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Abstract In predicate encryption for a function f , an authority can
create ciphertexts and secret keys which are associated with ‘attributes’.
A user with decryption key Ky corresponding to attribute y can decrypt
a ciphertext CTx corresponding to a message m and attribute x if and
only if f(x, y) = 0. Furthermore, the attribute x remains hidden to the
user if f(x, y) 6= 0.

We construct predicate encryption from assumptions on bilinear maps
for a large class of new functions, including sparse set disjointness, Ham-
ming distance at most k, inner product mod 2, and any function with an
efficient Arthur-Merlin communication protocol. Our construction uses a
new probabilistic representation of Boolean functions we call ‘one-sided
probabilistic rank,’ and combines it with known constructions of inner
product encryption in a novel way.
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1 Introduction

In this paper, we study Predicate Encryption (PE), a variant of functional en-
cryption. In PE for a Boolean function f : {0, 1}2n → {0, 1}, an authority
can create ciphertexts and secret keys which are labeled with values, or “at-
tributes”, from {0, 1}n. An authorized user with a decryption key Ky (with
label y ∈ {0, 1}n) can decrypt a ciphertext CTx (with label x ∈ {0, 1}n) if and
only if f(x, y) = 0. Furthermore (in contrast to the related, weaker notion of
attribute-based encryption), the attribute x is hidden unless the user can de-
crypt the message1.

Predicate encryption was first introduced by Boneh and Waters [10] and
is a natural cryptographic primitive with a number of applications throughout
cryptography and security [10,21]. For instance, an executive may issue a secret
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1 Predicate encryption is sometimes alternatively defined with the ciphertexts corre-

sponding to attributes xi and the secret keys being labeled with predicates fj , where
a ciphertext can be decrypted if fj(xi) = 0. These formulations are equivalent; we
can go from one to the other by considering the single function f(x, j) := fj(x) or
vice versa.



key that allows her assistant to read only her emails that are labeled with certain
business-related keywords, without revealing any of the keywords of any other
emails. A credit card company may issue a secret key that allows an intermediary
to check whether a transaction should be flagged for suspicious activity (based
on attributes such as amount, home address, and location of purchase), without
revealing bulk information for all transactions. A bank may issue a secret key
that allows a credit-reporting company to learn complete information about
certain statuses, such as late payments, but not about all of them.

In these examples, the metadata (i.e. attributes) of messages may carry sen-
sitive information and should not be revealed en masse, while revealing only a
limited or targeted set of attributes may be acceptable, especially if the number
of decrypted messages is small relative to the total number of messages (as in
the credit-card example).

1.1 Constructing PE

A long line of work [10,21,18,17] has shown how to construct PE for certain
classes of functions based on various cryptographic assumptions. [10] first con-
structed PE for some simple functions such as wildcard-matching (i.e. s ∈ {0, 1}n
matches p ∈ {0, 1, ∗}n if p[i] = s[i] whenever p[i] 6= ∗) with relatively standard
assumptions on bilinear maps. However, the known bilinear maps-based con-
structions typically can only support functions that can be essentially expressed
as inner products. The one known exception is [21], which shows how to con-
struct PE for the greater-than function (which cannot be expressed as a succinct
inner product) using a different approach.

Some recent work has shown how to achieve better results using other as-
sumptions. [13] showed how the stronger multilinear maps assumption can be
used to construct PE for any f with polynomial-size circuits. [17] showed how
to construct PE for polynomial-size circuits using assumptions on learning with
errors (LWE).

In this work, we return to the question of constructing PE based only on
bilinear maps. We will show how to do so for a large class of functions whose
‘one-sided probabilistic rank’ is low.

1.2 One-Sided Rank

Consider a Boolean function f : {0, 1}2n → {0, 1} where we think of 0 as ‘true’
and 1 as ‘false’. The one-sided rank of f over a ring R is the minimum integer
d such that there are two maps g, h : {0, 1}n → Rd so that for any two x, y ∈
{0, 1}n we have:

– If f(x, y) = 0 then 〈g(x), h(y)〉 = 0, and
– If f(x, y) = 1 then 〈g(x), h(y)〉 6= 0.

One-sided rank is a generalization of the notion of matching vector families
(in the case when f is the equality function), and was recently studied in a

2



cryptographic context by Bauer, Vihrovs, and Wee [8]. As first described by [18],
if f has one-sided rank d, then f has ciphertexts of length O(d log |R|) for a
number of different cryptographic primitives, including PE, given assumptions
on bilinear maps. The idea is that g and h give an embedding of f into the inner
product function, for which PE is already known from assumptions on bilinear
maps [20] (see Section 4.4 for more details).

This remark leads to PE for some functions with surprisingly low one-sided
rank. For instance, over any ring with sufficiently large characteristic, Bauer et
al. show that the equality function EQn : {0, 1}2n → {0, 1}, where EQn(x, y)
tests whether x = y, has one-sided rank only 2, by picking g(x) = (x, 1) and
h(y) = (−1, y). However, for a number of other functions f of interest, including
the greater-than function, the not-equals function, threshold functions, and or-
of-equality functions, Bauer et al. show one-sided rank lower bounds, i.e. that
the one-sided rank must be exponentially large in n. Hence, this one-sided rank
approach is insufficient to construct PE with poly(n) size ciphertexts for these
functions.

1.3 One-Sided Probabilistic Rank

In this paper, we nonetheless achieve predicate encryption for these aforemen-
tioned functions and more. Our approach is to consider a new variant on one-
sided rank, which we call one-sided probabilistic rank2, which combines one-sided
rank with the notion of probabilistic rank introduced by Alman and Williams [3].
We say f : {0, 1}2n → {0, 1} has one-sided probabilistic rank d if there is a joint
distribution D on pairs of functions g, h : {0, 1}n → Rd such that for any two
x, y ∈ {0, 1}n we have

– If f(x, y) = 0 then Prg,h∼D[〈g(x), h(y)〉 = 0] ≥ 1/poly(n), and
– If f(x, y) = 1 then Prg,h∼D[〈g(x), h(y)〉 = 0] ≤ ε(n) for a negligible function
ε.

Note in particular that, in contrast with the usual notion of probabilistic
rank, or other related notions like matching vector families, the error in the
f(x, y) = 0 case may be very large in our definition; the success probability
must only be polynomially bounded away from 0.

In a surprisingly simple construction, we show that PE can be constructed
given assumptions about bilinear maps for any function with polynomially-low
one-sided probabilistic rank, despite the high error.

Theorem 1 (Informal). Suppose the Boolean function f : {0, 1}2n → {0, 1}
has one-sided probabilistic rank d over the ring R. Then, assuming the existence
of PE for inner product over R, there is a PE scheme for f with ciphertexts of
length O(d log |R|).
2 Bauer et al. [8] also briefly considered a different probabilistic version of one-sided

rank, but their two-sided error seems insufficient to achieve PE; see Section 5 for
more details.
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Loosely, the nonnegligible probability of outputting 0 in the f(x, y) = 0 case
of one-sided probabilistic rank will lead to the correctness of the PE scheme,
and the negligible probability ε in the f(x, y) = 1 case will be crucial for the
security, since the scheme will leak information with probability ε. Theorem 1
can then be combined with the aforementioned bilinear maps-based PE for inner
product, or with any other construction of PE for inner product.

