
BADGER - Blockchain Auditable Distributed
(RSA) key GEneRation

Naomi Farley1, Robert Fitzpatrick1, and Duncan Jones1

Thales UK Limited
www.thalesesecurity.com

{naomi.farley, robert.fitzpatrick, duncan.jones}@thalesesecurity.com

Abstract. Migration of security applications to the cloud poses unique
challenges in key management and protection: asymmetric keys which
would previously have resided in tamper-resistant, on-premise Hardware
Security Modules (HSM) now must either continue to reside in non-cloud
HSMs (with attendant communication and integration issues) or must
be removed from HSMs and exposed to cloud-based threats beyond an
organization’s control, e.g. accidental loss, warranted seizure, theft etc.

Threshold schemes offer a halfway house between traditional HSM-based
key protection and native cloud-based usage. Threshold signature schemes
allow a set of actors to share a common public key, generate fragments
of the private key and to collaboratively sign messages, such that as long
as a sufficient quorum of actors sign a message, the partial signatures
can be combined into a valid signature.

However, threshold schemes, while being a mature idea, suffer from large
protocol transcripts and complex communication-based requirements.
This consequently makes it a more difficult task for a user to verify
that a public key is, in fact, a genuine product of the protocol and that
the protocol has been executed validly. In this work, we propose a solu-
tion to these auditability and verification problems, reporting on a pro-
totype cloud-based implementation of a threshold RSA key generation
and signing system tightly integrated with modern distributed ledger
and consensus techniques.

1 Introduction

Threshold signature schemes are useful mechanisms for gaining consensus or
‘approval’ of a message from a set of parties. A (t, n)-threshold signature scheme
enables any set of at least t+ 1 parties (out of the specified n) to collaboratively
construct a single digital signature of a given message M , which can be verified
by anyone (who possesses the public verification key). A set of t or fewer parties
out of n parties should not be able to construct a valid signature for M .

Informally, in a threshold signature scheme each entity holds a share of a
secret signing key; t + 1 (or more) parties sign their own copy of the message
M under their signature key shares. These partial signatures are then combined
to produce a single signature of M , effectively signed using the secret signing

2 Farley et al.

key. Furthermore, some schemes do not require the secret signing key to ever
be generated or reconstructed; only shares of the signing key are required to
produce valid signatures.

An alternative signature scheme for gaining consensus from a set of parties
is a multi-signature scheme. Multi-signature schemes require a sufficient number
of parties (i.e. t + 1) to sign their own copy of a message M , producing a list
of signatures, each of which must be verified individually. Thus the main ad-
vantage of threshold schemes over multi-signature schemes is that they simplify
the verification process: (i) verifiers only have to verify a single digital signature;
and (ii) the verifier does not have to check whether each entity is authorised to
participate, since only parties with a key share of the private signing key can
contribute towards producing valid threshold signatures. Whereas the key gener-
ation protocol for threshold signature schemes neccessarily identifies the entities
involved (in order to generate key shares for such entities), in multi-signature
schemes, any entity can generate their own digital signature key pairs. Thus,
as there is no authorisation policy ingrained in the key generation protocol of
multi-signature schemes, one must manually check that such signatures have
been created by authorised entities.

In the cloud setting, threshold signature schemes would allow a high value
private signing key to be distributed between cloud providers, jurisdictions, op-
erating systems, hardware etc. As long as t+1 honest devices exist in the system,
a threshold scheme can continue functioning, even in the event of seizure, loss,
theft of a minority of the fragments. Furthermore, the holder of an insufficient
number of signing fragments would be unable to create any valid signatures.

Traditional threshold signature schemes typically rely on a trusted dealer
to generate and distribute key material to a set of mutually distrusting par-
ties. When no such trusted dealer exists, the set of parties must generate such
key material themselves in a distributed manner. Unfortunately, due to lack of
trust amongst such parties, lengthy transcripts are generated (containing zero-
knowledge proofs, commitments etc.) and must be verified in order for parties
to prove that they have behaved honestly and that their resulting key shares
are valid. This consequently results in the scheme having a high communication
and computation overhead (in comparison to the amount of communication re-
quired if all parties were trusted). Such transcripts may be sent through various
channels, asynchronously, and can thus be difficult to order and process. In the
event of suspected anomalies, agreement between a majority of parties as to the
nature of the anomaly is also required, yet the reaching of such agreements is
complicated by Byzantine consensus problems. In particular, any entity wanting
to audit the entire setup protocol to verify the secure and correct execution of
the protocol could potentially face the laborious task of tracing through tran-
scripts of every party involved to discover if/when the protocol went wrong/a
malicious party misbehaved. Furthermore, without a root of trust, it may be dif-
ficult to achieve consensus regarding which party was to blame for any deviations
in the protocol. Throughout this paper, we refer to these hitherto-unaddressed
difficulties as ‘the auditability problem’.

