for otherwise (if |K| < |H|/3) then are empty rows or columns across the
matrices that we can drop and reduce their size. Finally, we assume that |H| ≤ |F|/2.

This section is organized as follows: in Section 5.1 we introduce algebraic notations and facts used in this
section; in Section 5.2 we describe an AHP for checking linear relations; and in Section 5.3 we build on this
latter to obtain an AHP for R1CS.

Throughout we assume thatH andK come equipped with bijectionsφ
H

: H → [|H|] andφ
K

: K → [|K|]
that are computable in linear time. Moreover, we define the two sets H[≤ k] := {κ ∈ H : 1 ≤ φ

H
(κ) ≤ k}

and H[> k] := {κ ∈ H : φ
H

(κ) > k} to denote the first k elements in H and the remaining elements,
respectively. We can then write that x ∈ FH[≤|x|] and w ∈ FH[>|x|].

5.1 Algebraic preliminaries

Polynomial encodings. For a finite field F, subset S ⊆ F, and function f : S → F we denote by f̂ the
(unique) univariate polynomial over F with degree less than |S| such that f̂(a) = f(a) for every a ∈ S. We
sometimes abuse notation and write f̂ to denote some polynomial that agrees with f on S, which need not
equal the (unique) such polynomial of smallest degree.
Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote by vS the unique non-zero monic
polynomial of degree at most |S| that is zero everywhere on S; vS is called the vanishing polynomial of S. If
S is an additive or multiplicative coset in F then vS can be evaluated in polylog(|S|) field operations. For
example, if S is a multiplicative subgroup of F then vS(X) = X |S| − 1 and, more generally, if S is a ξ-coset

21

of a multiplicative subgroup S0 (namely, S = ξS0) then vS(X) = ξ|S|vS0
(X/ξ) = X |S| − ξ|S|; in either

case, vS can be evaluated in O(log |S|) field operations.
Derivative of vanishing polynomials. We rely on various properties of a bivariate polynomial uS introduced
in [Ben+19b]. For a finite field F and subset S ⊆ F, we define

uS(X,Y) :=
vS(X)− vS(Y)

X − Y
,

which is a polynomial of individual degree |S| − 1 becauseX − Y dividesXi − Y i for any positive integer i.
Note that uS(X,X) is the formal derivative of the vanishing polynomial vS(X). The bivariate polynomial
uS(X,Y) satisfies two useful algebraic properties. First, the univariate polynomials (uS(X, a))a∈S are
linearly independent, and uS(X,Y) is their (unique) low-degree extension. Second, uS(X,Y) vanishes on
the square S × S except for on the diagonal, where it takes on the (non-zero) values (uS(a, a))a∈S .

If S is an additive or multiplicative coset in F, uS(X,Y) can be evaluated at any (α, β) ∈ F2 in
polylog(|S|) field operations because in this case both vS (and its derivative) can be evaluated in polylog(|S|)
field operations. For example, if S is a multiplicative subgroup then uS(X,Y) = (X |S| − Y |S|)/(X − Y)

and uS(X,X) = |S|X |S|−1, so both can be evaluated in O(log |S|) field operations.
Univariate sumcheck for subgroups. Prior work [Ben+19c] shows that, given a multiplicative subgroup S of
F, a polynomial f(X) sums to σ over S if and only if f(X) can be written as h(X)vS(X) +Xg(X) +σ/|S|
for some h(X) and g(X) with deg(g) < |S| − 1. This can be viewed as a univariate sumcheck protocol, and
we shall rely on it throughout this section.

5.2 AHP for the lincheck problem

The lincheck problem for univariate polynomials considers the task of deciding whether two polynomials
encode vectors that are linearly related in a prescribed way. In more detail, the problem is parametrized by a
field F, two subsets H and K of F, and a matrixM ∈ FH×H with |K| ≥ ‖M‖ > 0. Given oracle access
to two low-degree polynomials f1, f2 ∈ F<d[X], the problem asks to decide whether for every a ∈ H it
holds that f1(a) =

∑
b∈HMa,b · f2(b), by asking a small number of queries to f1 and f2. The matrixM thus

prescribes the linear relations that relate the values of f1 and f2 on H .
Ben-Sasson et al. [Ben+19c] solve this problem by reducing the lincheck problem to a sumcheck problem,

and then reducing the sumcheck problem to low-degree testing (of univariate polynomials). In particular,
this prior work achieves a 2-message algebraic non-holographic protocol that solves the lincheck problem
with linear proof length and constant query complexity. In this section we show how to achieve a 6-message
algebraic holographic protocol, again with linear proof length and constant query complexity. In Section 5.2.1
we describe the indexer algorithm, in Section 5.2.2 we describe the prover and verifier algorithms, and in
Section 5.2.3 we analyze the protocol. Fig. 4 summarizes the protocol.

5.2.1 Offline phase: encoding the linear relation

The indexer I for the lincheck problem receives as input a field F, two subsetsH andK of F, and a matrix
M ∈ FH×H with |K| ≥ ‖M‖. The non-zero entries ofM are assumed to be presented in some canonical
order (e.g., row-wise or column-wise). The output of I is three univariate polynomials ˆrow, ĉol, v̂al over F of
degree less than |K| such that the following polynomial is a low-degree extension ofM :

M̂(X,Y) :=
∑
κ∈K

uH(X, ˆrow(κ))uH(Y, ĉol(κ))v̂al(κ) . (1)

22

The three three aforementioned polynomials are the (unique) low-degree extensions of the three functions
row, col, val : K → F that respectively represent the row index, column index, and value of the non-zero
entries of the matrixM . In more detail, for every κ ∈ K with 1 ≤ φ

K
(κ) ≤ ‖M‖:

• row(κ) := φ−1
H

(tκ) where tκ is the row index of the φ
K

(κ)-th nonzero entry inM ;
• col(κ) := φ−1

H
(tκ) where tκ is the column index of the φ

K
(κ)-th nonzero entry inM ;

• val(κ) is the value of the φ
K

(κ)-th nonzero entry inM , divided by uH(row(κ), row(κ))uH(col(κ), col(κ)).

Also, val(κ) returns the element 0 for every κ ∈ K with φ
K

(κ) > ‖M‖, while row(κ) and col(κ) return an
arbitrary element in H for such κ. The evaluation tables of these functions can be found in O(|K| log |H|)
operations, from which interpolation yields the desired polynomials in O(|K| log |K|) operations.

Recall from Section 5.1 that the bivariate polynomial uH(X,Y) vanishes on the squareH ×H except for
on the diagonal, where it takes on the (non-zero) values (uH(a, a))a∈H . By construction of the polynomials
ˆrow, ĉol, v̂al, the polynomial M̂(X,Y) agrees with the matrixM everywhere on the domain H ×H . The

individual degree of M̂(X,Y) is less than |H|. Thus, M̂ is the unique low-degree extension ofM .
We rewrite the polynomial M̂(X,Y) in a form that will be useful later:

Claim 5.4.
M̂(X,Y) =

∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y)

(Y − ĉol(κ))
· v̂al(κ) . (2)

Proof. Note that vH(ˆrow(κ)) = vH(ĉol(κ)) = 0 for every κ ∈ K because ˆrow(X) and ĉol(X) mapK toH
and vH vanishes on H . Therefore:

M̂(X,Y) =
∑
κ∈K

uH(X, ˆrow(κ)) · uH(Y, ĉol(κ)) · v̂al(κ)

=
∑
κ∈K

vH(X)− vH(ˆrow(κ))

X − ˆrow(κ)
· vH(Y)− vH(ĉol(κ))

Y − ĉol(κ)
· v̂al(κ)

=
∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y)

(Y − ĉol(κ))
· v̂al(κ) .

5.2.2 Online phase: proving and verifying the linear relation

The prover P for the lincheck problem receives as input a field F, two subsets H and K of F, a matrix
M ∈ FH×H with |K| ≥ ‖M‖, and two polynomials f1, f2 ∈ F<d[X]. The verifier V for the lincheck
problem receives as input the field F and two subsets H and K of F; V also has oracle access to the
polynomials ˆrow, ĉol, v̂al output by the indexer I invoked on appropriate inputs.

The protocol begins with a reduction from a lincheck problem to a sumcheck problem: V samples a
random element α ∈ F and sends it to P. Indeed, letting r(X,Y) denote the polynomial uH(X,Y), P is left
to convince V that the following univariate polynomial sums to 0 on H:

q1(X) := r(α,X)f1(X)− rM (α,X)f2(X) where rM (X,Y) :=
∑
κ∈H

r(X,κ)M̂(κ, Y) . (3)

23

We rely on the univariate sumcheck protocol for this step: P sends to V the polynomials g1(X)
and h1(X) such that q1(X) = h1(X)vH(X) + Xg1(X). In order to check this polynomial identity, V
samples a random element β1 ∈ F with the intention of checking the identity at X := β1. For the
right-hand side, V queries g1 and h1 at β1, and then evaluates h1(β1)vH(β1) + β1g1(β1) in O(log |H|)
operations. For the left-hand side, V queries f1 and f2 at β1 and then needs to ask help from P to
evaluate r(α, β1)f1(β1)− rM (α, β1)f2(β1). The reason is that while r(α, β1) is easy to evaluate (it requires
O(log |H|) operations), rM (α, β1) =

∑
κ∈H r(α, κ)M̂(κ, β1) in general requires Ω(|H||K|) operations.

We thus rely on the univariate sumcheck protocol again. We define

q2(X) := r(α,X)M̂(X,β1) (4)

V sends β1 to P, and then P replies with the sum σ2 :=
∑

κ∈H r(α, κ)M̂(κ, β1) and the polynomials
g2(X) and h2(X) such that q2(X) = h2(X)vH(X) +Xg2(X) + σ2/|H|. In order to check this polynomial
identity, V samples a random element β2 ∈ F with the intention of checking the identity at X := β2. For
the right-hand side, V queries g2 and h2 at β2, and then evaluates h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in
O(log |H|) operations. To evaluate the left-hand side, however, V needs to ask help from P. The reason
is that while r(α, β2) is easy to evaluate (it requires O(log |H|) operations), M̂(β2, β1) in general requires
Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P replies with
the value σ3 := M̂(β2, β1), which the verifier must check. Note though that we cannot use the sumcheck
protocol directly to compute the sum obtained from Eq. (1):

M̂(β2, β1) =
∑
κ∈K

uH(β2, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

The reason is because the degree of the above addend, if we replace κ with an indeterminate, is Ω(|H||K|),
which means that the degree of the polynomial h3 sent as part of a sumcheck protocol also has degree
Ω(|H||K|), which is not within our budget of an AHP with proof length O(|H|+ |K|). Instead, we make
the minor modification that in the earlier rounds β1 and β2 are sampled from F \H instead of F, and we will
leverage the sumcheck protocol to verify the equivalent (well defined) expression from Eq. (2):

M̂(β2, β1) =
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
.

This may appear to be an odd choice, because if we replace κ with an indeterminate in the sum above, we
obtain a rational function that is (in general) not a polynomial, and so does not immediately fit the sumcheck
protocol. Nevertheless, we are still able to use the sumcheck protocol with it, as we now explain.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
. (5)

The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| ,
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))f3(X) = h3(X)vK(X) .

24

The first equation demonstrates that f3 sums to σ3 over K, and the second equation demonstrates that
f3 agrees with the correct addends overK. These two equations can be combined in a single equation that
involves only g3(X) and h3(X):

vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this polynomial
identity, V samples a random element β3 ∈ F with the intention of checking the identity at X := β3. Then
V queries g3, h3, ˆrow, ĉol, v̂al at β3, and then evaluates vH(β2)vH(β1)v̂al(β3) − (β2 − ˆrow(β3))(β1 −
ĉol(β3))(β3g3(β3) + σ3/|K|) = h3(β3)vK(β3) in O(log |K|) operations.

If this third test passes then V can use the value σ3 in place of M̂(β2, β1) to finish the second test. If this
latter passes, V can in turn use the value σ2 in place of rM (α, β1) to finish the first test.

5.2.3 Analysis

Soundness. We argue that the soundness error is at most

|H|+ 3|K|
|F|

+
d+ 3|H|
|F \H|

.

There are four ways in which the verifier could still accept if the lincheck statement is false: if the randomized
reduction to the first sumcheck produces a polynomial that sums to zero; or if any one of the three sumchecks
accepts despite the claimed sum being incorrect. The probability that the randomized reduction to sumcheck
fails is at most the individual degree in X of r(X,Y) divided by |F|, which is less than |H|/|F|. The
probability that any one of the sumchecks fail to detect an incorrectly declared sum is at most the maximum
degree of the polynomial equation tested in the respective sumcheck divided by the size from which the
test element is sampled. The innermost sumcheck has maximum degree less than 3|K|, the intermediate
sumcheck has maximum degree less than 2|H|, and the outermost sumcheck has maximum degree less than
|H|+ d. These errors add up to the soundness error claimed above.
Efficiency. The protocol consists of 6 messages, with the verifier moving first. The verifier makes a constant
number of queries, evaluates vH and vK at a constant number of locations, and then performs a constant
number of field operations. In particular, the arithmetic complexity of the verifier is O(log |H|+ log |K|).
The prover sends a constant number of polynomials with degrees linearly related to d (the bound on the degrees
of f1 and f2), |H|, and |K|. We now argue that prover time is O((|H|+ d) log(|H|+ d) + |K| log |K|). In
the first round, the prover sends the coefficients of the polynomials g1(X) and h1(X), which can be found in
time O(|K|+ (|H|+ d) log(|H|+ d)), as we argue in Lemma 5.5. In the second round, the prover sends the
field element σ2 and the polynomials g2(X) and h2(X), which can be found in time O(|K|+ |H| log |H|),
as we argue in Lemma 5.6. In the third round, the prover sends the field element σ3 and the polynomials
g3(X) and h3(X), which can be found in time O(|K| log |K|), as we argue in Lemma 5.7.

Lemma 5.5 (first round). The coefficients of the polynomials g1(X) and h1(X) can be found in O(|K|+
(|H|+ d) log(|H|+ d)) field operations, when given coefficients of the polynomials f1(X) and f2(X), the
subsets H andK, and the matrixM (in sparse form).

Proof. It suffices to find the coefficients of the polynomial q1(X) from Eq. (3), which has degree at most
|H|+ d− 2, because the polynomials g1(X) and h1(X) can be found via polynomial long division of q1(X)
by vH in time O((|H|+ d) log |H|). In turn, q1(X) can be computed from the coefficients of f1(X), f2(X),

25

r(α,X), and rM (α,X) in timeO((|H|+d) log(|H|+d)) via fast polynomial multiplication and polynomial
addition. The first two are given to us in coefficient form; to find the coefficients of the latter two polynomials,
we can evaluate each of them over H and then interpolate.

The values of r(α,X) on H can be obtained in O(|H| log |H|) operations via direct computation of
formulas described in Section 5.1. The problem is now reduced to finding the values of rM (α,X) on H —
this is the “hard part” that motivates the present proof.

Observe that, by definition of rM (see Eq. (3)) and M̂ (see Eq. (1)), the following holds:

rM (α,X) =
∑
κ1∈H

r(α, κ1)
∑
κ2∈K

uH(κ1, ˆrow(κ2))uH(X, ĉol(κ2))v̂al(κ2)

=
∑
κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)
∑
κ1∈H

r(α, κ1)uH(κ1, ˆrow(κ2))

=
∑
κ2∈K

uH(X, ĉol(κ2))v̂al(κ2)r(α, ˆrow(κ2))uH(ˆrow(κ2), ˆrow(κ2)) .

The last equality uses the fact that, for every κ2 ∈ K, the summation
∑

κ1∈H r(α, κ1)uH(κ1, ˆrow(κ2))
collapses to a single term corresponding to κ1 = ˆrow(κ2); the other terms, which correspond to κ1 6= ˆrow(κ2),
are zero due to the fact that the polynomial uH vanishes on the square H ×H except for on its diagonal.

Next, again using the fact that uH vanishes on the square H ×H except for on its diagonal, we note that
for every κ1 ∈ H

rM (α, κ1) =
∑

κ2∈K s.t. ĉol(κ2)=κ1

uH(κ1, ĉol(κ2))v̂al(κ2) · r(α, ˆrow(κ2))uH(ˆrow(κ2), ˆrow(κ2)) .

In other words, as κ1 ranges over H , each element of the sum in rM (α, κ1) contributes a nonzero value
precisely when κ1 equals a particular element of H , namely, when κ1 = ĉol(κ2). Also, since κ2 ranges only
inK, ˆrow(κ2) = row(κ2), ĉol(κ2) = col(κ2), and v̂al(κ2) = val(κ2) are just the row index, column index,
and value of the κ2-th entry ofM (or zero).

This immediately leads to the following strategy to finding the values of rM (α,X) on H . Ini-
tialize for each κ1 ∈ H a variable for rM (α, κ1) that is initially set to 0. Then, for each κ2 ∈ K,
compute the term uH(col(κ2), col(κ2))val(κ2)r(α, row(κ2))uH(row(κ2), row(κ2)) and add it to the vari-
able for rM (α, col(κ2)). Since the values (uH(κ1, κ1))κ1∈H and (r(α, κ1))κ1∈H can be precomputed in
O(|H| log |H|) operations, the foregoing strategy can be carried out inO(|K|+ |H| log |H|) operations.

Lemma 5.6 (second round). The field element σ2 and the coefficients of the polynomials g2(X) and h2(X)
can be found in O(|K|+ |H| log |H|) field operations, when given the subsets H andK and the matrixM
(in sparse form).

Proof. It suffices to find the coefficients of the polynomial q2(X) from Eq. (4), which has degree at most
2|H| − 2, because the polynomials g2(X) and h2(X) can be found via polynomial long division of q2(X) by
vH in time O(|H| log |H|), and the sum σ2 can be found by evaluating q2(X) overH in time O(|H| log |H|)
and summing in time O(|H|). In turn, q2(X) can be computed from the coefficients of r(α,X) and of
M̂(X,β1) in time O(|H| log |H|) using fast polynomial multiplication. To find the coefficients of these two
polynomials, we can evaluate each of them over H and then interpolate. The values of r(α,X) on H can be
obtained in O(|H| log |H|) operations. We now need to find the values of M̂(X,β1) on H .

Recall that
M̂(X,β1) =

∑
κ∈K

uH(X, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

26

Using the fact that uH vanishes on the square H ×H except for the diagonal, we note that for every
κ1 ∈ H

M̂(κ1, β1) =
∑

κ2∈K s.t. ˆrow(κ2)=κ1

uH(κ1, ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2) .

Thus, to find the values of of M̂(X,β1) onH , we initialize for each κ1 ∈ H a variable for M̂(κ1, β1) that is
initially set to 0. Then, for each κ2 ∈ K, we compute the term uH(ˆrow(κ2), ˆrow(κ2))uH(β1, ĉol(κ2))v̂al(κ2)
and add it to the variable for M̂(ˆrow(κ2), β1). Since the values (uH(κ, κ))κ∈H and (uH(β1, κ))κ∈H can be
precomputed in O(|H| log |H|) operations, the foregoing strategy can be carried out in O(|K|+ |H| log |H|)
operations.

Lemma 5.7 (third round). The field element σ3 and the coefficients of the polynomials g3(X) and h3(X) can
be found in O(|K| log |K|) field operations, when given the subsets H andK and the matrixM (in sparse
form).

Proof. First, we find the coefficients of the polynomial f3(X) from Eq. (5), which has degree at most |K| − 1.
We traverse the matrixM to find the values of ˆrow(κ) = row(κ), ĉol(κ) = col(κ), and v̂al(κ) = val(κ), for
every κ ∈ K. Then, for each κ ∈ K, we calculate f3(κ) = vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))
, and interpolate those |K|

values, in time O(|K| log |K|). Those values can also be summed, in time O(|K|), to obtain σ3. Then g3(X)
can be found easily, by subtracting σ3/|K| from f3(X) and dividing by X .

Next, the prover interpolates the values fromM to find the three polynomials ˆrow, ĉol, and v̂al. Using fast
polynomial multiplication, the prover calculates vH(β2)vH(β1)v̂al(X)−(β2− ˆrow(X))(β1− ĉol(X))f3(X),
and divides this polynomial by vK(X) to find h3(X). This too can be done in time O(|K| log |K|).

5.3 AHP for R1CS

We prove Theorem 5.2. In Section 5.3.1 we describe the indexer algorithm, in Section 5.3.2 we describe the
prover and verifier algorithms, and in Section 5.3.3 we analyze the protocol. Fig. 5 summarizes the protocol.

The AHP for R1CS directly builds on the AHP for the lincheck problem, analogously to how in [Ben+19c]
the non-holographic protocol for R1CS builds on the non-holographic lincheck protocol. The three lincheck
problems associated to the three matrices in the index are bundled together via random coefficients, while
the entry-wise product is checked with a polynomial identity. Zero knowledge is achieved via bounded
independence and random masks [Ben+16; Ben+19c]. Consistency with the instance is achieved by having
the verifier combine a low-degree extension of the instance and the low-degree extension of the (alleged)
witness sent by the prover, in order to create a low-degree extension of the full assignment.

5.3.1 Offline phase: encoding the constraint system

The indexer I for R1CS receives as input a field F, two subsets H and K of F, and three matrices
A,B,C ∈ FH×H with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}. The non-zero entries of A,B,C are assumed to be
presented in some common canonical order. The output of I consists of the output of the lincheck indexer
separately invoked on A,B,C. This produces nine univariate polynomials { ˆrowM , ĉolM , v̂alM}M∈{A,B,C}
over F of degree less than |K| that can be used to compute the low-degree extensions of A,B,C.

27

5.3.2 Online phase: proving and verifying satisfiability

The prover P for R1CS receives as input a field F, two subsetsH andK of F, three matricesA,B,C ∈ FH×H

with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}, input x ∈ FH[≤|x|], and witness w ∈ FH[>|x|]. The verifier V for R1CS
receives as input the field F, two subsets H andK of F, and input x ∈ FH[≤|x|]; V also has oracle access to
the polynomials { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} output by the indexer I invoked on appropriate inputs.

The protocol begins with the prover sending randomized encodings for (a certain shift of) the assignment
and its linear combinations. Define x̂(X) to be the polynomial of degree less than |x| that agrees with the
instance x in H[≤ |x|]. Define the shifted witness w̄ : H[> |x|]→ F according to the equation

∀ γ , w̄(γ) :=
w(γ)− x̂(γ)

vH[≤|x|](γ)
.

The prover P sends to V a random ŵ(X) ∈ F<|w|+b[X] that agrees with w̄ on H[> |x|]; P also sets
z := (x,w) ∈ FH to be the full assignment, computes the three linear combinations zA := Az, zB := Bz,
and zC := Cz, and sends to V random ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X] that agree with zA, zB, zC on
H . Note that the values of up to b locations in each of ŵ(X), ẑA(X), ẑB(X), ẑC(X) reveal no information
about the witness w, provided the locations are in F \H . Note also that ẑ(X) := ŵ(X)vH[≤|x|](X) + x̂(X)
agrees with z on H; moreover, V can evaluate ẑ(X) at any location γ with O(|x|) operations by querying ŵ
at γ and computing the expression ŵ(γ)vH[≤|x|](γ) + x̂(γ) by using x.