We use Theorem 1 to give a number of new constructions of predicate en-
cryption for various functions. We show that by taking advantage of the allowed
error, we can achieve poly(n) one-sided probabilistic rank upper bounds for many
functions f : {0, 1}2n → {0, 1} of interest, including:

Functions with O(log n) Arthur-Merlin (AM) Communication Com-
plexity. In a AM communication protocol for inputs x, y, first a public random
string z is drawn, then Merlin, who sees x, y, and z, picks a proof ϕ. Alice and
Bob, who are each given access to z, ϕ, and their own input, independently
decide to accept or reject. The protocol is correct if there is always a proof ϕ
which makes both players accept when f(x, y) = 0, but there is unlikely to be
one when f(x, y) = 1.

We show that if ¬f has such a protocol where the proof ϕ can be described
by O(log n) bits, then f has poly(n) one-sided probabilistic rank. Such protocols,
which take advantage of both randomness and a nondeterministic proof, are very
powerful, and despite decades of work, there are no explicit functions for which
ω(log n) AM communication lower bounds are known [6,14,15,12,2]. Moreover,
we will be able to use AM communication protocols where the probability that
there is a proof which makes both players accept when f(x, y) = 1 only has to
be ≤ 1− 1/poly(n); this is even stronger than normal AM communication, and
hence harder to prove lower bounds for.

To complement this result, we give O(log n) AM communication protocols,
and hence poly(n) one-sided probabilistic rank constructions, for some functions
of interest, including:

– The greater-than function GEQn : {0, 1}2n → {0, 1} where GEQn(x, y) tests
whether x ≥ y when interpreted as n-bit integers in the range [0, 2n−1]. We
show its one-sided probabilistic rank is poly(n), whereas Bauer et al. showed
a 2n lower bound on its one-sided rank.

Range checking (even multidimensional) can be implemented by using two
or more greater-than functions. This supports, for example, the use case of
police stations being permitted to view emergency reports originating within
a fixed area surrounding their precincts.

– Sparse Set Disjointness, the function which, for two subsets S1, S2 ⊆ U of
a universe U with |S1|, |S2| ≤ poly(n) and |U | ≤ 2poly(n), outputs 0 if S1

and S2 are disjoint. Using one-sided probabilistic rank allows us to handle
universe sizes that are exponentially larger than is allowed by one-sided rank
(which can only handle |U | ≤ poly(n)).

As described in the introduction, this can be used in the example where
a CEO wants to give her assistant the ability to decrypt all of her emails,
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except those which are labeled with any of a set of keywords, e.g. “personal”,
“receipts” or “legal”.

Our result is not the first to relate AM communication with variants on PE:
conditional disclosure of secrets (CDS) is known to capture a weaker version of
PE called attribute-based encryption, and is related to several communication
models including AM [4,5].

Polynomial-size SYM ◦ SYM Circuits. Here, SYM refers to the set of
symmetric Boolean functions (i.e. functions which only depend on the number
of 1s in their input), and SYM ◦ SYM is the set of depth-2 circuits of SYM
gates. This is a very expressive circuit class for which proving lower bounds
is a notoriously open problem (the best known lower bounds are only against
quadratic size SYM ◦ SYM circuits; see e.g. [1]).

It includes, as a simple example, for any 0 ≤ k ≤ n, the function which
on input x, y ∈ {0, 1}n tests whether the Hamming distance from x to y is at
most k. It is known that the one-sided rank of this function, as well as the usual
probabilistic rank of this function, must be exponential in n [3,8], but we show
that its one-sided probabilistic rank is only poly(n). PE for this function can be
thought of as PE for the ‘approximately equal’ function, and thus generalizes
Identity-Based Encryption [9]. This is applicable, for example, in approximate
matching for online dating [17], where users may want to find other users that
are sufficiently similar to their target profile.

Interestingly, our one-sided probabilistic rank construction for SYM ◦ SYM
circuits seemingly cannot be converted into an AM communication protocol, os-
tensibly showing that one-sided probabilistic rank is a more expressive notion
than just AM communication (although, as mentioned, no ω(log n) AM commu-
nication lower bound is known for SYM ◦ SYM).

Constant-size, polynomial fan-in AND-OR circuits of low one-sided
probabilistic rank functions. It is not hard to see that one can construct PE
for the OR of polynomially many functions for which PE is already known (one
way is to simultaneously use an independent copy of the PE scheme for each
function). We show that if the functions have PE because they have low one-
sided probabilistic rank (such as in the examples above), then one may use any
constant-size AND-OR circuit with polynomial fan-in gates rather than just a
single OR gate. (There are some additional properties we require of the low
one-sided probabilistic rank functions; see Section 3.5 for more details.)

Finally, we show that for m ≤ poly(n), functions with low one-sided
probabilistic rank over Zm also have low one-sided probabilistic rank
over any ring of sufficiently large characteristic. Known bilinear maps-
based constructions of PE for inner product, including the aforementioned con-
struction by [20], only seem to work over ZM for M > nω(1). It is thus not
evident, a priori, that low one-sided probabilistic rank expressions over, say, F2,
lead to PE via our construction. We nonetheless show that such a low rank ex-
pression over F2, or any Zm for m ≤ poly(n), also leads to one over ZM , and
hence to PE. This seems surprising: by comparison, many other notions of rank
can change drastically depending on the underlying ring (e.g. [7,16]).
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This construction implies, for instance, that we can construct PE for the
inner product mod 2 given assumptions about bilinear maps, which was not
previously known to the best of our knowledge.

1.4 Outline

In Section 2 we introduce the relevant notation and the formal notions of AM
communication and PE we will be using. Then, in Section 3 we give our new
one-sided probabilistic rank constructions, and in Section 4 we show how to
construct PE using probabilistic one-sided rank and PE for inner product.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] to denote the set {1, 2, . . . , n}. For a r-dimensional vector
x and any i ∈ [r], we write x[i] for the ith entry of x. For an r1-dimensional
vector x1 and an r2-dimensional vector x2, we write x1||x2 to denote the (r1+r2)-
dimensional vector resulting from concatenating the two. For a ring R, n ∈ N,
and length-n vectors a, b ∈ Rn, we write 〈a, b〉R for their inner product over R,
and we simply write 〈a, b〉 when the ring is clear from context. For m ∈ N, we
write Zm for the ring of integers mod m, and if m is a power of a prime, we
write Fm to denote the finite field of order m.

A function f : N → [0, 1] is negligible if it is smaller than any inverse poly-
nomial, i.e. for any positive constant c, there is a Λ > 0 such that f(λ) < 1

λc for
all λ > Λ.

2.2 Boolean functions

For Boolean functions f : {0, 1}n → {0, 1}, we think of 0 as ‘true’ and 1 as
‘false’. Hence, the function ANDn : {0, 1}n → {0, 1} has ANDn(x) = 1 unless
x is all all-0s vector, in which case ANDn(x) = 0, and ORn : {0, 1}n → {0, 1}
is defined similarly. For any f : {0, 1}n → {0, 1}, we write ¬f for the function
¬f : {0, 1}n → {0, 1} given by ¬f(x) = 1− f(x).

