
On Fully Secure MPC with Solitary Output

Shai Halevi∗ Yuval Ishai† Eyal Kushilevitz‡ Nikolaos Makriyannis§

Tal Rabin¶

September 19, 2019

Abstract

We study the possibility of achieving full security, with guaranteed output delivery, for secure
multiparty computation of functionalities where only one party receives output, to which we re-
fer as solitary functionalities. In the standard setting where all parties receive an output, full
security typically requires an honest majority; otherwise even just achieving fairness is impossi-
ble. However, for solitary functionalities, fairness is clearly not an issue. This raises the following
question: Is full security with no honest majority possible for all solitary functionalities?

We give a negative answer to this question, by showing the existence of solitary functionalities
that cannot be computed with full security. While such a result cannot be proved using fairness-
based arguments, our proof builds on the classical proof technique of Cleve (STOC 1986) for
ruling out fair coin-tossing and extends it in a nontrivial way.

On the positive side, we show that full security against any number of malicious parties
is achievable for many natural and useful solitary functionalities, including ones for which the
multi-output version cannot be realized with full security.

∗Algorand Foundation. Work done while at IBM Research.
†Department of Computer Science, Technion. E-mail: yuvali@cs.technion.ac.il.
‡Department of Computer Science, Technion. E-mail: eyalk@cs.technion.ac.il.
§Department of Computer Science, Technion. E-mail: n.makriyannis@gmail.com.
¶Algorand Foundation. Work done while at IBM Research.

Contents
1 Introduction 1

1.1 Our Results . 2
1.2 Our Techniques. 4

2 Preliminaries 6
2.1 Models . 6
2.2 Security Definition . 8
2.3 Hybrid Model & Composition . 9

3 Impossibility: The Double-Dipping Attack 10
3.1 Warm Up . 10
3.2 General Case . 12

4 Positive Results 15
4.1 Security via Fairness . 15
4.2 Functions with Forced Output Distribution . 18
4.3 Functions with Fully Revealing Input . 21
4.4 Outliers . 21

5 Lower-Bound on Round-Complexity 24

Bibliography 26

A Appendix 29
A.1 Feasibility landscape of Boolean solitary functionalities (Cont’d) 29
A.2 Sketch argument for the necessity of Broadcast . 29
A.3 Tables With Examples . 30

B Formal Description and Security Analysis of Outlier Protocol 31

1 Introduction
Secure multiparty computation (MPC) [31, 19, 7, 9] allows a set of mutually distrusting parties to
compute any function of their local inputs while guaranteeing (to the extent possible) the privacy
of the the inputs and the correctness of the outputs. Security is formulated by requiring that a real
execution of a protocol is indistinguishable from an ideal execution in which the parties hand their
inputs to a trusted party who computes the function and returns the outputs.

The strongest level of security one could hope for is so-called “full security” [19, 8]. Full security
ensures guaranteed output delivery in the sense of allowing all parties to learn their outputs without
revealing additional information about other inputs. In particular, it implies fairness: malicious
parties cannot learn their outputs while preventing honest parties from learning their outputs. This
level of security is achievable in the presence of an honest majority, either unconditionally [7, 9, 4, 30]
(assuming secure point-to-point channels and a broadcast channel) or under standard cryptographic
assumptions [19, 18] (assuming a public-key infrastructure).

Without an honest majority, a classical result of Cleve [11] shows that full security, or even
fairness alone, is generally impossible. Concretely, there are many natural functionalities such that
in every protocol for computing them, malicious parties can gain a significant advantage over honest
parties in learning information about the output. Thus, when no honest majority is assumed, it is
common to settle for weaker notions of security such as “security with abort” [31, 19, 5, 20, 21].

In this paper, we consider the possibility of achieving full security for functionalities that de-
liver output to a single party, to which we refer as “functionalities with solitary output” or “solitary
functionalities” for short. Such functionalities capture many realistic use-cases of MPC in which
different participants play different roles. For instance, consider a (single) employer who wishes
to learn some aggregate private information about a group of employees, where the output should
remain hidden from the employees. This type of functionalities is commonly considered in the
non-interactive setting, including the Private Simultaneous Messages (PSM) model of secure com-
putation [15] and its robust variants [6, 1].

Beyond being a natural class of functionalities, the class of solitary functionalities is also inter-
esting because it bypasses all fairness-based impossibility results. Indeed, fairness is not an issue
when only one party receives an output, and thus Cleve’s impossibility result does not have any
consequences for such functionalities. Therefore, the first question that we ask is a very basic
feasibility question in the theory of MPC:

Do all functionalities with solitary output admit a fully secure protocol?

This feasibility question can be contrasted with the state of affairs in other ongoing lines of work on
characterizing the functionalities that admit protocols with information-theoretic security, or UC
security, or fairness [27, 10, 23, 3, 13], where the high-order bit is already known and the current
efforts are focused on trying to fully characterize the realizable functionalities.