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 3

In practice, verifying gigabytes-worth of protocol transcript to unambigously
detect malicious parties proves challenging. Distributed ledger techniques solve
many of the encountered problems and are not a gratuitous application of
blockchain techniques. We report on the building and testing of a blockchain-
auditable system for jointly generating, verifying and using RSA signing keys.

1.1 Our Contribution

In this work, we propose a solution to the auditability problem. We develop a
RSA threshold signature system in which all communication between parties in
a distributed setup protocol for a (t, n)-threshold signature scheme is recorded
using a distributed ledger. Not only does this help parties in the protocol gain
assurance that they have a valid partial signing key, but it allows any party (e.g.
those requesting and verifying threshold signatures) to gain greater assurance
that the threshold signing key has been generated correctly and securely, and
that resulting threshold signatures are constructed by authorised parties. This
is particularly important in order to provide value to any (threshold) signature
scheme; without such a mechanism, it is unclear what assurance can be gained
from verifying a signature.

Such a system also gives a clear overview of a threshold scheme’s setup pro-
tocol; by recording all communication, every party can observe what messages
every party receives from every other party. Furthermore, recording communi-
cation on a distributed ledger means that all such communication is immutable,
attributable, non-repuditable and is chronologically sequenced, in contrast to
simply sending such transcripts between parties. Use of a distributed ledger
therefore make it easier to audit the protocol, and for honest parties to identify
and agree any parties that misbehave. Furthermore, using a consensus engine
(in this work, we use Tendermint), parties may vote on whether they believe a
constructed signature is valid; if consensus is reached, the signature is added to
the blockchain, allowing ‘public’ viewing and verification.

In this work, we implement the RSA threshold scheme proposed by Damg̊ard
et al. [7], and the distributed RSA setup protocol proposed by Frankel et al. [15]
which do not require a trusted dealer. The intention of this work is provide a
proof of concept; we expect that the techniques introduced could apply more
widely to threshold schemes beyond the one implemented.

1.2 Structure

We provide useful background material and an overview of related work in Sec-
tion 2. In Section 3 we provide more details on the auditability and consensus
problems in standard threshold signature scheme implementations. In Section 4,
we formally describe our scheme. In Section 5 we describe our implementation,
in Section 6 we report on the performance of the constructed system, while in
Section 7 we report on the security properties of the implemented scheme.

4 Farley et al.

2 Background and Definitions

In this section, we provide an overview of relevant background material and
useful definitions.

2.1 Background

Threshold signatures were first introduced by Desmedt in [9]. RSA-based thresh-
old signature schemes were first considered by Desmedt and Frankel in [10], who
identified some difficulties in constructing an RSA-based threshold signature
scheme. Although Frankel et al. [12] and De Santis et al. [25] were the first to
fully propose RSA-based threshold schemes, such schemes were not robust. Since
these works, several robust RSA schemes have been proposed [2, 6, 11, 17, 24, 27],
however, most of these schemes either:

– assume the existence of a trusted dealer;
– make strong assumptions of the RSA modulus (e.g. require it to be a product

of safe primes1);
– require the signing protocol to be interactive.

Damg̊ard et al. introduce a robust threshold signature scheme in [7] which makes
use of the distributed key generation protocol described in [15]. Their scheme is
fully distributed (does not depend on the existence of a trusted dealer), doesn’t
require the underlying RSA modulus to be product of safe primes and whose
signing protocol is non-interactive. The scheme inherits the robust, efficient, dis-
tributed RSA key generation (setup) protocol of Yung et al. [15] (with some addi-
tional assumptions/restrictions), which describes how a set of untrusted parties
can collaboratively generate key material required for an RSA-based threshold
signature scheme. Informally, the key generation protocol described by Yung et
al. enables a set of (mutually distrusting) parties to distributively:

– generate an RSA modulus N ;
– generate a public verification key for the threshold scheme;
– generate partial signing keys for n parties such that at least t+ 1 signatures

of a message M under different partial signing keys are required to construct
a signature on M under the threshold signing key;

– generate partial verification keys for n parties such that each party can verify
the partial signatures of every other entity.