Define EQn,NEQn : {0, 1}2n → {0, 1} by EQn(x, y) = 0 if x = y and
EQn(x, y) = 1 otherwise, and NEQn(x, y) = ¬EQn(x, y). Further define GEQn :
{0, 1}2n → {0, 1} by GEQn(x, y) = 0 if x ≥ y when interpreted as binary repre-
sentations of integers between 0 and 2n − 1, and GEQn(x, y) = 1 otherwise.

A Boolean function f : {0, 1}n → {0, 1} is symmetric if it only depends on
the Hamming weight of its input, i.e. f(x) = f(y) for any x, y ∈ {0, 1}n with∑n
i=1 xi =

∑n
i=1 yi. We write SYM for the set of such functions. For x, y ∈

{0, 1}n, write HAM(x, y) for the Hamming distance between x and y.
For k, n ∈ N, let Bn,k ⊆ 2[n] denote the set of subsets X ⊆ [n] with size |X| ≤

k. Define DISJn,k : Bn,k × Bn,k → {0, 1} by DISJn,k(X,Y ) = 0 if |X ∩ Y | = 0
and DISJn,k(X,Y ) = 1 otherwise. Note that elements of Bn,k can be described
using only k log n bits.
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2.3 AM communication protocols

An Efficient Arthur-Merlin Communication Protocol Π with success probability
p for a Boolean function f : {0, 1}2n → {0, 1} proceeds as follows:

1. Initially Alice has an input x ∈ {0, 1}n and Bob has an input y ∈ {0, 1}n.
2. A uniformly random z ∈ {0, 1}r for some r ∈ N is publicly sampled and

given to Alice, Bob, and Merlin.
3. Merlin observes x, y, and z, and then selects a proof ϕ ∈ {0, 1}t for some
t ∈ N, and sends ϕ to both Alice and Bob.

4. Alice and Bob each look at z, ϕ, and their own input, and independently
decide to accept or reject in deterministic polynomial time.

The communication cost of Π is t. Π is said to be correct for f if for every
x, y ∈ {0, 1}n:

– If f(x, y) = 0 then there is a ϕ that Merlin can send to make both Alice and
Bob accept no matter what z is.

– If f(x, y) = 1 then with probability at least p over the choice of z, there is
no ϕ which makes both Alice and Bob accept.

Past work using AM communication protocols has typically assumed that p
is a constant greater than 0; here we will be able to use the protocol to design a
one-sided probabilistic rank expression in the much more powerful setting where
we only require p ≥ 1/poly(n). One could amplify such a low p to a constant by
repetition, but this would increase t by a factor which will be prohibitive in our
constructions below.

2.4 Cryptographic definitions

We now formally define the various notions of secure encryption we use. We
follow the notation of [20].

Secret-key predicate encryption Let Σ be a finite set, denoting the set of
possible attributes; for our purposes, Σ will typically be {0, 1}n. Let f be a
function Σ × Σ → {0, 1}. We say that x ∈ Σ satisfies a predicate y ∈ Σ if
f(x, y) = 0 (recall that 0 corresponds to ‘true’ and nonzero to ‘false’).

Definition 1 (Secret-key predicate encryption). A secret-key predicate en-
cryption (PE) scheme for a function f over the set of attributes Σ consists of
the following probabilistic polynomial time (PPT) algorithms.

Setup(1λ): Takes as input a security parameter 1λ; outputs a secret key SK.
Enc(SK, x,m): Takes as input a secret key SK, an attribute x ∈ Σ, and a
plaintext m ∈ {0, 1} and outputs a ciphertext CT.
KeyGen(SK, y): Takes as input a secret key SK and a predicate y ∈ Σ and
outputs a predicate key SKy.
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Dec(SKy, CT ): Takes as input a predicate key SKy and a ciphertext CT (cor-
responding to attribute x and plaintext m) and outputs a value in {0, 1,⊥}.

Correctness. For correctness, we require the following condition. For all λ,
all x ∈ Σ, all y ∈ Σ, and all m ∈ {0, 1}, letting SK ← Setup(1λ), CT ←
Enc(SK, x,m), and SKy ← KeyGen(SK, y):

– If f(x, y) = 0, then Dec(SKy, CT ) = m with all but negligible probability.

– If f(x, y) = 1, then Dec(SKy, CT ) = ⊥ with all but negligible probability.

We further define partial correctness as the same, except that in the case
f(x, y) = 0, we only require that Dec(SKy, CT ) = m with at least 1/poly(λ) (a
much smaller probability), and Dec(SKy, CT ) = 1−m with negligible probabil-
ity (and otherwise Dec(SKy, CT ) = ⊥).

Security. We define security using the following game between an adversary
A and a challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself. The challenger
chooses a random bit b.

Queries: A adaptively makes two types of queries:

• Ciphertext query. A submits attributes x0i , x
1
i and messages m0

i ,m
1
i and

receives CTi ← Enc(SK, xbi ,m
b
i ).

• Secret key query. A submits predicates y0j , y
1
j and receives

SKj ← KeyGen(SK, ybj).

These queries are subject to the restriction that for every i, j, c, d,
f(xci , y

d
j ) = 1.

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA = |Pr[b′ = b]− 1
2 |.

A PE scheme is secure if, for all PPT adversaries A, the advantage of A in
winning the above game is negligible in λ.

Remark 1. A secure PE scheme that achieves the partial correctness definition
described above can be generically transformed into a secure PE scheme with
full correctness. By repeating the scheme poly(λ) times and taking the first
non-⊥ result, the output is equal to m with all but negligible probability. By a
straightforward hybrid argument (with poly(λ) hybrids, where the i-th hybrid
has i− 1 copies of the scheme hardcoded to 0, then one real copy of the scheme,
then the rest hardcoded to 1), this will not affect security. See Appendix C for
the full proof of this fact.

In light of this remark, in our proof we will only prove partial correctness.
Similarly, although we consider the message here to be a single bit, we can
replicate the scheme in order to allow arbitrary bitstrings as the message.
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Predicate encryption for inner products We will refer to the special case
of predicate encryption for inner products as inner product encryption, or IPE.
For any ring R and integer n ∈ N, predicate encryption for inner products will
be over the set of attributes Rn, and the function f will be the inner-product
zero-testing function: if 〈x, y〉 = 0 then f(x, y) = 0, and otherwise f(x, y) = ⊥.

We note that we define PE (and hence IPE) that is predicate-hiding (i.e. the
key Ky also hides the predicate y, so that the key and ciphertext are symmetric –
both hide their respective payloads). In particular, we assume that the given IPE
scheme is predicate-hiding in our construction below. That said, if the given IPE
scheme does not have this property, our results still apply, but with the additional
requirement on our one-sided probabilitic rank expressions that the probability
of outputting 0 (p2 in Section 3.1 below) be 0 rather than just negligible. Notably,
most of our constructions in Section 3 below have this additional property.

3 One-Sided Probabilistic Rank

3.1 Definitions

We begin by introducing the new notion of one-sided probabilistic rank which we
will use in this paper. Most of our results in this section will hold over arbitrary
rings R (often with a restriction on the characteristic of R), although we will
only need them in the case when R = Zm is the ring of integers mod m in our
application to PE below.