The rest of the protocol is for P to convince V that zA ◦ zB = zC and also that zA, zB, zC are obtained
as linear combinations from z.

In the same message as above, P also sends to V the polynomial h0(X) such that ẑA(X)ẑB(X) −
ẑC(X) = h0(X)vH(X). In addition, P sends to V a (fully) random s(X) ∈ F<2|H|+b−1[X] and its sum
σ1 :=

∑
κ∈H s(κ) over H . This random polynomial will be used as a “mask” to make the univariate

sumcheck zero knowledge.
Next, V samples random elements α, ηA, ηB, ηC ∈ F and sends them to P. The element α is used to

reduce lincheck problems to sumcheck, while the elements ηA, ηB, ηC are used to bundle the three sumcheck
problems into one. Indeed, P is left to convince V that the following univariate polynomial sums to σ1 onH:

q1(X) := s(X) + r(α,X)

 ∑
M∈{A,B,C}

ηM ˆzM (X)

−
 ∑
M∈{A,B,C}

ηMrM (α,X)

 ẑ(X) (6)

where rM (X,Y) :=
∑

κ∈H r(X,κ)M̂(κ, Y).
We now rely on the univariate sumcheck protocol: P sends to V the polynomials g1(X) and h1(X) such

that q1(X) = h1(X)vH(X) + Xg1(X). In order to check this polynomial identity, V samples a random
element β1 ∈ F \H with the intention of checking the identity atX := β1. For the right-hand side, V queries
g1 and h1 at β1 and then evaluates h1(β1)vH(β1) + β1g1(β1) in O(log |H|) operations. For the left-hand
side, V queries s, ẑA, ẑB, ẑC , ŵ at β1 and then needs to ask help from P to evaluate q1(β1). The reason is that
the term ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1) in general requires Ω(|H||K|) operations to compute.

Observe that

ηArA(α, β1) + ηBrB(α, β1) + ηCrC(α, β1)

= ηA
∑
κ∈H

r(α, κ)Â(κ, β1) + ηB
∑
κ∈H

r(α, κ)B̂(κ, β1) + ηC
∑
κ∈H

r(α, κ)Ĉ(κ, β1)

28

=
∑
κ∈H

r(α, κ)(ηAÂ(κ, β1) + ηBB̂(κ, β1) + ηCĈ(κ, β1)) .

We define the polynomial

q2(X) := r(α,X)(ηAÂ(X,β1) + ηBB̂(X,β1) + ηCĈ(X,β1)) (7)

and rely on the univariate sumcheck protocol again: V sends β1 to P, and then P replies with the sum σ2 :=∑
κ∈H q2(κ) and the polynomials g2(X) and h2(X) such that q2(X) = h2(X)vH(X) +Xg2(X) + σ2/|H|.

In order to check this polynomial identity, V samples a random element β2 ∈ F \H with the intention of
checking the identity at X := β2. (Excluding H is needed later in the protocol, as discussed below.) For
the right-hand side, V queries g2 and h2 at β2, and then evaluates h2(β2)vH(β2) + β2g2(β2) + σ2/|H| in
O(log |H|) operations. To evaluate the left-hand side, however, V needs to ask help from P. The reason is
that while r(α, β2) is easy to evaluate (it requires O(log |H|) operations), each term M̂(β2, β1) in general
requires Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2 to P, and then P replies with
the value σ3 := ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1), which the verifier much check. Observe that

ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1) =
∑
κ∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (κ)

(β2 − ˆrowM (κ))(β1 − ĉolM (κ))
.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
∑

M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (κ)

(β2 − ˆrowM (κ))(β1 − ĉolM (κ))
. (8)

The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| and a(X)− b(X)f3(X) = h3(X)vK(X)

where

a(X) :=
∑

M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM (X)
∏

N∈{A,B,C}\{M}

(β2 − ˆrowN (X))(β1 − ĉolN (X)) ,

b(X) :=
∏

M∈{A,B,C}

(β2 − ˆrowM (X))(β1 − ĉolM (X)) .

The first equation demonstrates that f3 sums to σ3 over K, and the second equation demonstrates that
f3 agrees with the correct addends overK. These two equations can be combined in a single equation that
involves only g3(X) and h3(X):

a(X)− b(X)(Xg3(X) + σ3/|K|) = h3(X)vK(X) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order to check this polynomial identity,
V samples a random element β3 ∈ F with the intention of checking the identity at X := β3. Then V queries
g3, h3, { ˆrowM , ĉolM , v̂alM}M∈{A,B,C} at β3, and checks the identity in O(log |H|) operations.

If this third test passes then V can use the value σ3 in place of
∑

M∈{A,B,C} ηMM̂(β2, β1) to finish the
second test. If this latter passes, V can in turn use the value σ2 in place of

∑
M∈{A,B,C} ηMrM (α, β1) to

finish the first test.

29

5.3.3 Analysis

Soundness. We argue that the soundness error is at most

max

{
2|H|+ 2b

|F|
,

3|K|+ |H|+ 1

|F|
+

4|H|+ b

|F \H|

}
.

Suppose that for the given index i = (F, H,K,A,B,C) and instance x = x there is no witness w = w
such that Az ◦ Bz = Cz for z := (x,w) is a vector in FH . In particular, this holds for the witness w
that is encoded in the polynomial ŵ(X) sent by the prover. Let zA, zB, zC be the vectors encoded in the
polynomials ẑA(X), ẑB(X), ẑC(X) sent by the prover, respectively. We know that either zA ◦ zB 6= zC
or one of zA, zB, zC is not the correct linear combination of z. In the first case, the polynomial identity
ẑAẑB − ẑC = h0vH does not hold, so the probability that the verifier still accepts is at most (2|H|+ 2b)/|F|.
In the second case, we rely on the randomized reduction to sumcheck, which fails with probability at most
(|H|+ 1)/|F|. Next we have to account for the soundness errors of the three sequential sumchecks, which
are bounded by the maximum degree in the respective polynomial equation divided by the size of the set
from which the test point is chosen. Thus, the innermost sumcheck has soundness error at most 3|K|/|F|; the
intermediate sumcheck has soundness error at most 2|H|/(|F \H|); the outermost sumcheck has soundness
error at most (2|H|+ b)/(|F \H|).
Proof of knowledge. If the verifier accepts with probability greater than the soundness error argued above,
then the prover’s polynomial ŵ must encode a valid witness w.
Zero knowledge. We only sketch the intuition because a full proof (which includes constructing a simulator)
is similar to the non-holographic setting described in [Ben+19c]. The first message of the prover includes an
encoding of the witness and encodings of its linear combinations. These encodings are protected against up
to b queries outside of H because the encodings are b-wise independent over F \H . The first message also
includes the polynomial h0(X), which in fact is b-wise independent everywhere on F. Subsequent messages
from the prover do not reveal any further information because they are produced for a sumcheck instance that
is shifted by a random polynomial (the polynomial s(X)). This leads to (perfect) zero knowledge with query
bound b and a query checker C that rejects any query to any of ŵ(X), ẑA(X), ẑB(X), ẑC(X) that lies in H .
Efficiency. The indexer computes and outputs a constant number of polynomials of degree less than |K|,
using time O(|K| log |K|). The subsequent protocol between the prover and verifier consists of 7 messages,
with the prover moving first. The verifier makes a constant number of queries, evaluates x̂, vH , vK at a
constant number of locations, and then performs a constant number of field operations. Thus, verifier time is
O(|x|+ log |H|+ log |K|). The prover sends a constant number of polynomials whose degree is linearly
related to |H|+ b or |K|. In the first round, the prover computes the linear combinations Az,Bz,Cz and
interpolates them, which can be done in time O(|K| + (|H| + b) log(|H| + b)); in the second round, the
prover finds the coefficients of the polynomials g1(X) and h1(X) in time O(|K|+ (|H|+ b) log(|H|+ b)),
similarly to the proof of Lemma 5.5; in the third round, the prover finds the sum σ2 and the coefficients
of g2(X) and h2(X) in time O(|K| + |H| log |H|), similarly to the proof of Lemma 5.6; and in the final
round, the prover finds the sum σ3 and the coefficients of g3(X) and h3(X) in time O(|K| log |K|), similarly
to the proof of Lemma 5.7. Thus, prover time is O((|H| + b) log(|H| + b) + |K| log |K|), which is
O((|K|+ b) log(|K|+ b)) since |H| = O(|K|) (see Remark 5.3).

30

P(F, H,K,M, f1, f2) Vf1,f2, ˆrow,ĉol,v̂al(F, H,K)

α← Fα ∈ F

sumcheck for r(α,X)f1(X)− rM (α,X)f2(X) over H
to evaluate

∑
κ∈H

r(α, κ)f1(κ)− rM (α, κ)f2(κ)

find g1(X) and h1(X) such that
r(α,X)f1(X)− rM (α,X)f2(X)
= h1(X)vH(X) +Xg1(X)

g1 ∈ F<|H|−1[X], h1 ∈ F<d−1[X]

β1 ← F \Hβ1 ∈ F

sumcheck for r(α,X)M̂(X,β1) over H
to evaluate rM (α, β1) =

∑
κ∈H

r(α, κ)M̂(κ, β1)

compute sum σ2 :=
∑

κ∈H r(α, κ)M̂(κ, β1)
and find g2(X) and h2(X) such that
r(α,X)M̂(X,β1)
= h2(X)vH(X) +Xg2(X) + σ2/|H|

σ2 ∈ F, g2, h2 ∈ F<|H|−1[X]

β2 ← F \Hβ2 ∈ F

sumcheck for vH(β2)vH(β1)v̂al(X)

(β2− ˆrow(X))(β1−ĉol(X))
overK

to evaluate M̂(β2, β1) =
∑

κ∈K
vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))

compute sum σ3 :=
∑

κ∈K
vH(β2)vH(β1)v̂al(κ)

(β2− ˆrow(κ))(β1−ĉol(κ))

and find g3(X) and h3(X) such that
vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|)
= h3(X)vK(X)

σ3 ∈ F, g3 ∈ F<|K|−1[X], h3 ∈ F<2|K|−2[X]

β3 ← F
vH(β2)vH(β1)v̂al(β3)− (β2 − ˆrow(β3))(β1 − ĉol(β3))(β3g3(β3) + σ3/|K|)

?
= h3(β3)vK(β3)

r(α, β2)σ3
?
= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

r(α, β1)f1(β1)− σ2f2(β1)
?
= h1(β1)vH(β1) + β1g1(β1)

Figure 4: AHP for the lincheck problem.

31

P(F, H,K,A,B,C, x, w) V ˆrow{A,B,C},ĉol{A,B,C},v̂al{A,B,C}(F, H,K, x)

z := (x,w) zA := Az zB := Bz zC := Cz

sample ŵ(X) ∈ F<|w|+b[X] and ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X]
find h0(X) s.t. ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X)

sample s(X) ∈ F<2|H|+b−1[X] and compute sum σ1 :=
∑

κ∈H s(κ)

σ1 ∈ F,ŵ ∈ F<|w|+b[X], ẑA, ẑB, ẑC ∈ F<|H|+b[X],

h0 ∈ F<|H|+2b−1[X], s ∈ F<2|H|+b−1[X] α, ηA, ηB, ηC ← F
α, ηA, ηB, ηC ∈ F

sumcheck for s(X) + r(α,X)(
∑

M ηM ˆzM (X))− (
∑

M ηMrM (α,X))ẑ(X) over H
find g1(X) and h1(X) such that
s(X) + r(α,X)(

∑
M ηM ˆzM (X))− (

∑
M ηMrM (α,X))ẑ(X)

= h1(X)vH(X) +Xg1(X) + σ1/|H|

g1 ∈ F<|H|−1[X], h1 ∈ F<|H|+b−1[X]
β1 ← F \H

β1 ∈ F
sumcheck for r(α,X)(ηAÂ(X,β1) + ηBB̂(X,β1) + ηCĈ(X,β1)) over H

σ2 :=
∑

κ∈H r(α, κ)
∑

M∈{A,B,C} ηMM̂(κ, β1)
and find g2(X) and h2(X) such that
r(α,X)

∑
M∈{A,B,C} ηMM̂(X,β1)

= h2(X)vH(X) +Xg2(X) + σ2/|H|
σ2 ∈ F, g2, h2 ∈ F<|H|−1[X]

β2 ← F \H
β2 ∈ F

sumcheck for
∑

M∈{A,B,C}
ηM

vH(β2)vH(β1)v̂alM (X)

(β2− ˆrowM (X))(β1−ĉolM (X))
overK

to evaluate ηAÂ(β2, β1) + ηBB̂(β2, β1) + ηCĈ(β2, β1)

σ3 :=
∑

κ∈K
∑

M∈{A,B,C} ηM
vH(β2)vH(β1)v̂alM (κ)

(β2− ˆrowM (κ))(β1−ĉolM (κ))

and find g3(X) and h3(X) such that
h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

σ3 ∈ F, g3 ∈ F<|K|−1[X], h3 ∈ F<6|K|−6[X] β3 ← F
h3(β3)vK(β3)

?
= a(β3)− b(β3)(β3g3(β3) + σ3/|K|)

The polynomials a(X), b(X) are defined as follows:
a(X) :=

∑
M∈{A,B,C} ηMvH(β2)vH(β1)v̂alM (X)

∏
N∈{A,B,C}\{M}(β2 − ˆrowN (X))(β1 − ĉolN (X))

b(X) :=
∏

M∈{A,B,C}(β2 − ˆrowM (X))(β1 − ĉolM (X))

r(α, β2)σ3
?
= h2(β2)vH(β2) + β2g2(β2) + σ2/|H|

s(β1) + r(α, β1)(
∑

M ηM ˆzM (β1))− σ2ẑ(β1)
?
= h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

ẑA(β1)ẑB(β1)− ẑC(β1)
?
= h0(β1)vH(β1)

Figure 5: AHP for R1CS.
32

6 Polynomial commitment schemes with extractability

We use polynomial commitment schemes, a class of commitment schemes specialized to work with univariate
polynomials. This notion was introduced by Kate, Zaverucha, and Goldberg [KZG10], who gave an elegant
construction using bilinear groups. The security properties in [KZG10], however, do not appear sufficient for
standalone use (nor for use in this paper). This limitation was recently noted in [Mal+19], which relies on a
different construction for which certain properties are proved in the algebraic group model [FKL18]. However,
[Mal+19] stops short of formulating a cryptographic primitive that captures the features of the construction.

In this sectionwe propose definitions for polynomial commitment schemes that incorporate the functionality
and security that we believe to be a bare minimum for standalone use. (In particular, in Section 8 we generically
rely on these definitions to build preprocessing arguments with universal SRS.) We also describe a “knowledge”
variant of the construction in [KZG10], which we prove secure under knowledge of exponent assumptions. To
learn more about the insights motivating our definitions, we refer the reader back to Section 2.2.

The rest of this section is organized as follows. In Section 6.1 we present the definitions that we propose.
In Section 6.2 we provide a theorem statement for constructions that realize the definitions, and then sketch
these constructions. We formal descriptions of the constructions are in Appendices B to C.

6.1 Definition

A polynomial commitment scheme over a field familyF is a tuple of algorithms PC = (Setup,Trim,Commit,
Open,Check) with the following syntax.

• PC.Setup(1λ, D)→ pp. On input a security parameter λ (in unary), and a maximum degree boundD ∈ N,
PC.Setup samples public parameters pp. The parameters contain the description of a finite field F ∈ F .

• PC.Trimpp(1λ,d) → (ck, rk). Given oracle access to public parameters pp, and on input a security
parameter λ (in unary), and degree bounds d, PC.Trim deterministically computes a key pair (ck, rk) that
is specialized to d.

• PC.Commit(ck,p,d;ω) → c. On input ck, univariate polynomials p = [pi]
n
i=1 over the field F, and

degree bounds d = [di]
n
i=1 with deg(pi) ≤ di ≤ D, PC.Commit outputs commitments c = [ci]

n
i=1 to the

polynomials p = [pi]
n
i=1. The randomness ω = [ωi]

n
i=1 is used if the commitments c = [ci]

n
i=1 are hiding.

• PC.Open(ck,p,d, Q, ξ;ω) → π. On input ck, univariate polynomials p = [pi]
n
i=1, degree bounds

d = [di]
n
i=1, a query setQ consisting of tuples (i, z) ∈ [n]× F, and opening challenge ξ, PC.Open outputs

an evaluation proof π. The randomness ω must equal the one previously used in PC.Commit.

• PC.Check(rk, c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]
n
i=1, degree bounds d = [di]

n
i=1,

query set Q consisting of tuples (i, z) ∈ [n]× F, alleged evaluations v = (v(i,z))(i,z)∈Q, evaluation proof
π, and opening challenge ξ, PC.Check outputs 1 if π attests that, for every (i, z) ∈ Q, the polynomial pi
committed in ci has degree at most di and evaluates to v(i,z) at z.

A polynomial commitment scheme PC must satisfy the completeness and extractability properties defined
below. We also consider two additional properties, efficiency and hiding, also defined below. To simplify
notation, we denote by deg(p) the degrees [deg(pi)]

n
i=1 of polynomials p = [pi]

n
i=1, and denote by p(Q) the

evaluations (pi(z))(i,z)∈Q of the polynomials p = [pi]
n
i=1 at a query set Q ⊆ [n]× F.

33

Definition 6.1 (Completeness). For every maximum degree bound D ∈ N and efficient adversary A,

Pr


deg(p) ≤ d ≤ D

⇓
PC.Check(rk, c,d, Q,v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
(p,d, Q, ξ,ω)← A(pp)

(ck, rk)← PC.Trimpp(1λ,d)
c← PC.Commit(ck,p,d;ω)

v ← p(Q)
π ← PC.Open(ck,p,d, Q, ξ;ω)


= 1 .

Definition 6.2 (Extractability). For every maximum degree bound D ∈ N and efficient adversary A there
exists an efficient extractor E such that for every round bound r ∈ N, efficient public-coin challenger C (each
of its messages is a uniformly random string of prescribed length, or an empty string), efficient query sampler
Q, and efficient adversary B = (B1,B2) the probability below is negligibly close to 1 (as a function of λ):

Pr



PC.Check(rk, c,d, Q,v, π, ξ) = 1

⇓

deg(p) ≤ d ≤ D and v = p(Q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)

For i = 1, . . . , r:
ρi ← C(pp, i)

(ci,di)← A(pp, [ρj]
i
j=1)

pi ← E(pp, [ρj]
i
j=1)

Q← Q(pp, [ρj]
r
j=1)

(v, st)← B1(pp, [ρj]
r
j=1, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, [di]

n
i=1 := [di]

r
i=1

(ck, rk)← PC.Trimpp(1λ, [di]
n
i=1)

Define the set of queried polynomials T := {i ∈ [n] | (i, z) ∈ Q}
Set c := [ci]i∈T ,p := [pi]i∈T ,d := [di]i∈T



.

(The above definition captures the case where A,Q,B share the same random string to win the game.)

Definition 6.3 (Efficiency). We say that a polynomial commitment scheme PC is:
• degree-efficient if the time to run PC.Commit and PC.Open is proportional to the maximum degree max(d)
(as opposed to the maximum supported degree D). In particular this implies that |ck| = Oλ(max(d)).

• succinct if the size of commitments, the size of evaluation proofs, and the time to check an opening are all
independent of the degree of the committed polynomials. That is, |c| = n · poly(λ), |π| = |Q| · poly(λ),
|rk| = Oλ(n), and time(Check) = (n+ |Q|) · poly(λ).

Definition 6.4 (Hiding). There exists a polynomial-time simulator S = (Setup,Commit,Open) such that,
for every maximum degree bound D ∈ N, and efficient adversary A = (A1,A2,A3), the probability that
b = 1 in the following two experiments is identical:

34

Real(1λ, D,A):
1. pp← PC.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

(a) (pi,di, hi)← A1(pp, c0, c1, . . . , ci−1).
(b) (cki, rki)← PC.Trimpp(1λ,di).
(c) If hi = 0: sample commitment randomness ωi.
(d) If hi = 1: set randomness ωi to ⊥.
(e) ci ← PC.Commit(cki,pi,di;ωi).

3. c := [ci]
r
i=1,p := [pi]

r
i=1,d := [di]

r
i=1,ω := [ωi]

r
i=1.

4. (ck, rk)← PC.Trimpp(1λ,d).
5. ([Qj]

τ
j=1, [ξj]

τ
j=1, st)← A2(pp, c).

6. For j ∈ [τ]:
πj ← PC.Open(ck,p,d, Qj , ξj ;ω).

7. b← A3(st, [π]τj=1).

Ideal(1λ, D,A):
1. (pp, trap)← S.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

(a) (pi,di, hi)← A1(pp, c0, c1, . . . , ci−1).
(b) (cki, rki)← PC.Trimpp(1λ,di).
(c) If hi = 0: sample randomnessωi and compute simu-

lated commitments ci ← S.Commit(trap,di;ωi).
(d) If hi = 1: set ωi := ⊥ and compute (real) commit-

ments ci ← PC.Commit(cki,pi,di;ωi).
3. c := [ci]

r
i=1,p := [pi]

r
i=1,d := [di]

r
i=1,ω := [ωi]

r
i=1.

4. (ck, rk)← PC.Trimpp(1λ,d).
5. ([Qj]

τ
j=1, [ξj]

τ
j=1, st)← A2(pp, c).

6. Zero out hidden polynomials: p′ := [hipi]
r
i=1.

7. For j ∈ [τ]:
πj ← S.Open(trap,p′,p(Qj),d, Qj , ξj ;ω).

8. b← A3(st, [π]τj=1).

(We implicitly assume that A1 outputs poly(λ) polynomials overall and that A2 outputs poly(λ) query sets
each consisting of poly(λ) points, ensuring that PCs.Commit,PCs.Open,S.Commit,S.Open are efficient.)

6.2 Construction

The theorem below states the properties of our constructions. For simplicity, our construction are restricted to
work with respect to “admissible” query samplers.

Definition 6.5. A query sampler Q is admissible if it outputs query sets such that each polynomial to be
evaluated is evaluated at a point sampled uniformly at random from a super-polynomially large subset of the
field, and possibly also at other points that can be arbitrarily chosen.

Theorem 6.6. There exist succinct polynomial commitment schemes that: (a) achieve extractability against
admissible query samplers under knowledge assumptions, or in the algebraic group model; (b) achieve hiding;
and (c) have an updatable SRS. See Table 2 for the efficiency of these schemes under these assumptions.

We note that the restriction to admissible query samplers is minor because one can transform an arbitrary
query sampler Q into an admissible query sampler Q′ as follows: Q′ invokes Q to obtain a query set Q,
and then outputs Q′ := Q ∪ {(i, t)}i∈[n], where t ∈ F is a random field element and n is the number of
polynomials. This transformation yields evaluation proofs that are twice as a large, a minor cost. That said,
this transformation is often not even needed because “natural” query samplers are often already admissible,
as is the case for those that we consider in this paper.

single-bound single-query
polynomial commitment

(Appendix B)

multiple-bound single-query
polynomial commitment

(Appendix C)

multiple-bound multiple-query
polynomial commitment

(Appendix D)

Figure 6: Our approach to construct polynomial commitment schemes.

