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Abstract.
With the burgeoning Vehicle-to-Everything (V2X) communication, security and
privacy concerns are paramount. Such concerns are usually mitigated by combining
cryptographic mechanisms with a suitable key management architecture. However,
cryptographic operations may be quite resource-intensive, placing a considerable
burden on the vehicle’s V2X computing unit. To assuage this issue, it is reasonable
to use hardware acceleration for common cryptographic primitives, such as block
ciphers, digital signature schemes, and key exchange protocols. In this scenario,
custom extension instructions can be a plausible option, since they achieve fine-tuned
hardware acceleration with a low to moderate logic overhead, while also reducing code
size. In this article, we apply this method along with dual-data memory banks for
the hardware acceleration of the PRESENT block cipher, as well as for the F2255−19
finite field arithmetic employed in cryptographic primitives based on Curve25519
(e.g., EdDSA and X25519). As a result, when compared with a state-of-the-art
software-optimized implementation, the performance of PRESENT is improved by
a factor of 17 to 34 and code size is reduced by 70%, with only a 4.37% increase in
FPGA logic overhead. In addition, we improve the performance of operations over
Curve25519 by a factor of ∼2.5 when compared to an Assembly implementation on
a comparable processor, with moderate logic overhead (namely, 9.1%). Finally, we
achieve significant performance gains in the V2X provisioning process by leveraging
our hardware accelerated cryptographic primitives.
Keywords: V2X · SCMS · Curve25519 · PRESENT cipher · Hardware Accelera-
tion · Custom Extension Instructions · Dual-Data Memory Banks · Extensible
Processors

1 Introduction
With the introduction of Vehicle-to-everything (V2X) communications, security and privacy
concerns increase at an alarming rate. As V2X technologies become pervasive, there is a
need for a V2X gateway in the vehicle [20]. Furthermore, to support the gateway with
key management and cryptographic operations, an embedded Hardware Security Module
(HSM) is required.
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Different HSM variants have been proposed for V2X applications [27, 41], and recently,
the CAR 2 CAR (C2C) Communication Consortium proposed security requirements for a
V2X HSM [9]. Among the many security requirements for the V2X HSM, cryptographic
operations (e.g., digital signatures and encryption) and key management are prominent
features. In particular, the proposal calls for digital signatures using ECDSA (Elliptic Curve
Digital Signature Algorithm), as well as ECIES (Elliptic Curve Integrated Encryption
Scheme) for the encryption of one-time session keys.

Both ECDSA and ECIES are built upon elliptic curve arithmetic and a hash function,
and ECIES additionally makes use of a symmetric cipher and a MAC. Supporting elliptic
curves requires finite field arithmetic for operands much larger than the typical processor
word size. Implementing symmetric algorithms efficiently in embedded system software
can be a challenge when side-channel protection is required. It is therefore unsurprising
that most HSMs make use of hardware acceleration for their cryptographic operations.

Hardware acceleration can be achieved in two different ways: either by connecting
independent memory-mapped co-processor modules to the main CPU or by extending the
CPU with custom instructions. It is primarily the throughput and latency requirements
that determine which option is more suitable. As an example, the PRESENT cipher’s
round substitution and permutation operations can be implemented with a combinatorial
logic datapath. Connecting such a datapath via a memory-mapped bus interface introduces
significant processing latency, which is inherent to the process of moving data through the
bus infrastructure.

In comparison, extensible processor platforms allow for the same datapath to become
an extension of the base Arithmetic Logic Unit (ALU), which can be accessed in software
just like any other instruction. Hence, in a bit-sliced implementation of PRESENT’s
substitution and permutation operations, dozens of regular CPU instructions can be
replaced with a single custom extension instruction.

Replacing software operations by specialized instructions reduces code size, memory
accesses and register usage. In addition to the reduced processing latency, the energy
consumption decreases [47]. Therefore, extensible processor platforms offer means for
hardware acceleration where fine-tuned improvements can be achieved with low logic
overhead and reduced energy consumption.

1.1 Hardware Acceleration
Custom Extension Instructions: Several extensible processor platforms support the
inclusion of custom logic via extension instructions [7, 16, 29, 36]. In these platforms,
closely-coupled hardware interfaces are exposed for the connection of specialized logic
modules into the main processor’s pipeline. Such connections, however, impose more
restrictive critical path constraints: complex custom instructions with longer datapaths
can decrease the processor’s maximum clock frequency. One solution is introducing pipeline
registers to split the instruction datapath into multiple stages, increasing the maximum
clock frequency. This approach, however, increases the number of required registers,
meaning larger chip area, as well as additional latency. Optionally, an instruction datapath
with several pipeline stages can be divided into multiple instructions with shorter datapaths.
The throughput of these smaller collective instructions can be improved using Implicit
Instruction-Level Parallelism (IILP) techniques [39].

DSP Closely-Coupled Memories: Matrix multiplications, dot products, convolutions,
Finite Impulse Response (FIR) filters and Fast Fourier Transform (FFT) are some examples
of compute-intensive functions often used by signal processing algorithms. Such functions
are intrinsic to many embedded applications and take advantage of DSP hardware support
mechanisms incorporated into modern embedded processors [23, 30]. Among these DSP
mechanisms, dual-data memory banks (often referred as X and Y memory banks [10, 23, 30])
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have been incorporated in order to enable the simultaneous fetching of instruction data plus
two-operand data [10, 23]. This enables greater memory access bandwidth for algorithms
where repeated operations on arrays is done. An addressing unit supporting variable
offset, modulo and bit-reversed addressing patterns offloads array index processing from
the main CPU [34]. Cryptographic functions often get implemented using DSP-analogous
repetitive array-based techniques, e.g., the PRESENT cipher’s encryption/decryption
rounds [28] and F2255−19 arithmetic operations [13]. Hence, dual-data memory banks also
offer opportunities for performance enhancements in cryptographic processing.

1.2 Applications to V2X
The automotive industry is in the midst of a digital revolution. With the introduction of
V2X technology, the need for stronger security primitives is imminent. In the US, Secure
Credential Management System (SCMS) is the leading candidate for provisioning and
managing V2X certs. Moreover, it ensures privacy-by-design by introducing the concept
of a “butterfly key expansion” process. This process provisions pseudonym certificates
for vehicles and thereby protects the privacy of the driver. Recently, simplifications to
the butterfly key expansion process (the Unified Butterfly Key (UBK) effect) achieve
significant processing and bandwidth efficiency [32, 1].

Although the processing gains were impressive, the need for hardware accelerated
cryptography for real-world V2X deployment is greater than ever. The current requirement
for processing V2X certs (e.g., verification of cryptographic signatures and messages)
is under 10 milliseconds [24]. Therefore, to assuage the aforementioned attacks while
meeting the demands of faster crypto operations, we leverage newer building blocks for
cryptography to implement the UBK scheme.

Contributions
Our work presents a combination of both: custom extension instructions and dual-data
memory banks to obtain hardware accelerated implementations of the PRESENT block
cipher and finite-field arithmetic for Curve25519. The contributions of our work can be
enumerated as follows:

1. Proposal of instruction set extensions for the acceleration of PRESENT and selected
operations in F2255−19, based of the profiling analysis.

2. Exploit dual-data memory banks in order to enable IILP for the implemented
instruction set extensions.

3. Evaluation of the hardware accelerated crypto functions in the context of a real-world
V2X certificate provisioning process (SCMS’s UBK).

To the best of our knowledge, our method of combining custom instructions and DSP
dual-data memory banks seems novel. Note that the related works have only explored
the aforementioned approaches individually. Our tests show that the combination of both
the approaches provides performance improvement, coherent software integration and
constant-time programming flows, all while maintaining low to moderate logic overhead.

Additionally, we discuss a Man-in-the-middle (MitM) attack when the Regular Butterfly
Key (RBK) expansion and the UBK settings coexist (co-existential attack). In defense, we
propose a solution for mitigating such an attack.

Organization: This paper is organized as follows: Section 2 describes the main features of
a state-of-the-art extensible processor platform supporting custom extension instructions,
and a DSP engine equipped with dual-data memory banks. Next, the SCMS’s UBK
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certificate provisioning process is introduced as the V2X application scenario. Details on
the design and implementation of the Instruction Set Extensions (ISE) for PRESENT
and F2255−19 arithmetic are described in Section 3. Section 4 outlines the strategy for the
combination of the developed ISE with the XY Memory. Section 5 details the testing
frameworks for the evaluation of performance and logic overhead. Section 6 describes the
achieved results, including comparison between different implementation strategies and
related works.

2 Related Work
2.1 Extensible Processor Platform
The DesignWare® ARC® Processor IP portfolio from Synopsys includes a wide range
of processors for embedded applications [36]. The ARC EM Processor Family, based
on the 32-bit ARCv2 instruction set, features a Harvard memory-processor architecture
for simultaneous instruction and memory access [36]. A broad set of DSP, security and
interconnection processor components allows these processors to be configured for highly
specialized embedded applications. The ARC Processor EXtension (APEX) technology
enables the integration of user-defined custom instructions [36], while the ARC XY Memory
DSP Option brings a DSP engine for IILP in ARC EM processors [34].