For positive integers n, d, values p1, p2 ∈ [0, 1], ringR, and a Boolean function
f : {0, 1}2n → {0, 1}, we say f has Efficient (p1, p2)-Probabilistic Rank d over R
(or for short we will write “(p1, p2)-rank d over R” and sometimes omit R when
it is clear from context) if there is a joint distribution D on pairs of functions
g, h : {0, 1}n → Rd such that:

– g and h can be sampled from D and evaluated in poly(nd) time,
– all x, y ∈ {0, 1}n with f(x, y) = 0 have Pr(g,h)∼D[〈g(x), h(y)〉 = 0] ≥ p1, and
– all x, y ∈ {0, 1}n with f(x, y) = 1 have Pr(g,h)∼D[〈g(x), h(y)〉 = 0] ≤ p2.

If {fn}n∈N is a family of Boolean functions with fn : {0, 1}2n → {0, 1},
λ : N → N is any function, and R is any ring, we say {fn}n∈N has Efficient
One-sided Probabilistic Rank λ over R if there are functions p1, p2 : N → [0, 1]
and d : N→ N such that for all n, fn has (p1(n), p2(n))-rank d(n) over R, where

– d(n) ≤ poly(λ(n)),
– p1(n) ≥ 1/poly(λ(n)), and
– p2(n) ≤ negl(λ(n)).

3.2 Construction from AM communication protocols

We now show that a number of functions f : {0, 1}2n → {0, 1} of interest have
efficient one-sided probabilistic rank poly(n). We begin by showing this for any
function whose co-AM communication complexity is O(log n):
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Lemma 1. For any n, t ∈ N, any p ∈ [0, 1], any Boolean function f : {0, 1}2n →
{0, 1} such that ¬f has an Arthur-Merlin communication protocol Π with com-
munication t and success probability p, and any ring R of characteristic greater
than 2t, the function f has (p, 0)-rank at most 2t over R.

Proof. Our randomized construction of the required maps g, h : {0, 1}n → R2t

proceeds as follows. First, sample a uniformly random z ∈ {0, 1}r (where r is
the length of the random string from Π). Then, for x ∈ {0, 1}n, the vector g(x),
whose 2t entries are indexed by ϕ ∈ {0, 1}t, is given by:

g(x)[ϕ] :=

{
1 if Alice accepts in Π on input x, randomness z, and proof ϕ,

0 otherwise.

Similarly, for y ∈ {0, 1}n,

h(y)[ϕ] :=

{
1 if Bob accepts in Π on input y, randomness z, and proof ϕ,

0 otherwise.

Since Alice and Bob must make decisions in polynomial time in the definition
of Π, these maps g and h can also be computed in polynomial time.

Now, for a given x, y ∈ {0, 1}n, the inner product 〈g(x), h(y)〉 counts the
number of proofs ϕ ∈ {0, 1}t that Alice and Bob would both accept given inputs
x, y and randomness z. If f(x, y) = 0, then since Π has correctness p for ¬f ,
there is no such ϕ, and hence 〈g(x), h(y)〉 = 0, with probability at least p. If
f(x, y) = 1, then there is always such a ϕ, and so 〈g(x), h(y)〉 ∈ {1, 2, . . . , 2t},
which is always nonzero since the characteristic of R is greater than 2t.

Using Lemma 1, we can construct low one-sided probabilistic rank expressions
for many functions of interest. Some examples include:

Lemma 2 (GREATER THAN OR EQUALS). For any n ∈ N and ring
R with characteristic at least n + 1, and any ε > 0, GEQn has (1 − ε, 0)-rank
O(n2/ε) over R.

Lemma 3 (SPARSE DISJOINTNESS). For any n, k ∈ N and ring R with
characteristic at least k+1, and any ε > 0, the function DISJn,k has (1−ε, 0)-rank
O(k2/ε) over R.

In Appendix A below, we give the AM communication protocols which prove
these results when combined with Lemma 1.

3.3 Circuits of SYM gates

We first use a technique from [22] for exactly representing SYM gates.

Lemma 4. For every n ∈ N, every symmetric Boolean function f : {0, 1}2n →
{0, 1}, and every ring R, there are maps g, h : {0, 1}n → Rn+1 which can be
computed in polynomial time, such that 〈g(x), h(y)〉 = f(x, y) for all x, y ∈
{0, 1}n.
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Proof. Let w : {0, 1}n → Z be the function which counts the number of 1s in its
input, i.e. w(x) = x[1] + · · · + x[n]. There is a set S ⊆ {0, 1, . . . , 2n} such that
f(x, y) = 1 if and only if w(x) + w(y) ∈ S. We define g and h as follows, for
i ∈ [n+ 1]:

g(x)[i] :=

{
1 if w(x) = i− 1,

0 otherwise,

h(y)[i] :=

{
1 if w(y) + i− 1 ∈ S,
0 otherwise.

In other words, g(x) is 0 in every entry except 1 in a single entry, and h(y) has
a 1 in that entry if f(x, y) = 1 and a 0 otherwise. Hence, 〈g(x), h(y)〉 = f(x, y)
for all x, y ∈ {0, 1}n.

Lemma 5 (SYM ◦ SYM circuits). Any function f : {0, 1}2n → {0, 1} which
can be written as a depth-2 circuit of SYM gates, with m gates in the bottom
layer, has (1/m, 0)-rank at most nm + m + 1 over any ring R of characteristic
at least m+ 1.

Proof. Let p : {0, 1}m → {0, 1} be the symmetric function computed by the top
gate, and let S ⊆ {0, . . . ,m} be the set such that, for z ∈ {0, 1}m, p(z) = 0 if
and only if z[1]+ · · ·+z[m] ∈ S. For each i ∈ [m], let gi, hi : {0, 1}2n → Rn+1 be
the maps from Lemma 4 which exactly compute the ith SYM gate in the bottom
layer of the circuit for f .

We now define the probabilistic rank expression for f . Pick a uniformly
random k ∈ S. The rank expressions g, h : {0, 1}n → Rnm+1 are given by
g(x) = g1(x)||g2(x)|| · · · ||gm(x)||(1), and h(y) = h1(y)||h2(y)|| · · · ||hm(y)||(−k).
Hence,

〈g(x), h(y)〉 =

(
m∑
i=1

〈gi(x), hi(y)〉

)
− k,

which is the number of bottom-layer gates satisfied by x and y, minus k. Since
R has characteristic at least m+ 1, this equals 0 if and only if exactly k of the
bottom layer gates are satisfied by x and y. It follows that when f(x, y) = 1
we always have 〈g(x), h(y)〉 6= 0, and when f(x, y) = 0 we have 〈g(x), h(y)〉 = 0
with probability 1/|S| ≥ 1/m, which happens when we pick the correct k.

Corollary 1. For any positive integer n, any map p : {0, 1, . . . , n} → {0, 1}, and
any ring R of characteristic at least 2n + 1, the function s : {0, 1}2n → {0, 1}
given by s(x, y) = p(HAM(x, y)) has (1/n, 0)-rank O(n) over R.