At each stage during the key generation protocol, parties verify that every
other party is behaving honestly, and that their outputs are valid. If, at any
stage, a party is found to be cheating, appropriate steps in the protocol must be
re-run. Informally, the RSA modulus generation protocol described by Yung et
al. [15] comprises the following stages:

1. Each party Pi where i ∈ {1, . . . , n} randomly chooses pi, qi values (from a
specified range).

1 P is a safe prime if P = 2p+ 1 where p is also prime.

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 5

2. Each party Pi distributes a share of their pi, qi values to every other party
(using Shamir secret sharing techniques [26]).

3. Parties distributively compute N = pq = (p1 + · · ·+ pn)(q1 + · · ·+ qn).
4. Parties participate in an interactive protocol to test whether N is a product

of exactly two primes2. If the result is negative, the protocol is re-run from
step 1 until a valid N is found.

The way in which the RSA modulus is generated offers no guarantees that
the resulting N candidate is indeed a product of exactly two primes. Indeed, the
RSA modulus protocol typically has to be run thousands of times on average
(even for a 1024-bit RSA modulus) in order for a successful RSA modulus to be
found. Note that in the schemes described by Damg̊ard et al. [7] and Yung et
al. [15], the private signing key for the threshold scheme is never constructed,
since this would allow any entity to unilaterally sign a message under the secret
signing key without the need to gain consensus on the message. Similarly, no
entity should be able to learn p or q where N = pq or φ(N) = (p− 1)(q − 1).

An alternative RSA modulus generation protocol is described in [8] (originally
proposed in [5]), although it is not clear whether this protocol performs better in
the average case, than the protocol described in [15]. Damg̊ard et al. also propose
a new RSA threshold signature scheme in [6] which removes some assumptions
made on the RSA modulus in [7]. Several proactive RSA schemes, which support
the refreshing of partial signing keys have been proposed in the literature [14,
13, 24, 2]. Whilst the scheme we consider in this work is not proactive, we hope
that future work could consider implementing such schemes.

Whilst alternative threshold schemes exist in the literature (i.e. based on
ElGamal, DSS, ECDSA etc.) [4, 10, 16, 18, 19], the majority of such schemes are
discrete-log based and thus usually require an interactive signing protocol (as the
schemes are randomized) [27], although more recent discrete log-based schemes
(based on bilinear pairings) are non-interactive [21, 22]. Again, we stipulate that
our work serves to demonstrate the advantages of recording communication in
threshold signature schemes using a distributed ledger, and thus should not be
dependent on the scheme chosen. As RSA threshold (signature) schemes without
a trusted dealer typically require entities to run an extensive setup protocol
requiring a lot of communication amongst parties (as the RSA modulus protocol
must typically be run multiple times), we believe that a distributed ledger could
particularly benefit such schemes.

2.2 Definitions

A digital signature scheme (Keygen,Sign,Verify) comprises the following three
algorithms [3]:

– (pk, sk)
$←− Keygen(1λ): a randomised algorithm that takes as input a security

parameter 1λ and outputs a public-private key pair (pk, sk) where sk is the
secret signing key, and pk is the public verification key;

2 Note that this protocol is designed in such a way as to not reveal p, q or φ(N) to
any party.

6 Farley et al.

– σ
$←− Sign(sk,M): a randomised algorithm that takes as input sk and a

message M to be signed and outputs a signature σ.
– b ← Verify(pk,M, σ): a deterministic algorithm that takes as input pk, a

message M and a signature σ. It outputs a bit b ∈ {0, 1}.

A digital signature scheme is correct if, for every security parameter λ ∈ N,
for every key pair (pk, sk) output by Keygen, any message M ∈ {0, 1}?:

Pr[Verify(pk,M,Sign(sk,M)) = 1] = 1.

Informally, a digital signature scheme is considered secure if an adversary
cannot forge a valid signature. That is, an adversary cannot find a (M,σ) (which
he has not previously seen) such that Verify(pk,M, σ) = 1. (A more formal
definition of security is given in [3].)

A (non-interactive) (t, n)-threshold (digital) signature scheme (Keygen,
Share-Sign, Share-Verify,Combine,Partial-Verify,Verify) comprises the following
algorithms [21]:

– (pk,VK,SK)
$←− Keygen(params, 1λ, t, n): this is an interactive protocol in-

volving n parties P1, P2, . . . Pn that takes as input public parameters params,
security parameter 1λ, integers t, n such that t ≤ n. It outputs a public ver-
ification key pk, a vector SK = (sk1, sk2, . . . , skn) of secret partial signing
keys, where each party Pi only knows ski, and a vector of public verification
keys VK = (vk1, vk2, . . . , vkn).