APEX Technology APEX technology allows for customization of the ARC processor
implementation through user-defined instructions and auxiliary (AUX) registers [36]. The
provided pipeline interfaces allow for the implementation of specialized and enlarged-width
datapaths. This enables smooth software integration, reduced interfacing complexity, lower
gate count and processing output latency when compared to a bus-based co-processor.
Figure 1 shows the anatomy of a custom instruction in APEX technology, with respect to
an overview of ARC processor’s pipeline.
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Figure 1: Anatomy of an instruction extension on an extensible processor platform [33, 11]

ARC XY Memory DSP Option Alongside the extension instructions, IILP can be
achieved through the ARC XY Memory DSP Option, an IILP engine for fast and closely-
coupled memory access [39]. As depicted in Figure 2, the ARC XY Memory system consists
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of dual-data memory banks (i.e. X and Y banks) operated by an Address Generation
Unit (AGU) and an internal dedicated DMA engine, which allows the CPU to read two
source operands and store the result in the same cycle [34]. This also provides increased
code density since explicit array index updates can be directly leveraged with the AGU’s
address update mechanism [34].
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U
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Figure 2: Overview of the ARC XY Memory DSP Core [39]

2.2 V2X Provisioning
In the past few years, the growing interest in enabling vehicular communications has led
to several research and standardization efforts [24]. Given the critical nature of services
based on connected vehicles, many such efforts focus on creating a security foundation
for their operation. Commonly, this is addressed by means of a Vehicular Public Key
Infrastructure (VPKI). Although a VPKI is similar to a regular PKI, it has different
requirements, in particular 1) privacy by design and 2) the ability to cope with the
resource-constrained nature of onboard equipment. Privacy is usually addressed by loading
each vehicle with multiple pseudonym certificates, i.e., certificates that do not identify
their owners [19]. Indeed, this is the approach employed in the Cooperative Intelligent
Transportation Systems (C-ITS) and in the Security Credential Management System
(SCMS), which are, respectively, the most prominent VPKI proposals in Europe and in
the US [12, 8]. Reducing the computational burden on the vehicle side involves both a
careful VPKI design and efficient implementations. Since this article focuses on providing
high-performance hardware accelerated implementations for the SCMS architecture, in the
following we describe its design in more detail.

SCMS: The SCMS was developed in cooperation with the U.S. Department of Trans-
portation (USDOT) and the automotive industry. Its main goal is to enable a safe, secure
and privacy-preserving V2X communication environment, where vehicles can trust each
other’s messages and the system itself. To accomplish this, SCMS’s architecture includes a
VPKI for issuing multiple short-lived, pseudonym certificates to authorized vehicles. Each
vehicle can then use its certificates to digitally sign its messages, so their authenticity can
be verified. A vehicle can also avoid tracking attempts by its peers if it periodically changes
the pseudonym employed along the way: as a result, it should not be straightforward to
link different messages to the same vehicle just by analyzing the corresponding certificates’
contents.

In addition, a clever separation of roles during the certificate provisioning procedure
prevents system authorities from linking a given vehicle to its pseudonym certificates.
Privacy is, thus, preserved unless such authorities collaborate. To prevent abuse, however,
a special entity called a Misbehavior Authority (MA) is expected to receive and analyze
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misbehavior reports by system entities. If a transgression is confirmed, the MA can
collaborate with other system entities to identify the culprit, besides revoking its pseudonym
certificates. This prevents malicious users or vehicles equipped with faulty components
from disrupting the system for too long. Similarly, an elector-based trust management
approach allows system authorities themselves to be revoked in case of misconduct.

(Unified) Butterfly Keys: When compared to other VPKIs, one of the main benefits of
SCMS is its highly efficient pseudonym certificate provisioning process, called “butterfly
key expansion”. Two versions of this process exist in the literature: the one originally
described in the SCMS article [43], hereby called RBK; and the optimized version proposed
in [32], named the UBK approach. The upper part of Table 2 summarizes and compares
the RBK and UBK protocols, using the notation listed in Table 1 for easy reference.

In essence, RBK requires vehicles to compute two sets of “caterpillar keys”, both
created using Elliptic Curve Cryptography (ECC): the signature key pair (s, S ← s·G)
and the encryption signature key pair (e, E ← e·G). The vehicle then establishes a secure
communication channel with a Registration Authority (RA) and sends to it: 1) the public
keys S and E; 2) two pseudorandom functions, f1 and f2; as well as 3) long-term credentials
(proving that it is authorized to request pseudonym certificates). The RA then expands each
caterpillar public key into several “cocoon public keys” by applying the vehicle-provided f1
and f2 This leads to as many public key (Ŝi ← S+f1(i)·G, Êi ← E+f2(i)·G) tuples as the
number of pseudonym certificates the vehicle should receive. Subsequently, the RA sends
the individual tuples to one or more Pseudonym Certificate Authorities (PCAs), which
are the entities responsible for issuing pseudonym certificates. To preserve the vehicles’
privacy, the RA-to-PCA requests are such that tuples corresponding to different vehicles
are shuffled together, and no information about the vehicles’ identities is provided to the
PCA.

The PCA, in turn, randomizes the received signature cocoon keys Ŝi, obtaining the
butterfly keys Ui ← Ŝi + ri·G. Those keys are signed by the PCA together with any
relevant metadata (e.g., a validity period), thus producing the corresponding pseudonym
certificates certi. Finally, to prevent the RA from learning the certificates’ contents (and,
thus, from linking certi to the requesting vehicle), the PCA uses Êi to encrypt its response
to the RA; as a result, only the vehicle can decrypt the received package using its private
key êi ← e+ f2(i), and verify that certi was correctly issued. In addition, in RBK this
encrypted package is also signed by the PCA to prevent a malicious RA from acting as
a MitM: otherwise, the RA might provide the PCA with a bogus encryption key Ẽi, for
which the RA knows the private key; then, it could decrypt the PCA’s response, map
certi to the vehicle’s identity, and then re-encrypt everything with the correct Êi to avoid
suspicion.

Compared to RBK, the main distinctive feature of the UBK approach is that it involves
only one caterpillar public and private key pair (x,X ← x·G) instead of two. Accordingly,
a single public key X is provided by vehicles to the RA, which expands X into several
cocoon public keys X̂i ← X + f(i)·G using pseudorandom function f . Similarly to RBK,
the RA shuffles X̂i from different vehicles before relaying them to the PCA. Finally, the
PCA creates a randomized butterfly public key Ui ← X̂i + ri·G, places it into a certificate,
and encrypts the result with X̂i before responding to the RA. Unlike RBK, however, in
UBK there is no need to sign the encrypted package: since UBK ties the encryption key
X̂i to the certificate’s key Ui, the RA cannot provide a fake encryption key Ẽi without
tampering the certificate itself. In other words, as shown in [32], vehicles can indirectly
assert that the PCA used the correct encryption key X̂i = (x+ f(i))·G simply by verifying
that the value of Ui enclosed in the certificate satisfies Ui = (x̂i + ri)·G. Therefore, the
UBK approach can be seen as an optimization of RBK, reducing bandwidth usage and
processing costs when provisioning pseudonym certificates.
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Table 1: General notation and symbols
Symbol Meaning
G The generator of an elliptic curve group
sig A digital signature
cert A digital certificate

U,Urbk,Uubk
Public signature keys
(stylized Urbk and Uubk: reserved for PCA)

u, Urbk, Uubk Private keys corresponding to U, Urbk and Uubk

S, s Public and private caterpillar signature keys
E, e Public and private caterpillar encryption keys
Ŝ, ŝ Public and private cocoon signature keys
Ê, ê Public and private cocoon encryption keys
X, x Public and private unified caterpillar keys
X̂, x̂ Public and private unified cocoon keys
β Number of cocoon keys in certificate batch
f, f1, f2 Pseudorandom functions
Enc(K, str) Encryption of bitstring str with key K
Dec(K, str) Decryption of bitstring str with key K
Sign(K, str) Signature of bitstring str, using key K
Ver(K, str) Verification of signature on str, using key K

Table 2: Explicit pseudonym certificates in the RBK and UBK expansion procedures,
as well as co-existence attack when vehicle believes to be running UBK, but PCA runs
RBK. Operations highlighted in light gray are made unnecessary by the UBK optimization;
operations in dark gray are specific to the co-existence attack.