The constructions behind Theorem 6.6 are achieved in three steps, as summarized in Fig. 6. The rest
of this section is organized in three parts sketching these three steps respectively: (1) opening multiple
polynomials with the same degree bound at a single point; (2) opening multiple polynomials with multiple
degree bounds at a single point; (3) opening multiple polynomials with multiple degree bounds at multiple
points. Detailed descriptions, along with security proofs, are provided in the corresponding appendices.

35

assumption hiding communication complexity time complexity

|ck| |rk| |[ci]
n
i=1| |π| Setup Commit Open Check

PKE no 2d G1 2 G2 4n G1 1 G1 2 f-MSM(D) 4n v-MSM(d) 1 v-MSM(d)
2 v-MSM(2n)
+ 4 pairings

dPKE yes 4d G1 2 G2 4n G1

1 G1 +
1 Fq

4 f-MSM(D) 8n v-MSM(d) 2 v-MSM(d)
2 v-MSM(2n)
+ 4 pairings

AGM no d G1 1 G2 2n G1 1 G1 1 f-MSM(D) 2n v-MSM(d) 1 v-MSM(d)
1 v-MSM(2n)
+ 2 pairings

AGM yes 2d G1 1 G2 2n G1

1 G1 +
1 Fq

2 f-MSM(D) 4n v-MSM(d) 2 v-MSM(d)
1 v-MSM(2n)
+ 2 pairings

Table 2: Efficiency of our polynomial commitment schemes. Here f-MSM(m) and v-MSM(m) denote fixed-base
and variable-base multi-scalar multiplications (MSM) each of sizem, respectively. All MSMs are carried out over
G1. For simplicity we assume above that the query set evaluates each polynomial at the same point. If there are
multiple points in the set, then proof size and time for checking proofs scales linearly with the number of points.
Furthermore, we assume above that the n committed polynomials all have degree d.

6.2.1 Single-bound single-query (see Appendix B for details)

We begin by discussing the case of opening multiple polynomials with the same degree bound at a single
point. We describe a non-hiding construction based on PolyCommitDL from [KZG10] (see Section 2.5) and a
hiding construction based on PolyCommitPed from [KZG10], using “knowledge commitments” [Gro10] or
the algebraic group model [FKL18] to achieve extractability for a single degree bound D chosen at setup.
Extractability with knowledge commitments. While PolyCommitDL guarantees correctness of evaluations,
it does not ensure extractability: there is no guarantee that a commitment actually “contains” a polynomial. To
achieve extraction, wemodify the construction in such a way that thePKE assumption [Gro10] forces the sender
to demonstrate knowledge of the committed polynomial. In more detail, we extend ck to encode of powers of
β with respect to a different generator αG: ck := {(G, βG, . . . , βDG), (G,αβG, . . . , αβDG)} ∈ G2(D+1)

1 .
(Note that this modification does not affect the updatability of the SRS.) To commit to a polynomial p of
degree at most D, the sender now provides a “knowledge commitment”: c := (U, V) := (p(β)G,αp(β)G).
Proving correctness of evaluations proceeds unchanged, while verification additionally requires checking
extractability of the commitment by checking the pairing equation e(U,αH) = e(V,H).
Extractability in the AGM. Knowledge commitments require, unfortunately, two group elements instead of
one. Alternatively, we could keep each commitment as one group element, by relying on the algebraic group
model (AGM) [FKL18]. Informally, whenever an adversary in the AGM outputs a group element Gn, it is
required to additionally output scalar coefficients a1, . . . , an−1 which “explain” Gn as a linear combination
of any group elements G1, . . . , Gn−1 that it has seen previously. In our setting, this means that whenever the
adversarial sender outputs a group element c representing a commitment, it must additionally output scalar
coefficients that explain c in terms of the group elements in ck. An extractor can use these coefficients to
reconstruct the underlying polynomial, thus achieving extractability.
Efficiently opening multiple polynomials at the same point. To enable the sender to simultaneously
commit to multiple polynomials [pi]

n
i=1 of degree at most D and then open these at the same point z, we rely

on the fact that the commitments for both variants above are additively homomorphic. That is, if commitments
[ci]

n
i=1 commit to [pi]

n
i=1, then

∑n
i=1 ci commits to

∑n
i=1 pi (where c1 + c2 is defined as (U1 +U2, V1 +V2)).

We take advantage of this by simultaneously verifying the evaluations of each polynomial pi ∈ [pi]
n
i=1

as follows. Before generating a proof of evaluation for [pi]
n
i=1, the sender requests from the receiver a

36

random field element ξ. The sender then uses this to take a random linear combination of the polynomials:
p :=

∑n
i=1 ξ

ipi, and generates a single evaluation proof π for this derived polynomial p.
To verify π, the receiver uses the additive homomorphism of the input commitments to derive the linear

combination c =
∑n

i=1 ξ
ici induced by ξ. It does the same with the claimed evaluations, thus deriving the

evaluation v =
∑n

i=1 ξ
ivi. Finally, it checks that the pairing equations are satisfied for c, π, and v.

This works because if the sender is honest, then c is a commitment to p :=
∑n

i=1 ξ
ipi, and π is a proof of

evaluation of p at z. On the other hand, if the sender is dishonest, then with high probability over the choice
of ξ, c is not a commitment to p, and the pairing equations would fail.
Hiding. To additionally achieve hiding, we follow the above blueprint, replacing PolyCommitDL with the
hiding scheme PolyCommitPed. Extraction now follows from an assumption related to PKE called dPKE (see
Appendix B.2.3 for details). Our constructions in Appendix B in fact use both variants to provide optional
hiding on a per-polynomial basis. Further, the near-identical form of the commitment variants makes it
possible to open a combination of hiding and non-hiding polynomials at the same point.

6.2.2 Multiple-bound single-query (see Appendix C for details)

Thus far, we have focused on commitment schemes for polynomials of degreeD where the cost of committing
and providing evaluation proofs grows as Ω(D). However, when working with polynomials of degree d < D,
we would like to pay a cost that instead grows as O(d). Furthermore, the foregoing schemes only guarantee
that committed polynomials have degree at most D, whereas in many cases it is desirable to enforce more
specific degree bounds. Below we show how to adapt the foregoing construction to achieve these desirable
properties.

To achieve extractability with respect to a different degree bound di for each polynomial pi, we require
the sender to commit not only to each pi, but also to “shifted polynomials” p′i(X) := XD−dipi(X). During
PC.Open, one could then produce an evaluation proofs that attests that if pi evaluates to vi at z then p′i
evaluates to zD−divi at z.

The receiver checks that the commitment for each p′i corresponds to an evaluation zD−divi so that, if z is
sampled from a super-polynomial subset of Fq, the probability that deg(pi) 6= di is negligible. This trick is
similar to the one used in [BS08; Ben+19c] to enforce derive low-degree tests for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness polynomial for p′i has
Ω(D) non-zero coefficients (instead of O(di)), and so constructing an evaluation proof for it requires Ω(D)
scalar multiplications (instead of O(di)). To work around this, we instead produce a proof that the related
polynomial p?i (X) := p′i(X) − pi(z)X

D−di evaluates to 0 at z. As we show in Lemma C.2, the witness
polynomial for this claim has O(di) non-zero coefficients, and so constructing the evaluation proof can be
done in O(di) scalar multiplications. Completeness is preserved because the receiver can check the correct
evaluation of p?i by subtracting pi(z)(β

D−diG) from the commitment to the shifted polynomial p′i, thereby
obtaining a commitment to p?i , while security is preserved because p

′
i(z) = zD−divi ⇐⇒ p?i (z) = 0.

Note that to commit to the shifted polynomial p′i, the committer must obtain {βD−diG, . . . , βDG} from
ck, while to adjust the shifted commitment, the receiver must obtain βD−diG from rk. Thus PC.Trim must
produce (ck, rk) containing these group elements.

6.2.3 Multiple-bound multiple-query (see Appendix D for details)

Assume that we have any construction that achieves extractability with respect to individual degree bounds,
and evaluation of multiple polynomials p = [pi]

n
i=1 at the same point z.

37

We extend this construction to support query sets Q consisting of multiple evaluation points (as required
in Section 6.1). If there are k distinct points [zi]

k
i=1 in the query set Q, the sender partitions the polynomials

p into different (possibly overlapping) groups [pi]
k
i=1 such that every polynomial in pi is to be evaluated at

the same point zi. It then runs PC.Open on each pi, and outputs the resulting list of k evaluation proofs.
We note that [KZG10] describe how one can enable the sender to produce a single evaluation proof

attesting to the correct evaluation of the same polynomial at multiple points. While we could use this to
enable batch evaluation of p at multiple points, we avoid doing so for efficiency reasons in our setting.

38

7 Preprocessing arguments with universal SRS

An argument system [BCC88] is an interactive proof where the soundness property is only required to hold
against all efficient adversaries, as opposed to all (possibly computationally unbounded) adversaries. In this
paper we consider argument systems for indexed relations (see Section 3.1) that have the following features.

• Security is proved, under cryptographic assumptions, in a model where all parties have access to a “long”
structured reference string (SRS) that is universal. (In fact, the SRS in our constructions will also be
updatable [Gro+18] but for simplicity we do not formally discuss this property; see Remark 7.1.)

• Anyone can publicly preprocess a given index (e.g., a circuit) in an offline phase, in order to avoid incurring
costs related to the index in (any number of) subsequent online phases that check different instances.

We refer to argument systems with the above properties as preprocessing arguments with universal SRS.
All interactive constructions in this paper are public-coin zero-knowledge succinct arguments of knowledge
so that, via the Fiat–Shamir transformation [FS86], we obtain their non-interactive analogues: preprocessing
zkSNARKs with universal SRS. See Section 9 for an efficient construction of such a zkSNARK.

A preprocessing argument with universal SRS is a tuple of four algorithms ARG = (G, I,P,V). The
probabilistic polynomial-time generator G, given a size bound N ∈ N, samples an SRS srs that supports
indices of size up to N. The indexer I is a deterministic polynomial-time algorithm that, given oracle access
to srs and an index i of size at most N, outputs an index proving key ipk used by the prover P in place of i
and an index verification key ivk used by the verifier V in place of i; the verifier V will be able to use ivk for
significant efficiency gains compared to just using i directly. The prover P and verifier V are probabilistic
polynomial-time interactive algorithms.

Formally, ARG = (G, I,P,V) is a preprocessing argument with universal SRS for an indexed relationR
if the following properties hold.

• Completeness. For all size bounds N ∈ N and efficient A,

Pr

 (i,x,w) 6∈ RN

∨
〈P(ipk,x,w),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1 .

• Soundness. For all size bounds N ∈ N and efficient P̃ = (P̃1, P̃2),

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 = negl(λ) .

Our definition of completeness allows (i,x,w) to depend on srs, while our formulation of soundness allows
(i,x) to depend on srs.

All constructions in this paper achieve the stronger property of knowledge soundness, and optionally also
the property of (perfect) zero knowledge. We define these properties below.
Knowledge soundness. We say that ARG = (G, I,P,V) has knowledge soundness if for every size bound
N ∈ N and efficient adversary P̃ = (P̃1, P̃2) there exists an efficient extractor E such that

Pr

 (i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
w← E(srs)

(ipk, ivk)← Isrs(i)

 = negl(λ) .

39

Zero knowledge. We say that ARG = (G, I,P,V) has (perfect) zero knowledge if there exists an efficient
simulator S = (Setup,Prove) such that for every efficient adversary Ṽ = (Ṽ1, Ṽ2) it holds that

Pr

 (i,x,w) ∈ RN

∧
〈P(ipk,x,w), Ṽ2(st)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)


= Pr

 (i,x,w) ∈ RN

∧
〈S.Prove(trap, i,x), Ṽ2(st)〉 = 1

∣∣∣∣∣∣ (srs, trap)← S.Setup(1λ,N)

(i,x,w, st)← Ṽ1(srs)

 .

Efficiency. We say that ARG = (G, I,P,V) is:
• index efficient if the running time of the prover P(ipk,x,w) is polyλ(|i|), i.e., it does not depend on the
size of the universal structured reference string srs;

• proof succinct if the size of the communication transcript between the prover P(ipk,x,w) and verifier
V(ivk,x) is poly(λ), i.e., the size is bounded by a universal polynomial in the security parameter λ;

• verifier succinct if the running time of V(ivk,x) is poly(λ+ |x|), i.e., the time is bounded by a universal
polynomial in the security parameter λ and the size of the instance x and does not depend on the size of the
index i that led to ivk.

Index efficiency implies that ipk output by I is of size polyλ(|i|), while verifier succinctness implies that ivk
output by I is of size poly(λ). All constructions in this paper are index efficient, proof succinct, and verifier
succinct.
Public coins. We say that ARG = (G, I,P,V) is public-coin if every message output by the verifier V is a
uniform random string of some prescribed length. All constructions in this paper are public-coin, and have a
(small) constant number of rounds; in particular, they can be “squashed” to non-interactive arguments that are
publicly verifiable by additionally using random oracles via the Fiat–Shamir transformation [FS86]. Hence,
due to their succinctness, our constructions directly lead to preprocessing zkSNARKs with universal SRS.

Remark 7.1 (updatable SRS). An SRS is updatable [Gro+18] if there exists an update algorithm that can be
run at any time by anyone to update the SRS, with the guarantee that security holds as long as there is at
least one honest updater since the beginning of time. This property significantly simplifies cryptographic
ceremonies to sample the SRS. All preprocessing arguments that we construct in this paper have updatable
SRS because they only contain “monomial terms”, and thus fall within the framework of [Gro+18].

Remark 7.2 (auxiliary inputs). The definition of knowledge soundness above does not consider auxiliary
inputs, for simplicity. One could consider a stronger definition, where the adversary and extractor additionally
receive an auxiliary input z sampled from a fixed distribution Z(1λ), or even sampled from any distribution
Z(1λ) that belongs to a given class. Such stronger definitions are useful when using argument systems
as subroutines within other protocols. When relying on auxiliary inputs, however, one must be careful
to ensure that they come from “benign” distributions, or else extraction is impossible, as discussed in
[BP15; Bit+16]. We stress that all of our constructions of argument systems directly extend to hold with
respect to an auxiliary-input distribution Z(1λ) under the assumption that the relevant underlying knowledge
assumptions are extended to hold with respect to the auxiliary-input distribution Z(1λ) concatenated with
some randomness. (In other words, our security reduction adds to the auxiliary input some random strings.)

40

8 From AHPs to preprocessing arguments with universal SRS

The following theorems capture key properties of our compiler.

Theorem 8.1. Let F be a field family and letR be an indexed relation. Consider the following components:
– AHP = (k, s, d, I,P,V) is an AHP over F forR with negligible soundness error (see Section 4);
– PC = (Setup,Trim,Commit,Open,Check) is a polynomial commitment scheme over F (see Section 6).
Then ARG = (G, I,P,V) described in Section 8.1 is a preprocessing argument with universal SRS for R
(see Section 7). Moreover, if q is the query complexity of AHP, ARG has the following efficiency:
• round complexity is k + 2;
• communication complexity is Oλ(q) bits if PC is additionally succinct (see Definition 6.3);
• indexer time is the sum of the indexer time in AHP and the time to commit to s(0) polynomials in PC;
• prover time is the sum of the prover time in AHP, the time to commit to

∑k
i=1 s(i) polynomials in PC, the

time to produce evaluations that answer the q queries along with a batch evaluation proof for them in PC;
• verifier time is the sum of the verifier time in AHP and the time to batch verify q evaluations in PC.

Remark 8.2 (updatable SRS). If the SRS for PC is updatable then so is the SRS for ARG. All constructions
of polynomial commitments in this paper satisfy this property, including the one used in Section 9.

The construction underlying the above theorem preserves knowledge soundness and, if the polynomial
commitment scheme is also hiding, preserves zero knowledge.

Theorem 8.3. In Theorem 8.1, if AHP has a negligible knowledge soundness error, then ARG has knowledge
soundness.

Theorem 8.4. In Theorem 8.1, if PC is hiding and if AHP is zero knowledge with query bound q (the query
complexity of AHP) and some polynomial-time query checker C, then ARG is (perfect) zero knowledge.

Remark 8.5 (the multivariate case). In this paper we give definitions for algebraic holographic proofs
and polynomial commitment schemes that are restricted to the case of univariate polynomials, because the
constructions that we consider are univariate. Theorems 8.1, 8.3 and 8.4, however, directly extend to the
multivariate case when considering an AHP in the general case of multivariate polynomials and a polynomial
commitment scheme for multivariate polynomials. This provides a proof of security for several prior works
that considered constructions that are special cases of this paradigm but did not prove security (because the
polynomial commitment schemes were only assumed to satisfy evaluation binding as discussed in Section 1.2).

8.1 Construction

We describe the construction behind Theorem 8.1, and then discuss its efficiency features.
Generator G. The generator G, on input a security parameter λ ∈ N and size bound N ∈ N, uses N to
compute a maximum degree bound D ∈ N, samples public parameters pp ← PC.Setup(1λ, D) for the
polynomial commitment scheme PC, and then outputs srs := pp. The integer D is computed to be the
maximum degree bound in AHP for indices of size N. In other words,

D := max
{
d(N, i, j)

∣∣∣ i ∈ {0, 1, . . . , k(N)} , j ∈ {1, . . . , s(i)}
}
. (9)

Indexer I . The indexer I upon input i and given oracle access to srs, deduces the field F ∈ F contained in
srs = pp, runs the AHP indexer I on (F, i) to obtain s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees

41

at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)), computes the degree bounds for the index and prover polynomials,
invokes PC.Trim on these bounds to compute (ck, rk) that are specialized for these degree bounds, and
computes commitments to all of the index polynomials.

Namely, I calculates the bounds d := {d(|i|, i, s(i))}k(|i|)
i=0 , invokes (ck, rk) := PC.Trimsrs(d), and

then computes [c0,j]
s(0)
j=1 := PC.Commit(ck, [p0,j]

s(0)
j=1, [d(|i|, 0, j)]s(0)

j=1; [ω0,j]
s(0)
j=1) for “empty randomness”

[ω0,j]
s(0)
j=1 := ⊥. The indexer I outputs ipk := (ck, i, [p0,j]

s(0)
j=1, [c0,j]

s(0)
j=1) and ivk := (rk, [c0,j]

s(0)
j=1). (Note

that [c0,j]
s(0)
j=1 are commitments to non-secret information so no randomness is used in producing them. In

particular, I is a deterministic polynomial-time algorithm, as required. Also see Remark 8.6 below for
additional considerations.)
Prover P and verifier V . The prover P receives (ipk,x,w) and the verifier V receives (ivk,x), where
(ipk, ivk) is the index key pair output by Isrs(i), and (i,x,w) is in the indexed relationR. By construction of
I, ipk contains a trimmed committer key ck and ivk contains a trimmed receiver key rk for the polynomial
commitment scheme PC. Let F ∈ F be the field described by (ck, rk) (each of ck and rk individually contain
a description of F), and let k := k(|i|) be the number of rounds in AHP. For i ∈ {1, . . . , k}, P and V simulate
the i-th round of the interaction between the AHP prover P(F, i,x,w) and the AHP verifier V(F,x).

1. V receives ρi ∈ F∗ from V, and forwards it to P .
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤ d(|i|, i, j).
3. P samples commitment randomness [ωi,j]

s(i)
j=1 and sends to V the polynomial commitments below

[ci,j]
s(i)
j=1 := PC.Commit(ck, [pi,j]

s(i)
j=1, [d(|i|, i, j)]s(i)j=1; [ωi,j]

s(i)
j=1) .

4. V notifies V that the i-th round has finished.

The proverP and verifier V are done simulating the interactive phase of AHP, and in the remaining two rounds
simulate the (non-adaptive) query phase of AHP. Below we use c to denote the commitments [[ci,j]

s(i)
j=1]ki=0, p

to denote the polynomials [[pi,j]
s(i)
j=1]ki=0, d to denote the degree bounds [[d(|i|, i, j)]s(i)j=1]ki=0, and ω to denote

the randomness [[ωi,j]
s(i)
j=1]ki=0 with [ω0,j]

s(0)
j=1 := ⊥. Note that these three vectors include the commitments,

polynomials, degrees, and randomness of the “0-th round”.

• V sends a message ρk+1 ∈ F∗ that represents randomness for the query phase of V(F,x) to P .
• P uses the query algorithm of V to compute the query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1).
• P replies with answers v := p(Q).
• V samples and sends an opening challenge ξ ∈ F to P .
• P replies with an evaluation proof to demonstrate correctness of all claimed evaluations:

π := PC.Open(ck,p,d, Q, ξ;ω) .

• V accepts if and only if the following conditions hold:
– the decision algorithm of V accepts the answers, i.e., DV(F,x,v; ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Check(rk, c,d, Q,v, π, ξ) = 1.

Completeness of the preprocessing argument ARG follows in a straightforward way from completeness of
the AHP AHP and completeness of the polynomial commitment scheme PC.

We now discuss the efficiency features of the construction above.

42

• Round complexity. The first k rounds simulate the interactive phase of AHP, with polynomials sent as
commitments; one round is to answer the desired queries; and one round is to certify the queries’ answers.

• Communication complexity. The argument prover P sends
∑k

i=1 s(i) commitments, q field elements
representing query answers, and an evaluation proof that certifies the q answers. The argument verifier
V sends |ρ1|+ · · ·+ |ρk|+ |ρk+1|+ 1 field elements. In Theorem 8.1 we state that the communication
complexity is Oλ(q) because typically it holds that

∑k
i=0 s(i) ≤ q (each polynomial is queried at least

once) and |ρ1|+ · · ·+ |ρk|+ |ρk+1| is a small constant (each verifier message is a few field elements).
• Indexer time. The time complexity of I equals the time complexity of the AHP indexer I plus the time to
trim the PC public parameters pp, and then to commit to the s(0) polynomials output by I.

• Prover time. The time complexity of P equals the time complexity of the AHP prover P plus the time to
commit to the

∑k
i=1 s(i) polynomials output by P, evaluate

∑k
i=0 s(i) polynomials at the query set Q, and

produce an evaluation proof that certifies the correctness of these evaluations.
• Verifier time. The time complexity of V equals the time complexity of the AHP verifier V plus the time to
verify the batch evaluation proof for the q evaluations that provide answers to the query set Q.

Remark 8.6 (commitments to index polynomials). The construction described above uses the same polynomial
commitment scheme PC for committing to polynomials output by the AHP indexer and to polynomials output
by the AHP prover. This simplifies exposition, and allows for a single evaluation proof to certify all query
answers. For security, however, it would suffice (even for Theorem 8.4) to commit to index polynomials via a
commitment scheme that merely satisfies “evaluation binding” (Definition B.8), which is strictly weaker than
the notion of extractability that we use for the other commitments. This is because the commitments in the
index verification key are honestly produced in the preprocessing phase. Moreover, for Theorem 8.3 to hold
we do not need the commitments to index polynomials to be hiding.

8.2 Proof of Theorem 8.1

Suppose that P̃ = (P̃1, P̃2) is an efficient adversarial prover for ARG that wins with probability at least ε,
that is,

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

 ≥ ε(λ) .