We make two main contributions. On the negative side, we settle the high-order bit by proving
that some solitary functionalities cannot be computed with full security. This is conceptually in-
triguing because, as mentioned above, solitary functionalities do not introduce “fairness” problems.
So what is the source of difficulty in achieving full security? Our impossibility proof extends Cleve’s
original attack in a rather subtle way. In Cleve’s attack, the adversary gains advantage over honest
parties by aborting the protocol at a point where it knows significantly more information about
the output than the honest parties do. Our new attack, dubbed the “double-dipping attack”, is
based on the following rough intuition. (The following simplified description of the attack ignores

1

important subtleties; see Section 1.2 and Section 3 for a more precise version.) The adversary
controls a majority of the parties that includes the output party. It instructs one of the parties it
controls to abort the protocol just when learning enough (but not all) information about the out-
put. Intuitively, in such a case, the protocol must be run again with default values (in particular,
the original inputs cannot be recovered as the aborting parties form a majority). In the end of the
protocol, the adversary learns the output of f on two inputs, with the same input values for honest
parties. This is an information that the adversary cannot obtain in the ideal world, hence security
fails.

On the positive side, we make progress towards full characterization of the solitary functionalities
that admit fully secure protocols. We present such protocols for several natural and useful families
of solitary functionalities, including variants of commonly studied MPC problems such as Private
Set Intersection. Our positive results apply in many cases where negative results are known for the
multi-output variant. We elaborate on both our positive and negative results below.

1.1 Our Results

For our negative result, we present a family Ω of solitary functionalities for which no fully secure
protocol exists. A representative example of such a functionality, first considered in the context of
“best of both worlds” security [24] (see below), is the following 3-party functionality feq with two
parties P1 and P2 receiving inputs x, y ∈ {1, 2, 3}, respectively, and an output-receiving party Q.
The output of feq is defined as feq(x, y) = x if x = y and feq(x, y) =⊥ otherwise. We sketch below
how “double dipping” is applied to this functionality, and present the family Ω and the formal
impossibility proof in Section 3.

Next, in Section 4, we present several positive results. We start by proving that fairness implies
full security in the following sense: if f is an n-party function, where all parties receive the output,
and f can be computed with fairness, then the (n+ 1)-party solitary functionality f ′, with inputs
given to P1, . . . , Pn, as in f , and with the output delivered to the output party Q, can be computed
with full security. Our next positive result shows that we can go much beyond fairness positive
results; specifically, we consider a family of n-party functionalities that we call functions with
“forced output distribution”. Described for the 3-party case, this family includes all functions
f(x, y) (with inputs x, y to P1, P2, respectively, and output to Q) such that for at least one of the
input parties, say P1, there is a distribution on its input, where the output f(x, y) is distributed
the same, no matter what the other input is. Note that such (non-trivial) functions f cannot be
computed with fairness, as this would imply fair coin-tossing, which is impossible [11]. Finally, as
a third positive result, we consider a family of functionalities that we term “functionalities with
fully revealing input”. Described in the 3-party setting above, this family includes all functionalities
where one of the parties, say P1, has an input for which the function f becomes injective.

We stress that these results fall short of providing a full characterization of the fully secure
solitary functionalities, as we give an example of a function that does not fall into any of the
families of positive results but nevertheless can be computed with full security. Interestingly, we
compute this function using a variant of the GHKL protocol [23] for computing fair two-party
functionalities, yet — viewed as a symmetric two-party functionality — it is inherently unfair. We
leave the question of finding a full characterization as an intriguing open question for future work.

Example: To demonstrate the usefulness of the above positive and negative results, we consider
some variants of the Private Set Intersection (PSI) problem. In this problem, the inputs x, y of P1, P2

2

correspond to subsets S1, S2 of some domain [m] and the output is the intersection S = S1 ∩ S2.
It follows from our negative result that if |S1| = |S2| = k, for some fixed k, then this function
cannot be computed with full security (in fact, the function feq mentioned above is exactly the case
k = 1). On the other hand, for the same inputs, if the required output is only the intersection size,
i.e. |S|, then this becomes a functionality with a forced output distribution (e.g., by choosing S1
as a uniformly random set of size k) and so this functionality can be computed with full security.
Similarly, if we allow |S1|, |S2| to be anywhere between k and m then PSI with full security becomes
possible (using [m] as a revealing input) and, if we allow |S1|, |S2| to be anywhere between 0 and
k, this is also possible (using a degenerate version of the forced output distribution, where ∅ is
selected with probability 1). Other interesting cases, like the case where |S1|, |S2| are between 1
and k, are left as an open problem. (See Appendix 5, for an analysis of additional variants of
PSI, including additional variants where the output is just the intersection size |S|, or just a bit
indicating whether S = ∅, sometimes referred to as the disjointness function. The Appendix also
includes similar analyses for various useful flavors of Oblivious Transfer (OT).)