Vehicle → RA → PCA → RA → Vehicle

RBK

s
$← Zq

S=s·G

e
$← Zq

E=e·G

S, f1

E, f2

Ŝi ← S + f1(i)·G
Êi ← E + f2(i)·G

(0 6 i < β)

Ŝi, Êi

ri
$← Zq

Ui← Ŝi + ri·G
sigi←Sign(Urbk, {Ui, meta})
certi←{Ui, meta, sigi}
pkg←Enc(Êi, {certi,ri})

res←{pkg, Sign(Urbk, pkg)}

res — res

êi ← e+ f2(i)
Ver(Urbk, res)

{certi,ri}←Dec(êi, pkg)
Ver(Urbk, certi)

ui ← s+ f1(i) + ri
ui·G

?= Ui

UBK x
$← Zq

X←x·G X, f
X̂i ← X + f(i)·G

(0 6 i < β)
X̂i

ri
$← Zq

Ui ← X̂i + ri·G
sigi ← Sign(Uubk, {Ui, meta})

certi ← {Ui, meta, sigi}
pkg← Enc(X̂i, {certi, ri})

pkg — pkg

x̂i ← x+ f(i)
{certi, ri}←Dec(x̂i, pkg)

Ver(Uubk, certi)
ui ← x̂i + ri
ui·G

?= Ui

Attack x
$← Zq

X←x·G X, f

X̂i ← X + f(i)·G
zi

$← Zq

Ẽi ← zi·G

(0 6 i < β)

X̂i, Ẽi

ri
$← Zq

Ui←X̂i + ri·G
sigi←Sign(Urbk, {Ui, meta})
certi←{Ui, meta, sigi}
pkg←Enc(Ẽi, {certi,ri})

res←{pkg, Sign(Urbk, pkg)}

res

{certi,ri} ← Dec(zi, res)
(now RA knows certi)

pkg←Enc(X̂i, {certi, ri})
pkg

x̂i ← x+ f(i)
{certi, ri}←Dec(x̂i, pkg)

Ver(Urbk, certi)
ui ← x̂i + ri
ui·G

?= Ui

An UBK/RBK co-existence attack: The security of RBK and UBK is individually
analyzed in their respective documentation [43, 32]. Nevertheless, in what follows we
describe a novel attack that arises if: 1) both protocols co-exist at a certain point in time;
2) vehicles are led to believe they are running UBK when the PCA actually runs RBK.
Even though this attack does not invalidate either RBK’s or UBK’s individual security
claims, since it assumes the protocols are not run exactly as specified, this corresponds
to a quite practical scenario. Indeed, this would be the case if some PCAs in operation
decide to support only one version of the protocol, or even if some PCAs can run both
RBK and UBK.

In this scenario, a malicious RA that wants to be able to track vehicles can perform the
following MitM attack (see the bottom part of Table 2). First, the rogue RA announces
to vehicles that it is able to issue UBK certificates. The victim, attracted by the UBK
procedure’s higher efficiency, follows the protocol as usual: it computes the public caterpillar
key X and sends it together with the pseudorandom function f to the RA. The RA, in
turn, computes the correct cocoon keys X̂i ← X + f(i)·G, for 0 6 i < β; however, the
RA also computes β cocoon encryption keys Ẽi ← zi·G for arbitrary values of zi. The
RA then sends the pair (X̂i, Ẽi) to a PCA running RBK, as if such keys were generated
according to the RBK protocol. The PCA, unbeknown of the attack, simply runs the
RBK protocol for generating pseudonym certificates certi, encrypts it together with the
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randomization factor ri, and then signs this encrypted package. The RA, instead of acting
as a proxy, simply discards this final signature from the PCA’s response and recover the
corresponding certi by means of the decryption key zi. To complete the MitM attack, the
RA also re-encrypts the pair {certi, ri} with X̂i, and sends the result to the requesting
vehicle as if the encryption was performed by the PCA. Since the response received by the
vehicle is identical to a genuine UBK package, in principle that vehicle might be believe
that the certificates where indeed generated by an UBK-enabled PCA. Meanwhile, the
RA learns the contents of all pseudonym certificates issued through it and, thus, can link
the real identity of the vehicle to those certificates when they are used in the field. Hence,
the described co-existence attack violates one fundamental property of RBK and UBK:
the unlinkability of pseudonym certificates by any (non-colluding) system entity.

Countermeasures to co-existence attacks: We note that the described attack is only
possible when the vehicle mistakenly believes that the PCA is running UBK, but in reality
the protocol being run is RBK: in that case, the vehicle does not require a signature on
the encrypted package, which is required in RBK to prevent MitM attempts by the RA.
Therefore, to prevent the attack, it suffices to ensure that vehicles can verify which protocol
has been actually used by the PCA. Note that, there are at least two simple approaches
for accomplishing this, described in what follows.

The first solution consists of including a protocol identifier (e.g., “0” for RBK, and “1”
for UBK) in the PCA’s certificate. As a result, the vehicle can check whether the PCA
runs UBK or RBK, and then verify the received pseudonym certificates’ authenticity using
the correct procedure. As long as PCA certificates for RBK do not share the same public
key with any PCA certificate for UBK, vehicles cannot be tricked into accepting RBK
pseudonym certificates as if they were generated using UBK, thus preventing the attack.
The overhead of this approach is negligible, since it can be as small as adding a single bit
to the PCAs’ long term certificates.

As an alternative approach, the PCA could use the pseudonym certificate’s metadata
itself to inform the vehicle about which protocol was employed for its generation. The
overhead in this case can once again be as small as a single bit to differentiate between
UBK and RBK. Nevertheless, this approach is less efficient because: 1) there are many
more short-term, pseudonym certificates in the system than long-term, PCA certificates;
and 2) even though this extra bit is only useful during the issuance process, it must be
transmitted afterwards when vehicles sign their own messages.

ECC and PRESENT Cipher: In the original butterfly key expansion process proposed
in the SCMS proposal [43], it assumes the use of ECDSA (digital signature algorithm),
ECIES (asymmetric encryption scheme) and AES (block cipher) [26, 15, 25].

In our UBK implementation, we focus on curves defined over prime fields which can
be represented in the Montgomery [22] (or Twisted Edwards [3]) model, allowing faster
formulas [5]. Particularly the twisted Edwards representation of Curve25519 is known as
edwards25519.

The edwards25519 curve enables the use of Edwards-curve Digital Signature Algorithm
(EdDSA), which is a signature scheme variant of Schnorr signatures based on elliptic
curves represented in the Edwards model [4]. Like other discrete-log based signature
schemes, EdDSA requires a secret value, or nonce, unique to each signature. In order
to reduce the risk of random number generator failures, EdDSA calculates this nonce
deterministically, as the hash of the message and the private key. Thus, the nonce is very
unlikely to be repeated for different signed messages. This reduces the attack surface in
terms of random number generation and improves nonce misuse resistance during the
signing process. However, high quality random numbers are still needed for key generation.
Given the aforementioned advantages of EdDSA over ECDSA we choose EdDSA as the
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underlying signature algorithm for the UBK provisioning process.
In recent efficient X25519 and EdDSA implementations, the finite field arithmetic

operations were implemented in ARM-Assembly, making extensive use of the multiply-
and-accumulate DSP instructions [13]. Leveraging these assembly-level optimizations,
X25519 key exchange protocol required 907,240 cycles, and EdDSA key generation, sign and
verification consumed 347,225, 496,039 and 1,265,078 cycles respectively. An architecture for
a Curve25519 co-processor was proposed and implemented [31]. Although countermeasures
for simple and differential power analysis attacks were included, a throughput of 27,500
operations per second was achieved for the point multiplication operation.

For the symmetric encryption algorithm, we propose the use of the PRESENT block
cipher. The PRESENT cipher was one of the first hardware oriented proposals implemented
in resource-constrained environments [6]. Inherently, PRESENT is an ideal target for
hardware implementation. Although constant-time PRESENT software implementations
exist, they require considerable amount of bit slicing operations [28].

At a glance, PRESENT’s 4-bit S-box can be implemented as a lookup table, however this
approach is vulnerable to cache memory timing attacks [28]. A constant-time and bit-sliced
software implementation targeting ARM processors is presented in [28]. In this work, the
64-bit S-box layer is implemented as 14 boolean operations over the four 16-bit word inputs,
and 15 boolean operations for the inverse S-box counterpart [28]. The proposed methods of
interchanging permutations and S-boxes, and the decomposition of permutations resulted
in substantial performance improvements for software implementations. Furthermore,
side-channel countermeasures beyond the scope of timing attacks are also explored in [28].

A compact PRESENT implementation targeting FPGA platforms was proposed in [40].
Instead of using inferred BRAM blocks to implement the S-box, the authors followed
a boolean decomposition method. The proposed approach resulted in a small-footprint
PRESENT implementation, with 295 cycles of processing latency. The implementation
required 201 flip-flops and 222 Look-up Tables (LUTs) in a Virtex-5 FPGA.

In the case of AES, an ISE for the SPARC V8 32-bit processor achieved speedups
by a factor of 9 for encryption/decryption, with a moderate increase in silicon area [42].
Similarly, an ISE for the 32-bit CRISP processor was implemented for a set of bit-sliced
crypto algorithms. In particular, PRESENT’s performance was improved by a factor of
1.42 [14]. Furthermore, the code size was reduced by 18% compared to the implementation
using only traditional instructions.