We assume without loss of generality that st output by P̃1 contains the public parameters srs = pp. Also note
that P̃2 can be represented via its k + 2 next-message functions:

P̃2(st; ρ1) , P̃2(st; ρ1, ρ2) , . . . , P̃2(st; ρ1, . . . , ρk) , P̃2(st; ρ1, . . . , ρk, Q) , P̃2(st; ρ1, . . . , ρk, Q, ξ) .

We describe how to construct a prover P̃, which is admissible for AHP, and an efficient adversaryAPC against
the extractability of PC such that

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

+ Pr

[
APC wins the

extractability game

]
≥ ε(λ) ,

Above, D is computed according to Eq. (9) and F is the field described in pp. This concludes the proof
because if ε(λ) were to be non-negligible then either: (i) by averaging there would exist a choice of public
parameters pp that yields a state st, field F ∈ F , and (i,x) 6∈ L(R) for which Pr[〈P̃(st),VI(F,i)(F,x)〉 = 1]

43

is non-negligible, contradicting our hypothesis AHP has negligible soundness error; or (ii) there would exist
an efficient adversary APC that, for any given efficient extractor, succeeds in the extractability game for PC
(Definition 6.2) with non-negligible probability, contradicting our hypothesis PC is extractable.
Constructing APC. The adversary APC is built from the argument prover P̃ (and the argument indexer I
and degree bounds d) as follows. For round i ∈ {0, . . . , k} and verifier messages ρ0, . . . , ρi:

APC(ck, rk, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).
2. If i = 0, ignore ρ0, compute index keys (ipk, ivk)← Isrs(i), and parse ivk as polynomial com-

mitments [c0,j]
s(0)
j=1. If i > 0, compute polynomial commitments [ci,j]

s(i)
j=1 ← P̃2(st; ρ1, . . . , ρi).

3. For each j ∈ {1, . . . , s(i)}, compute the degree di,j := d(|i|, i, j).
4. Output ([ci,j]

s(i)
j=1, [di,j]

s(i)
j=1).

Since P̃, I, d are all efficient, so isAPC. Let EPC be the extractor forAPC. Note that in the “0-th round”,APC

outputs the commitments generated by the indexer I. To capture that that these “0-th round” commitments
need only satisfy evaluation binding (unlike the commitments in all other rounds), we consider an extractor
E ′PC that works as follows. For round i ∈ {0, . . . , k} and verifier messages ρ0, . . . , ρi:

E ′PC(pp, ρ0, ρ1, . . . , ρi):
1. Set srs := pp and compute (i,x, st)← P̃1(srs).

Obtain the field description F← field(pp).
2. If i = 0, output polynomials [p0,j]

s(0)
j=1 ← I(F, i).

If i > 0, output polynomials [pi,j]
s(i)
j=1 ← EPC(st; ρ1, . . . , ρi).

Observe that the probability that E ′PC succeeds for APC is at least the probability that EPC succeeds for APC.
Constructing P̃. We define P̃ via its k next-message functions, by relying on the polynomial commitment
extractor E ′PC defined above. For round number i ∈ {1, . . . , k} and verifier messages ρ1, . . . , ρi:

P̃(st; ρ1, . . . , ρi):
1. Set ρ0 := ⊥ and run E ′PC(pp, ρ0, ρ1, . . . , ρi) to obtain polynomials pi,1, pi,2, . . . , pi,s(i) ∈ F[X].
2. Check that for every j ∈ [s(i)] it holds that deg(pi,j) ≤ d(|i|, i, j). (If not, output ⊥.)
3. Output the polynomials pi,1, pi,2, . . . , pi,s(i).

Observe that, by construction, P̃ is an admissible prover for AHP.
Analyzing P̃ and APC. Define εPC(λ) := Pr [APC wins the extractability game]. We want to argue that

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)


≤Pr

 (i,x) 6∈ L(RN)
∧

〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

+ εPC(λ) .

First recall that by construction it holds that G(1λ,N) = PC.Setup(1λ, D). It follows that the distributions of
srs/pp, i,x, st, as well as the underlying field F, are identical in the two probability expressions above.

44

Next recall that we have constructed P̃ in such a way that, in round i ∈ {1, . . . , k}, P̃ outputs polynomials
that (provided E ′PC has succeeded) correspond to the commitments output in round i by P̃2. At the same time,
we have constructed V in such a way that in the first k rounds V behaves exactly as V, and in the remaining
two rounds V uses the polynomial commitment scheme to validate, against commitments received from the
prover and contained in ivk, the answers claimed by P̃2 in response to V’s query set Q, and then checks that
V accepts these answers.

Hence, as long as P̃ provides correct evaluations for polynomials committed to in ivk, and as long as P̃
outputs polynomials that correspond to the commitments output by P̃2, it holds that V accepts whenever V
accepts. Since P̃ relies on the extractor E ′PC for the polynomial commitment to find such polynomials (if they
exist) and to correctly answer queries to polynomials in ivk, P̃ “works” whenever E ′PC and P̃ do.

We now argue that, whenever V accepts, E ′PC has succeeded, up to the error εPC(λ). This is because the
interaction between P̃2 and V can be re-cast as an extractability game for PC, as we now explain. Define a
public-coin challenger C to output randomness ρ0 := ⊥ in the 0-th round, and to equal the interactive phase
of V(F,x) in the remaining rounds. This means that in the i-th round (for i ∈ {1, . . . , k}) the challenger C
will output the randomness ρi output by V(F,x) in round i. Also, define a query sampler Q to equal the
query phase of V(F,x): given all challenger outputs [ρj]

k
j=1 so far and auxiliary input ρk+1, compute the

query set Q := QV(F,x; ρ1, . . . , ρk, ρk+1). Finally, let B = (B1,B2) be the adversary defined below.

B1(pp, [ρj]
k
j=0, Q):

1. Set srs := pp.
2. Compute (i,x, st)← P̃1(srs).
3. Compute v ← P̃2(st; ρ1, . . . , ρk, Q).
4. Set stPC := (st, ρ1, . . . , ρk, Q).
5. Output (v, stPC).

B2(stPC, ξ):
1. Parse stPC as (st, ρ1, . . . , ρk, Q)
2. Compute π ← P̃2(st; ρ1, . . . , ρk, Q, ξ).
3. Output π.

Using the above definitions of C,Q,B, and E ′PC we obtain the following inequality:

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)



≤ Pr



(i,x) 6∈ L(RN)
∧

PC.Check(rk, c,d, Q,v, π, ξ) = 1
∧

deg(p) ≤ d ≤ D and v = p(Q)
∧

〈P̃(st),VI(F,i)(F,x; ρ1, . . . , ρk, ρk+1)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(rk)

(i,x, st)← P̃1(pp)

For i = 0, . . . , k:
ρi ← C(pp, i)

([ci,j]
s(i)
j=1, [di,j]

s(i)
j=1)← APC(pp, [ρj]

i
j=0)

[pi,j]
s(i)
j=1 ← E

′
PC(pp, [ρj]

i
j=0)

Q← Q(pp, [ρj]
k
j=0; ρk+1)

(v, st)← B1(pp, [ρj]
k
j=0, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set c := [[ci,j]
s(i)
j=1]ki=0 ,d := [[di,j]

s(i)
j=1]ki=0

(ck, rk)← PC.Trimpp(1λ,d)



+ εPC(λ) .

As argued above, whenever E ′PC and P̃ succeed, P̃ does. The first term after the inequality captures the case
where the AHP verifier V is convinced to accept a pair (i,x) not in the indexed language L(RN). If APC

45

succeeds, then there is still some chance that P̃ succeeds assuming it holds that deg(p) ≤ d ≤ D for the
polynomials output by E ′PC (otherwise P̃ outputs ⊥). This joint success probability is upper bounded by
the probability that just APC succeeds, which is in turn upper bounded by εPC(λ). Hence the εPC(λ) term
above and the inequality rather than equality above. Since the above inequality implies our claim, we have
concluded the proof.

8.3 Proof of Theorem 8.3

Let E be the extractor for AHP, which by hypothesis has a negligible knowledge soundness error εAHP(λ).
Suppose that P̃ = (P̃1, P̃2) is an efficient adversary for ARG. We use P̃ to construct an admissible prover P̃
for AHP, exactly as in the proof of soundness (see Section 8.2). Then we define the extractor E for P̃ to be as
follows.

E(srs):
1. Compute (i,x, st)← P̃1(srs).
2. Compute F← field(srs).
3. Compute w← EP̃(st)(F, i,x, 1l(|i|)).
4. Output w.

Observe that by construction we have the equality:

Pr

 (i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣
srs← G(1λ,N)

(i,x, st)← P̃1(srs)
(ipk, ivk)← Isrs(i)

w← E(srs)



= Pr


(i,x,w) 6∈ RN

∧
〈P̃2(st),V(rk, ivk,x)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))

 .

Similarly to the proof of soundness (see Section 8.2), we can argue the following inequality:

Pr


(i,x,w) 6∈ RN

∧
〈P̃2(st),V(ivk,x)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
F← field(pp)

(i,x, st)← P̃1(pp)
(ipk, ivk)← Ipp(i)

w← EP̃(st)(F, i,x, 1l(|i|))



≤Pr


(i,x,w) 6∈ RN

∧
〈P̃(st),VI(F,i)(F,x)〉 = 1

∣∣∣∣∣∣∣∣∣
pp← PC.Setup(1λ, D)

F← field(pp)

(i,x, st)← P̃1(pp)

w← EP̃(st)(F, i,x, 1l(|i|))

+ εPC(λ) .

The knowledge soundness of AHP implies that the probability above is at most εAHP(λ). Since εAHP(λ) +
εPC(λ) is negligible, we have established that the extractor E for P̃ works.

46

8.4 Proof of Theorem 8.4

Let S be the zero knowledge simulator for AHP (see definition in Section 4), and let SPC be the simulator
for PC (see definition in Section 6). We describe how to construct a (perfect) zero knowledge simulator
S = (Setup,Prove) for ARG (see definition in Section 7). Let Ṽ = (Ṽ1, Ṽ2) be any malicious verifier.

The simulated setup algorithm S.Setup receives a security parameter λ ∈ N and size bound N ∈ N as
input, and then proceeds as follows. First, S.Setup usesN to compute the samemaximum degree boundD ∈ N
computed by the generator G (see Eq. (9)). Second, it runs SPC.Setup(1λ, D) to sample simulated public
parameters pp for the polynomial commitment and their trapdoor trap, and outputs (srs, trap) := (pp, trap).
Let F ∈ F be the field described in the public parameters pp.

The zero knowledge game states that first Ṽ1 receives srs, and then outputs an index-instance-witness
tuple (i,x,w) and a state st to pass onto Ṽ2. The proving subroutine of the simulator, S.Prove, receives
(trap, i,x) as input, and interacts with Ṽ2(st) over k + 2 rounds. We construct S.Prove as follows.

1. For i ∈ {1, . . . , k}, simulate the polynomial commitments for round i as follows:
(a) Receive a message ρi ∈ F∗ from Ṽ2, and forward it to the AHP simulator S(F, i,x).
(b) Sample commitment randomness [ωi,j]

s(i)
j=1, and then send to Ṽ2 the simulated commitments below

[ci,j]
s(i)
j=1 ← SPC.Commit(trap, [d(|i|, i, j)]s(i)j=1; [ωi,j]

s(i)
j=1) .

2. Simulate the evaluations in round k + 1 as follows:
(a) Receive a message ρk+1 ∈ F∗ from Ṽ2.
(b) Use the (honest) query algorithm of AHP to compute the query setQ := QV(F,x; ρ1, . . . , ρk, ρk+1),

and abort if any query does not satisfy the query checker C. (The honest prover would also abort.)
(c) We need to assemble a list of evaluations v, containing actual evaluations of index polynomials and

simulated evaluations of prover polynomials. In more detail, first run the AHP indexer I(F, i) to
obtain polynomials [p0,j]

s(0)
j=1, and evaluate these on (the relevant queries in) the query set Q. Next,

forward the query set Q to the AHP simulator S(F, i,x) in order to obtain a simulated view, which in
particular contains simulated answers for queries to the AHP prover’s polynomials.

3. Simulate the evaluation proof in round k + 2 as follows:
(a) Receive a challenge ξ from Ṽ2.
(b) Compute π ← SPC.Open(trap, [[pi,j]

s(i)
j=1]ki=0,v, [[d(|i|, i, j)]s(i)j=1]ki=0, Q, ξ; [[ωi,j]

s(i)
j=1]ki=0) where all

polynomials [pi,j]
s(i)
j=1 with i > 0 are defined to be zero and the randomness [ω0,j]

s(0)
j=1 is set to ⊥.

(c) Send π to Ṽ2.

Lemma 8.7. The view of the malicious verifier Ṽ = (Ṽ1, Ṽ2) while interacting with the honest prover is
identically distributed as its view while interacting with the simulator S = (S1,S2) described above.

Proof. The zero knowledge property of AHP states that interaction with the honest prover P(F, i,x,w) can
be replaced with interaction with the simulator S(F, i,x), which adaptively answers oracle queries of the
malicious verifier to prover oracles, provided the number of oracle queries is below the zero knowledge query
bound and each query satisfies the query checker. In our setting, the number of oracle queries is bounded by
the query complexity q of the honest AHP verifier, because the query set Q is derived via the honest query
algorithm run on the messages sent by the malicious argument verifier. Moreover, the honest prover and

47

simulator ensure that each query in Q satisfies the query checker. This explains why the zero knowledge
query bound in Theorem 8.4 is q, and why we consider any polynomial-time query checker in Theorem 8.4.

Next, given that S(F, i,x) provides oracle responses that are identically distributed to those of polynomials
output by P(F, i,x,w), we are left to discuss the other information received by the malicious verifier: the
commitments (in the first k rounds) and the evaluation proof (in round k + 2). The hiding property of the
polynomial commitment scheme ensures that the simulator SPC, by using the trapdoor trap, can perfectly
simulate these commitments and this evaluation proof.

48

9 Marlin: an efficient preprocessing zkSNARK with universal SRS

We describe how to obtain a preprocessing zkSNARK with universal and updatable SRS that achieves the
efficiency reported in Fig. 1.

The first step is to apply our compiler (Section 8) to two ingredients: the AHP described in Section 5, and
the AGM-based polynomial commitment scheme described in Section 6.2 and Appendix D.1. The second
step is to apply the Fiat–Shamir transformation to the resulting public-coin preprocessing argument. These
“generic” steps immediately yield a preprocessing zkSNARK with universal and updatable SRS that has the
same asymptotics as Sonic [Mal+19].11 Moreover, in terms of concrete efficiency, this zkSNARK achieves
argument size comparable to Sonic [Mal+19], and also achieves proving and verification times that are close
to the state of the art for circuit-specific zkSNARKs [Gro16].

Below in Sections 9.1 and 9.2 we describe optimizations that further reduce argument size, and as a
positive side effect also reduce prover and verifier costs. Fig. 1 includes these optimizations.

Before we discuss optimizations, we summarize the argument size that we obtain directly from the
compilation mentioned above. Recall that in the offline phase, the AHP indexer, given an index i =
(F, H,K,A,B,C), outputs for each matrix M ∈ {A,B,C} three polynomials that together define the
low-degree extension ofM . Then, during the interactive online phase, the prover outputs twelve proof oracles.
The verifier queries each of the nine indexer polynomials and the twelve prover polynomials at exactly one
location, which amounts to 21 queries.

After compilation, the argument indexer outputs 9 polynomial commitments, and the argument prover
outputs 12 commitments, 21 evaluations, and 3 evaluation proofs. In more detail, the argument indexer
outputs commitments to ˆrowM , ĉolM , v̂alM for each M ∈ {A,B,C}; and the argument prover outputs
commitments to the following twelve polynomials: ŵ, ẑA, ẑB, ẑC , h0, s, h1, g1, h2, g2, h3, g3. The
polynomials ŵ, ẑA, ẑB, ẑC , h0, s, h1, g1 are all evaluated at the same point β1; h2 and g2 are evaluated at
the same point β2; and h3, g3, and ˆrowM , ĉolM , v̂alM for eachM ∈ {A,B,C} are all evaluated at the same
point β3. Overall our argument consists of 27 G1 elements and 24 Fq elements.

9.1 Optimizations for the AHP

Eliminating h0 and ẑC . The AHP prover P sends a polynomial h0(X) in the first round, and the AHP
verifier V checks the polynomial equation ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X) at a random point. This
is a standard technique from the probabilistic proof literature to ensure that ẑA(X)ẑB(X) and ẑC(X) agree
on H . An alternative (used, e.g., in [Ben+17a]) is to replace each occurrence of ẑC(X) in the protocol with
the product ẑA(X)ẑB(X), which “forces” the desired property without any checks. This increases the degree
of certain expressions by deg(ẑC) = |H| − 1, but this cost in our setting is negligible because it leads to a
negligible increase in the soundness error. This eliminates the need to commit to h0(X) and ẑC(X) and later
reveal their evaluations, which reduces argument size by two polynomial commitments and two field elements.
Minimal zero knowledge query bound. The query algorithm of the AHP verifier V queries each prover
polynomial at exactly one location, regardless of the randomness used to generate the queries. In particular,
ŵ(X), ẑA(X), ẑB(X), ẑC(X) are queried at exactly one location. So it suffices to set the parameter b := 1.
Eliminating σ1. We can sample the random polynomial s(X) conditioned on it summing to zero on H .
The prover can thus omit σ1, because it will always be zero, without affecting zero knowledge.

11The SRS of the zkSNARK is updatable because the SRS of the polynomial commitment scheme is updatable (see Remark 8.2
and Section 6.2). Note also that the query algorithm in the AHP fulfills the admissibility requirement imposed by the polynomial
commitment scheme (see Section 6.2), as each query location is sampled at random from a set of superpolynomial size.

49

Single low-degree extension for each matrix (unimplemented). The AHP indexer I constructs the
low-degree extensions of the nine functions {rowM , colM , valM}M∈{A,B,C}, which define the low-degree
extensions of A,B,C. The AHP verifier V queries each of these at a single location. This means that, after
compilation, the argument prover must provide nine field elements (the evaluations) as part of the proof.

We can reduce this to only three field elements as follows. We modify the AHP indexer I to construct,
for each M ∈ {A,B,C}, a single low-degree extension of the functions rowM , colM , valM . Namely,
let s1, s2 ∈ F be “shifts” such that K, K + s1, and K + s2 are pairwise disjoint, and define the set
K̄ := K ∪ (K + s1) ∪ (K + s2). Define the function mM : K̄ → F where

mM (κ) :=


rowM (κ) κ ∈ K
colM (κ− s1) κ ∈ K + s1

valM (κ− s2) κ ∈ K + s2

.

Then Eq. (1) can be rewritten as

M̂(X,Y) :=
∑
κ∈K

uH(X, m̂M (κ))uH(Y, m̂M (κ+ s1))m̂M (κ+ s2) . (10)

The modified AHP indexer I constructs the three polynomials m̂A, m̂B, m̂C , and the modified AHP verifier V
will query each of these at a single location. Thus, after compilation, the argument prover will only need
to provide three field elements, instead of nine, as part of the proof. Note that this optimization triples the
degree of the polynomials output by the AHP indexer I, which after compilation increases the SRS size. Even
given this tradeoff our SRS is still shorter than prior work, and furthermore it represents a one-time offline
cost (in contrast to argument size, which is a recurring online cost).
A more efficient holographic lincheck. Based on an earlier draft of this work, Chiesa, Ojha, and Spooner
[COS20] devised a more efficient holographic lincheck, which saves one round of interaction, in a different
model of proof system. In Appendix E we show how to incorporate their ideas into our 7-message AHP for
R1CS (see Fig. 5) to obtain a 5-message AHP for R1CS (see Fig. 7). This optimization has no downsides.

9.2 Optimizations for the polynomial commitment scheme

Reducing the cost of hiding commitments. The hiding property that we adopt for polynomial commitments
(Definition 6.4) ensures that no information is revealed about the committed polynomial regardless of how
many evaluations are revealed. Achieving this strong notion has a cost: in our constructions we randomize a
commitment c to a polynomial p by additionally committing to a random polynomial p̄ of degree deg(p).
Compared to the non-hiding variant, this requires deg(p) additional elements in the SRS, and also requires
PC.Commit and PC.Open to perform an additional variable-base MSM of size deg(p).

In our compiler, however, the only evaluations the argument verifier sees are those sent by the argument
prover, and these are determined by the query sets produced by the query algorithm. This, together with the
fact in our AHP each polynomial is queried at exactly one location, implies that we can relax our construction
to provide hiding only for a single evaluation per polynomial. Concretely, we can set p̄ to have degree 1. (Note
that p̄ cannot be a constant because it is used to hide both the commitment to p and to hide the commitment to
the witness polynomial w.) This allows us to eliminate (most of) the additional generators from the SRS, and
the additional variable-base MSM for PC.Commit and PC.Open.
Reducing the number of hiding commitments. Each hiding commitment, even taking into account the
above optimizations, requires an evaluation proof that is one field element larger than a proof in the non-hiding

50

case. We reduce this overhead by using the fact that only certain polynomials reveal information about the
witness and necessitate hiding. In particular, only the polynomials ŵ, ẑA, ẑB, ẑC , s, h1, and g1 need hiding
commitments. All other polynomials can rely on non-hiding commitments because they can be derived in
polynomial-time from the index i. This observation removes a further 1 field element from the proof.
Eliminating unnecessary degree checks. The notion of polynomial commitment scheme that we consider
enables each commitment to guarantee a chosen degree bound that is up to the maximum degree bound
chosen for the SRS. This flexibility has a cost: ensuring a degree bound strictly less than the maximum degree
bound requires two group elements per commitment, corresponding to unshifted and shifted polynomials
respectively. When compiling our AHP, we need this feature only when committing to g1, g2, g3 (the exact
degree bound matters for soundness) but for all other polynomials it suffices to rely on the maximum degree
bound and so for them we omit the shifted polynomials altogether. This increases the soundness error by a
negligible amount (which is fine), and lets us reduce argument size by 9 group elements.
Batching pairing equations. We can reduce the cost of the argument verifier by batching pairing equations.
Recall that, to verify an evaluation proof with evaluation v and point z, PC.Check needs to check the pairing
equation e(U − vG− γv̄G,H) = e(w, βH − zH). In our compiled zkSNARK, PC.Check is invoked three
times, each with different values of U , w, z, and v. This results in 3 pairing equations. To reduce the number
of pairing equations needed down to just one, we use the following reduction that ensures that theG2 argument
to every pairing is constant:

e(U − vG− γv̄G,H) = e(w, βH − zH)

= e(w, βH) · e(w,−zH)

= e(w, βH) · e(−zw, H) .

Hence, we have that

e(U − vG− γv̄G+ zw, H) = e(w, βH) .

Because we have three proofs to check, the verifier has to check three of the above equations. These equations
can be batch verified together as follows. The verifier samples a random field element r, and then uses the
identity

∏
i e(Gi, H)r

i

= e(
∑

i r
iGi, H) to check the following equation:

e(
∑

i r
i(C0,i − viG− γv̄iG+ ziwi), H) = e(

∑
i r
iwi, βH) .