– σi
$←− Share-Sign(M, ski) takes as input a message M and private key share

ski, and outputs a signature share σi.
– b← Share-Verify(pk,VK,M, (σi, i)) takes as input the public verification key
pk, veriication key vector VK and a signature share σi indexed by i. It
outputs a bit b ∈ {0, 1} (1 if the share is deemed valid, and 0 otherwise).

– (σ ∪ ⊥) ← Combine(pk,VK, {(σi, i)}i∈S) takes as input the public veri-
fication key pk, veriication key vector VK and a set of indexed signature
shares {(σi, i)}i∈S where S ⊂ {1, 2, . . . , n} and |S| = t+ 1. It outputs a full
signature σ or ⊥ if any of the signature shares σi is ill-formed.

– b′ ← Verify(pk,M, σ) takes as input the public verification key pk, message
M and full signature σ and outputs a bit b′ ∈ {0, 1}.

A (t, n)-threshold (digital) signature scheme is non-interactive if its signing
protocol is non-interactive [21]. That is, entities can create their own partial sig-
natures of a messages (via the Share-Sign algorithm) without the need to commu-

nicate online with other parties [21]. A partial signature σi
$←− Share-Sign(M, ski)

is correct if, for all λ, t, n ∈ N where t 6 n, all valid params, for all (pk,VK,SK)
output by Keygen:

Pr[Share-Verify(pk,VK,M, (σi, i)) = 1] = 1.

A (t, n)-threshold signature scheme is correct if, for all λ, t, n ∈ N where t 6 n,
all valid params, for all (pk,VK,SK) output by Keygen:

Pr[Verify(pk,M,Combine(pk,VK, {(σi, i)}i∈S)) = 1] = 1.

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 7

Where S ⊂ {1, 2, . . . , n}, |S| = t + 1 and {(σi, i)}i∈S is a set of correct partial
signatures.

A (t, n)-threshold signature scheme is robust [17] if honest parties can still
create genuine signatures even in the presence of up to t corrupted/malicious par-
ties. A (t, n)-threshold signature scheme is unforgeable (against a chosen message
attack) if it is computationally infeasible for an adversary (who can corrupt up
to t parties) to compute a valid signature of a message (to which he has not al-
ready seen/requested a signature for). Informally, we say that a (t, n)-threshold
signature scheme is secure if it is robust and unforgeable [27].

2.3 Security Models

A passive adversary (also known as an honest but curious adversary) is one
who may corrupt parties and learn the data that the parties have access to,
but behaves honestly in party protocols. Similarly to a passive adversary, a
malicious (or active) adversary corrupts a set of parties to learn the data that the
parties have access to. However, unlike a passive adversary, a malicious adversary
may misbehave in party protocols (e.g. submits invalid signatures, impersonate
other parties etc.), potentially in the hope that such protocols deviate from their
expected behaviour or leaks information to the adversary.

A static adversary corrupts parties before the threshold scheme is initialised.
Informally, a static adversary models an adversary who learns nothing about a
threshold scheme (e.g. he does not see its public information, the communication
between parties in the protocol etc. prior to corrupting parties), and thus chooses
the parties that he corrupts at random. An adaptive adversary can corrupt
parties at any time (e.g. during the construction of the RSA modulus, secret
key setup or signing protocol). Such an adversary may take public information
associated to the protocol (e.g. ciphertexts) and the internal states of previously
corrupted parties into account when deciding which parties to corrupt (i.e. he
may believe that it is more beneficial to corrupt specific parties). This is a
stronger type of adversary to model than a static adversary, and thus one could
argue that a scheme is more secure if it is secure against an adaptive adversary
than just a static adversary. A scheme secure against an adaptive adversary is
also secure against a static adversary.

Informally, in a security game featuring a static adversary, the adversary
must select up to t− 1 parties to corrupt before the scheme is setup, whereas an
adaptive adversary may corrupt up to t−1 parties during the run of the protocol.
Many threshold signature schemes in the literature are proven secure against a
static adversary [7, 15, 27], though more recent schemes have been proven secure
against an adaptive adversary [2, 22, 21]. The RSA threshold schemes we adopt
in this paper [7, 15] are secure against static, malicious adversaries.