3 Instruction Set Extensions
3.1 Instruction Extensions for the PRESENT Cipher
We propose the implementation of single-cycle non-blocking extension instructions for
the computation of PRESENT encryption, decryption and key update round. Since the
cipher’s block size is 64-bits, we make use of two AUX registers to implement a 64-bit
datapath for the encryption instruction, and another two AUX registers for the decryption
instruction. Likewise, four AUX registers are used in the implementation of a 128-bit
datapath for the key schedule instruction. Table 3 summarizes our proposed extension
instructions, alongside the logic modules required for the implementation of the respective
instruction’s datapath.
enc64 instruction datapath: Our PRESENT S-box implementation uses the boolean
equations for the S-box output bits that are obtained from the application of Karnaugh
mapping, followed by the Quine-McCluskey logic minimization algorithm [40]. Listing 9
in the appendix contains a Verilog snippet for the implementation of the boolean S-box.
The permutation layer can be implemented in hardware through simple bit-wiring, as
mentioned in [40]. Listing 10 in the appendix shows our proposed Verilog snippet for
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Table 3: Proposed APEX ISE for PRESENT [6]
Proposed instruction AUX registers Components Module Instances
enc64:
block encryption

BLK0_AR,
BLK1_AR

S-box sbox 16
Permutation Layer pLayer 1

keysch:
key schedule

KEY0_AR,
KEY1_AR,
KEY2_AR,
KEY3_AR

S-box sbox 2
61-bit left rotation leftRot_61 1
5-bit input XOR - 1

dec64:
block decryption

IBLK0_AR,
IBLK1_AR

Inverse S-box isbox 16
Inverse Permutation Layer ipLayer 1

the implementation of the pLayer module. The S-box layer [6] is a module composed
by sixteen instances of sbox together within a single module. The datapath for our
proposed enc64 instruction is obtained by wiring the outputs of the 128-input XOR
module (addRoundKey [6]) to the inputs of the S-box layer module, whose outputs are
then connected to the pLayer (Listing 10) module’s inputs, as shown in Figure 3. The
blk_out signal is the output of a single PRESENT round.

keysch instruction datapath: The 61-bit left rotation step of the PRESENT key schedule
can be achieved similarly to the bit-wiring method used for the pLayer implementation.
Listing 11 in the appendix shows a Verilog snippet for the implementation of the leftRot_61
module. The datapath for the proposed keysch instruction is obtained by connecting the
leftRot_61 module, sbox modules and XOR gates as shown in Figure 3. The key_out
output signal shown in Figure 3 is the result of a single round of the key schedule [6], and
the key_out[127:64] output signal is the round sub-key key for a given encryption round.

S­box layer

P. layer
Key update63:60

blk_in[63:0] round_key[63:0]

sboxsboxsbox

pLayer

3:059:56

blk_out[63:0]

enc64 datapath

leftRot_61

sboxsbox

127: 
124

123: 
120 

119: 
67 

66:62  61:0 

key_in[127:0] round[4:0] 

key_out[127:0]

keysch datapath

Key update
S­box layer

P. layer

64­bit block 
message  128­bit key

ciphertext

addRoundKey #1

addRoundKey #31

PRESENT  block cipher

Figure 3: Description of proposed enc64 and keysch instructions in PRESENT [6]

dec64 instruction datapath: For PRESENT’s inverse S-box [6] module (isbox) we repeat
the procedure used for the sbox module, which is presented in the Verilog snippet of
Listing 12 in the appendix. The inverse permutation layer [6] (ipLayer) can also be
implemented in hardware through simple bit-wiring. Listing 13 in the appendix shows a
Verilog snippet for the implementation of the ipLayer module.

The inverse S-box layer is composed of sixteen isbox module instances (Listing 12).
The datapath of our proposed dec64 instruction is obtained by connecting the outputs of
the ipLayer module to the inputs of the inverse S-box layer, whose output is then wired to
the 128-input XOR gate (i.e. addRoundKey [6]), as depicted in Figure 9 in the appendix.
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APEX integration: In order to integrate the instructions proposed in Table 3 into the
APEX pipeline, the datapath modules of enc64, keysch and dec64 instructions (Figures 3
and 9) must be connected to the designated AUX registers. The AUX registers shown in
Table 3 are visible to the traditional load/store instructions. The instruction operands
and result can be used to transfer data to and from the extension modules, as shown in
Figure 4. The keysch instruction operates without any source operands, as it uses the
data directly from assigned AUX registers. Moreover, keysch returns the value currently
held by KEY2_AR, which is the lower 32 bits of the round subkey. The enc64 and dec64
instructions take two source operands: src1 and src2, which are the upper and lower
32-bits, respectively, of the round subkey. The 64-bit message block is read from the
BLK0_AR and BLK1_AR AUX registers (or IBLK0_AR and IBLK1_AR for dec64). The enc64
and dec64 instructions do not have any instruction output values. Instead, the results are
written to their respective AUX registers.

IBLK0_AR  dec64

IBLK1_AR 

src1
src2

BLK0_AR  enc64

BLK1_AR 

KEY0_AR 

KEY1_AR 

KEY2_AR 

KEY3_AR 

keysch

keysch_res

Figure 4: Integration of enc64, keysch and dec64 to AUX registers

3.2 Instruction Extensions for F2255−19 Arithmetic
Characterization of F2255−19 multiplicative operations: Curve25519 arithmetic opera-
tions [2] are defined over the Galois Field GF (p) (or Fp), where p = 2255− 19. For a 32-bit
platform, the plain representation of a single 255-bit finite field element (fe) requires eight
32-bit words. Henceforth, a 32-bit word is referred to as word.

We first start by running the DesignWare MetaWare Debugger execution profiling tool
over a reimplementation in software of [13] adapted to the Synopsys ARC. It is expected,
based on the literature and related works, that the finite field multiplicative functions are
the performance bottleneck in Curve25519 implementations. In our optimized software
implementation of Curve25519, the multiplicative operations are listed in Table 4.

Table 4: List of multiplicative-based functions in F2255−19 implementation [13]
Function Description

fe_mul_word Multiplication of a fe field element by a word, followed by a weak reduction [13]
fe_sqr Multiplication of a fe field element by itself, followed by a weak reduction [13]
fe_power Multiplication of a fe field element (with weak reduction) by itself N times (fe_sqr in loop)
fe_mul Multiplication of two distinct fe field elements, followed by a weak reduction [13]

Table 5: Percentage of the execution time taken by F2255−19 multiplicative operations
listed on Table 4, with regards to the specified Curve25519 functions

X25519 Ed25519 Key Gen. Ed25519 Sign Ed25519 Verify
Fujii et al. [13] 79% 81% 81% 84%

ARC SW 73% 75% 75% 81%

We profiled the field multiplicative operations using X25519 and Ed25519. The results
show that around 80% of the total cycle count is consumed by the functions listed in
Table 4. These percentages, shown in Table 5, give us a good indication that custom
extension instructions for the multiplicative finite field arithmetic would have a considerable
impact on the overall performance. We therefore focus our work on these operations.
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256x256-bit multiplication: The first challenge in designing custom instructions to im-
prove the performance of the functions listed in Table 4 is to outline an instruction datapath.
Large multiplier units can be ruled out, as they require a large amount of scarce hardware
resources, which are limited in embedded hardware platforms. Thus, instead of creating a
separate datapath for each of the multiplicative operations listed, we propose a method
to implement custom extension instructions for fe_sqr, fe_power and fe_mul through a
unified datapath based on fe_mul_word.

Consider the multiplication of a field element by a word (mul_word operation) using
32x32 bit multiplication as shown by the schoolbook multiplication scheme of Figure 5.
In this context, where {a[7],...,a[0]} are the 32-bit words composing a field element,
the full resulting product (including carry) would be represented as the 288-bit sequence
{p0[8],...p0[0]}, as follows:

word

a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0]

p0[7] p0[6] p0[5] p0[4] p0[3] p0[2] p0[1] p0[0]p0[8]

Figure 5: mul_word - scheme of a multiplication of a fe field element by a word

Naively extending the idea in Figure 5 for the subsequent product rows, it is evident that
fe × fe full multiplication would require a 512-bit accumulator. A 512-bit accumulator
unit would require larger register and adder units that would not be used to their full extent
during the intermediary multiplication rows computation. Figure 6 shows our proposed
method on achieving a 256x256-bit full multiplication using a 288-bit accumulator-and-
shifter instead of a 512-bit accumulator. The key observation is that each one of the
sixteen 32-bit words composing the final full 512-bit product can be retrieved as soon as a
multiplication row is obtained, i.e., a mul_word operation is performed. Figure 6 illustrates
our proposed scheme for the 256x256-bit multiplication combining the mul_word operation
(Figure 5) with a 288-bit accumulator-and-shifter.

b[1] b[0]

a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0]

p0[0]p0[1]p0[2]p0[3]p0[4]p0[5]p0[6]p0[7]p0[8]

p0[7] p0[6] p0[5] p0[4] p0[3] p0[2] p0[1] p0[0]p0[8]

p0[1]p0[2]p0[3]p0[4]p0[5]p0[6]p0[7]p0[8]0 p0[0]

mul_word: {a[7],...,a[0]} x b[0] =

accumulate

shift: >> 32

b[2]

p1[7] p1[6] p1[5] p1[4] p1[3] p1[2] p1[1] p1[0]p1[8]

s0[1]s0[2]s0[3]s0[4]s0[5]s0[6]s0[7]s0[8]0 s0[0]

s0[0]s0[1]s0[2]s0[3]s0[4]s0[5]s0[6]s0[7]s0[8]

mul_word: {a[7],...,a[0]} x b[1] =

accumulate

shift: >> 32

p2[7] p2[6] p2[5] p2[4] p2[3] p2[2] p2[1] p2[0]p2[8]

s1[1]s1[2]s1[3]s1[4]s1[5]s1[6]s1[7]s1[8]0 s1[0]

s1[0]s1[1]s1[2]s1[3]s1[4]s1[5]s1[6]s1[7]s1[8]

mul_word: {a[7],...,a[0]} x b[2] =

accumulate

shift: >> 32

Figure 6: Proposed scheme for 512-bit multiplication using the mul_word operation and a
288-bit accumulator-and-shifter



Henrique S. Ogawa, Thomas E. Luther, Jefferson E. Ricardini, Helmiton Cunha, Marcos
Simplicio Jr., Diego F. Aranha, Ruud Derwig and Harsh Kupwade-Patil 13

Starting at the multiplication pivot b[0], a mul_word operation is performed. The re-
sulting 288-bit product row is added to the value currently held by the 288-bit accumulator
(which is zero for the first operation). The accumulator’s rightmost word p0[0] becomes the
output value, and the 288-bit accumulator register is shifted 32 bits to the right. This en-
sures that the accumulator will never overflow. The procedure is repeated until pivot b[7];
at this point the collected output values {s6[0],...,s1[0],s0[0],p0[0]} are the lower
256 bits of the 512-bit multiplication result. The upper 256 bits are the ones being held by
the 288-bit accumulator. The consecutively captured {s14,...s7,s6[0],...,s0[0],p0[0]}
set of words compose the final full 512-bit product. One clear advantage of the proposed
scheme is the weak reduction process [13]. It can be started right after the b[7] pivot is
reached, being performed in parallel with the shifting retrieval process of the upper eight
words, saving processing time and temporary registers.