By properties of random linear combinations, the above equation holds only if each of the individual equations
also hold (up to a negligible soundness error). In sum, the verifier only needs to evaluate two pairings.
Opening linear combinations of polynomials. The decision procedure of the AHP verifier checks
polynomial equations such as

p1(X) + p2(X)p3(X) = p4(X) . (11)

It does so by querying the polynomials p1, . . . , p4 at a random point z ∈ F, and then checking that the
above equation holds with respect to the resulting evaluations p1(z), . . . , p4(z). To enable the compiled
SNARK verifier to invoke the AHP decision procedure, the SNARK proof must also contain these evaluations.
However, if we instead enable the AHP verifier to query linear combinations of polynomial oracles, then one
can avoid providing all these evaluations. For example, we can rewrite the check in Equation (11) as follows:

p2(z) = v2 and p5(X) := p1(X) + v2p3(X)− p4(X) = 0 .

51

Then the AHP decision procedure only needs the evaluation p2(z), which means that the corresponding
SNARK proof will contain only 1 field element, instead of 4. For this, we need that the polynomial
commitment scheme allows checking evaluations of linear combinations of committed polynomials. The
schemes constructed in Appendix D have linearly homomorphic commitments, and so support this feature.

Applying this optimization to the equations in our AHP reduces the proof size of the corresponding
compiled SNARK by 10 field elements.

52

A Cryptographic assumptions

We describe the cryptographic assumptions that underlie the constructions of polynomial commitment schemes
in this paper (Section 6.2). In Appendix A.1 we define bilinear group samplers. In Appendix A.2 we define
(a minor variant of) the Strong Diffie–Hellman Assumption. In Appendix A.3 we define (a minor variant of)
the Power Knowledge of Exponent Assumption. In Appendix A.4 we recall the Algebraic Group Model.

A.1 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions about
bilinear groups. We formalize these via a bilinear group sampler, which is a probabilistic polynomial-
time algorithm SampleGrp that, on input a security parameter λ (represented in unary), outputs a tuple
〈group〉 = (G1,G2,GT , q, G,H, e) where G1,G2,GT are groups of a prime order q ∈ N, G generates G1,
H generates G2, and e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

A.2 Strong Diffie–Hellman

Assumption 1 ([BB04]). The Strong Diffie–Hellman (SDH) Assumption states that for every efficient
adversary A and degree bound d ∈ N the following probability is negligible in λ:

Pr

 C = 1
β+cG

∣∣∣∣∣∣∣∣
〈group〉 ← SampleGrp(1λ)

β ← Fq
Σ← {{βiG}di=0, βH}

(c, C)← A(〈group〉,Σ)

 .

A.3 Power knowledge of exponent

The non-hiding variant of our polynomial commitment scheme relies on the PKE assumption below, while
the variant relies on the dPKE assumption below.

Assumption 2 ([Gro10]). The Power Knowledge of Exponent (PKE) Assumption states that for every
efficient adversary A and degree bound d ∈ N there exists an efficient extractor E such that for every benign
auxiliary input distribution Z the following probability is negligible in λ:

Pr


G1 = αG0

∧
G0 6=

∑d
i=0 aiβ

iG

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β ← Fq
Σ← {{βiG,αβiG}di=0, αH, βH}

(G0, G1)← A(〈group〉,Σ, z)
(a0, . . . , ad)← E(〈group〉,Σ, z)


.

Assumption 3. The duplex Power Knowledge of Exponent Assumption (dPKE) states that for every
efficient adversary A and degree bound d ∈ N there exists an efficient extractor E such that for every benign

53

auxiliary input distribution Z the following probability is negligible in λ:

Pr


G1 = αG0

∧
G0 6=

∑d
i=0 aiβ

iG+
∑d

i=0 biγβ
iG

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β, γ ← Fq
Σ← {{βiG,αβiG, γβiG,αγβiG}di=0, αH, βH}

(G0, G1)← A(〈group〉,Σ, z)
(a0, . . . , ad, b0, . . . , bd)← E(〈group〉,Σ, z)


.

Remark A.1 (benign auxiliary inputs). Extraction with auxiliary input requires that the auxiliary input is
sampled from a “benign” distribution, as discussed in [BP15; Bit+16]. In this paper we only rely on auxiliary
inputs that consist of a prescribed number of random field elements, which are indeed considered benign.

Remark A.2 (asymmetric PKE). The PKE assumption in [Gro10] is stated for symmetric bilinear group
samplers (G1 = G2). Instead, like many prior works, we consider asymmetric bilinear group samplers due to
efficiency reasons. Our approach to adapting PKE to the asymmetric setting differs from that taken in prior
works such as [Gen+13; Dan+14]. Prior constructions rely on secret powers of β in G2 for both completeness
and security (and in particular incur the costs of many G2 exponentiations). In contrast, our constructions (of
polynomial commitment schemes) do not need secret powers of β in G2, for either completeness or security,
and therefore are not part of the inputs to the adversary. (Also see Appendix A.5.)

Remark A.3 (prior duplex variants). The dPKE assumption is similar to, but different from, the assumption
used in [Zha+17b; Zha+17a]. Namely, in dPKE the instance contains powers of β with respect to a different
generator γG, whereas the assumption in [Zha+17b; Zha+17a] contains powers of γ with respect to G.

A.3.1 Extractability with multiple knowledge commitments

The PKE assumption implies a similar assumption where the adversary may output multiple knowledge com-
mitments and its corresponding extractor must extract a linear combination for each knowledge commitment.
We call this assumptionMPKE, where the letter “M” denotes “multiple”. MPKE implies PKE, so the two
assumptions are equivalent. We use MPKE to prove extractability of the non-hiding variant our polynomial
commitment scheme. In order to prove extractability of the hiding variant we rely on dMPKE, an analogous
generalization of dPKE to the case of multiple knowledge commitments.

Assumption 4. The MPKE assumption states that for every efficient adversary A and degree bound d ∈ N
there exists an efficient extractor E such that for every benign auxiliary input distribution Z , the following
probability is negligible in λ:

Pr


∃ i ∈ [n] such that

Gi,1 = αGi,0
∧

Gi,0 6=
∑d

j=0 ai,jβ
jG

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β ← Fq
Σ← {{βiG,αβiG}di=0, βH, αH}

[(Gi,0, Gi,1)]ni=1 ← A(〈group〉,Σ, z)

[[ai,j]
d
j=0

]ni=1 ← E(〈group〉,Σ, z)


.

Lemma A.4. The PKE and MPKE assumptions are equivalent.

54

Proof. ThatMPKE implies PKE follows becauseMPKE is a generalization of PKE. For the reverse direction,
PKE impliesMPKE because a successful adversary A againstMPKE can be used to construct a successful
adversary B against PKE that projects the output of A to one of the “lucky” entries. In more detail, let
Bi(〈group〉,Σ, z) be the adversary that returns the i-th commitment output by A(〈group〉,Σ, z). Let EBi
be any PKE extractor corresponding to Bi. Consider the following MPKE extractor EA for A: given
(〈group〉,Σ, z), compute [ai,j]

d
j=0 ← EBi(〈group〉,Σ, z) for each i ∈ [n], and output [[ai,j]

d
j=0]ni=1. Observe

that EA can fail only if at least one of the PKE extractors EBi fails. Thus, if EA fails with non-negligible
probability µ(λ), then by averaging at least one EBi fails with non-negligible probability µ(λ)/n, contradicting
the fact that assumption PKE holds. We conclude that MPKE holds if PKE holds.

Assumption 5. The dMPKE assumption states that for every efficient adversary A and degree bound d ∈ N
there exists an efficient extractor E such that for every benign auxiliary input distribution Z , the following
probability is negligible in λ:

Pr


∃ i ∈ [n] such that

Gi,1 = αGi,0
∧

Gi,0 6=
∑d

j=0 ai,jβ
jG+

∑d
j=0 (bi,jγβ

j)G

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈group〉 ← SampleGrp(1λ)
z← Z(〈group〉)

α, β, γ ← Fq
Σ← {{βiG,αβiG, γβiG,αγβiG}di=0, αH, βH}

[(Gi,0, Gi,1)]ni=1 ← A(〈group〉,Σ, z)

[[(ai,j , bi,j)]
d
j=0

]
n

i=1
← E(〈group〉,Σ, z)


.

Lemma A.5. The dPKE and dMPKE assumptions are equivalent.

Proof. Follows via straightforward modifications to the proof of Lemma A.4.

Remark A.6 (dMPKE?). For technical reasons, our proof of hiding (Appendix B.2.3) for the hiding variant of
our polynomial commitment scheme relies on the dMPKE? assumption, which is a variant of dMPKE where
γ is sampled not from Fq, but rather from F?q . dMPKE implies dMPKE? via a straightforward reduction:
given an adversary A against dMPKE?, one can construct an adversary B against dMPKE that, on input
(〈group〉,Σ, z), aborts if γG = G, and outputs A(〈group〉,Σ, z) otherwise. Because γ = 0 with probability
at most 1/q, B and A (and thus EB and EA) differ in success probability by only 1/q.

A.4 Algebraic group model

In order to achieve additional efficiency, we also construct polynomial commitment schemes in the Algebraic
Group Model (AGM) [FKL18], which replaces specific knowledge assumptions (such as Power Knowledge
of Exponent assumptions). In the AGM, all algorithms are modeled as algebraic, which means that whenever
an algorithm outputs a group element G, the algorithm must also output an “explanation” of G in terms of the
group elements that it has seen.

Definition A.7 (algebraic algorithm). Let G be a cyclic group of prime order q and Aalg a probabilistic
algorithm run on initial inputs including description 〈group〉 of G. During its execution Aalg may interact
with oracles or other parties and receive further inputs including obliviously sampled group elements (which it
cannot sample directly12). LetL ∈ Gn be the list of all group elementsAalg has been given so far such that all

12Outputting obliviously sampled group elements (with unknown representation) is forbidden in the AGM. Instead, Aalg must
obliviously sample elements through an additional oracle O() such that they are by definition added to the list L. Simulating O() to
an algebraic algorithm during a reduction is straightforward and always possible. Integrating the ROM and AGM indeed works for
this reason that any outputs from random oracles are added to the list L.

55

other inputs it has received do not depend in any way on group elements13. We callAalg algebraic if whenever
it outputs a group element G ∈ G it also outputs a vector a = [ai]

n
i=1 ∈ Fnq such that G =

∑n
i=1 aiLi. The

coefficients a are called the “representation” of G with respect to L, denoted G := 〈a,L〉.

Remark A.8 (AGM vs. GGM). The Algebraic Group Model (AGM) [FKL18] is weaker than the Generic
Group Model (GGM) [Sho97; Mau05] but is stronger than the plain model. Indeed, every generic algorithm
is an algebraic algorithm [PV05], and so anything proved secure in the AGM is also secure in the GGM. On
the other hand, the AGM captures non-generic algorithms that exploit the representation of group elements.
For example, index-calculus and some factoring attacks fall outside the class of generic algorithms and apply
only over groups in which the elements are represented as integers. Furthermore, there exist (pathological)
algebraic-but-not-generic algorithms that can be used to construct schemes that are secure in the GGM, but
are insecure in the standard and algebraic group models [Den02]. At present, it is not known if such a scheme
could be constructed to illustrate a similar gap between the AGM and the standard model.

To analyze the hardness of an assumption in the GGM one must explicitly augment the model by any
functionality offered by the structure of the group, e.g., providing a pairing oracle Ae(·,·). However, in the
AGM, the adversary has direct access to e (and thus to its description). Though it is widely believe that e
provides no additional information about the elements of G, the AGM captures a hypothetical exploit without
needing to explicitly model it and considers the relation between two problems instead of their individual
hardness. This means that if one can reduce problem A to problem G in the AGM and A is conjectured to
remain hard with respect to algebraic algorithms, even when given e, then G also remains hard. No similar
statement can be inferred in the GGM.

A.5 The effect of powers on security

The SDH assumption and PKE assumption rely (in particular) on the hardness of computing the discrete
logarithm β when given the generator G ∈ G1 and challenge βG ∈ G1. In fact, in both cases the adversary is
also given elements of the form βiG, which can have a small, but noticeable, impact on concrete security.
There are generic algorithms [BG04; KKM07; Che10] that, for any power i such that i | (q − 1) where q is
the prime order of G1, compute the secret β in time O(

√
q/i+

√
i), improving on the usual O(

√
q)-time

algorithm. This “polynomial speedup” should be taken into account in practice.
Moreover, while our construction of polynomial commitment schemes in Appendix B does not use powers

of β in G2, other schemes that wish to share the same SRS might. Hence it is natural to discuss whether
our construction in Appendix B remains secure even in the presence of elements of the form βiH . Our
security reduction to the SDH and PKE assumptions does not rely on the absence of powers of β in G2, and
in particular can be modified in a straightforward way to obtain a security reduction to variants of the SDH
and PKE assumptions that additionally give to the adversary the additional elements in G2. These variants,
while similarly plausible assumptions, provide the adversary with a further polynomial speedup that must
also be taken into account in practice. Namely, given the generator G ∈ G1, challenge βG, and elements of
the form βiG ∈ G1 and βjH ∈ G2, one can use the pairing to compute e(G,H)β

i+j

= e(βiG, βjH). If
i+ j | q − 1, then the generic algorithms mentioned above compute β in time O(

√
q/(i+ j) +

√
i+ j).

13The restriction that all inputs to algebraic algorithms that are not group elements must not depend on group elements helps to
avoid pathological cases. For example, the algorithm that on input “G‖0” (which is not a group element), outputs group element G
cannot explain G in terms of previously seen group elements.

56

B Polynomial commitments for a single degree bound

We construct (succinct) polynomial commitment schemes that support a single degree bound chosen at setup
time. We temporarily restrict our attention to the case where, in the reveal phase, all polynomials are evaluated
at the same evaluation point. (We will relax this restriction in Appendix D.) This section is organized as
follows: in Appendix B.1 we provide formal definitions, in Appendix B.2 we give a construction in the
plain model under knowledge assumptions, and in Appendix B.3 we give a more efficient construction in the
algebraic group model under standard assumptions. In both cases we provide non-hiding and hiding variants.

B.1 Definition

A polynomial commitment scheme over a field family F for a single degree bound and a single evaluation
point is a tuple of algorithms PCs = (Setup,Commit,Open,Check) with the following syntax.

• PCs.Setup(1λ, D)→ (ck, rk). On input a security parameter λ (in unary), and a maximum degree bound
D ∈ N, PCs.Setup samples a key pair (ck, rk). The keys contain the description of a finite field F ∈ F .

• PCs.Commit(ck,p;ω) → c. On input ck and univariate polynomials p = [pi]
n
i=1 over the field F with

deg(pi) ≤ D, PCs.Commit outputs commitments c = [ci]
n
i=1 to the polynomials p. The randomness

ω = [ωi]
n
i=1 is used if the commitments c are meant to be hiding.

• PCs.Open(ck,p, z, ξ;ω)→ π. On input ck, univariate polynomials p = [pi]
n
i=1, evaluation point z ∈ F,

and opening challenge ξ, PCs.Open outputs an evaluation proof π. The randomness ω must equal the one
previously used in PCs.Commit.

• PCs.Check(rk, c, z,v, π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]
n
i=1, evaluation point z ∈ F,

alleged evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ, PCs.Check outputs 1 if π

attests that, for each i ∈ [n], the polynomial committed in ci has degree at most D and evaluates to vi at z.

The polynomial commitment scheme satisfies the completeness and extractability properties defined below.
The polynomial commitment scheme is (perfectly) hiding if it also satisfies the hiding property defined below.

Definition B.1 (Completeness). For every maximum degree boundD ∈ N and efficient adversary A it holds
that

Pr


deg(p) ≤ D

⇓
PCs.Check(rk, c, z,v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣
(ck, rk)← PCs.Setup(1λ, D)

(p, z, ξ)← A(ck, rk)
c← PCs.Commit(ck,p)

v ← p(z)
π ← PCs.Open(ck,p, z, ξ)

 = 1 .

Definition B.2 (Extractability). For every maximum degree bound D ∈ N and efficient adversary A, there
exists an efficient extractor E such that for every round bound r ∈ N, efficient public-coin challenger C,
efficient query sampler Q, and efficient adversary B = (B1,B2) the following probability is negligibly close

57

to 1:

Pr



PCs.Check(rk, c, z,v, π, ξ) = 1

⇓

deg(p) ≤ D and v = p(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PCs.Setup(1λ, D)

For i = 1, . . . , r:
ρi ← C(ck, rk, i)

ci ← A(ck, rk, [ρj]
i
j=1)

pi ← E(ck, rk, [ρj]
i
j=1)

Q← Q(ck, rk, [ρj]
r
j=1)

(v, st)← B1(ck, rk, [ρj]
r
j=1, Q)

Sample opening challenge ξ
π ← B2(st, ξ)

Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, [di]

n
i=1 := [di]

r
i=1

Parse Q as T × {z} for some T ⊆ [n] and z ∈ F
Set c := [ci]i∈T , p := [pi]i∈T , d := [di]i∈T



.

Definition B.3 (Succinctness). A polynomial commitment scheme is succinct if the size of commitments, the
size of evaluation proofs, and the time to check an opening are all independent of the degree of the committed
polynomials. That is, |c| = n · poly(λ), |π| = poly(λ), and time(Check) = n · poly(λ).

Definition B.4 (Hiding). There exists a polynomial-time simulator S = (Setup,Commit,Open) such that,
for every maximum degree bound D ∈ N, round bound r ∈ N, and (even unbounded) non-uniform adversary
A = (A1,A2,A3), the probability that b = 1 in the following two experiments is identical.

Real(1λ, D,A):
1. (ck, rk)← PCs.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

(a) (pi, hi)← A1(ck, rk, c0, c1, . . . , ci−1).
(b) If hi = 0: sample commitment randomness ωi.
(c) If hi = 1: set randomness ωi to ⊥.
(d) ci ← PCs.Commit(ck,pi;ωi).

3. c := [ci]
r
i=1, p := [pi]

r
i=1, ω := [ωi]

r
i=1.

4. ([Qj]
τ
j=1, [ξj]

τ
j=1, st)← A2(ck, rk, c).

5. For j ∈ [τ]:
πj ← PCs.Open(ck,p, Qj , ξj ;ω).

6. b← A3(st, [πj]
τ
j=1).

Ideal(1λ, D,A):
1. (ck, rk, trap)← S.Setup(1λ, D).
2. Letting c0 := ⊥, for i = 1, . . . , r:

(a) (pi, hi)← A1(ck, rk, c0, c1, . . . , ci−1).
(b) If hi = 0: sample randomness ωi and compute simu-

lated commitments ci ← S.Commit(trap, |pi|;ωi).
(c) If hi = 1: setωi := ⊥ and compute (real) commitments

ci ← PCs.Commit(ck,pi;ωi).
3. c := [ci]

r
i=1, p := [pi]

r
i=1, ω := [ωi]

r
i=1.

4. Zero out hidden polynomials: p′ := [hipi]
r
i=1.

5. ([Qj]
τ
j=1, [ξj]

τ
j=1, st)← A2(ck, rk, c).

6. For j ∈ [τ]:
πj ← S.Open(trap,p′,p(Qj), Qj , ξj ;ω).

7. b← A3(st, [πj]
τ
j=1).

Above we implicitly assume that A1 outputs poly(λ) polynomials in each round, and that A2 outputs
τ = poly(λ) query sets Qj , so that PCs.Commit, PCs.Open, S.Commit, and S.Open are all efficient.

B.2 In the plain model

We adapt the polynomial commitment scheme in [KZG10] to use “knowledge commitments”, and to support
commitments to multiple polynomials. We then prove that the resulting scheme satisfies the definitions in
Appendix B.1 under knowledge assumptions. We discuss both non-hiding and hiding variants of the scheme.

B.2.1 Construction

We use notation for bilinear groups introduced in Appendix A.1. The highlighted text below denotes parts of
the construction that are not needed if hiding is not desired. We refer to the non-hiding variant as nhPCs, and

58

to the perfectly hiding variant as phPCs.
Setup. On input a security parameter λ (in unary), and a maximum degree boundD ∈ N, PCs.Setup samples
a key pair (ck, rk) as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ), and parse 〈group〉 as a
tuple (G1,G2,GT , q, G,H, e). Sample random elements α, β,∈ Fq and γ ∈ F?q . Then compute the vector

Σ :=


G βG β2G . . . βDG

αG αβG αβ2G . . . αβDG

γG γβG γβ2G . . . γβDG

αγG αγβG αγβ2G . . . αγβDG

 ∈ G4D+4
1 .

Set ck := (〈group〉,Σ) and rk := (D, 〈group〉, γG, αH, βH), and then output the public parameters (ck, rk).
These public parameters will support polynomials over the field Fq of degree at most D.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over Fq with deg(p) ≤ D, and randomness

ω = [ωi]
n
i=1, PCs.Commit outputs commitments c = [ci]

n
i=1 that are computed as follows. If for any pi ∈ p,

deg(pi) > D, abort. For each i ∈ [n], if ωi is not ⊥, then interpret the randomness ωi as the coefficients of a
random univariate polynomial p̄i of degree deg(pi). Otherwise, set p̄i to be the zero polynomial. For each
i ∈ [n], output ci := (Ui, Vi) ∈ G2

1 where

Ui := pi(β)G+ γp̄i(β)G Vi := α(pi(β)G+ γp̄i(β)G) .

Note that pi and p̄i have degree at most D, and so the above terms are linear combinations of terms in ck.
Open. On input ck, univariate polynomials p = [pi]

n
i=1 over Fq, evaluation point z ∈ Fq, opening challenge

ξ ∈ Fq, and randomness ω = [ωi]
n
i=1 (the same randomness used for PCs.Commit), PCs.Open outputs an

evaluation proof π ∈ G1 that is computed as follows. If for any pi ∈ p, deg(pi) > D, abort. For each i ∈ [n],
if ωi is not ⊥, then obtain a random univariate polynomial p̄i of degree deg(pi) from ωi, otherwise set p̄i to
be the zero polynomial. Then compute the linear combination of polynomials p(X) :=

∑n
i=1 ξ

ipi(X) and
p̄(X) :=

∑n
i=1 ξ

ip̄i(X). Compute witness polynomials w(X) := p(X)−p(z)
X−z and w̄(X) := p̄(X)−p̄(z)

X−z . Set
w := w(β)G+ γw̄(β)G ∈ G1 and v̄ := p̄(z) ∈ Fq. The evaluation proof is π := (w, v̄).
Check. On input rk, commitments c = [ci]

n
i=1, evaluation point z ∈ Fq, alleged evaluations v = [vi]

n
i=1,

evaluation proof π = (w, v̄), and opening challenge ξ ∈ Fq, PCs.Check proceeds as follows. Parse each
commitment ci as a tuple (Ui, Vi) ∈ G2

1. Compute the two linear combinations

U :=

n∑
i=1

ξiUi and V :=

n∑
i=1

ξiVi ,

and ensure that the commitment (U, V) is extractable by checking that e(U,αH) = e(V,H). Then compute
the linear combination of evaluations v :=

∑n
i=1 ξ

ivi and check the evaluation proof via the equality
e(U − vG− v̄γG,H) = e(w, βH − zH).