Proof. The function s is of the form described by Lemma 5, where m = n, and
the ith bottom layer gate is 1 if x[i] 6= y[i] (equivalently, x[i] + y[i] ∈ {1}) and 0
otherwise.
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3.4 Inner Products in Small Fields

We next show that one-sided probabilistic rank constructions over Zm for m ≤
poly(λ) lead to one-sided probabilistic rank constructions over any ring of suf-
ficiently large characteristic, with only a polynomial change in the error proba-
bilities. This will be helpful in constructing PE later, since the known bilinear
maps-based constructions of PE for inner products only work for certain rings
of large characteristic.

Lemma 6. For any m, d ∈ N and p1, p2 ∈ [0, 1], suppose f : {0, 1}2n →
{0, 1} is a Boolean function with (p1, p2)-rank d over Zm. Then, f also has
(p1/(dm), p2/(dm))-rank d + 1 over any ring R of characteristic greater than
d(m− 1)2.

Proof. Draw g′, h′ : {0, 1}n → Zdm from the one-sided probabilistic rank expres-
sion over Zm. Interpreting Zm as the set of integers {0, 1, 2, . . . ,m− 1} ⊆ Z, we
have for any x, y that 〈g′(x), h′(y)〉Z is an integer in {0, 1, 2, . . . , d(m−1)2}, such
that 〈g′(x), h′(y)〉Zm = 0 if and only if 〈g′(x), h′(y)〉Z is an integer multiple of m.
Letting m′ ∈ N be the largest multiple of m which is at most d(m−1)2, it follows
since R has characteristic greater than d(m−1)2 that 〈g′(x), h′(y)〉Zm

= 0 if and
only if 〈g′(x), h′(y)〉R is in the set M := {0,m, 2m, 3m, . . . ,m′}, and otherwise
〈g′(x), h′(y)〉R is in the set {0, 1, 2, . . . , d(m− 1)2} \M .

We thus pick a uniformly random k ∈ M and output g(x) = g′(x)||(−1)
and h(y) = h′(y)||(k). Thus, we will have 〈g(x), h(y)〉R = 0 if and only if
〈g′(x), h′(y)〉Zm

= 0 (which happens with probability p1 or p2 in the true and
false cases, respectively) and we pick the correct k ∈ M (which happens with
probability 1/|M | ≤ 1/(dm)).

3.5 Small Circuits of Low One-Sided Probabilistic Rank Functions

We next give low one-sided probabilistic rank expressions for AND and OR,
which can be combined to give such expressions for small AND-OR circuits.

Lemma 7. Suppose f1, . . . , fm : {0, 1}2n → {0, 1} are Boolean functions, each
of which has (p1, p2)-rank d over field F. Then, the AND of these functions,
f1 ∧ f2 ∧ · · · ∧ fm, has (pm1 , 1/|F|+ p2)-rank dm over F.

Proof. For each i ∈ [m], we draw gi, hi : {0, 1}n → Fd from the assumed prob-
abilistic rank expression for fi, and draw a uniformly random αi ∈ F. We then
output g, h : {0, 1}n → Fdm given by g(x) = α1g1(x)||α2g2(x)|| · · · ||αmgm(x)
and h(x) = α1h1(x)||α2h2(x)|| · · · ||αmhm(x). Hence, for x, y ∈ {0, 1}n we have

〈g(x), h(y)〉 =

m∑
i=1

αi〈gi(x), hi(y)〉.

First, suppose that fi(x, y) = 0 for all i. Thus, with probability pm1 , we have
〈gi(x), hi(y)〉 = 0 for all i, and thus 〈g(x), h(y)〉 = 0 as desired.
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Second, suppose that there is an i such that fi(x, y) = 1. Then in particular,
〈gi(x), hi(y)〉 6= 0 with probability at least 1−p2. If it is nonzero, then 〈g(x), h(y)〉
is a sum of a positive number of uniformly random elements of F, and so it is 0
with probability 1/|F|. In total, it is 0 with probability at most 1/|F|+ p2.

Remark 2. Although Lemma 7 only yields an efficient one-sided probabilistic
rank λ expression when |F| is superpolynomial in λ, we can assume this without
loss of generality by first applying Lemma 6 to increase |F|.

Lemma 8. Suppose f1, . . . , fm : {0, 1}2n → {0, 1} are Boolean functions, each
of which has (p1, p2)-rank d over ring R. Then, the OR of these functions, f1 ∨
f2 ∨ · · · ∨ fm, has (p1/m, p2)-rank d over R.

Proof. We draw a uniformly random i∗ ∈ [m], then draw fi∗ , gi∗ : {0, 1}n →
Fd from the assumed probabilistic rank expression for fi∗ , and simply output
g(x) = gi∗(x) and h(y) = hi∗(y).

First, suppose there is an i ∈ [m] such that fi(x, y) = 0. Then, there is a 1/m
probability that we select i∗ = i, and a p1 probability that 〈gi(x), hi(y)〉 = 0, so
there is at least a p1/m probability that 〈g(x), h(y)〉 = 0.

Second, suppose that fi(x, y) = 1 for all i ∈ [m]. Then, for whichever i∗ we
pick, there is a 1 − p2 probability that 〈gi∗(x), hi∗(y)〉 6= 0, and so there is at
most a p2 probability that 〈f(x), g(y)〉 = 0.

We can construct one-sided probabilistic rank expressions for many simple
circuits by applying Lemmas 7 and 8 to all the AND and OR gates. To give two
examples:

Corollary 2. Suppose there is a constant c and Boolean functions f1, . . . , fc :
{0, 1}2n → {0, 1} which all have efficient one-sided probabilistic rank λ over a
field F with |F| > λω(1). Then, any constant-sized AND-OR circuit with the fi
as input also has λ-efficient one-sided probabilistic rank over F.

Corollary 3. For any m = poly(n), let f1, . . . , fm : {0, 1}2n → {0, 1} be any
functions whose (1 − 1/2m, 0)-rank is poly(n) over a field F with |F| > nω(1).
Then, any constant-sized AND-OR circuit, with unbounded fan-in AND and OR
gates in the bottom layer, and with the fi as input, has (1/n)-efficient one-sided
probabilistic rank over F.

Remark 3. Recall from Lemma 2 that Corollary 3 applies when the fi are GEQ
on subsets of the input bits.

4 Predicate Encryption Construction

We now construct secret-key predicate encryption for functions f with Efficient
One-sided Probabilistic Rank λ (see the definition in Section 3.1). We will use
inner product encryption as described in Section 2.4.
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We will assume that our rank expression works over any Zp with prime p >
λω(1),3 and that the underlying inner product encryption takes inner products
over one such Zp. Most constructions of inner product encryption, including the
one we make use of below in Corollary 4, take the inner product over ZM , where
either M is itself a large prime, or else a product of a constant number of large
primes, e.g. M = pqr, which contains Zp as a subfield.

Theorem 2. Assuming a secure inner product encryption scheme (as described
above), there is a secret-key predicate encryption scheme for any Boolean func-
tion f with efficient one-sided probabilistic rank λ (the time and space complex-
ity of the PE scheme is polynomial in λ).