Instruction set extension: The first consideration when organizing the ISE for the
multiplicative operations listed in Table 4 is that we aim to design an unified instruction
datapath module. This approach differs from the ISE for PRESENT (Table 3), where each
one of the APEX instructions had dedicated datapaths and AUX registers. In this manner,
APEX technology also offers the option to create instruction extension groups [33]. This
feature allows instructions within the same group to access shared datapath modules and
AUX registers. Table 6 shows the proposed custom extension instructions for the F2255−19
multiplicative operations listed in Table 4. These will share hardware resources from a
unified datapath construction. Additionally, the field element, which is one of the operands
of the mword instruction, is available to the APEX instruction datapath by means of the
FEi_AR registers, where i = {0,...,7}.

Table 6: List of proposed custom extension instructions for multiplicative operations on
F2255−19, with correspondent AUX registers and datapath modules

Proposed
instruction Description Auxiliary

registers
Datapath
modules

mword Multiply fe element (stored in AUX registers) by word, and
accumulate the 288-bit result (mul_word operation, Figure 5) FE0_AR, FE1_AR,

FE2_AR, FE3_AR,
FE4_AR, FE5_AR,
FE6_AR, FE7_AR

mul_word,
adder_288,
shift_regshacc Shift 288-bit accumulator by 32 bits to the right, and return

the least significant 32-bit (shift: » 32 operation, Figure 6)
rsacc Reset 288-bit accumulator

mul_word module: The first step towards the implementation of the mul_word operation
is the design of the smallest arithmetic unit: the 32x32-bit (word-by-word) multiplication
unit with carry-in and carry-out signals. As the target platform for this work is an FPGA
device, we can make use of the DSP slices to implement the mul32 modules.

The mul32 module is used as the building block for the implementation of the mul_word
module shown in Figure 7. A total of eight mul32 modules with cascaded carry signals are
used; a is the finite field element, and out is the 288-bit output. Arguably, this module
could be split into pipeline stages to achieve higher throughput. However, since minimal
latency is our main goal, we choose not to introduce pipeline registers, as it would result
in a few extra cycles of latency.

APEX integration: For the integration of the instructions’ datapath modules into the
APEX pipeline, the AUX registers are directly connected to the mul_word module’s field
element input ports, as shown in Figure 8. The word operand of mul_word module is
passed to the instruction datapath as the mword instruction’s source operand (src2). The
mul_word’s output value is forwarded to one of the adder_288 module’s inputs, which then
sums this value with the one currently stored in the shift_reg module. Simultaneously,
the mword instruction also enables the shift_reg’s load signal, making the shift_reg
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mul32 

mul32 

mul32 

mul32 

mul32 

mul32 

mul32 

mul32 

31:0

63:32

95:64

127:96

159:128

191:160

223:192

255:224a[255:0]

word[31:0] 
out[31:0]

out[63:32]

out[95:64]

out[127:96]

out[159:128]

out[191:160]

out[223:192]

out[255:224]
out[287:256]256

Figure 7: mul_word module - 256x32-bit multiplier unit from Figure 5 scheme

module store the current adder_288’s output value. Moreover, the shacc instruction,
which does not have source operands, simply enables the shift_en signal to shift the
contents of the shift_reg’s 288-bit internal register. With the instruction datapath shown
in Figure 8, a mul_word operation gets executed in two clock cycles, assuming that the
field element source operands are already available in the AUX registers.

shift_regadder_288 

shacc_res

shift_en
load

288

288

mul_word 

288256

src2

accumulator­ 
and­shifter

255:224

FE5_AR

FE4_AR

FE3_AR

FE2_AR

FE1_AR

FE0_AR

FE6_AR

FE7_AR

223:192

191:160

159:128

127:96

95:64

63:32

31:0

31:0

auxiliary registers
extension logic

Figure 8: APEX user extension architecture: integration of mul_word, adder_288 and
shift_reg modules

4 Programming with Dual-Data Memory Banks
The primary purpose of dual-data memory banks is to provide greater bandwidth. However,
as discussed in [30], [10] and [23], the main caveat is the proper assignment of data to
each memory bank. This often becomes the most challenging task for obtaining optimal
performance. We illustrate this problem through the code snippet of Listing 2, an example
implementation of a dot-product with dual-data memory banks. We start by introducing
this example using the C snippet below:
· · ·
void dot_product (uint32_t *a, uint32_t *b, uint32_t *out) {

for (int i = 0; i < N; i++) {
out[i] = a[i]*b[i];

}
}
· · ·

This code snippet shown above can be directly translated into the Assembly language
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implementation of Listing 1. The traditional mul instruction is used in this example.
The .ab tag specifies the post-increment address write-back mode for the ld and st
instructions.

For the equivalent implementation using dual-data memory banks (i.e. XY Memory),
assume that the arrays a, b and out are already mapped to the XY memory address
space through the AGU registers %agu_r0, %agu_r1 and %agu_r2, respectively. Also
consider that the corresponding AGU pointers get incremented by 4 bytes whenever
%agu_r0, %agu_r1 and %agu_r2 are accessed. In such configuration, the dot-product can
be implemented using XY memory as shown in the code snippet of Listing 2.
Listing 1: Plain dot-product algorithm with
traditional load/store flow
# r0 <- a, r1 <- b, r2 <- out
· · ·

loop_in: # loop N times
ld.ab %r3,[%r0,4] # fetch a[i]
ld.ab %r4,[%r1,4] # fetch b[i]
mul %r3,%r3,%r4
st.ab %r3,[%r2,4] # write c[i]

loop_end:
· · ·

Listing 2: Plain dot-product algorithm with
XY memory flow
# agu_r0 <- a, agu_r1 <- b, agu_r2 <- out
· · ·

loop_in: # loop N times
# fetch a[i] and b[i], and
# write c[i] at the same cycle
mul %agu_r2,%agu_r0,%agu_r1

loop_end:
· · ·
· · ·

Given the comparison above, we clarify that the ARC XY Memory DSP subsystem is
capable of performing two operand fetches and a write-back in a single instruction [39]. Such
operation would require at least three instructions in a traditional load/store programming
scheme. However, the execution of the aforementioned instruction in a single cycle depends
primarily on the correct allocation of the input arrays to the appropriate memory banks:
in Listing 2, by allocating the arrays a and b to distinct memory banks, we are able to
fetch a[i] and b[i] elements in parallel within a single cycle. However, if the input
arrays were programmed to the same memory bank, the array elements would only be
sequentially accessible, i.e. in two cycles, thus reducing the performance by a factor of
two. Therefore, the optimal usage of dual-data memory banks relies fundamentally on the
proper allocation of data into the available memory banks.

It is also important to notice that implementations using XY memory inherit a code
overhead regarding the initialization of the AGU registers and indexing modes. However,
this overhead becomes negligible whenever looping over arrays of eight elements or more,
due to the additional instructions required on the traditional load/store approach.

In this section we will demonstrate how our ISE for PRESENT and F2255−19 can
be combined with the ARC XY Memory DSP subsystem in order to achieve significant
performance improvements. This requires the instruction operands be located in the
correct X and Y memory banks. For the upcoming subsections, we consider that AGU
registers labeled with %agu_x are designated to the X memory bank, whereas registers
%agu_y are designated to the Y memory bank.