Lemma B.5. The scheme PCs constructed above achieves completeness (Definition B.1).

Proof. Fix any maximum degree bound D and efficient adversary A. Let (ck, rk) be any key pair output
by the algorithm PCs.Setup(1λ, D) constructed above. The keys contain a description 〈group〉 of a bilinear
group of some prime order q, which in particular induces a field Fq.

LetA(ck, rk) select polynomials p = [pi]
n
i=1 over Fq, location z ∈ Fq, and opening challenge ξ ∈ Fq. We

only need to consider adversaries A that make choices for which deg(p) ≤ D. Now consider commitments
c = [ci]

n
i=1 and evaluation proof π that are all computed according to the construction above.

59

We need to show that, for the correct evaluations v := p(z),

PCs.Check(rk, c, z,v, π, ξ) = 1 .

This amounts to arguing that the two pairing equations are satisfied.
For the first pairing equation, note that the pair (Ui, Vi) has the property that the second element is the

first element multiplied by the secret scalar α. This is also true about the pair (U, V) obtained by taking the
linear combination determined by ξ, as the following computation shows:

U =

n∑
i=1

ξiUi =

n∑
i=1

(ξipi(β)G+ γp̄i(β)G) ,

V =

n∑
i=1

ξiVi = α

n∑
i=1

(ξipi(β)G+ γp̄i(β)G) .

We conclude that V = αU , and so the check e(U,αH) = e(V,H) passes.
For the second pairing equation, note that in the evaluation proof π = (w, v̄), w equals the element

w := p(X)−p(z)+γ(p̄(X)−p̄(z))
X−z G where p(X) :=

∑n
i=1 ξ

ipi(X) and p̄(X) :=
∑n

i=1 ξ
ip̄i(X). Also note that

the value v computed by PCs.Check is the evaluation of p at z. Therefore,

e(U − vG− γv̄G,H) = e(((p(β)− v) + γ(p̄(β)− v̄))G,H)

= e(p(β)−p(z)+γ(p̄(β)−p̄(z))
β−z G, (β − z)H)

= e((w(β) + γw̄(β))G, βH − zH)

= e(w, βH − zH) .

We conclude that the second pairing equation also holds.

Lemma B.6. The scheme PCs constructed above achieves succinctness (Definition B.3).

Proof. For a list of n polynomials, the scheme PCs requires 2n G1 elements for the commitment and one
G1 element and one Fq element for the evaluation proof, while the time to check this proof requires two
variable-base multi-scalar multiplications of size n and four pairings.

B.2.2 Extractability

Theorem B.7. If the bilinear group sampler SampleGrp satisfies the SDH and dPKE assumptions, nhPCs

and phPCs constructed in Appendix B.2.1 achieve extractability (Definition B.2).

First in Lemma B.9 we argue that nhPCs and phPCs satisfy evaluation binding, a property stating that for
any point z ∈ Fq and commitments c = [ci]

n
i=1, no efficient adversary can produce valid proofs that open c

to different lists of values at z. Then in Lemma B.10 we build on this fact to argue that nhPCs and phPCs

achieve extractability.
Definition B.8. PCs satisfies evaluation binding if for every maximum degree bound D ∈ N and efficient
adversary A = (A1,A2) the following probability is negligible in the security parameter λ:

Pr


v 6= v′

∧
PCs.Check(rk, c, z,v, π, ξ) = 1

∧
PCs.Check(rk, c, z,v′, π′, ξ) = 1

∣∣∣∣∣∣∣∣∣∣
(ck, rk)← PCs.Setup(1λ, D)(
c, z,v,v′, st

)
← A1(ck, rk)

Sample opening challenge ξ
(π, π′)← A2(st, ξ)

 .

60

Lemma B.9. If the bilinear group sampler SampleGrp satisfies the SDH assumption (Assumption 1), nhPCs

and phPCs constructed in Appendix B.2.1 achieve evaluation binding (Definition B.8).

Proof. Suppose for contradiction that there exists a maximum degree bound D and an efficient adversary
A = (A1,A2) that breaks evaluation binding with non-negligible probability. We show that either A can be
used to break DL with non-negligible probability or that we can use A to construct an efficient adversary B
that breaks SDH with non-negligible probability. Since the SDH assumption implies the DL assumption, in
either case we obtain a contradiction that SDH holds with respect to SampleGrp. We define B as follows.

B(〈group〉,Σ):
1. Parse Σ as {{βiG}Di=0, βH}.
2. Randomly sample α← Fq, γ ∈ F?q and set

ck := (〈group〉, {βiG,αβiG, γβiG,αγβiG}Di=0),
rk := (〈group〉, αH, βH).

3. Compute
(
c, z,v,v′, st

)
← A1(ck, rk).

4. Sample random opening challenge ξ ∈ Fq .
5. Compute (π, π′)← A2(st, ξ).
6. Parse (π, π′) as ((w, v̄), (w′, v̄′)), v as [vi]

n
i=1, and v

′ as [v′i]
n
i=1.

7. Compute v :=
∑n
i=1 ξ

ivi and v
′ :=

∑n
i=1 ξ

iv′i.
8. If zG = βG (i.e., z = β):

choose a from Fq \ {z}, and output
(
a, 1

z+aG
)
, breaking SDH.

9. Else if (zG 6= βG) ∧ (w 6= w′):
output

(
−z, 1

v
′−v+γ(v̄

′−v̄)
(w − w′)

)
, breaking SDH.

10. Else abort.

First, we show that if either the predicate in Step 8 or the predicate in Step 9 is satisfied, then B does in fact
break SDH. Next, we show that one of these predicates is satisfied with non-negligible probability whenever
A breaks evaluation binding. We do this by showing that if B aborts but A still succeeds, then A can be used
to solve the discrete logarithm problem in SampleGrp with non-negligible probability.

B succeeds if predicates are satisfied. If A outputs z = β, then B can construct an arbitrary solution
to the SDH problem. If on the other hand (β 6= z) ∧ (w 6= w′), then if A breaks evaluation binding, by
construction of PCs.Check the following equations must hold:

e(U − vG− γv̄G,H) = e(w, βH − zH) , (12)
e(U − v′G− γv̄′G,H) = e(w′, βH − zH) . (13)

Then, w 6= w′ and β 6= z together imply that v′ − v + γ(v̄′ − v̄) 6= 0. The above equations can then be
rewritten as

1

v′ − v + γ(v̄′ − v̄)
(w − w′) =

1

β − z
G ,

making
(
−z, 1

v
′−v+γ(v̄

′−v̄)
(w − w′)

)
a pair that breaks the SDH assumption.

Probability that predicates are satisfied. We analyze the probability with which B aborts by considering
the probability that the predicates are not satisfied, i.e., (β 6= z) ∧ (w = w′). We break this case down into
the following two disjoint subcases:

• Case 1: v̄ 6= v̄′. In this case, Equations (12) and (13) imply that v′ − v + γ(v̄′ − v̄) = 0. We can rewrite
this equation to compute the secret discrete logarithm γ = v−v′

v̄
′−v̄

.

61

• Case 2: v̄ = v̄′. In this case, it must hold that v = v′. Since v 6= v′, this occurs with probability at most nq .

Hence, we conclude that if (β 6= z) ∧ (w = w′) with non-negligible probability and A still succeeds, then A
can be used to break DL with non-negligible probability, which cannot occur if SDH is hard for SampleGrp.

Thus, ifA succeeds, then with non-negligible probability either β = z, or (β 6= z) ∧ (w 6= w′), which in
turn implies that B breaks SDH, contradicting our assumption.

Lemma B.10. If PCs constructed in Appendix B.2.1 achieves evaluation binding (Definition B.8), and if the
bilinear group sampler SampleGrp satisfies the dPKE assumption (Assumptions 2 and 3), then PCs achieves
extractability (Definition B.2).

Proof. The dPKE assumption implies the dMPKE? assumption, which considers the case where the adversary
outputs multiple knowledge commitments; see Appendix A.3.1. Below we rely on dMPKE?.

Fix a maximum degree bound D and an efficient adversary A against extractability. We use A to define
the adversary D below, which is against dMPKE.

D(〈group〉,Σ, z):
1. Parse instance Σ as {ΣPC = {βiG,αβiG, γβiG,αγβiG}Di=0, αH, βH}.
2. Parse the auxiliary input z as randomness [ρj]

i
j=1.

3. Construct ck := (〈group〉,ΣPC).
4. Construct rk := (〈group〉, αH, βH).
5. Let c← A(ck, rk, [ρj]

i
j=1).

6. Output c.

By assumption there exists a dMPKE? extractor ED against D that works with overwhelming probability.
We use ED to construct an extractor EA for the polynomial commitment scheme. The rest of this proof will
argue that EA defined below succeeds with overwhelming probability. For each round i ∈ [r], EA proceeds as
follows. We denote by ki the number of polynomials output by A in round i.

EA(ck, rk, [ρj]
i
j=1):

1. Parse ck as (〈group〉,ΣPC) and rk as (〈group〉, αH, βH).
2. Construct dMPKE instance Σ := {ΣPC, αH, βH}.
3. Construct auxiliary input z := [ρj]

i
j=1.

4. Run the dMPKE extractor: ([aj]
ki
j=1, [bj]

ki
j=1)← ED(〈group〉,Σ, z).

5. SetX := (1, X, . . . ,XD).
6. For each j in [ki], define polynomials pj(X) := 〈aj ,X〉 ∈ Fq[X] and p̄j(X) := 〈bj ,X〉 ∈ Fq[X].
7. For each j in [ki], let the randomness ωj be the coefficients of p̄j .
8. Output the polynomials p := [pj]

ki
j=1 and the randomness ω := [ωj]

ki
j=1.

For the purpose of our proof, we additionally let the above extractor output the randomness ω.
Suppose for contradiction that the extractor EA fails with some non-negligible probability, for a choice

of round bound r ∈ N, efficient public-coin challenger C, efficient query sampler Q, and efficient adversary
B = (B1,B2). We show this implies that either D succeeds with non-negligible probability (contradicting
our dPKE assumption), or that we can construct an adversary A′ that contradicts Lemma B.9. In more detail,
the extractor EA may fail due to (at least) one of two reasons.
(1) Incorrect polynomial or randomness: there exists an i ∈ T such that polynomial pi or random polynomial

p̄i does not match its commitment.

62

(2) Incorrect evaluation: for every i ∈ T , the extracted polynomial pi and corresponding random polynomial
p̄i match their commitments, but claimed evaluation for one such pi is incorrect.

If EA fails with non-negligible probability, then at least one of these cases occurs with non-negligible
probability. We analyze each case, and argue that this cannot be (or else we contradict our assumptions).
(1) Incorrect polynomial or randomness. Informally, this case occurs with negligible probability if the
dMPKE? assumption holds for SampleGrp. In more detail, we have to demonstrate that since PCs.Check
accepts, every knowledge commitment in c is “extractable”, i.e., for each c ∈ c, c = (U, V) satisfies αU = V
with overwhelming probability.

We do this as follows. Since PCs.Check accepts, we know that e(U,αH) = e(V,H), where U :=∑
i∈T ξ

iUi and V :=
∑

i∈T ξ
iVi are linear combinations of the input commitments. In this case, we have that

αUi 6= Vi for some i with probability at most |T |/q over random choice of ξ. Thus with probability 1−|T |/q,
each knowledge commitment satisfies the equality Vi = αUi, and is thus extractable. In this case we have that

Ui 6=
D∑
k=0

(ai,kβ
kG+ bi,kγβ

kG) ,

for some i ∈ T only if ED has failed, and by assumption this only happens with negligible probability.
(2) Incorrect evaluation. We show that this case occurs with negligible probability if evaluation binding
holds for PCs. If EA outputs polynomials that do not match the claimed evaluations with non-negligible
probability µ(λ), then we can use (A,B1,B2), the public-coin challenger C and the query sampler Q to
construct the following adversaryA′ = (A′1,A

′
2) that succeeds in breaking evaluation binding (Definition B.8)

with the same non-negligible probability µ(λ).

A′1(ck, rk):
1. For i = 1, . . . , r:

(a) Obtain challenge: ρi ← C(ck, rk, i).
(b) Obtain commitments: ci ← A(ck, rk, [ρj]

i
j=1).

(c) Extract polynomials and randomness: (pi,ωi)← EA(ck, rk, [ρj]
i
j=1).

2. Sample query set: Q← Q(ck, rk, [ρj]
i
j=1).

3. Set [ci]
n
i=1 := [ci]

r
i=1, [pi]

n
i=1 := [pi]

r
i=1, and [ωi]

n
i=1 := [ωi]

r
i=1.

4. Parse Q as T × {z} for some T ⊆ [n] and z ∈ F.
5. Set c := [ci]i∈T , p := [pi]i∈T , and ω := [ωi]i∈T .
6. (v, stB)← B1(ck, rk, [ρj]

k
j=1, Q).

7. Compute alternate evaluations v′ := p(z).
8. Set st := (ck, rk,p, z,ω, stB).
9. Output

(
c, z,v,v′, st

)
.

A′2(st, ξ):
1. Parse st as (ck, rk,p, z,ω, stB).
2. Obtain proof of evaluation: π ← B2(stB, ξ).
3. Compute alternate proof: π′ ← PCs.Open(ck,p, z, ξ;ω).
4. Output (π, π′).

Since the extractor successfully extracts each polynomial and the randomness, and since PCs satisfies perfect
completeness, A′2 should be able to produce an alternate valid proof π

′ that is also accepted by PCs.Check.
Thus, if A breaks polynomial extractability with non-negligible probability by producing valid proofs for
incorrect evaluations, then A′ = (A′1,A

′
2) breaks evaluation binding for PCs with non-negligible probability,

which contradicts our assumption.

63

B.2.3 Hiding

Theorem B.11. PCs constructed in Appendix B.2.1 achieves hiding (Definition B.4).

Proof. We describe a polynomial-time simulator S such that, for every maximum degree bound D and
efficient adversary A = (A1,A2,A3), the adversary A cannot distinguish the real world and ideal world
experiments.

We leverage the fact that by knowing the “trapdoor” the simulator S can create the evaluation proof for
arbitrary values with respect to the commitment. We build our simulator S as follows:

S.Setup(1λ, D):
1. Run PCs.Setup(1λ, D), additionally defining trap := (ck, rk, β, γ).
2. Output (ck, rk, trap).

S.Commit(trap, k;ω):
1. Parse ω as [ωi]

k
i=1.

2. For i = 1, . . . , k:
(a) Obtain the random polynomial p̄i(X) from ωi.
(b) Compute Ui := p̄i(β)γG and Vi := αp̄i(β)γG.
(c) Set ci = (Ui, Vi).

3. Output c := [ci]
k
i=1.

S.Open(trap,p,v, Q, ξ;ω):
1. Parse p := [pi]

n
i=1,v := [vi]

n
i=1, and ω := [ωi]

n
i=1.

2. Parse query set Q as T × {z} for some T ⊆ [n] and z ∈ Fq .
3. For i ∈ T :

(a) If ωi 6= ⊥:
i. Compute (Ui, Vi)← S.Commit(trap, 1;ωi).
ii. Obtain the random polynomial p̄i(X) from ωi.
iii. Set ṽi := p̄i(z)− vi

γ .
(b) Else ωi = ⊥:

i. Compute (Ui, Vi)← PCs.Commit(ck, pi;⊥).
ii. Set ṽi := 0.

4. Compute v̄ :=
∑n
i=1 ξ

iṽi , v :=
∑n
i=1 ξ

ivi , U :=
∑n
i=1 ξ

iUi.
5. If z 6= β:

Compute w := 1
β−zU −

v−γv̄
β−z G.

6. Else z = β:
Set w := 0G .

7. Output π := (w, v̄).

Clearly, S is polynomial-time. Associated with each pi output by A there is an independently and randomly
sampled degree D polynomial p̄i defined by ωi. We define a polynomial p̄′i such that in the real world,
p̄′i := p̄i, whereas in the ideal world, if hi = 0 (and hence ωi 6= ⊥), then p̄

′
i(X) := p̄i(X) − pi(X)

γ , and
p̄′i = 0 otherwise. Observe that each p̄′i is of degree D and is independently and randomly distributed if the
corresponding polynomial is required to be hiding. It follows that these polynomials are identically distributed
in the two worlds. Furthermore, since S.Setup uses PCs.Setup to generate (ck, rk), we see that (ck, rk) is
also identically distributed.

We claim that for each round i ∈ [r], upon fixing (ck, rk) and p̄′i, the resulting ci are given by a
deterministic function in pi(β) and, after fixing all the p̄′, for each query point [zj]

τ
j=1 the corresponding proof

64

πj is given by a deterministic function in (p(zj), zj , ξj). Since these deterministic functions are parametrized
by ck, rk, and the p̄′, which we have already shown are identically distributed in the two worlds, it follows that
the mappings of these functions will likewise be identically distributed, and thus we claim the two worlds are
indistinguishable even by unbounded adversaries.

Abusing notation to express group elements (or vectors thereof) as functions, we claim that for commitments
ci := (Ui,Vi) thatUi (pi(β)) = pi(β)G+ γp̄′i(β)G and Vi = αUi. Similarly, we claim the proof elements
πj := (v̄j ,wj) that

v̄j
(
zj , ξj

)
=

n∑
i=1

ξij · p̄
′
i(zj) , wj

(
zj
)

=

{
1

β−zj
U − v−γv̄j

β−zj
G if zj 6= β

0 if zj = β
,

where

U
(
ξj
)

=

n∑
i=1

ξij · Ui , v
(
p(zj), ξj

)
=

n∑
i=1

ξij · pi(zj) .

To conclude the proof it now only remains to be shown that the functions above describe the outputs of PCs

and S. We demonstrate this sequentially below.
Indistinguishability of commitments. In the real world we have

Ui := pi(β)G+ γp̄i(β)G , Vi := α(pi(β) + γp̄i(β))G ,

where since in this world we have defined p̄′ := p̄ our claim that Ui(pi) = pi(β)G+ γp̄′i(β)G and Vi = αUi
follows immediately. Now considering the ideal world case, from our pseudocode above we have that

Ui := γp̄i(β)G , Vi := αUi ,

where now we have defined p̄′i(z) := p̄i(z)−
p(z)
γ . Plugging this in we have

pi(β)G+ γp̄′i(β)G = pi(β)G+ γ

(
p̄i(β)− p(β)

γ

)
G = γp̄i(β)G ,

and thus may conclude that commitments are indistinguishable with respect to all adversaries.
Indistinguishability of evaluation proofs. In the real world world we have v̄j =

∑n
i=1 ξ

i
j · p̄i(zj), where

since p̄′i = p̄i we arrive at the expected function. In the ideal world we have that v̄j :=
∑n

i=1 ξ
i
j · ṽi, where in

the pseudocode above we see that ṽi = p̄′i(zj). We conclude that the v̄ are indistinguishable with respect to
all adversaries.

Finally, we consider the wj . In the real world we have wj := w(β)G+ γw̄(β)G, where

w(X) :=
p(X)− p(z)
X − z

, w̄(X) :=
p̄(X)− p̄(z)
X − z

.

Plugging these values in we obtain

wj :=
p(β)− p(z)
β − z

G+ γ
p̄(β)− p̄(z)
β − z

G =
p(β) + γp̄(β)

β − z
G− p(z) + γp̄(z)

β − z
G .

Recall our expressions for p and p̄ are

p(X) :=

n∑
i=1

ξipi(X) , p̄(X) :=

n∑
i=1

ξip̄i(X) .

65

Then we have that

p(β) + γp̄(β)

β − z
G =

1

β − z
U ,

p(z) + γp̄(z)

β − z
G =

v − γv̄j
β − zj

G ,

with U and v above defined in terms of a polynomial over the Ui and pi(zj), respectively, evaluated at ξj . We
note that w and w̄ are not rational functions because X − z always divides p(X)− p(z) for any univariate
polynomial p, and that evaluated at z = β they are both 0 rather than undefined. Thus we have shown that in
the real world each wj is defined as promised.

In the ideal world, it is easy to see our expression for wj already has the expected form, as do the
corresponding equations used for computing U and v. We conclude that no adversary can distinguish between
the two worlds.

B.3 In the algebraic group model

The constructions in Appendix B.2 require two group elements to commit to a polynomial due to their use
of knowledge assumptions. In this section we achieve better efficiency (one group element per polynomial)
by proving extractability in the AGM. Instead of relying on the PKE extractor to extract polynomials from
commitment, we simply use the algebraic adversary’s own explanations. This makes the extractability proof
straightforward.

We proceed as follows. First, in Appendix B.3.1, we describe how to modify the constructions in
Appendix B.2.1 to rely on the AGM, and then in Appendix B.3.2, we demonstrate that these modified
constructions achieve extractability against algebraic adversaries.

B.3.1 Construction

We use notation for bilinear groups introduced in Appendix A.1 and notation for algebraic algorithms from
Definition A.7. The highlighted text below denotes parts of the construction that are not needed if hiding
is not desired. Reusing notation from Appendix B.2.1, we refer to the non-hiding variant as nhPCs, and
the hiding variant as phPCs (perfectly-hiding PCs). At a high level, the construction follows the blueprint
of Appendix B.2.1 closely, but all the terms including α are never generated during setup (and thus never
subsequently used). This is because these are precisely the terms used to prove knowledge when relying on
PKE.
Setup. On input a security parameter λ (in unary), and a maximum degree bound D ∈ N, PCs.Setup
samples public parameters (ck, rk) as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ), and
parse 〈group〉 as a tuple (G1,G2,GT , q, G,H, e). Sample random elements β, γ ∈ Fq. Then compute the
vector

Σ :=

(
G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
∈ G2D+2

1 .

Set ck := (〈group〉,Σ) and rk := (D, 〈group〉, γG, βH), and then output the public parameters (ck, rk).
These public parameters will support polynomials over the field Fq of degree at most D.
Commit. On input ck, univariate polynomials p := [pi]

n
i=1 over Fq, and randomness ω := [ωi]

n
i=1,

PCs.Commit outputs commitments c := [ci]
n
i=1 that are computed as follows. If for any pi ∈ p, deg(pi) > D,

abort. Else, for each i ∈ [n], if ωi is not ⊥, then obtain random univariate polynomial p̄i of degree deg(pi)
from ωi, otherwise p̄i is set to be a zero polynomial. For each i ∈ [n], output ci := pi(β)G+ γp̄i(β)G. Note
that because pi and p̄i have degree at most D, the above terms are linear combinations of terms in ck.

66

Open. On input ck, univariate polynomials p := [pi]
n
i=1 over Fq, evaluation point z ∈ Fq, opening challenge

ξ ∈ Fq, and randomness ω := [ωi]
n
i=1, which is the same randomness used for PCs.Commit, PCs.Open

outputs an evaluation proof π ∈ G1 that is computed as follows. If for any pi ∈ p, deg(pi) > D, abort. For
each i ∈ [n], if ωi is not⊥, then obtain random univariate polynomial p̄i of degree deg(pi) from ωi, otherwise
p̄i is set to be a zero polynomial. Then compute the linear combination of polynomials p(X) :=

∑n
i=1 ξ

ipi(X)

and p̄(X) :=
∑n

i=1 ξ
ip̄i(X). Compute witness polynomials w(X) := p(X)−p(z)

X−z and w̄(X) := p̄(X)−p̄(z)
X−z .