Optimistic Security As mentioned previously, we adopt the distributed RSA
modulus generation protocol by Yung et al. [15], which enables parties to de-
tect, at various stages, which party behaved maliciously (if any). Unfortunately,

8 Farley et al.

the protocol features expensive computation and communication overheads at
each stage, as parties have to produce proofs that they have behaved honestly,
which have to be verified by every other party in an in-line manner. Further-
more, the protocol typically has to be re-run thousands of times before a valid
RSA modulus N is generated. The cost of computing these in-line commitments
and verifications dwarves the functional components of the protocol by a large
margin, due to the repeated use of ‘large-exponent’ modular exponentiations
throughout.

In our system, we thus slightly weaken the security of the RSA key generation
protocol described in [15] in order to optimise the performance of our system.
In particular we delay verification checks (to check whether parties have gener-
ating the RSA modulus correctly) until a successful RSA modulus N is found.
That is, parties can check that N values which pass a double primality test are
constructed honestly, but cannot detect whether parties behaved dishonestly in
the previous runs of the protocol (i.e. whether unsuccessful N candidate values
were constructed correctly). As a consequence, this means that we cannot guar-
antee termination of the protocol (similarly to the scheme proposed in [8]), but
we argue that such checks can be re-introduced if the protocol has been run a
sufficient number of times without success.

2.4 Tendermint - a consensus engine

As the communication and consensus platform connecting the protocol partici-
pants, we use Tendermint [20].

Tendermint is software for securely and consistently replicating an applica-
tion on many machines. By securely, we mean that Tendermint works even if
up to 1

3 of machines fail in arbitrary ways. By consistently, we mean that every
non-faulty machine sees the same transaction log and computes the same state.
Secure and consistent replication is a fundamental problem in distributed sys-
tems; it plays a critical role in the fault tolerance of a broad range of applications,
from currencies, to elections, to infrastructure orchestration, and beyond.

The ability to tolerate machines failing in arbitrary ways, including becoming
malicious, is known as Byzantine fault tolerance (BFT). The theory of BFT is
decades old, but software implementations have only became popular recently,
due largely to the success of “blockchain technology” like Bitcoin and Ethereum.
(Blockchain technology is just a reformalization of BFT in a more modern set-
ting, with emphasis on peer-to-peer networking and cryptographic authentica-
tion.) The name ‘blockchain’ derives from the way transactions are batched in
blocks, where each block contains a cryptographic hash of the previous one,
forming a chain. In practice, the blockchain data structure actually optimizes
BFT design.

Tendermint consists of two chief technical components: a blockchain consen-
sus engine and a generic application interface. The consensus engine, called Ten-
dermint Core, ensures that the same transactions are recorded on every machine
in the same order. The application interface, called the Application BlockChain

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 9

Interface (ABCI), enables the transactions to be processed in any programming
language.

The consensus model. A Tendermint application consists, at any given time,
of a set of validators which take turns in constructing blocks of transactions,
proposing them to other validators and voting on them. Each validator has
an associated voting power, with at least 2

3 of the network-wide voting power
necessary to commit a particular block of transactions.

Private channels in Tendermint. In Tendermint, all protocol-level communi-
cation between nodes is secured by an authenticated encryption scheme based
on the station-to-station protocol. In our scheme, while the majority of mes-
sages are intended for all participants, several stages of the protocol involve
the secure delivery of (e.g. Shamir shares) to individual parties. At the time of
writing, application-level communication between nodes does not benefit from
node-specific encryption of messages, hence an additional authenticated encryp-
tion scheme was added to the Tendermint application to allow single-recipient
encryption.

3 The Auditability Problem

In all such previous systems, verifying the correct execution of the protocol has,
at least in theory, been possible, albeit fraught with difficulty in any realistic
setting: the number and variety of messages and communication routes in the
system greatly complicates the auditing of such a protocol implemented ad-
hoc, with higher level concerns such as denial of service attacks coming into play.

In the case of a malicious party disrupting the protocol, maybe not by
cryptographic machinations but by ‘user-level’ manipulation, detecting and
attributing failures without ambiguity is likely to prove problematic.

In our scheme, by tying the communication, voting and protocol elements into
a single distributed ledger, auditing the protocol after execution can be greatly
simplified and the source of any divergences pinpointed with comparative ease.