4.1 Construction

We now describe our construction for Theorem 2.
Let g, h ← D be functions sampled from the joint distribution D in the

definition of one-sided probabilistic rank, in section 3.1. In our construction, we
only require a predicate-only IPE scheme, and as such we will always set the
message m to 0 in IPE.Enc(SK, x,m).

Setup(1λ): The setup algorithm runs IPE.Setup(1λ) twice, one scheme for vectors of
length λ and one for vectors of length λ+ 1, to get secret keys sk and sk′ respectively.
It outputs

SK = (sk, sk′).

Enc(SK, x,m): The encryption algorithm outputs

CT =
(
IPE.Enc(sk, g(x), 0), IPE.Enc(sk′, g(x)||m, 0)

)
.

KeyGen(SK, y): The key generation algorithm outputs

SKy =
(
IPE.KeyGen(sk, h(y)), IPE.KeyGen(sk′, h(y)||1)

)
.

Dec(SKy, CT ): The decryption algorithm takes CT = (c1, c2) and SKy = (k1, k2) and
runs IPE.Dec(c1, k1). If this is ⊥, then it outputs ⊥. Otherwise, if IPE.Dec(c2, k2) = 0
it outputs 0, and if IPE.Dec(c2, k2) = ⊥ it outputs 1.

Figure 1. Predicate encryption construction

We prove correctness and security in the following subsections.

4.2 Proof of correctness

Recall (from Remark 1) that it suffices to prove partial correctness, and then
amplify to achieve all but negligible correctness.

3 Recall that all our constructions above have this property, and that one can assume
it without loss of generality by applying Lemma 6.
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Lemma 9. The scheme in section 4.1 achieves partial correctness.

Proof. Let CT = (c1, c2) and SKy = (k1, k2) be as above.

• Suppose f(x, y) = 1. Then by the definition of g, h, 〈g(x), h(y)〉 6= 0 with
all but negligible probability, and thus by the correctness of IPE, we have
IPE.Dec(c1, k1) = ⊥ and Dec(SKy, CT ) = ⊥ as desired.

• Suppose f(x, y) = 0. Then by the definition of g, h, 〈g(x), h(y)〉 = 0 with
probability at least 1/poly(λ(n)). In this case, IPE.Dec(c1, k1) = 0 and
Dec(SKy, CT ) proceeds to check IPE.Dec(c2, k2). Then 〈g(x)||m,h(y)||1〉 =
0+m = m and hence, if m = 0, IPE.Dec(c2, k2) = 0 and Dec(SKy, CT ) = 0,
and if m = 1, IPE.Dec(c2, k2) = ⊥ and Dec(SKy, CT ) = 1. Thus
Dec(SKy, CT ) = m, except when the decryption algorithm outputs ⊥.

Therefore, in both cases, we satisfy the correctness requirement.

4.3 Proof of security

The security proof is given in Appendix B below.

4.4 Combining with Bilinear Maps

We have now proven Theorem 2. We can thus construct a predicate encryption
scheme directly using three assumptions on bilinear maps, the “KSW” assump-
tion, the C3DH assumption, and the DLinear assumption (see [20, Section 3.2]
for more details), to instantiate the IPE scheme.

Although we use the construction of [20] in a completely black-box way and
the details therefore do not impact our proofs, we will describe the basic idea
here. A typical assumption on bilinear maps describes three groups G1,G2,GT
and corresponding generators g1, g2, gT (not to be confused with the function
g elsewhere in this paper), as well as the bilinear map itself, a public function
e (gx1 , g

y
2 ) = gxyT . The assumption is that discrete log is hard in these groups,

so that the exponents x, y are hidden, except that the map allows an exponent
in the first group to be multiplied with an exponent in the second group. The
resulting elements of gT can then be multiplied to produce gx1y1+x2y2+...+xnyn

T ,
computing the inner product in the exponent, and if the exponent is zero this
value will be equal to 1. Of course, this simple explanation is not secure, and
the construction involves more details that we omit here.

Corollary 4. If the KSW/C3DH/DLinear assumptions hold, there is a secret-
key predicate encryption scheme for any Boolean function f with efficient one-
sided probabilistic rank λ.

Proof. We can use the assumptions to construct a fully secure inner product en-
cryption scheme following [20], then apply Theorem 2 to construct the predicate
encryption scheme.
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5 Conclusion

A natural question is whether this approach can be extended to the stronger
notion of functional encryption (FE), where the attributes are hidden even when
the user can decrypt. At first glance, our scheme seems to offer such a guarantee,
as it only reveals the inner product and not the vectors g(x), h(y). However, the
inner products from one-sided probabilistic rank have an error probability, and
those errors are necessarily correlated, so that an adversary observing a certain
error pattern can make inferences about which x, y pairs are consistent with
that pattern. Furthermore, such an extension could be quite strong. FE for the
greater-than function, also known as order-revealing encryption (ORE), is a de-
sirable primitive and has potential applications beyond crypto [19,11]; however,
it is not known to be constructible using bilinear maps or any other standard
cryptographic assumptions. An extension to FE would also allow surprising con-
structions if combined with degree-2 PRGs over F2.

One may hope to get around this possibility by designing probabilistic rank
expressions whose error probability is negligible both when f(x, y) = 0 and when
f(x, y) = 1. However, one can see that such a probabilistic rank expression
could be used to construct a one-sided (deterministic) rank expression for f
with only a polynomial blow-up in the rank. It is known that many functions
of interest, including GEQ, do not have such rank expressions, so for these
functions, probabilistic rank expressions with negligible error are also impossible.

Another question is whether our approach can support rank expressions with
polynomial error on both sides, such as those considered in Bauer et al. [8]. For
example, if f(x, y) = 0 then 〈g(x), h(y)〉 = 0 with probability at least 2/3, and
otherwise with probability at most 1/3. One idea for attempting to use such an
expression is to secret-share the message, making 2m shares wherem are required
to decrypt, and then instantiate 2m distinct PE schemes to encrypt each share.
However, if the adversary has multiple keys (none of which are authorized to
decrypt x), she could try decrypting a share with each key, and decrypt any
particular share with high probability (since any key works on any share with
probability 1/3).
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A AM communication protocols

We now present the aforementioned AM communication protocols, which can be
combined with Lemma 1 to construct one-sided probabilistic rank expressions.

Lemma 10 (EQUALITY). For any ε > 0, there is an AM communication
protocol for EQn with success probability 1−ε and communication O(log(1/ε)).

Proof. We use the well-known strategy for randomized communication protocols
for EQ - simply hash the two inputs. Let r = d1/εe. Alice, Bob and Merlin use
the public randomness to publicly pick a pairwise-independent random function
b : {0, 1}n → [r]4. Merlin then sends a ϕ ∈ [r], and Alice and Bob accept if
b(x) = ϕ and b(y) = ϕ, respectively.

For any x, y ∈ {0, 1}n, if EQn(x, y) = 0, meaning x = y, then Merlin can
send φ = b(x) and both Alice and Bob will accept. If EQn(x, y) 6= 0, then the
probability that b(x) = b(y) is at most 1/r ≤ ε, and if this is not the case, there
is no ϕ that Merlin can send which both Alice and Bob would accept.

Lemma 11 (GREATER-THAN-OR-EQUALS). For any ε > 0, there is
an AM communication protocol for ¬GEQn with success probability 1 − ε and
communication O(log(n/ε)).