4.1 XY Memory Programming for the PRESENT Cipher
The main objective of this subsection is to outline our approach for leveraging the ARC XY
Memory DSP Option in order to achieve IILP with the developed ISE for PRESENT. We
begin by demonstrating how we converted the key schedule function implemented using tra-
ditional load/store flow into the equivalent XY memory programming scheme. For the code
snippet of Listings 3 and 4, assume that the %KEY0_AR, %KEY1_AR, %KEY2_AR and %KEY3_AR
AUX registers are already initialized with the 128-bit key value. Further, assume that the
64-bit values resulting from each key schedule round are consecutively stored in two distinct
32-bit arrays, namely round_keys_h and round_keys_l. As such, for a given round i, the
64-bit round key is given by the concatenation of {round_keys_h[i],round_keys_l[i]}.
For the code on Listing 4, also assume that the round_keys_l and round_keys_h are
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assigned to the X and Y memory banks. This is done through the AGU registers %agu_x0
and %agu_y0. Since the keysch instruction returns only the value that is written back to
the %KEY2_AR AUX register, it is necessary to manually read the value from %KEY3_AR in
order to capture the full round key value.
Listing 3: PRESENT key schedule with tra-
ditional load/store flow
# r0 <- round_keys_l
# r1 <- round_keys_h
· · ·

loop_in: # loop 31 times
keysch %r2,%lp_count
st.ab %r2,[%r0,4]
lr %r2,[%KEY3_AR]
st.ab %r2,[%r1,4]

loop_end:
· · ·

Listing 4: PRESENT key schedule with XY
memory flow
# agu_x0 <- round_keys_l
# agu_y0 <- round_keys_h
· · ·

loop_in: # loop 31 times
keysch %agu_x0,%lp_count
lr %agu_y0,[%KEY3_AR]

loop_end:
· · ·
· · ·
· · ·

By using the keysch instruction alongside the XY memory, it is possible to implement
the key schedule algorithm’s inner-loop rounds using 50% fewer instructions. For this
particular case, the XY memory allocation is not critical, as there is no instruction which
fetches two operands at the same time.

At this point, let us assume that the round key values are already computed and
stored in the round_keys_l and round_keys_h arrays in the X and Y memory banks. The
code snippets of Listings 5 and 6 show the implementation of the encryption function’s
main loop (i.e. encryption rounds) according to the load/store flow and the equivalent
XY memory flow. When comparing both code snippets, the idea is to demonstrate that
the encryption function’s inner loop can be executed in a single cycle, with the enc64
instruction fetching the two operands simultaneously. The final 64-bit encrypted message
is stored in the AUX registers %BLK0_AR and %BLK1_AR, where it can be read using the lr
instruction.
Listing 5: PRESENT block encryption with
traditional load/store flow
# r0 <- round_keys_l
# r1 <- round_keys_h
· · ·

loop_in: # loop 31 times
ld.ab %r2,[%r0,4]
ld.ab %r3,[%r1,4]
enc64 0,%r3,%r2

loop_end:
· · ·

Listing 6: PRESENT block encryption with
XY memory flow
# agu_x <- round_keys_l in X memory bank
# agu_y <- round_keys_h in Y memory bank
· · ·

loop_in: # loop 31 times
enc64 0,%agu_y0,%agu_x0

loop_end:
· · ·
· · ·
· · ·

The decryption function using the dec64 instruction follows the same logic, as shown
by the code snippets of Listings 14 and 15 in the appendix. The only difference here is that
the final 64-bit decrypted message is stored in AUX registers %IBLK0_AR and %IBLK1_AR,
where it can be read using the lr instruction. For the key schedule, encryption and
decryption routines shown above, the utilization of the XY memory subsystem enables the
implementation of the main inner-loops using 50% to 66% fewer instructions. This reflects
in a performance improvement by a factor of two to three.

4.2 XY Memory Programming for F2255−19 Arithmetic
Continuing with the ARC XY Memory DSP Option, in this subsection we outline the
techniques for obtaining IILP with the ISE for F2255−19 arithmetic. We start by showing
how to translate the fe × fe full multiplication operation from the traditional load/store
implementation to the XY memory approach. For the fe × fe operation in Listings 7
and 8, consider that the 256-bit operand a is already held by the eight %FEi_AR AUX
registers, where i = {0,...,7}. The second operand is represented by the b array, and



Henrique S. Ogawa, Thomas E. Luther, Jefferson E. Ricardini, Helmiton Cunha, Marcos
Simplicio Jr., Diego F. Aranha, Ruud Derwig and Harsh Kupwade-Patil 17

the 512-bit output is returned in two separate 256-bit arrays, out_l and out_h. They
contain the least significant half and most significant half of the output, respectively. For
the XY memory implementation in Listing 8, the out_l and out_h arrays are contained
in different X and Y memory banks, such that they can be fetched within the same cycle.
Listing 7: fe × fe operation with tradi-
tional load/store flow
# FEi_AR <- a, r0 <- b
# r1 <- out_l, r2 <- out_h
· · ·

# 1st loop: get out_l
loop_in: # loop 8 times

ld.ab %r3,[%r0,4]
mword 0,%r3
shacc %r3,0
st.ab %r3,[%r1,4]

loop_end:
· · ·

# 2nd loop: get out_h
loop2_in: # loop 8 times

shacc %r3,0
st.ab %r3,[%r2,4]

loop2_end:
· · ·

Listing 8: fe × fe operation with XY mem-
ory flow
# FEi_AR <- a, agu_x0 <- b
# agu_y0 <- out_l, agu_x1 <- out_h
· · ·

# 1st loop: get out_l
loop_in: # loop 8 times

mword 0,%agu_x0
shacc %agu_y0,0

loop_end:
· · ·

# 2nd loop: get out_h
loop2_in: # loop 8 times

shacc %agu_x1,0
loop2_end:
· · ·
· · ·
· · ·
· · ·

Weak reduction and non-multiplicative operations: In order to allow intermediate
results to fit within 256 bits (8 words), we perform a modular reduction to 2256 − 38,
exactly double the true field modulus of 2255 − 19. This is done to improve efficiency: the
reduction to 2256 − 38 can be done using only addition with carry. Full reduction is done
only once at the very end and requires some bit level manipulations, which is more costly
timewise.

In addition to the fe × fe and weak reduction operations, we also require fe + fe,
fe - fe, and full reduction. These operations are all implemented using regular ARC
processor instructions. We describe these operations in appendix section 8.

5 Testing Methodology
Test vectors from both ISO/IEC 29192-2 standard and lightweightcrypto.com were
used for verifying the intermediate and final outputs of our PRESENT implementation [17].
Meanwhile, test vectors from RFC7748 and RFC8032 were used for verifying our X25519
and EdDSA implementations, respectively [21, 18].

For our testbed, the following ARC EM9D processor specifications were chosen: 1)
ARCv2EM core, 2) DCCM and ICCM banks of size 65K each, 3) X and Y Memory banks of
size 8K each, and 4) medium-sized AGU controller. All time measurements and verification
procedures are performed over the DesignWare ARC xCAM [38] cycle-accurate processor
model tool. For the estimation of FPGA logic overhead introduced by the developed
instructions’ datapaths, we synthesized the ARC’s RTL processor model (containing the
developed ISE) targeting a Xilinx UltraScale XCZU9EG FPGA device [46].

DesignWare ARC xCAM: The DesignWare ARC xCAM [38] tool allows the genera-
tion of cycle-accurate ARC processor models that can be directly instantiated from the
MetaWare [37] application development/debugging environment. xCAM generates cycle-
accurate binary processor models by translating the Verilog-RTL system’s specification
into C++ or SystemC models [38]. Our tests and verification steps were performed over
generated xCAM models including the developed APEX instructions and the XY Memory
DSP core. For our cycle-count benchmarks, we used a 32-bit timer counter (Timer0
component [36]) embedded in the ARC EM9D core.

lightweightcrypto.com
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FPGA Synthesis: On Xilinx FPGAs, the main resources for implementing general-
purpose combinatorial and sequential circuits are the Configurable Logic Blocks (CLBs) [44].
The Xilinx XCZU9EG FPGA provides the following logic primitives: 1) 548,160 CLB
Flip-Flops (FF), 2) 274,080 CLB LUTs, 3) 2,250 DSP48E2 DSP slices containing 27x18-
bit multipliers [45] and 4) 34,260 CARRY8 fast dedicated lookahead carry logic for
arithmetic carry chains. With the CARRY8 primitives (introduced in the UltraScale CLB
architecture), carry logic can be leveraged to dedicated carry-lookahead units, reducing
the number of used LUTs and improving routing/timing performance [44].

6 Results

6.1 PRESENT Cipher with ISE and XY Memory
Table 7 shows the benchmark and code size for three different PRESENT implementa-
tions on the ARC EM9D processor. The first one is a C-only implementation from [28]
compiled with ARC’s CCAC compiler using -O3 [37]. The second one is an Assembly code
implementation using the developed enc64, keysch and dec64 APEX instructions. The
final one is an assembly code implementation using the same APEX instructions along
with XY Memory (Listings 4, 6 and 15).

Table 7: PRESENT with 128-bit key on ARC EM9D processor: timings in cycles and size
of compiled code.

Cycles Code size
(bytes)Encryption Key schedule Decryption

Reis et al. [28], C-only 1,602 3,415 2,058 2,774
With APEX 161 331 161 362
With APEX & XY Memory 57 193 59 830

With the proposed ISE for PRESENT, a speedup by a factor of 9 to 12 was achieved,
while reducing code size by a factor of 7.6. The combination of APEX instructions and
XY Memory results in a speedup by a factor of 17 to 34. The introduction of XY Memory
to the APEX ISE does, however, result in a code size increase from 362 to 830 bytes.
Even with the increase in code size, it remains 70% smaller than the C-only software
implementation.

Table 8 shows the FPGA synthesis results for the instruction datapath modules detailed
in Table 3. The number of required logic resources for the synthesis of the AUX registers
is shown next to the aux_regs label. The percentages show the increase in logic resources
over a synthesized baseline ARC EM9D processor on the selected FPGA device (Xilinx
XCZU9EG). Overall, the ISE for PRESENT requires 4.37% additional CLB LUTs and
8.26% extra CLB registers.