Likewise, while the key generation may take a matter of ten minutes, the
resulting blockchain and nodes may lie dormant for indefinite periods of time
before resuming operation and consensus once a signing request is submitted by
an authorized party. Allowing re-establishment of communication, synchroniza-
tion, consensus, mutual authentication etc. in these cases are, in the traditional
schemes, unaddressed ‘higher-level’ concerns, whereas in reality have concrete
impacts on the security, resilience and usability of any such scheme.

4 The Scheme

As mentioned previously, our scheme combines the threshold key generation
scheme of Yung, Frankel and Mackenzie [15] with the scheme of Damg̊ard and

10 Farley et al.

Koprowski [7], which do not assume the existence of a trusted dealer. RSA-based
threshold signature schemes typically produce lengthy transcripts, particularly
if its underlying RSA modulus N is constructed by a set of mutually distrusting
parties. Typically in this situation, the RSA modulus protocol generation pro-
tocol must be run multiple times until a valid RSA modulus N is found - such
a protocol seems inevitable given that no single entity is trusted to know p or
q, let alone generate N . Thus, we argue that our scheme could be particularly
useful for auditing RSA-based schemes due to their lengthy setup protocols.
Several RSA threshold schemes require the RSA modulus N to be a product of
two strong primes; this consequently may slow down the RSA modulus gener-
ation protocol significantly as more RSA candidate N values are likely to be
rejected than when this assumption is not required. In the schemes considered,
N need not be a product of strong prime. Hence for this reason, and because
no trusted dealer is assumed, the schemes of Yung, Frankel and Mackenzie [15]
with the scheme of Damg̊ard and Koprowski [7] seem reasonable to consider for
the purposes of demonstrating the advantages of our system. Future work could
consider alternative schemes.

Our scheme operates as follows:

1. Orchestration and Establishment: Participating nodes are established by an
orchestrator and a genesis file (corresponding to a single key generation) is
shared between them, containing a list of public keys of authorized partici-
pants

2. Threshold Key Generation: On command (by an authorized user), nodes ex-
ecute the threshold RSA key generation protocol, recording all transactions
and commitments in a distributed ledger.

3. Certificate Generation and Extraction: The protocol concludes with nodes
jointly creating and signing a Certificate Signing Request (CSR), then sub-
mitting it to a certificate authority for certificate creation. On successful
conclusion of the protocol, the Certificate Authority (CA)-signed certificate
is available (for extraction by the user) at the ‘tail’ of the blockchain, while
the nodes hold private signing key fragments

4. Signing: On command (by an authorized user), nodes sign a PKCS#1 sign-
ing request, publishing their signature fragments to the ledger. A challenge-
response protocol proceeds, establishing the validity of the signature frag-
ments, highlighting any compromised nodes. A sufficient quorum of valid
signing fragments is (publicly) combined into a valid PKCS#1 signature,
made available to the requester on the ‘tail’ of the blockchain

In more detail:

4.1 Orchestration and Establishment

In our implementation, a system orchestrator creates and deploys the participat-
ing nodes to their respective environments, provisioning each with a Tendermint
consensus ED25519 key. The nodes, on command, activate their Tendermint

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 11

core applications, contacting each other in a peer-to-peer (P2P) fashion, validat-
ing each other against the public ED25519 keys contained in the orchestrator-
provided genesis file and establishing pairwise bulk communication keys. The
orchestrator features a simple certificate authority, the public key of which is
known to each participating node. A number of authorised users are created
by the CA, each being issued with a user certificate. The authorised users are
registered with the key generation nodes.

4.2 Threshold Key Generation

An authorised user creates and signs a ‘generate’ command, transmitting this to
any one (or multiple) of the nodes. This message is validated using an authorised
user list (and the corresponding CA-signed user certificate) and, if determined to
be valid, key generation commences. The nodes collaborate to generate a work-
able RSA modulus, followed by generating corresponding signing key fragments.

4.3 Certificate Generation and Extraction

Once the nodes have achieved consensus on an RSA modulus and have verified
the correct execution of the protocol, a certificate signing request is jointly cre-
ated and signed (using the newly-established threshold key), then submitted to
the certificate authority. The CA-signed X.509 certificate is then returned to the
key requester.

4.4 Signing

With the certificate in hand, the authorised user(s) can proceed to submit
PKCS#1 signing requests to the nodes (accompanied by user authorisation sig-
natures), with the nodes using quorums of signing key fragments to produce valid
RSA signatures. During each such signature, a node providing a proposed partial
signature share is subjected to a challenge-response exercise by the other nodes,
allowing the detection of deliberately-false signature shares and the exclusion
of now-malicious parties from current future signatures. Each valid threshold
signature, in a similar manner to the generated key and certificate, takes the
form of a transaction appended to the blockchain, allowing extraction by the
requester.