Proof. Our construction is very similar to [3, Lemma D.2], and again uses a
common strategy for communication protocols for GEQ. For x ∈ {0, 1}n, and
i ∈ {0, 1, . . . , n− 1}, write x[1 : i] ∈ {0, 1}i to denote the first i entries of x. We
use the following characterization of GEQn: GEQn(x, y) = 1 if and only if there
is an i ∈ [n] such that y[i] = 1, x[i] = 0, and x[1 : i− 1] = y[1 : i− 1].

After the public randomness is sampled, Merlin sends an i∗ ∈ [n]. Alice, Bob
and Merlin then use the protocol from Lemma 10 with success probability ε/n
to test whether x[1 : i∗ − 1] = y[1 : i∗ − 1]. Alice accepts if this is the case and
x[i∗] = 0; Bob accepts if this is the case and y[i∗] = 1.

For any x, y ∈ {0, 1}n, suppose first that GEQn(x, y) = 1. Thus, Merlin can
send the i∗ = i ∈ [n] such that y[i] = 1, x[i] = 0, and x[1 : i − 1] = y[1 : i − 1].
By Lemma 10, the equality test will always return that x[1 : i− 1] = y[1 : i− 1],
and so both will always accept.

Next, suppose GEQn(x, y) = 0. Thus, for any i∗ that Merlin can send, there
is at most a ε/n probability that Merlin can send a proof in the protocol for

4 There are standard constructions of such pairwise-independent functions which can
be sampled and evaluated in polynomial time. For instance, we may pick uniformly
random c1, c2 ∈ Fr, and define b(x) = c1x+ c2.
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Lemma 10 which will make Alice and Bob accept. By a union bound over all n
choices of i, there is at most an ε probability that Merlin can send an i∗ and
subsequent proof which will make Alice and Bob accept.

Remark 4. In general, for a Boolean function f , the two functions f and ¬f may
have very different AM communication complexities. However, they are actually
essentially equal for f = GEQ since ¬GEQn(x, y) = GEQn(2n − x, 2n − 1− y).

Lemma 12 (SPARSE DISJOINTNESS). For any n, k ∈ N and any ε > 0,
there is an AM communication protocol for ¬DISJn,k with success probability
1− ε and communication O(log(k/ε)).

Proof. Let r = dk2/εe. Similar to Lemma 10, Alice, Bob and Merlin first use the
public randomness to publicly sample a random pairwise independent b : [n]→
[r]. Merlin then chooses a proof ϕ ∈ [r] and sends it to both Alice and Bob.
Alice accepts if there is an element of x of her input X with b(x) = ϕ, and Bob
accepts if there is an element y of his input Y with b(y) = ϕ.

If X and Y are not disjoint, and both contain c ∈ [n], then Merlin can
send φ = b(c), and both Alice and Bob will always accept. If X and Y are
disjoint, then for every pair (x, y) ∈ X × Y , there is at most a 1/r probability
that b(x) = b(y). If this is not the case for all such pairs, which happens with
probability at least 1− k2/r ≥ 1− ε by a union bound, then Merlin cannot send
any message to make both Alice and Bob accept.

Remark 5. The inputs to DISJn,k are bit-strings of length O(k log n). Lemmas 3
and 12 show that DISJn,k has poly(k)-efficient one-sided probabilistic rank when-
ever n ≤ 2poly(k); note in particular that the rank is independent of n.

B Predicate encryption security proof

We now present the proof of security for the predicate encryption scheme from
Section 4.1.

Remark 6. We begin by making a small modification to our given probabilis-
tic rank expression. Considering the g, h corresponding to our function f , the
definition of one-sided probabilistic rank guarantees that if f(x, y) = 1, then
〈g(x), h(y)〉 6= 0 with all but negligible probability. Our modification will ensure
that also, 〈g(x), h(y)〉 6= −1 with all but negligible probability. Our modification
is simple: we pick a uniformly random r ∈ F and replace g with g′(x) = rg(x).
Thus, whenever 〈g(x), h(y)〉 6= 0, then 〈g′(x), h(y) = r · 〈g(x), h(y)〉 is a uni-
formly random nonzero element of F. Since F is superpolynomially large, this
means it is −1 with only negligible probability.

Lemma 13. The scheme in Section 4.1 is secure.

Proof. Suppose towards a contradiction that an adversary A can win the PE se-
curity game with probability 1/2+ε. We will construct an adversary A′ that wins
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the IPE security game with the same probability. A′ will actually interact with
two separate IPE challengers, with independently generated secret keys, with
vectors of length d and d+ 1 respectively; by a hybrid argument, distinguishing
the two combined instances also contradicts the IPE security guarantee. A′ acts
as the PE challenger to A and transforms each input query into two queries to
the IPE challengers. The game proceeds as shown in Figure 2.

Phase A A′ C
Setup Runs Setup(1λ).

Chooses random bit b.

Query Ciphertext query

A
x0i ,m

0
i ,x

1
i ,m

1
i−−−−−−−−−−−−→ A′

A′ g(x0i ),0,g(x
1
i ),0−−−−−−−−−−−−−−−−−−→ C

A′ c1=IPE.Enc(sk,g(xbi ),0)←−−−−−−−−−−−−−−−−− C

A′ g(x0i ||m
0
i ),0,g(x

1
i ||m

1
i ),0−−−−−−−−−−−−−−−−−−→ C

A′ c2=IPE.Enc(sk′,g(xbi ||m
b
i ),0)←−−−−−−−−−−−−−−−−−− C

A (c1,c2)←−−−−−−−−−−−− A′

Key query

A
y0j ,y

1
j−−−−−−−−−−−−→ A′

A′ h(y0j ),h(y
1
j )−−−−−−−−−−−−−−−−−→ C

A′ k1=IPE.KeyGen(sk,h(ybj ))←−−−−−−−−−−−−−−−−− C

A′ h(y0j ||1),h(y
1
j ||1)−−−−−−−−−−−−−−−−−→ C

A′ k2=IPE.KeyGen(sk′,h(ybj ||1))←−−−−−−−−−−−−−−−−−− C
A (k1,k2)←−−−−−−−−−−−− A′

Guess A b′−−−−−−−−−−−−→ A′

A′ b′−−−−−−−−−−−−−−−−−→ C

Figure 2. IPE Security Game

First, we must prove that A′ only outputs valid queries with all but negligible
probability. Since A outputs only valid queries, for every i, j, we have f(x0i , yj) =
f(x1i , yj) = 1. Here we would like to say that since since g, h have one-sided error,
with all but negligible probability, 〈g(x), h(y)〉 6= 0. However, this is only true
if the queries and g, h are independent; it is possible that if the adversary A
learns information about g and h, she can issue specific queries for which g, h
are in error. However, this would immediately violate the IPE security guarantee,
which guarantees that the adversary cannot learn any information about g(x)
and h(y), only their inner product.
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One can formalize this argument as follows. Without loss of generality, as-
sume that when b = 0,A submits a ”bad” query (i.e. x, y such that 〈g(x), h(y)〉 =
0) with non-negligible probability. Now we construct an adversary,A′′, as follows.
It samples g0, h0 and g1, h1 from D. It forwards queries as in Figure 2, except
instead instead of sending a query with e.g. x0i , x

1
i , it sends a query with g0, g1 or

h0, h1 respectively (for example, the query (g0(x0i ), 0, g1(x0i ), 0)). Furthermore,
before sending each query, it checks the two conditions 〈g0(x0), h0(y0)〉 6= 1 and
〈g1(x0), h1(y0)〉 6= 1. If the first condition does not hold, it does not send a query
and immediately guesses b′ = 0; if the second condition does not hold, it imme-
diately guesses b′ = 1. Now A should submit a bad query with non-negligible
probability. If (say) b = 0, then the bad query is such that 〈g0(x0), h0(y0)〉 = 1;
but g1, h1 are entirely independent, so the same is not true for g1, h1 (except
with negligible probability), and therefore A′′ correctly guesses b = 0. Hence
A′′ breaks the security game with non-negligible probability. Therefore, we can
conclude that A submits bad queries with only negligible probability.