Table 8: Logic overhead introduced by PRESENT extension instructions on a synthesized
ARC EM9D processor targeting the Xilinx XCZU9EG FPGA device

enc64 keysch dec64 aux_regs
CLB LUTs (Logic) 0.39% 0.04% 0.4% 3.53%
CLB Registers (FF) - - - 8.26%

6.2 Curve25519 with ISE and XY Memory
Table 9 shows the benchmark results for the F2255−19 field element operations implemented
on the ARC EM9D processor. The fe_mul_word, fe_mul and fe_sqr operations are
implemented in assembly using our mword, shacc and rsacc APEX instructions from
Table 6 as well as the XY Memory programming flow introduced in the previous section.
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Table 9: Timings in cycles and code sizes for F2255−19 arithmetic functions on ARC EM9D
processor. The cycle counts shown are taken as the average of 256 executions

fe_ add sub mul2 mul_word mul sqr inv
Cycles 35 35 31 51 108 103 25,613
Code size (bytes) 122 122 108 154 354 338 354

The fe_inv (multiplicative inverse) is implemented using 11 fe_mul and 254 fe_sqr
operations. We take advantage of the fact that many of the fe_sqr operations use the
previous fe_sqr results for input. By keeping these intermediate results in AUX registers
we are able to achieve roughly 6% savings over calling fe_sqr directly.

For the high level Curve25519 operations, we integrate our field arithmetic functions in
a reimplementation of the software library from [13], along with modifications to support
field elements optimally allocated in XY memory. Table 10 shows the benchmark results
for the cryptographic Curve25519 functions implemented in C and compiled with ARC’s
CCAC compiler using -O3. To improve performance of the X25519 key exchange, we split
the traditional X25519 operation into two separate steps: the public function is used
to generate the public key, while the shared function generates the shared secret from
the other party’s public key. In the X25519 function’s loop we need to multiply a field
element by either 9 (in the case of public) or the other party’s public key (in the case
of shared). When multiplying by 9, fe_mul_word can be used instead of fe_mul which
performs a multiplication of two field elements. The total computation time for each party
during a key exchange is the sum of these two functions, which results in an additional 2%
improvement.

In terms of code size, our fe_mul and fe_sqr implementations are roughly 45% smaller
than [13]. Overall, our implementation of X25519 and EdDSA is about 5% smaller. It
should be noted that the bulk of the code size of the X25519 and EdDSA functions shown
in Table 10 are from the high level Curve25519 library and hash function.

Table 10: Timings in cycles and code sizes for Curve25519 cryptographic functions on
ARC EM9D processor

x25519_public x25519_shared EdDSA_key_
expansion EdDSA_sign EdDSA_verify

Cycles 353,085 368,435 138,294 205,012 525,142
Code size (bytes) 3,486 20,768 21,076 25,130

Table 11 shows the FPGA synthesis results for the instruction datapath modules from
Table 6, including the AUX registers. The percentages are the increase in logic resources
over a baseline ARC EM9D processor on the selected FPGA device (Xilinx XCZU9EG).

Table 11: Logic overhead introduced by F2255−19 extension instructions on a synthesized
ARC EM9D processor targeting the Xilinx XCZU9EG FPGA device

CLB LUTs (Logic) CLB Registers (FF) DSP Blocks CARRY8
mul_word 2.75% - 32† 104†

adder_288 1.32% - - 36†

shift_reg 1.18% 6.57% - -
aux_regs 3.88% 8.17% - -

Overall, the ISE for F2255−19 arithmetic requires 9.1% additional CLB LUTs and 14.7%
extra CLB registers. Additionally, a small number of DSP blocks and CARRY8 primitives
are required for the synthesis and implementation of the mul_word and adder_288 modules
on the XCZU9EG FPGA. When comparing with the work from [13], speedups by a factor
of around 2.5 (in terms of cycles) were achieved for the protocols over Curve25519.

†Showing here as absolute quantity (not relative)
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6.3 SCMS/UBK
For the evaluation of a hardware accelerated UBK, we consider the customized ARC
EM9D processor, which includes the specifications from Section 5 and the proposed ISE
from Section 3. We assume a typical ASIC synthesis process targeting a 100MHz clock
frequency [35]. Our FPGA synthesis results show that the ISE’s datapaths are not part of
the critical path.

In Table 12, we show timings for our implementation of a single EdDSA signature
verification and for the UBK pseudonym certificate validations. Specifically, the table shows
the portion of the UBK protocol that runs on the vehicle. The vehicle’s UBK pseudonym
certificate validation consists of EdDSA signature verification, ECIES decryption and ECC
operations. These steps are shown in the last column of Table 2.

Table 12: Vehicle verification of UBK keys and signatures (considering fclk = 100MHz)
Single Signature Ver. UBK Explicit UBK Implicit UBK Implicit Schnorr

Time (ms) 5.3 15 15.3 14.8

For the UBK pseudonym certificate validation, vehicles get their pseudonym certificates
in advance, which gives the vehicle a window of time to verify them. Therefore, the
performance consideration does not come with a requirement of low-latency or jitter typical
of real-time scenarios. Instead the main interest is reducing the energy cost in the vehicle.

The first line of Table 12 shows the time for a single EdDSA signature verification,
which is required for verifying Basic Safety Messages (BSM). Consider a typical scenario
where a vehicle receives BSMs from 10 surrounding vehicles. Here the vehicle must be
able to verify all message signatures within 100ms in order to avoid creating a backlog.
This gives the vehicle up to 10ms to verify each message. Since our hardware accelerated
implementation verifies a signature in 5.3ms, we surpass this requirement.

7 Conclusions
In this manuscript, we presented a novel hardware acceleration methodology that combines
custom extension instructions with dual-data memory banks on an extensible processor
platform. With the proposed methodology, the performance of PRESENT and Curve25519
were enhanced, while reducing code size and maintaining a low to moderate logic overhead.
In addition, the proposed ISE facilitated constant-time cryptographic implementations.

Our hardware accelerated multiplicative functions for Curve25519 improved perfor-
mance by a factor of ∼2.5 when compared to an optimized software implementation. FPGA
logic overhead was moderate: 9.1% additional LUTs and 14.7% extra registers, as well as
a small addition of DSP and CARRY8 blocks.

For PRESENT, we replaced the shifting and masking of the bit-sliced substitution and
permutation operations with custom extension instructions composed of pure combinatorial
blocks. This improved performance by a factor of 17 to 34 along with a 70% reduction in
code size. Moreover, the additional FPGA logic overhead was as low as 4.37%.

Although we targeted the ARC processor, the proposed ISE can be adapted to any
other extensible processor platform that supports custom extension instructions [7, 16,
29]. Furthermore, the code profiling, instruction datapath design and the XY Memory
programming methods can also be extended to other cryptographic algorithms, including,
but not limited to, other ECC schemes (e.g., Curve448), hash functions and MACs
(Message Authentication Codes). Additionally, the hardware accelerated Curve25519 and
PRESENT implementations can be used to address performance requirements for V2X
applications. Specifically, our hardware accelerated functions meet the requirements for
signature verification of BSMs in V2X applications. Lastly, the SCMS’s UBK process can
also take advantage of these hardware accelerated functions.
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As a side contribution, we discuss a MitM attack when the RBK and UBK settings
coexist, called as the co-existence attack. We show that this attack can be prevented by the
addition of meta-data either in the PCA’s certificate or the Vehicle pseudonym certificate.
Both approaches lead to a negligible overhead in terms of bandwidth and processing time.
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Appendix

Listing 9: Verilog implementation of the sbox module for enc64 and keysch instructions
input in3, in2, in1, in0; // in3 is the most significant bit
output out3, out2, out1, out0; // out3 is the most significant bit

assign out3 = (~in3 & ~in1 & ~in0) | (~in3 & in1 & in0) |
(in3 & ~in2 & in0) | (in3 & ~in2 & in1) |
(~in3 & in2 & in1);

assign out2 = (~in2 & in1 & ~in0) | (in3 & in2 & ~in1) |
(~in2 & ~in1 & in0) | (~in3 & ~in2 & ~in1) |
(~in3 & in2 & in1 & in0);

assign out1 = (in3 & in2 & in0) | (in3 & ~in2 & ~in1) |
(~in3 & in1 & ~in0) | (~in3 & ~in2 & in1) |
(in3 & ~in2 & ~in0);

assign out0 = (~in3 & in1 & in0) | (in3 & in1 & ~in0) |
(in3 & ~in2 & ~in0) | (~in3 & ~in2 & in0) |
(~in3 & in2 & ~in1 & ~in0) | (in3 & in2 & ~in1 & in0);