Set w := w(β)G+ γw̄(β)G ∈ G1 and v̄ := p̄(z) ∈ Fq. The evaluation proof is π := (w, v̄).
Check. On input rk, commitments c := [ci]

n
i=1, evaluation point z ∈ Fq, alleged evaluations v := [vi]

n
i=1,

evaluation proof π := (w, v̄), and randomness ξ ∈ Fq, PCs.Check proceeds as follows. Compute the linear
combination C :=

∑n
i=1 ξ

ici Then compute the linear combination of evaluations v :=
∑n

i=1 ξ
ivi, and check

the evaluation proof via the equality e(C − vG− γv̄G,H) = e(w, βH − zH).

Completeness. Completeness can be proved by suitably modifying the completeness proof in Appendix B.2.1.
Succinctness. The scheme PCs constructed in this section requires n G1 elements to commit to c = [ci]

n
i=1,

one G1 and one Fq element for the evaluation proof, and the time to check this proof of evaluation requires
two pairings and one variable-base multi-scalar multiplication of size n.

B.3.2 Extractability and hiding

Theorem B.12. If the bilinear group sampler SampleGrp satisfies the SDH assumption against algebraic
adversaries (Assumption 1), nhPCs and phPCs constructed in Appendix B.3.1 achieve extractability against
algebraic adversaries (Definition B.2).

To prove this, we rely on the fact that nhPCs and phPCs satisfy evaluation binding (Definition B.8):

Lemma B.13. If the bilinear group sampler SampleGrp satisfies the SDH assumption (Assumption 1), then
nhPCs and phPCs constructed in Appendix B.3.1 achieve evaluation binding (Definition B.8).

The proof of the above lemma is easily achieved by straightforward modifications to the proof of
Lemma B.9.

Lemma B.14. If the bilinear group sampler SampleGrp satisfies the SDH assumption against algebraic
adversaries (Assumption 1), nhPCs and phPCs constructed in Appendix B.3.1 achieve extractability against
algebraic adversaries (Definition B.2).

Proof. Fix any efficient, algebraic adversary Aalg and maximum degree bound D ∈ N. We show how to
construct an efficient extractor EAalg

for the polynomial commitment scheme that succeeds with overwhelming
probability. In each round i ∈ [r] algorithm EAalg

proceeds as follows. We denote by k the number of group
elements output by the adversary Aalg.

67

EAalg
(ck, rk; [ρj]

i
j=1):

1. Parse ck as (〈group〉,Σ).

2. Parse Σ as
(

G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
.

3. Set Σ1 := (G, βG, β2G, . . . , βDG).
4. Set Σ2 := (γG, γβG, γβ2G, . . . , γβDG).
5. Invoke the adversary: [〈aj ,Σ1〉+ 〈bj ,Σ2〉]

k
j=1 ← Aalg(ck, rk; [ρj]

i
j=1).

6. SetX := (1, X, . . . ,XD).
7. For each j in [k], define polynomials pj(X) := 〈aj ,X〉 ∈ Fq[X] and p̄j(X) := 〈bj ,X〉 ∈ Fq[X].
8. For each j in [k], let the randomness ωj be the coefficients of p̄j .
9. Output the polynomials p = [pj]

k
j=1 and randomness ω := [ωj]

k
j=1.

For a given efficient public-coin challenger C, efficient adversary B := (B1,B2), efficient query sampler
Q, and round bound r ∈ N, the extractor EAalg

can fail with non-negligible probability only if there exists a
polynomial whose claimed evaluation is incorrect. However, because nhPCs and phPCs satisfy evaluation
binding, all evaluations are correct with overwhelming probability. This latter fact follows from a reduction
identical to that in the corresponding portion of the extractability proof of Lemma B.10. Hence, EAalg

succeeds
with overwhelming probability.

Lemma B.15. phPCs constructed in Appendix B.3.1 is perfectly hiding (Definition B.4).

At a high level, one can adapt the proof in Theorem B.11 into a proof of Lemma B.15 by removing from
it all terms related to α, as the proof only reasons about these terms for the sake of completeness.

68

C Polynomial commitments for multiple degree bounds

We construct a polynomial commitment scheme that supports multiple degree bounds up to a maximum
degree chosen at setup time.

We again temporarily restrict our attention to the case where, in the reveal phase, all polynomials are
evaluated at the same evaluation point. (We will relax this restriction in Appendix D.) We do not provide a
standalone definition for the construction that we consider below, because it equals the definition in Section 6.1
when restricted to admissible query samplers which output query sets Q consisting of a single evaluation
point at which a subset of the polynomials are evaluated (i.e., Q = T × {z} for some T ⊆ [n], and z ∈ F).14

We proceed as follows. First, in Appendix C.1, we present a construction for the above goal that builds
upon ideas in Appendix B.3.1. Then, in Appendix C.2, we reduce the hiding and extractability of this
construction to the hiding and extractability of a related construction that is simpler to analyze, but is not
degree-efficient. This simpler construction might also be of independent interest.

C.1 Degree-efficient construction

We demonstrate how to construct a polynomial commitment that supports multiple degree bounds efficiently.
Our construction builds upon the construction in Appendix B.3.1. A polynomial commitment scheme
over a field family F for multiple degree bounds and a single evaluation point is a tuple of algorithms
PCm = (Setup,Trim,Commit,Open,Check) with the following syntax. Below we use [[ai, bi]]

n
i=1 as a

short-hand for the tuple (a1, b1, . . . , an, bn). The highlighted text below denotes the parts of the construction
that differ from the construction in Appendix B.3.1.
Setup. On input a security parameter λ (in unary), and a maximum degree bound D ∈ N, PCm.Setup
samples public parameters pp as follows. Sample a bilinear group 〈group〉 ← SampleGrp(1λ), and parse
〈group〉 as a tuple (G1,G2,GT , q, G,H, e). Sample random elements β, γ ∈ Fq. Then compute the vector

Σ :=

(
G βG β2G . . . βDG

γG γβG γβ2G . . . γβDG

)
∈ G2D+2

1 .

Set pp := (D, 〈group〉,Σ, βH), and then output the public parameters pp. These public parameters will
support polynomials over the field Fq of degree at most D.
Trim. Given oracle access to public parameters pp, and on input a security parameter λ (in unary), and
degree bounds d = [di]

n
i=1, PCm.Trim

pp deterministically computes a key pair (ck, rk) that is specialized to
d as follows. Let d be the maximum degree bound in d. Then obtain Σck from public parameters:

Σck :=

(
G βG . . . βdG βD−dG βD−d+1G . . . βDG

γG γβG . . . γβdG

)
∈ G3d+3

1 .

Set ck := (Σck,d). Let Σrk be the set {β
D−diG}i∈[n] and rk := (D, 〈group〉,Σrk, γG, βH,d), and then

output the key pair (ck, rk). This key pair is specialized to d.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over the field Fq, degree bounds d = [di]

n
i=1 with

deg(p) ≤ d ≤ D, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Commit outputs commitments c = [ci]

n
i=1 that

are computed as follows. Obtain the supported degree bounds d′ from ck. If for any pi ∈ p, deg(pi) > di

14Recall from Definition 6.5 that an admissible query sampler outputs query sets such that every polynomial is evaluated at least
once at a point sampled from a super-polynomially-large subset.

69

or di 6∈ d
′, abort. For each i ∈ [n], if ωi and ω

′
i are not ⊥, then obtain from them random univariate

polynomials p̄i and p̄
′
i of degree deg(pi); otherwise, set p̄i and p̄

′
i to be the zero polynomial. For each i ∈ [n],

compute ci := pi(β)G + γp̄i(β)G and c′i := βD−dipi(β)G + γp̄′i(β)G. Finally, set ci := (ci, c
′
i), and

output c := [ci]
n
i=1. Note that because pi(X), XD−dipi(X), p̄i(X) and p̄′i(X) have at most di non-zero

coefficients, the above terms are linear combinations of terms in ck.
Open. On input ck, univariate polynomials p = [pi]

n
i=1 over the field Fq, degree bounds d = [di]

n
i=1,

evaluation point z ∈ Fq, opening challenge ξ, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Open outputs the

evaluation proof π as follows. Obtain the supported degree bounds d′ from ck. If for any pi ∈ p, deg(pi) > di
or di 6∈ d

′, abort. For each i ∈ [n], if ωi and ω
′
i are not ⊥, obtain from them random univariate polynomials

p̄i and p̄
′
i of degree deg(pi); otherwise, set p̄i and p̄

′
i to be the zero polynomial.

Then, for each i ∈ [n], define the polynomial p?i (X) := XD−dipi(X) −XD−dipi(z), and compute a
witness polynomial wi(X) := pi(X)−pi(z)

X−z for pi, and a witness polynomial w?i (X) := XD−diwi(X) for p?i .
Finally, compute the witness polynomial for these 2n polynomials as w :=

∑n
i=1 ξ

iwi +
∑n

i=1 ξ
n+iw?i .

Next, compute the linear combination of the random polynomials p̄ :=
∑n

i=1 ξ
ip̄i and p̄

′ :=
∑n

i=1 ξ
n+ip̄′i,

and compute thewitness polynomial w̄(X) := p̄(X)−p̄(z)+p̄′(X)−p̄′(z)
X−z for these. Setw := w(β)G+γw̄(β)G ∈

G1, and v̄ := p̄(z) + p̄′(z) ∈ Fq. The evaluation proof is π := (w, v̄).
Check. On input rk, commitments c = [ci]

n
i=1, degree bounds d = [di]

n
i=1, evaluation point z ∈ Fq, alleged

evaluations v = [vi]
n
i=1, evaluation proof π = (w, v̄), and opening challenge ξ, PCm.Check proceeds as

follows. Obtain the supported degree bounds d′ from rk. If for any di ∈ d, di 6∈ d
′, abort. Parse each

commitment ci as a pair of sub-commitments (ci, c
′
i), and construct c

?
i := c

′
i − viβ

D−diG. Next, compute
the two linear combinations

C :=
n∑
i=1

ξici +
n∑
i=1

ξn+i
c
?
i , v :=

n∑
i=1

ξivi,

Then check the evaluation proof π = (w, v̄) via the equality e(C − vG− γv̄G,H) = e(w, βH − zH).

Lemma C.1. The scheme PCm constructed above achieves completeness (Definition 6.1).

Proof. Fix any maximum degree bounds D, d = [di]
n
i=1 and efficient adversary A. Let pp be any public

parameters output by the algorithm PCm.Setup(1λ, D). Let A(pp) select polynomials p = [pi]
n
i=1 over Fq,

degree bounds d = [di]
n
i=1, location z ∈ Fq, and opening challenge ξ ∈ Fq. We only need to consider

adversaries A that make choices for which deg(p) ≤ di ≤ D. Let (ck, rk) be any key pair output by the
algorithm PCm.Trim

pp(1λ,d) constructed above. The keys contain a description 〈group〉 of a bilinear group
of some prime order q, which in particular induces a field Fq.

Now consider commitments c = [ci]
n
i=1 and evaluation proof π that are all computed according to the

construction above. We need to show that, for the correct evaluations v := p(z),

PCm.Check(rk, c,d, z,v, π, ξ) = 1 .

This amounts to arguing that the pairing equations are satisfied. For these equations, note that the combined
commitment C and evaluation v are computed by PCm.Check as follows:

70

C =
n∑
i=1

ξici +
n∑
i=1

ξn+i
c
?
i

=
n∑
i=1

ξi(pi(β)G+ γp̄i(β)G) +
n∑
i=1

ξn+i(βD−di(pi(β)− pi(z))G+ γp̄′i(β)G)

=
n∑
i=1

ξi(pi(β)G+ γp̄i(β)G) +
n∑
i=1

ξn+i(p?i (β)G+ γp̄′i(β)G) ,

v =
n∑
i=1

ξivi =
n∑
i=1

ξipi(z) .

In the evaluation proof π = (w, v̄), we have that

w = (w(β) + γw̄(β))G

=

n∑
i=1

ξiwi(β)G+

n∑
i=1

ξn+iw?i (β)G+

n∑
i=1

ξiw̄i(β)γG+

n∑
i=1

ξn+iw̄′i(β)γG

=

n∑
i=1

ξi(pi(β)− pi(z)) + ξn+ip?i (β) + ξi(p̄i(β)− p̄i(z))γ + ξn+i(p̄′i(β)− p̄′i(z))γ
β − z

G

We also have that the evaluation v̄ = p̄(z) + p̄′(z). Therefore,

e(C − vG− γv̄G,H)

= e(
∑n

i=1(ξi((pi(β)− vi) + γ(p̄i(β)− p̄i(z))) + ξn+i(p?i (β) + γ(p̄′i(β)− p̄′i(z))))G,H)

= e(
∑n

i=1 ξ
i
(pi(β)−pi(z))+ξ

n+i
p
?
i (β)+ξ

i
(p̄i(β)−p̄i(z))γ+ξ

n+i
(p̄

′
i(β)−p̄′i(z))γ

β−z G, (β − z)H)

= e((w(β) + γw̄(β))G, βH − zH)

= e(w, βH − zH) .

We conclude that the pairing equation also holds.

Lemma C.2. The scheme PCm constructed achieves efficiency, as defined in Definition 6.3.

Proof. PCm satisfies both efficiency properties:
• Degree-efficiency: For a list of n polynomials with degree bounds d = [di]

n
i=1 where d = max(d) is the

maximum supported degree bounds for these polynomials, both PCm.Commit and PCm.Open only handle
polynomials having at most d coefficients, and so the time to commit to the polynomials is the time for
4n variable-base multi-scalar multiplications of size at most d, while the time to compute an evaluation
proof is the time to compute two polynomial divisions of degree at most d plus the time required for two
variable-base multi-scalar multiplications of size at most d.

• Succinctness: For a list of n polynomials, the scheme PCm requires 2n G1 elements for a commitment and
one G1 element and one Fq element for an evaluation proof, while the time to check this proof requires two
variable-base multi-scalar multiplications of size n and two pairings.

Extractability and hiding. We reduce the extractability and hiding properties of our construction to those
of a simpler-to-analyze construction described below. This latter construction makes black-box use of any
PCs scheme.

71

C.2 Black-box construction

We now provide a simpler construction of PCm that makes black-box use of PCs. This construction is not
degree-efficient (Definition 6.3), but is simpler to analyze.
Setup. On input a security parameter λ (in unary), and a maximum degree bound D ∈ N, PCm.Setup
samples and outputs pp := PCs.Setup(1λ, D). The keys contain the description of a finite field F ∈ F .
Trim. Given oracle access to public parameters pp, and on input a security parameter λ (in unary), and
degree bounds d, PCm.Trim simply parses pp as (ck, rk) and outputs these.
Commit. On input ck, univariate polynomials p = [pi]

n
i=1 over the field F, degree bounds d = [di]

n
i=1

with deg(p) ≤ d ≤ D, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Commit outputs commitments c = [ci]

n
i=1

that are computed as follows. First, for each i ∈ [n], define the shifted polynomial p′i(X) := XD−dipi(X).
Next, use PCs to simultaneously commit to all unshifted and shifted polynomials: [[ci, c

′
i]]
n
i=1 :=

PCs.Commit(ck, [[pi, p
′
i]]
n
i=1;ω). Finally, set ci := (ci, c

′
i), and output c := [ci]

n
i=1. Note that every

polynomial being committed has degree at most D.
Open. On input ck, univariate polynomials p = [pi]

n
i=1 over the field F, degree bounds d = [di]

n
i=1,

evaluation point z ∈ F, opening challenge ξ, and randomness ω = [[ωi, ω
′
i]]
n
i=1, PCm.Open outputs the

evaluation proof π := PCs.Open(ck, [[pi, p
′
i]]
n
i=1, z, ξ;ω), where each p′i is the shift of pi respectively.

Check. On input rk, commitments c = [ci]
n
i=1, degree bounds d = [di]

n
i=1, evaluation point z ∈ F, alleged

evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ, PCm.Check proceeds as follows. Parse

each commitment ci as a pair of sub-commitments (ci, c
′
i). For each i ∈ [n], compute the shifted evaluation

v′i := zD−divi. Check that PCs.Check(rk, [[ci, c
′
i]]
n
i=1, z, [[vi, v

′
i]]
n
i=1, π, ξ) accepts.

Lemma C.3. If PCs achieves completeness (Definition B.1) then PCm achieves completeness (Definition 6.1).

Proof. If an adversary A(ck, rk) selects polynomials [pi]
n
i=1, degree bounds [di]

n
i=1, evaluation point z ∈ F,

and opening challenge ξ such that, for every i ∈ [n], we have deg(pi) ≤ di ≤ D, then both the unshifted
polynomials [pi]

n
i=1 and shifted polynomials [p′i]

n
i=1 have degree at most D. Furthermore, because the

shifted polynomials are computed as p′(X) = XD−dip(X), the shifted evaluations will always match:
v′i = zD−di · vi. This means that the completeness of PCs ensures that the commitments produced via PCs

will pass the tests in PCs.Check.

Lemma C.4. If PCs achieves succinctness (Definition B.3) then PCm achieves succinctness (Definition 6.3).

Proof. The commitment of PCm contains 2n PCs commitments and the evaluation proof contains one PCs

proof. The time to check n evaluations is the same as the time to check 2n evaluations in PCs, plus at most
n · (logD) field operations to compute v′.

Lemma C.5. If the construction in Appendix C.2 achieves extractability and hiding when instantiated with
PCs from Appendix B.3, then so does the construction in Appendix C.1.

Proof. We show how to reduce the extractability and hiding of the construction in Appendix C.1 (denoted by
PCm) to that of the foregoing construction (denoted by PC

′
m). For simplicity, we consider the case of a single

polynomial p with a single degree bound d evaluated at the query point z.
• Extractability: Note that PCm commitments are identical to PC′m commitments. The same holds for
evaluation proofs for unshifted polynomials. Hence, the only difference is in how degree bounds are
enforced, and so we focus on this latter aspect.

72

Define the polynomials p1 := XD−dp(X)−XD−dv and p2 := XD−dp(X). To enforce degree bounds,
PCm provides an evaluation proof for the claim that p1(z) = 0, while PC′m provides a proof for the
claim that p2(z) = zD−dv. However, notice that p2(z) = zD−dv if and only if p2(z) = 0, and so a PCm

evaluation proof is valid only if the “corresponding” PC′m proof is also valid.
• Hiding: Note that PCm commitments and evaluation proofs for unshifted polynomials are identical to those
for PC′m, and so we focus on evaluation proofs for shifted polynomials. As seen from the calculation of
PCm, the witness polynomial for p1 is a shifted version of the witness polynomial for p, and hence the
evaluation proof does not reveal any additional information about p.

C.2.1 Extractability

Theorem C.6. If PCs achieves extractability (Definition B.2) then PCm achieves extractability (Definition 6.2
restricted to query sets Q querying a subset of polynomials at the same point (i.e., Q = T × {z} for some
T ⊆ [n], and z ∈ F).

Proof. Fix a maximum degree boundD and an efficient adversary A against PCm. We use A to construct an
adversary B and query sampler Q′ against PCs. By assumption there exists a PCs extractor EB against B. We
use EB to construct an PCm extractor EA for A.

B(ck, rk, [ρj]
i
j=1):

1. Set pp := (ck, rk).
2. Compute (c,d)← A(pp, [ρj]

i
j=1).

3. Parse c as [[ci, c
′
i]]
n
i=1.

4. Output [[ci, c
′
i]]
n
i=1.

EA(pp, [ρj]
i
j=1):

1. Parse pp as (ck, rk).
2. Compute p← EB(ck, rk, [ρj]

i
j=1).

3. Parse p as [[pi, p
′
i]]
n
i=1.

4. Output [pi]
n
i=1.

Suppose for contradiction that the extractor EA fails with non-negligible probability for some choice of
round bound r ∈ N, efficient public-coin challenger C, efficient query sampler Q, and efficient adversary
B = (B1,B2). This can occur due to one of two reasons.
(1) Extracted polynomial does not match evaluation: there exists an extracted polynomial whose claimed

evaluation is incorrect.
(2) Degree bounds are not satisfied: all extracted polynomials match their claimed evaluations, but there

exists a polynomial whose degree differs from the claimed degree.
If EA fails with non-negligible probability, then one of these cases occurs with non-negligible probability. We
analyze both cases, and argue that this cannot be.
(1) Extracted polynomial does not match evaluation. Each PCm commitment ci in [ci]i∈T is a pair
of PCs commitments (ci, c

′
i). Since PCm.Check invokes PCs.Check, [ci]i∈T are accepted by PCm.Check

if and only if [[ci, c
′
i]]i∈T are accepted by PCs.Check. Thus, if PCm.Check accepts but the extractor

EA fails with non-negligible probability, then we deduce that PCs.Check accepts but the extractor EB
fails with non-negligible probability against a PCs query sampler Q′ that obtains Q from Q and outputs
Q′ := {(2i− 1, z), (2i, z) | (i, z) ∈ Q}. This contradicts the fact that PCs achieves extractability. Hence,
we conclude that all extracted polynomials match their claimed evaluations with probability negligibly close
to 1.
(2) Degree bounds are not satisfied. We first recall how the extractor EA works: it invokes the PCs

extractor to obtain 2n polynomials p := [pi, p
′
i]
n
i=1, and outputs [pi]

n
i=1. The remaining polynomials [p′i]

n
i=1

73

are supposedly “shifted” versions of the output polynomials. It should be the case that for each i ∈ T it
holds that p′i(X) = XD−dipi(X). To check that this condition is satisfied, PCm.Check verifies that, for
a point z ∈ F sampled by the admissible query sampler Q, v′i := zD−dipi(z) is a valid evaluation for p′i.
The probability that this equation holds but p′i(X) 6= XD−dipi(X) is negligibly small because Q, being
admissible, samples z from a super-polynomially-large subset of F.

C.2.2 Hiding

Theorem C.7. If PCs achieves hiding (Definition B.4) then PCm achieves hiding (Definition 6.4 restricted to
query sets Qj querying a subset of polynomials at the same point (i.e., Qj = Tj × {zj} for some Tj ⊆ [n],
and zj ∈ F).

Proof. Below we construct a simulator Sm for PCm using a simulator Ss for PCs as a subroutine.

Sm.Setup(1λ, D):
1. Compute (ck, rk, trap)← Ss.Setup(1λ, D).
2. Output (pp := (ck, rk), trap).

Sm.Commit(trap,d;ω):
1. Ignore the degrees d, and parse the randomness ω as [[ωi, ω

′
i]]

k
i=1.

2. Compute [[ci, c
′
i]]

k
i=1 := Ss.Commit(trap, 2k; [[ωi, ω

′
i]]

k
i=1).

3. For each i ∈ [k], assemble the pair ci := (ci, c
′
i) of simulated commitments.

4. Output the simulated commitments c := [ci]
n
i=1 for PCm.

Sm.Open(trap,p,v,d, Q, ξ;ω):
1. Parse p,v,d,ω as [pi]

n
i=1, [vi]

n
i=1, [di]

n
i=1, [[ωi, ω

′
i]]
n
i=1.