Thus, with all but negligible probability, 〈g(x), h(y)〉 6= 0 and furthermore
〈g(x), h(y)〉 6= −1 (as described at the start of the proof). Therefore, for every
i, j and for b ∈ {0, 1}, 〈g(xbi ), h(yj)〉 6= 0 and 〈g(xbi ||b), h(yj ||1)〉 6= 0. That is, all
of the inner products are nonzero, satisfying the IPE restriction. Now we prove
that A′ succeeds in the security game with almost the same probability as A.
A′ responds to ciphertext query xi with

CT =
(
IPE.Enc(sk, g(xbi ), 0), IPE.Enc(sk′, g(xbi )||mb

i , 0)
)
,

which is exactly the value Enc(SK, xbi ,m
b
i ) in the PE security game. Similarly,

A′ responds to secret key query yj with

CT =
(
IPE.KeyGen(sk, g(yj)), IPE.KeyGen(sk′, g(yj)||1)

)
,

which is the value KeyGen(SK, yj) in the PE security game. In other words, A
is presented with the same interaction as in the real PE security game, and if
it correctly guesses b′, then so does A in the IPE security game. The only case
where A is correct but A′ is not is the case when A′ outputs an invalid query,
which happens with negligible probability as described in the previous para-
graph. Therefore, A′ wins the IPE security game with non-negligible advantage,
a contradiction.

C Partial correctness to full correctness proof

We now present the proof of security for Remark 1 in Section 2.4.

Lemma 14. If a function f with set of attributes Σ has a secure secret-key
predicate encryption scheme with partial correctness, then it also has such a
scheme with full correctness.

We first outline the construction, which uses a standard parallel repetition.
Let PSPE be the partially secure Predicate Encryption scheme; we will use it
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to construct a fully secure scheme PE. Let p(λ) be the probability that the
message decrypts successfully in PSPE when f(x, y) = 0; by assumption, p is at
least inverse-polynomial. Our construction of PE is shown in Figure 3 below.

PE.Setup(1λ): The setup algorithm creates k = λ·p(λ) independent copies of the PSPE
scheme, with SKi = PSPE.Setup(1λ) for all i ∈ [k], and outputs the secret key

SK ← (SK1, . . . , SKk)

PE.Enc(SK, x,m): The encryption algorithm takes the secret key
SK = (SK1, . . . , SKk), attribute x, and plaintext m. It outputs a ciphertext

CT ← (PE.Enc(SK1, x,m), . . . ,PE.Enc(SKk, x,m))

PE.KeyGen(SK, y): The key generation algorithm takes the secret key
SK = (SK1, . . . , SKk) and outputs

SKy ← (PSPE.KeyGen(SK1, y), . . . ,PSPE.KeyGen(SKk, y))

PE.Dec(SKy, CT ): The decryption algorithm takes the predicate key SKy =
(SKy,1, . . . , SKy,k) and a ciphertext CT = (CT1, . . . , CTk). It decrypts them to corre-
sponding messages m̃i ← PSPE.Dec(SKy,i, CTi) for i ∈ 1 . . . k. Then:

– If at least one m̃i is 0 and none are 1, it outputs 0.
– If at least one m̃i is 1 and none are 0, it outputs 1.
– Otherwise (if m̃i = ⊥ for every i, or there are both 0’s and 1s), it outputs ⊥.

Figure 3. Fully correct predicate encryption construction.

We now prove the correctness and security of PE.

Proof. We first prove correctness. Consider some x ∈ Σ, y ∈ Σ. First suppose
f(x, y) = 0. By assumption, the probability that m̃i = m for a given i is p(λ).
Hence the probability that m̃i 6= m is 1− p(λ). Then the probability that m̃i 6=
m for all i is (1 − p(λ))k =

(
(1− p(λ))p(λ)

)λ
= exp(−λ), which is negligible.

Therefore, with all but negligible probability, the m̃is contain at least one correct
message. Furthermore, each m̃i is equal to the incorrect message (1 −m) with
negligible probability, so the probability that any of the m̃is is equal to the
incorrect message is also negligible. Hence, with all but negligible probability,
the decoded guesses contain at least one correct guess and no incorrect ones,
hence PE.Dec(SKy, CT ) = m, as desired.

Now suppose f(x, y) = 1. By assumption, PSPE.Dec(SKy,i, CTi) = ⊥ with
all but negligible probability. Hence with all but negligible probability, every one
of the m̃is is equal to ⊥ and therefore PE.Dec(SKy, CT ) is also ⊥, as desired.

Now we prove security. We construct a series of k+1 hybrids. The l-th hybrid
proceeds as follows:
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– The challenger runs PE.Setup(1λ) to produce (SK1, . . . , SKk) and chooses
a random bit b.

– In a ciphertext query, the adversaryA submits attributes x0i , x
1
i and messages

m0
i ,m

1
i and receives

CTi ← (PSPE.Enc(SK1, x
0
i ,m

0
i ), . . . ,PSPE.Enc(SKl, x

0
i ,m

0
i ),

PSPE.Enc(SKl+1, x
1
i ,m

1
i ), . . . ,PSPE.Enc(SKk, x

1
i ,m

1
i ) (1)

– In a secret key query, the adversary A submits predicate yj and receives
SKyj ← PE.KeyGen(SK, yj).

– After as many queries as desired, the adversary outputs a guess b′ of b.

Note that, when l = 0, this is the b = 1 case of the security game for
PE, and when l = k, this is the b = 0 case. Hence, if an adversary A can
win the security game for PE with non-negligible advantage, it distinguishes
between two adjacent hybrids (say l and l + 1) with non-negligible advantage.
These two hybrids differ only in the (l + 1)-th index of the ciphertext query.
Then we can create an adversary A′ that wins the PSPE security game: it
samples SK1, . . . , SKl, SKl+2, . . . , SKk, then answers queries using those keys
and querying its own challenger in order to receive PSPE.Enc(SKl+1, x

b
i ,m

b
i )

and PSPE.KeyGen(SKl+1, yj) as needed. The cases b = 1 and b = 0 correspond
exactly to hybrids l and l+ 1 respectively, hence A′ wins the security game with
non-negligible advantage, a contradiction.
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