5 Building a Distributed, BFT Threshold RSA Key
Generation and Signing System

Our implementation has taken the form of a number of Golang [1] applications,
combined with Tendermint nodes. For ease of use, a web frontend application
provides an user interface to the system, allowing generation of user keys,
threshold key, signatures along with verification of blockchain content. Figure 5
illustrates the high-level architecture of our system.

12 Farley et al.

Fig. 1. Our System Architecture (only single threshold node shown)

For testing purposes, our prototype system was deployed on a set of AWS cloud
servers (in the same geographical region) and was additionally integrated with
a PKCS#11 adapter, allowing usage through Adobe Reader. Thus we were
able to demonstrate ‘real-world’ usability of the system by initiating threshold
signatures through the document signing feature of Adobe Reader, with the
resulting threshold signatures being returned, verified and accepted by Adobe
Reader.

6 Performance Results

Threshold RSA protocols, in trusted-dealer or dealerless form, are inherently
slow in comparison to unilateral generation protocols. At the root of this lies
a repeated generate-and-test process in which candidate modulii are generated
jointly and then tested for compatibility. The vast majority of such candidate
modulii are incompatible (i.e. are not the product of two primes), hence a large
number of such attempts is required to generate a workable modulus. Several
optimisation methods have been proposed [23]. Our implementation incorporates
the small-prime test division technique suggested by Malkin et.al [23], which tests
whether a candidiate N is divisible by the smallest ‘X’ primes before the double
primality test is carried out on N ; if so, it may be discarded before the double
primality test is run. Figure 5 illustrates the percentage of bad RSA modulus
candidates eliminated using this small-prime test division step, as well as the

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 13

number of small primes used for testing against the amortised time per test.
The x axis displays the number of small primes (in thousands) tested. Each
data point is the result of 10,000 executions for that parameter set. Of course,
these timings are implementation and parameter-dependent, but it seems that
taking a list of around 2000 small primes provides a reasonably-optimal number.

Fig. 2. Eliminating bad RSA modulus candidates using small prime division.

For practical efficiency and for minimizing the number of messages (and
hence avoiding accumulated latency), our implementation also takes a batched
approach, dealing with (typically) thousands of modulus generation attempts
in parallel. In practice, batching modulus generation messages results in very
substantial performance benefits, minimising the delays incurred through net-
work and consensus latencies. Future work could also consider implementing
additional optimisations, such as the sieving technique discussed in [23].

6.1 Key Generation

By the nature of the protocol, the distribution of key generation running times
is dominated by a geometric distribution. Namely, the overwhelming majority of
time in the protocol is consumed by nodes repeatedly choosing, sharing, comput-
ing on and checking values which allow a (probably) semiprime public modulus
to be arrived at. In the case of 1024-bit RSA key generation, the median number
of modulus generation attempts required in the (t, n) = (2, 3) case is around

14 Farley et al.

3,500, requiring between 1 and 5 minutes (in the majority of cases) to generate
such a key on three separate cloud servers.

6.2 Signing and Partial Signature Combination

In contrast to key generation, signing is a real-time operation, with local sig-
nature share creation taking a few milliseconds. Distributed signing and com-
bination, in the distributed setting, takes less than 10 seconds (largely due to
Tendermint consensus operations and communication latency), allowing accept-
able delays when used in a real-world setting, e.g. from Adobe Reader.

7 Security Properties

Through our use of Tendermint, we introduce additional constraints on the
threshold RSA scheme, namely that our scheme, in the (t, n) = (2, 5) case, while
only a quorum of three nodes is required to construct a valid signature, the
> 2

3 consensus requirement for Tendermint implies that a minimum of 4 nodes
must participate in the construction of a signature, even if one of these nodes
is a ‘silent bystander’, approving transactions. Our implementation followed the
‘Optimistic Security’ model, namely allowing parties to postpone commitments
and verification till a certain point in the protocol, followed by ‘replaying’ the
successful round of the protocol with the same values, but now accompanied
by the (expensive) commitments and verifications. In this model, a malicious
party is able to disrupt the protocol (carry out a denial of service attack), but in
the event that one round of the protocol did succeed, their inability to provide
compatible commitments would expose their malicious past behaviour. Thus, if
one can accept the possibility of a denial of service attack during key generation,
the parties would be assured that proceeding would be safe (even in the presence
of malicious and active adversaries) if satisfactory retrospective commitments
were provided.