2. Parse Q as T × {z} for some T ⊆ [n] and z ∈ F.
3. For each i ∈ T , set p′i(X) := XD−dipi(X) and v′i := zD−divi.
4. Construct PCs query set Q

′ := {(2i− 1, z), (2i, z) | (i, z) ∈ Q}.
5. Output π ← Ss.Open(trap, [pi, p

′
i]
n
i=1, [vi, v

′
i]
n
i=1, Q

′, ξ; [[ωi, ω
′
i]]
n
i=1).

The simulator Sm is a simple wrapper around the simulator Ss, and it is straightforward to see that if Ss
simulates correctly for PCs then Sm simulates correctly for PCm.

74

D Polynomial commitments that support different query locations

We construct a polynomial commitment scheme PC that supports different query locations–an instantiation
of the primitive defined in Section 6.1. The query set Q consists of tuples (i, z) ∈ [n]× Fq of polynomial
indices and evaluation points. The construction is again a black-box extension of the polynomial commitment
scheme PCm considered in Appendix C which only supports a single query.

D.1 Construction

PC.Setup, PC.Trim, and PC.Commit equal PCm.Setup, PCm.Trim, and PCm.Commit in Appendix C, and
so below we show how to construct PC.Open and PC.Check.
Open. On input ck, univariate polynomials p over the field F, degree bounds d, the query set Q, opening
challenge ξ, and randomness ω that is the same one used in PC.Commit, PC.Open proceeds as follows.
Suppose there are t different evaluation points [zi]

t
i=1 in the query set Q. Divide p into different (possibly

overlapping) groups [pi]
t
i=1, where every polynomial in pi is evaluated at point zi according to Q. Similarly

divide degree bounds d and ω as [di]
t
i=1 and [ωi]

t
i=1 so that deg(pi) ≤ di and ωi is the randomness for the

polynomial pi. For each group pi, obtain the evaluation proof πi := PCm.Open(ck,pi,di, zi, ξ;ωi). Output
all the proofs of evaluation [πi]

t
i=1.

Check. On input rk, commitments c, degree bounds d, the query set Q, alleged evaluations v, evaluation
proof π, and opening challenge ξ, PC.Check proceeds as follows. Suppose there are t different evaluation
points [zi]

t
i=1 in the query set Q. Parse c, d, v and π as [ci]

t
i=1, [di]

t
i=1, [vi]

t
i=1 and [πi]

t
i=1 so that ci are the

commitments of polynomials pi, where deg(pi) ≤ di and pi(zi) is supposed to be vi. For each i ∈ [t], check
that PCm.Check(rk, ci,di, zi,vi, πi, ξ) accepts.

Completeness. The completeness of PC follows directly from the completeness of PCm.
Efficiency. PC satisfies both efficiency properties defined in Definition 6.3:
• Degree efficiency: The degree efficiency of PC follows directly from the degree efficiency of PCm, because
PC.Commit is the same as PCm.Commit, and PC.Open invokes PCm.Open a total of t = |Q|.

• Succinctness: The succinctness of PC follows directly from the succinctness of PCm. In particular, a PC
commitment equals a PCm commitment, and is hence of size poly(λ). Similarly, a PC evaluation proof
consists of t PCm evaluation proofs, and is hence of size t · poly(λ) = poly(λ). Finally, PC.Check invokes
PCm.Check t times such that the i-th invocation is over |ci| commitments. Because PCm.Check takes time
n · poly(λ) to check n commitments, PC.Check takes time

∑t
i=1 |ci| · poly(λ).

D.2 Extractability

Theorem D.1. If PCm in Appendix C achieves extractability (Definition 6.2) then PC also achieves
extractability (Definition 6.2).

Proof. Suppose for contradiction that there exists a maximum degree bound D ∈ N and efficient adversary
A against PC such that for some choice of round bound r ∈ N, efficient public-coin challenger C, efficient
query sampler Q, and efficient adversary B = (B1,B2), every efficient extractor EA fails with non-negligible
probability µ(λ).

Then, we show how to use these to break extractability for PCm by constructing adversary A′, query
sampler Q′, and adversary B′ as follows. We define A′ to equal A, and construct Q′ and B′ below.

75

Q′(pp, [ρj]
r
j=1) :

1. Obtain query set Q← Q(pp, [ρj]
r
j=1).

2. Parse Q as ∪j∈[t]Tj × {zj}, for some Tj ⊆ [n] and zj ∈ F, where
each zj is distinct.

3. Uniformly sample k ∈ [t].
4. Output Q′ := Tk × {zk}.

B′1(pp, [ρj]
r
j=1, Q) :

1. Parse Q as {(i, z) | i ∈ [n]} for some z ∈ F.
2. Obtain query set QPC ← Q(pp, [ρj]

r
j=1).

3. Parse QPC as ∪j∈[t]Tj × {zj}, for some Tj ⊆ [n] and zj ∈ F, where
each zj is distinct.

4. Check that for some k ∈ [t], Q = Qk.
5. Obtain (v, stPC)← B1(pp, [ρj]

r
j=1, QPC).

6. Parse v as [vi]
t
i=1 similarly to above.

7. Output (vk, st := (stPC, k)).

B′2(st, ξ) :
1. Parse st as (stPC, k).
2. Obtain proof π ← B2(stPC, ξ).
3. Parse π as [πj]

t
j=1.

4. Output πk .

Now, by assumption, there exists an extractor EA′ for PCm that succeeds in extracting against any choice of
Q′ and B′. In particular, it succeeds against Q′ and B′ constructed above. Because the extractor EA := EA′

fails only if EA′ fails, we need only to analyze the probability with which this latter algorithm fails. We know
that whenever EA fails, PC.Check accepts, but there exists k ∈ [t] such that

deg(pk) 6≤ dk ∨ vk 6= pk(zk) .

By construction of PC.Check, this means that the k-th invocation of PCm.Check succeeds, but the corre-
sponding polynomials are either of incorrect degree or have incorrect claimed evaluations. BecauseQ′ selects
this index k with probability 1/t, A′ and B′ break extractability of PCm with non-negligible probability
µ(λ)/t, thus contradicting our assumption.

D.3 Hiding

Theorem D.2. If PCm in Appendix C achieves hiding (Definition 6.4) then PC also achieves hiding
(Definition 6.4).

Proof. We achieve this by constructing a simulator SPC for PC using the PCm simulator Sm. SPC.Setup,
SPC.Trim, and SPC.Commit are the same as Sm.Setup, Sm.Trim, and Sm.Commit, and so we focus on
constructing SPC.Open.

76

SPC.Open(trap,p,v,d, Qi, ξi;ω):
1. Parse Q as ∪i∈[t]Tj × {zi}, for some Ti ⊆ [n] and zi ∈ F, where each zi is distinct.
2. Divide p, d, and ω into [pi]

t
i=1, [di]

t
i=1, and [ωi]

t
i=1 so that pi = [pj]j∈Ti

, di = [dj]j∈Ti
, and ωi = [ωj]j∈Ti

.
3. For each i in 1, . . . , t, compute evaluation proof πi ← Sm.Open(trap,pi,vi, Qi := Ti × {zi}, ξ;ωi).
4. Output πi := [πi]

t
i=1.

The simulator SPC is a simple wrapper around the simulator Sm. Since Sm achieves perfect hiding, so does
SPC regardless of τ , the number of query sets Qi, or ti, the respective number of distinct points in each query
set.

77

E An optimized AHP for R1CS

P(F, H,K,A,B,C, x, w) V ˆrow{A?
,B

?
,C

?},ĉol{A?
,B

?
,C

?},v̂al{A?
,B

?
,C

?}(F, H,K, x)

z := (x,w), zA := Az, zB := Bz, zC := Cz

sample ŵ(X) ∈ F<|w|+b[X] and ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b[X]
find h0(X) s.t. ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X)

sample s(X) ∈ F<2|H|+b−1[X] and compute sum σ1 :=
∑

κ∈H s(κ)

σ1 ∈ F,ŵ ∈ F<|w|+b[X], ẑA, ẑB, ẑC ∈ F<|H|+b[X],

h0 ∈ F<|H|+2b−1[X], s ∈ F<2|H|+b−1[X] ηA, ηB, ηC ← F
α← F \H

α, ηA, ηB, ηC ∈ F
compute t(X) :=

∑
M ηMrM (α,X)

sumcheck for s(X) + r(α,X)(
∑

M ηM ˆzM (X))− t(X)ẑ(X) over H
find g1(X) and h1(X) s.t.
s(X) + r(α,X)(

∑
M ηM ˆzM (X))− t(X)ẑ(X)

= h1(X)vH(X) +Xg1(X) + σ1/|H|

t ∈ F<|H|[X], g1 ∈ F<|H|−1[X], h1 ∈ F<|H|+b−1[X]
β1 ← F \H

β1 ∈ F

sumcheck for
∑

M∈{A,B,C}
ηM

vH(β1)vH(α)v̂al
M

? (X)

(β1− ˆrow
M

? (X))(α−ĉol
M

? (X))
overK

find g2(X) and h2(X) s.t.
h2(X)vK(X) = a(X)− b(X)(Xg2(X) + t(β1)/|K|)

g2 ∈ F<|K|−1[X], h2 ∈ F<6|K|−6[X]

β2 ← F
h2(β2)vK(β2)

?
= a(β2)− b(β2)(β2g2(β2) + t(β1)/|K|)

The polynomials a(X), b(X) are defined as follows:
a(X) :=

∑
M∈{A,B,C} ηMvH(β1)vH(α)v̂alM?(X)

∏
N∈{A,B,C}\{M}(β1 − ˆrowN

?(X))(α− ĉolN?(X))

b(X) :=
∏

M∈{A,B,C}(β1 − ˆrowM
?(X))(α− ĉolM?(X))

s(β1) + r(α, β1)(
∑

M ηM ˆzM (β1))− t(β1)ẑ(β1)
?
= h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

ẑA(β1)ẑB(β1)− ẑC(β1)
?
= h0(β1)vH(β1)

Figure 7: An AHP for R1CS that improves upon that described in Fig. 5, by incorporating ideas from [COS20].
Above we use notation from [COS20, Claim 6.7]: for any matrixM ∈ FH×H ,M? ∈ FH×H is the matrix given
byM?

a,b := Mb,a · uH(b, b) for all a, b ∈ H; note that ‖M?‖ = ‖M‖. The main idea behind the improvement is
that rM (X,Y) ≡M?(Y,X). See [COS20] for more details.

78

Acknowledgments
This research was supported by: an Engineering and Physical Sciences Research Council grant (EP/N028104/1), a
Google Faculty Award, the RISELab at UC Berkeley, and donations from the Ethereum Foundation and the Interchain
Foundation. The authors thank Dev Ojha and Nicholas Spooner for identifying and helping to fix an error in a prior
version of our AHP for the lincheck problem (Fig. 4), and also Kobi Gurkan for pointing out an error in our analysis of
Cheon’s attack in Appendix A.5.

References
[Abd+19] B. Abdolmaleki, K. Baghery, H. Lipmaa, J. Siim, and M. Zajac. “UC-Secure CRS Generation

for SNARKs”. In: Proceedings of the 11th International Conference on Cryptology in Africa.
AFRICACRYPT ’19. 2019, pp. 99–117.

[Ame+17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight Sublinear Argu-
ments Without a Trusted Setup”. In: Proceedings of the 24th ACM Conference on Computer and
Communications Security. CCS ’17. 2017, pp. 2087–2104.

[Aro+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof verification and the hardness of
approximation problems”. In: Journal of the ACM 45.3 (1998). Preliminary version in FOCS ’92.,
pp. 501–555.

[AS98] S. Arora and S. Safra. “Probabilistic checking of proofs: a new characterization of NP”. In: Journal of
the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[Bab85] L. Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual ACM Symposium
on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Bab+91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. “Checking computations in polylogarithmic time”.
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing. STOC ’91. 1991,
pp. 21–32.

[BB04] D. Boneh and X. Boyen. “Short Signatures Without Random Oracles”. In: Proceedings of the
23rd Annual International Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT ’04. 2004, pp. 56–73.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. “Minimum disclosure proofs of knowledge”. In: Journal of
Computer and System Sciences 37.2 (1988), pp. 156–189.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Proceedings of the 14th
Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[Ben+14a] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: Proceedings of the 34th Annual International Cryptology Conference. CRYPTO ’14.
Extended version at http://eprint.iacr.org/2014/595. 2014, pp. 276–294.

[Ben+14b] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Succinct Non-Interactive Zero Knowledge for
a von Neumann Architecture”. In: Proceedings of the 23rd USENIX Security Symposium. USENIX
Security ’14. Extended version at http://eprint.iacr.org/2013/879. 2014, pp. 781–796.

[Ben+15] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. “Secure Sampling of Public Parameters
for Succinct Zero Knowledge Proofs”. In: Proceedings of the 36th IEEE Symposium on Security and
Privacy. S&P ’15. 2015, pp. 287–304.

[Ben+16] E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza. “Quasilinear-Size Zero Knowledge from
Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography Conference. TCC ’16-A.
2016, pp. 33–64.

79

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

[Ben+17a] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner. “Interactive Oracle Proofs with
Constant Rate and Query Complexity”. In: Proceedings of the 44th International Colloquium on
Automata, Languages and Programming. ICALP ’17. 2017, 40:1–40:15.

[Ben+17b] E. Ben-Sasson et al. “Computational integrity with a public random string from quasi-linear PCPs”. In:
Proceedings of the 36th Annual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

[Ben+19a] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero Knowledge with No Trusted
Setup”. In: Proceedings of the 39th Annual International Cryptology Conference. CRYPTO ’19. 2019,
pp. 733–764.

[Ben+19b] E. Ben-Sasson, A. Chiesa, L. Goldberg, T. Gur, M. Riabzev, and N. Spooner. “Linear-Size Constant-
Query IOPs for Delegating Computation”. In: Proceedings of the 17th Theory of Cryptography
Conference. TCC ’19. 2019.

[Ben+19c] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. “Aurora: Transparent
Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19. Full version available at
https://eprint.iacr.org/2018/828. 2019, pp. 103–128.

[BG04] D. R. L. Brown and R. P. Gallant. The Static Diffie–Hellman Problem. Cryptology ePrint Archive,
Report 2004/306. 2004.

[BG12] S. Bayer and J. Groth. “Efficient Zero-Knowledge Argument for Correctness of a Shuffle”. In:
Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’12. 2012, pp. 263–280.

[BGG17] S. Bowe, A. Gabizon, and M. Green. A multi-party protocol for constructing the public parameters of
the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602. 2017.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for zk-SNARK Parameters in the
Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050. 2017.

[Bit+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct Non-Interactive Arguments via
Linear Interactive Proofs”. In: Proceedings of the 10th Theory of Cryptography Conference. TCC ’13.
2013, pp. 315–333.

[Bit+16] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. “On the Existence of Extractable One-Way Functions”.
In: SIAM Journal on Computing 45.5 (2016). Preliminary version appeared in STOC ’14., pp. 1910–
1952.

[Bon+17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs and Their Application to More
Efficient Obfuscation”. In: Proceedings of the 36th Annual International Conference on Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 247–277.

[Bon+18] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Quasi-Optimal SNARGs via Linear Multi-Prover
Interactive Proofs”. In: Proceedings of the 37th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’18. 2018, pp. 222–255.

[Boo+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the 35th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’16. 2016, pp. 327–
357.

[BP15] E. Boyle and R. Pass. “Limits of Extractability Assumptions with Distributional Auxiliary Input”. In:
Proceedings of the 21st International Conference on the Theory and Application of Cryptology and
Information Security. ASIACRYPT ’15. 2015, pp. 236–261.

[BS08] E. Ben-Sasson and M. Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM Journal on
Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

80

https://eprint.iacr.org/2018/828

[Bün+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs for
Confidential Transactions and More”. In: Proceedings of the 39th IEEE Symposium on Security and
Privacy. S&P ’18. 2018, pp. 315–334.

[CD98] R. Cramer and I. Damgård. “Zero-Knowledge Proofs for Finite Field Arithmetic; or: Can Zero-
Knowledge be for Free?” In: Proceedings of the 18th Annual International Cryptology Conference.
CRYPTO ’98. 1998, pp. 424–441.

[CFS17] A. Chiesa, M. A. Forbes, and N. Spooner. A Zero Knowledge Sumcheck and its Applications. Cryptology
ePrint Archive, Report 2017/305. 2017.

[Che10] J. H. Cheon. “Discrete Logarithm Problems with Auxiliary Inputs”. In: Journal of Cryptology 23.3
(2010), pp. 457–476.

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Transparent Recursive Proofs
from Holography”. In: Proceedings of the 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020.

[Dan+14] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. “Square Span Programs with Applications to
Succinct NIZK Arguments”. In: Proceedings of the 20th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT ’14. 2014, pp. 532–550.

[Den02] A. W. Dent. “Adapting the Weaknesses of the Random Oracle Model to the Generic Group Model”. In:
Proceedings of the 8th International Conference on the Theory and Application of Cryptology and
Information Security. ASIACRYPT ’02. 2002, pp. 100–109.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. “TheAlgebraic GroupModel and its Applications”. In:Proceedings
of the 38th Annual International Cryptology Conference. CRYPTO ’18. 2018, pp. 33–62.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[Gab19] A. Gabizon. Improved prover efficiency and SRS size in a Sonic-like system. Cryptology ePrint Archive,
Report 2019/601. 2019.

[Gen+13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and Succinct NIZKs
without PCPs”. In:Proceedings of the 32nd Annual International Conference on Theory and Application
of Cryptographic Techniques. EUROCRYPT ’13. 2013, pp. 626–645.

[GKR15] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. “Delegating Computation: Interactive Proofs for
Muggles”. In: Journal of the ACM 62.4 (2015), 27:1–27:64.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge complexity of interactive proof systems”. In:
SIAM Journal on Computing 18.1 (1989). Preliminary version appeared in STOC ’85., pp. 186–208.

[Gro10] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Proceedings of the
16th International Conference on the Theory and Application of Cryptology and Information Security.
ASIACRYPT ’10. 2010, pp. 321–340.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings of the 35th Annual
International Conference on Theory and Applications of Cryptographic Techniques. EUROCRYPT
’16. 2016, pp. 305–326.

[Gro+18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. “Updatable and Universal Common
Reference Strings with Applications to zk-SNARKs”. In: Proceedings of the 38th Annual International
Cryptology Conference. CRYPTO ’18. 2018, pp. 698–728.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Report 2019/953.
2019.

81

[Kil92] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[KKM07] S. Kozaki, T. Kutsuma, and K.Matsuo. “Remarks on Cheon’s Algorithms for Pairing-Related Problems”.
In: Proceedings of the 1st International Conference on Pairing-Based Cryptography. Pairing ’07. 2007,
pp. 302–316.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: Proceedings of the 16th International Conference on the Theory and Application of
Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

[Lip12] H. Lipmaa. “Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge
Arguments”. In: Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography.
TCC ’12. 2012, pp. 169–189.

[Mal+19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-Knowledge SNARKs from
Linear-Size Universal and Updateable Structured Reference Strings”. In: Proceedings of the 26th ACM
Conference on Computer and Communications Security. CCS ’19. 2019, pp. 2111–2128.

[Mau05] U. M. Maurer. “Abstract Models of Computation in Cryptography”. In: Proceedings of the 10th IMA
International Conference on Cryptography and Coding. IMA ’05. 2005, pp. 1–12.

[PST13] C. Papamanthou, E. Shi, and R. Tamassia. “Signatures of Correct Computation”. In: Proceedings of
the 10th Theory of Cryptography Conference. TCC ’13. 2013, pp. 222–242.

[PV05] P. Paillier and D. Vergnaud. “Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log”.
In: Proceedings of the 11th International Conference on the Theory and Application of Cryptology and
Information Security. ASIACRYPT ’05. 2005, pp. 1–20.

[RRR16] O. Reingold, R. Rothblum, and G. Rothblum. “Constant-Round Interactive Proofs for Delegating
Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of Computing. STOC ’16.
2016, pp. 49–62.

[Set19] S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. Cryptology ePrint
Archive, Report 2019/550. 2019.

[Sho97] V. Shoup. “Lower bounds for discrete logarithms and related problems”. In: Proceedings of the 16th In-
ternational Conference on the Theory and Application of Cryptographic Techniques. EUROCRYPT ’97.
1997, pp. 256–266.

[Wah+18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-Efficient zkSNARKs Without
Trusted Setup”. In: Proceedings of the 39th IEEE Symposium on Security and Privacy. S&P ’18. 2018,
pp. 926–943.

[Xie+19] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[Zcash] Zcash. https://z.cash/. 2014.
[ZcashMPC] The Zcash Ceremony. https://z.cash/blog/the-design-of-the-ceremony.html. 2016.
[Zha+17a] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. A Zero-Knowledge Version of

vSQL. Cryptology ePrint Archive, Report 2017/1146. 2017.
[Zha+17b] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL: Verifying Arbitrary

SQL Queries over Dynamic Outsourced Databases”. In: Proceedings of the 38th IEEE Symposium on
Security and Privacy. S&P ’17. 2017, pp. 863–880.

[Zha+18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM: Faster Verifiable RAM
with Program-Independent Preprocessing”. In: Proceedings of the 39th IEEE Symposium on Security
and Privacy. S&P ’18. 2018, pp. 908–925.

82

https://z.cash/
https://z.cash/blog/the-design-of-the-ceremony.html

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Building block: algebraic holographic proofs
	2.2 Building block: polynomial commitments
	2.3 Compiler: from AHPs to preprocessing arguments with universal SRS
	2.4 Construction: an AHP for constraint systems
	2.5 Construction: extractable polynomial commitments

	3 Preliminaries
	3.1 Indexed relations

	4 Algebraic holographic proofs
	5 AHP for constraint systems
	5.1 Algebraic preliminaries
	5.2 AHP for the lincheck problem
	5.3 AHP for R1CS

	6 Polynomial commitment schemes with extractability
	6.1 Definition
	6.2 Construction

	7 Preprocessing arguments with universal SRS
	8 From AHPs to preprocessing arguments with universal SRS
	8.1 Construction
	8.2 Proof of thm:argu-from-uiop
	8.3 Proof of thm:ks-argu-from-uiop
	8.4 Proof of thm:zk-argu-from-uiop

	9 Marlin: an efficient preprocessing zkSNARK with universal SRS
	9.1 Optimizations for the AHP
	9.2 Optimizations for the polynomial commitment scheme

	A Cryptographic assumptions
	A.1 Bilinear groups
	A.2 Strong Diffie–Hellman
	A.3 Power knowledge of exponent
	A.4 Algebraic group model
	A.5 The effect of powers on security

	B Polynomial commitments for a single degree bound
	B.1 Definition
	B.2 In the plain model
	B.3 In the algebraic group model

	C Polynomial commitments for multiple degree bounds
	C.1 Degree-efficient construction
	C.2 Black-box construction

	D Polynomial commitments that support different query locations
	D.1 Construction
	D.2 Extractability
	D.3 Hiding

	E An optimized AHP for R1CS
	Acknowledgments
	References