Listing 10: Verilog implementation of the pLayer module for the enc64 instruction
input[63:0] in; output[63:0] out;

genvar i;
generate

for (i=0; i<64; i=i+4)
begin : g

assign out[i/4] = in[i];
assign out[i/4 + 16] = in[i+1];
assign out[i/4 + 32] = in[i+2];
assign out[i/4 + 48] = in[i+3];

end
endgenerate

Listing 11: Verilog implementation of the leftRot_61 module for the keysch instruction
input[127:0] in; output[127:0] out;

genvar i;
generate

for (i=127; i>=0; i=i-1)
begin: g

if (i-61>=0)
assign out[i] = in[i-61];

else
assign out[i] = in[i+67];

end
endgenerate

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
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Listing 12: Verilog implementation of isbox module for dec64 instruction
input in3, in2, in1, in0; // in3 is the most significant bit
output out3, out2, out1, out0; // out3 is the most significant bit

assign out3 = (~in3 & ~in2 & in0) | (~in3 & ~in2 & in1) |
(~in3 & in1 & in0) | (in3 & in2 & in1) |
(~in3 & in2 & ~in1 & ~in0) | (in3 & ~in2 & ~in1 & ~in0);

assign out2 = (~in3 & ~in2 & ~in1) | (~in3 & ~in1 & ~in0) |
(~in2 & in1 & ~in0) | (in3 & ~in1 & in0) |
(~in3 & in2 & in1 & in0);

assign out1 = (~in3 & in1 & ~in0) | (in3 & ~in2 & ~in0) |
(in3 & ~in2 & in1) | (in3 & in2 & in0) |
(~in3 & ~in2 & ~in1 & in0);

assign out0 = (~in3 & ~in2 & ~in0) | (~in2 & ~in1 & ~in0) |
(~in3 & in2 & in0) | (in2 & ~in1 & in0) |
(in3 & ~in2 & in1 & in0) | (in3 & in2 & in1 & ~in0);

Listing 13: Verilog implementation of the ipLayer module for dec64 instruction
input[127:0] in; output[127:0] out;

genvar i;
generate

for (i=0; i<16; i=i+1)
begin : g

assign out[4*i] = in[i];
assign out[4*i + 1] = in[i + 16];
assign out[4*i + 2] = in[i + 32];
assign out[4*i + 3] = in[i + 48];

end
endgenerate

128­input 
XOR

isbox_layeripLayer 
64

blk_in[63:0]

round_key[63:0]

blk_out[63:0]

Figure 9: Datapath of proposed dec64 instruction for PRESENT decryption

Listing 14: PRESENT block decryption with
traditional load/store flow
# r0 <- round_keys_l
# r1 <- round_keys_h
· · ·

loop_in: # loop 31 times
ld.ab %r2,[%r0,4]
ld.ab %r3,[%r1,4]
dec64 0,%r3,%r2

loop_end:
· · ·

Listing 15: PRESENT block decryption with
XY memory flow
# agu_x <- round_keys_l
# agu_y <- round_keys_h
· · ·

loop_in: # loop 31 times
dec64 0,%agu_x0,%agu_y0

loop_end:
· · ·
· · ·
· · ·

Non-multiplicative F2255−19 Operations
The non-multiplicative F2255−19 operations are implemented using standard ARC instruc-
tions along with the AGU to efficiently load and store the field elements from memory.
The basic method of implementation for these operations is as follows: 1) Set up the AGU
to read in the field elements one word at a time. 2) Set up the AGU to write the result. 3)
Perform the operation, storing the intermediate results in regular processor registers. 4)
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Perform weak reduction on the intermediate results and write the reduced output to XY
memory. (The main benefit of storing the intermediate results in regular CPU registers is
that it saves cycles by not having to set another AGU base address register, which must
be done using the sr instruction.)

Further details on weak reduction: The weak reduction itself is easily explained: assume
we have a 288 bit result in an array of nine words P[8],...,P[0] where P[8] is the most
significant. Multiply P[8] by 38 and add it to P[7,...,0]. Since the field elements are
256-bits long, addition, subtraction and multiplication by two will only carry at most one
bit to P[8]. Which means if P[8] == 1, then add 38 to P[7,...,0]. Although simple,
there are two corner cases to consider when P[7..0] >= 2256 − 38:

If P[8] == 0, then we would not add 38 and simply take the result in P[7..0] which
would not be fully reduced mod 2256 − 38. This can be safely ignored, as all of our field
arithmetic operations are designed to work with 256-bit inputs. If P[8] == 1, then adding
38 to P[7..0] will result in P[7..1] being 0 and P[0] being a very small value. In this
case, it is necessary to add an additional 38 in order to achieve the correct reduction.
As the weak reduction is an integral part of the field operation, it makes more sense to
discuss the details of its implementation in that context. This is done below for the fe_add
operation.

fe_add: The fe_add operation takes two 256-bit inputs in XY memory and stores the
resulting sum to XY memory reduced to 2256 − 38. For this, we make use of the ARC
processor’s add with carry instruction:

adc a,b,c # (a = b + c + carry)

In Listing 16, P0 – P8 are arbitrary processor registers that correspond with the
intermediate 288 bit results that become the input to the weak reduction.

The addition of the first word uses add since there is no previous operation that needs
to be carried. The “.f” indicates that the carry flag should be set if the results of the
addition overflows the 32-bit destination. The subsequent additions use adc which will
then add the value of the previous operation’s carry flag to the result. Technically, the
most significant word P[8] should be 1 in the case of the final adc producing a carry, or 0
otherwise. This could be done easily using adc P8,0,0. However, in preparation for the
weak reduction it is much more desirable to have 38 in the case of a carry as this is the
value that needs to be added. This is accomplished using a conditional move instruction
(mov.c): In the case of a carry, P8 will be set to 38, otherwise it will contain the previously
set value of 0.

Listing 16: fe + fe operation with XY memory
# agu_x0 <- first field element in X bank
# agu_y0 <- second field element in Y bank
· · ·
mov P8,0
add.f P0,%agu_x0,%agu_y0
adc.f P1,%agu_x0,%agu_y0
adc.f P2,%agu_x0,%agu_y0
adc.f P3,%agu_x0,%agu_y0
adc.f P4,%agu_x0,%agu_y0
adc.f P5,%agu_x0,%agu_y0
adc.f P6,%agu_x0,%agu_y0
adc.f P7,%agu_x0,%agu_y0
mov.c P8,38
· · ·
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The code in Listing 17 immediately follows the previous addition and is a straightforward
implementation of the weak reduction already discussed: P8 will contain either 0 or 38
which is added to the least significant word of the intermediate sum in P0. The following
add with carry operations will propagate any additional carry as well as write the result
to the destination XY memory. The jcc instruction is a conditional jump instruction (in
this case, jump if carry not set): If the final adc did not generate a carry, then we are done
and will return to the caller. If carry was set, then an additional 38 is added to P[0] and
written to the output. As this case is very unlikely to ever occur in actual operation, we
are not concerned about efficiency.

Listing 17: Weak reduction operation after addition
# agu_xy0 and r1 <- destination field element in either X or Y bank
· · ·
add.f %agu_xy0,P0,P8
adc.f %agu_xy0,P1,0
adc.f %agu_xy0,P2,0
adc.f %agu_xy0,P3,0
adc.f %agu_xy0,P4,0
adc.f %agu_xy0,P5,0
adc.f %agu_xy0,P6,0
adc.f %agu_xy0,P7,0
jcc [%blink]
# Handle the corner case when final carry overflows and 38 needs
# to be added again
ld_s %r1,[%r0,0]
add %r1,%r1,38
j_s.d [%blink]
st_s %r1,[%r0,0]
· · ·

fe_sub: The fe_sub operation takes two 256-bit inputs in XY memory and stores the
resulting difference to XY memory reduced to 2256 − 38. For this, we make use of the
ARC processor’s subtract with carry instruction:

sbc a,b,c # (a = b - c - carry)

The implementation follows the same pattern as fe_add, except that all of the add/adc
become sub/sbc.

fe_mul2: Several times in the high level elliptic curve functions we need to do a field mul-
tiplication by two. Using the existing field multiplication by a digit function (fe_mul_word)
for this is inefficient. Using the fe_add function to add the field element to itself would
accomplish the task. However, this presents a problem when using the AGU to read the
same value twice from the same memory bank, since this introduces an extra cycle of
latency for every read. Alternatively, the rotate left through carry instruction allows for
an efficient implementation of multiplication by two using a single input operand:

rlc b,c # (b = c << 1; b = b OR carry)

For the first word’s left shift the asl instruction is used since there is no initial carry.
For subsequent shifts rlc is used. The weak reduction is identical to that in fe_add.

fe_rdc: As previously discussed, the weak reduction that is done at the end of each field
operation reduces the result modulo 2256 − 38 in order to keep the intermediate results
within 256 bits. As the final step in a series of calculations, a final modular reduction to
2255 − 19 needs to be done. For this, we look at bit 256 of the intermediate output: If the
bit is set, clear it and add 19 to the result. This code snippet is shown in listing 18
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As we are only looking at bit 256, there is the corner case where the input value before
reduction is in the range of 2255 − 1 and 2255 − 19. This would correspond with an elliptic
curve point of 0-18.

Listing 18: Full reduction operation
# agu_x0 <- input field element in X bank (r0)
# agu_x1 <- output field element in X bank (r1)
· · ·
ld %r0,[%r0,28]
asr %r1,%r0,31
and %r1,%r1,19 #r1 = (a[7] >> 31) * 19
bclr %r0,%r0,31 #r0 = a[7] & 0x7fffffff

add.f %agu_x1,%agu_u1,%r1
adc.f %agu_x1,%agu_x0,0
adc.f %agu_x1,%agu_x0,0
adc.f %agu_x1,%agu_x0,0
adc.f %agu_x1,%agu_x0,0
adc.f %agu_x1,%agu_x0,0
adc.f %agu_x1,%agu_x0,0
j_s.d [%blink]
adc %agu_x1,%r0,0
· · ·
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