8 Conclusion

We have reported on our development of a threshold RSA key generation and
signature system, the first such implementation (to the best of our knowledge)
which exploits multiple features of modern distributed ledger and consensus
techniques and demonstrates that such use largely solves the consensus and au-
ditability problems which have posed obstacles in the past to the real-world use of
threshold signature schemes. Indeed, it seemed interesting to consider modelling
an RSA-based scheme due to its lengthy setup process and large communication
overhead (mainly due to the way in which an RSA modulus is generated), though
one could consider schemes based on alternative hardness assumptions (e.g. dis-
crete log-based schemes). Future work could consider using our system to support
proactive RSA schemes in which partial signing keys can be refreshed and/or

BADGER - Blockchain Auditable Distributed (RSA) key GEneRation 15

the threshold parameters t, n can be modified. Future work could also consider
making further performance optimisations (such as those described in [23].) in
order improve the performance of our system.

References

1. The Go programming language. https://golang.org. Accessed: 2018-04-09.

2. Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold
RSA with adaptive and proactive security. In Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, pages 593–611, 2006.

3. Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography. Ucsd
Cse, 207:207, 2005.

4. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In Public Key Cryptog-
raphy - PKC 2003, 6th International Workshop on Theory and Practice in Public
Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, pages 31–46,
2003.

5. Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys. J.
ACM, 48(4):702–722, 2001.

6. Ivan Damg̊ard and Kasper Dupont. Efficient threshold RSA signatures with general
moduli and no extra assumptions. In Public Key Cryptography - PKC 2005, 8th
International Workshop on Theory and Practice in Public Key Cryptography, Les
Diablerets, Switzerland, January 23-26, 2005, Proceedings, pages 346–361, 2005.

7. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without
a trusted dealer. In Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding, pages 152–165, 2001.

8. Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round
distributed RSA key generation. In Theory of Cryptography, 7th Theory of Cryp-
tography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Pro-
ceedings, pages 183–200, 2010.

9. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Ad-
vances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, pages 120–127, 1987.

10. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, pages 307–315, 1989.

11. Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold RSA under
standard assumptions. In Advances in Cryptology - ASIACRYPT 2001, 7th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Gold Coast, Australia, December 9-13, 2001, Proceedings, pages 310–330,
2001.

12. Yair Frankel and Yvo Desmedt. Parallel reliable threshold multisignature. Dept.
of Elect. Eng. and Computer Sci., Univ. of Wisconsin-Milwaukee, Tech. Rep. TR-
92-04-02, 1992.

16 Farley et al.

13. Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Optimal re-
silience proactive public-key cryptosystems. In 38th Annual Symposium on Foun-
dations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October
19-22, 1997, pages 384–393, 1997.

14. Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive
RSA. In Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings, pages 440–454, 1997.

15. Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed
rsa-key generation. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 663–672,
1998.

16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In Applied
Cryptography and Network Security - 14th International Conference, ACNS 2016,
Guildford, UK, June 19-22, 2016. Proceedings, pages 156–174, 2016.

17. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and
efficient sharing of RSA functions. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings, pages 157–172, 1996.

18. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS signatures. Inf. Comput., 164(1):54–84, 2001.

19. Lein Harn. Group-oriented (t, n) threshold digital signature scheme and digital
multisignature. IEE Proceedings-Computers and Digital Techniques, 141(5):307–
313, 1994.

20. Jae Kwon. Tendermint: Consensus without mining. Retrieved May, 18:2017, 2014.
21. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully dis-

tributed non-interactive adaptively-secure threshold signatures with short shares.
Theor. Comput. Sci., 645:1–24, 2016.

22. Benôıt Libert and Moti Yung. Adaptively secure non-interactive threshold cryp-
tosystems. Theor. Comput. Sci., 478:76–100, 2013.

23. Michael Malkin, Thomas D. Wu, and Dan Boneh. Experimenting with shared
generation of RSA keys. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 1999, San Diego, California, USA, 1999.

24. Tal Rabin. A simplified approach to threshold and proactive RSA. In Advances
in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings, pages 89–104,
1998.

25. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a
function securely. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 522–533,
1994.

26. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
27. Victor Shoup. Practical threshold signatures. In Advances in Cryptology - EURO-

CRYPT 2000, International Conference on the Theory and Application of Crypto-
graphic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages 207–220,
2000.