Classification of PSI variants

Define PSIgm : (S1, S2) 7→ g(S1 ∩ S2), for some m ∈ N and function g, where S1, S2 ⊆ [m] are
drawn from a predetermined input space (specified below). Let k < ` denote some arbitrary fixed
numbers different than 0 or m such that k + `+ 1 ≤ m.

Input restriction. \ Function g S 7→ S S 7→ |S| S 7→
{

1 if S 6= ∅
0 otherwise

|S1| , |S2| = k < m/2 Impossible Forced Forced
|S1| , |S2| ∈ {0, . . . , k} Forced Forced Forced & Fairness
|S1| , |S2| ∈ {k, . . . ,m} Revealing Open Forced & Fairness
|S1| , |S2| ∈ {k, . . . , `} Open Open Open

|S1| ∈ {k, . . . , `} and |S2| ∈ {k, . . . , `+ 1} Open Open Fairness

Figure 1: Table Summarizing our Results vis-à-vis the PSI Problem

Finally, as an additional contribution, we analyse the round complexity of computing solitary
functionalities with full security. We observe that some of the protocols presented in our positive
results are constant-round protocols, while others use super-logarithmic number of rounds. We
prove that, for certain solitary functionalities, full security actually requires super-constant round
complexity (see Section 5). We leave the question of figuring out the exact round-complexity for
any solitary functionality as an intriguing open question for future work.

Feasibility landscape of Boolean solitary functionalities. We conclude this section with a
few sentences regarding the “feasibility” landscape of solitary MPC. We focus on functions with
Boolean output where the output receiving party does not provide input; this case is interesting as it
is readily comparable to the non-solitary Boolean two-party case (the most well understood instance
of fully secure MPC with dishonest majority). We distinguish two cases depending of the size of the
input domains. From the fairness criterion, if one party has a strictly bigger input domain than the

3

other, then almost all functionalities are computable with full security, because almost all two-party
Boolean functions admit fair protocols in this case [3]. On the other hand, when the parties have
exactly the same number of inputs, the fairness criterion does not apply, because almost all two-
party Boolean functions are not computable with fairness.1 However, by excluding the functions
that are computable using a variant of the forced criterion, we can succinctly describe the set of
functions whose status is unknown: {M ∈ {0, 1}n×n | ∃x ∈ Rn s.t. Mx = 1n ∧

∑
i xi ≤ 0}. In

words, the set corresponds to 0-1 matrices (viewed as matrices over the reals) whose columns span
1n with coefficient that have a negative sum. While we could not rigorously analyze the measure
of this set, we conjecture that it represents a vanishing fraction of the entire space, i.e. relative to
{0, 1}n×n; experimental evidence for n ≤ 300 strongly supports our conjecture (see Appendix 5).
Thus, the following picture emerges for functionalities with equal-sized input domains: almost all
2-party functionalities cannot be computed fairly, while almost all solitary 3-party functionalities
(two inputs and one output) can be computed with full security.

1.2 Our Techniques.

Next, we elaborate on some of the techniques that we use.

(i) Impossibility result. As mentioned above, for our impossibility result, we use a technique
inspired by Cleve’s seminal “biasing” attack on coin-tossing [11]. In Cleve’s attack, the adversary
is trying to bias the output of a fair coin-flip. The adversary picks a random round i, and plays
honestly until that round. Then, the adversary computes the corrupted party’s backup value for
that round, i.e. the output prescribed by the protocol in case the other party aborted at that
round. The adversary aborts the corrupted party at that round or the next round depending on
the “direction” it is attempting to bias the output to. Intuitively, because the protocol is inherently
unfair, the adversary has an advantage in learning the output. Therefore, by aborting prematurely,
the adversary alters the distribution of the honest party’s output.

Translating the above attack to our setting is not straightforward, given that the above gives
an attack on correctness while we aim for an attack on privacy. For concreteness, we now explain
how our impossibility applies to the 3-party functionality feq described above. Notice that, in an
ideal execution, if P1 chooses its input at random, then the other two colluding parties can only be
sure of P1’s input with probability at most 1/3 (i.e. by guessing the right value). In the real-world
however, there must be some round of the protocol where the joint backup value of P2 and Q
(i.e. the output prescribed by the protocol in case P1 aborted at that round) contains information
about P1’s input, while the joint backup value of P1 and Q does not contain information about
P2’s input. By aborting P2 at that round, the adversary can effectively compute the output on two
different inputs of P2 and thus guess P1’s input with probability noticeably greater than 1/3.

Rather crudely, the above can be summarized as follows: We define a coin-toss between {P1, Q}
and {P2, Q} such that the outcome of the “coin-toss” is tied to some privacy event. By “biasing”
the coin-toss, the adversary effectively increases its chance that the privacy event occurs, which
results in a privacy breach. It should be noted that this picture is not accurate since, in our setting,

1The reason being that most such functions can be used to implement the coin-tossing functionality [28] – which
does not admit a fair protocol.

4

the direction of bias is very important and this cannot be guaranteed by Cleve’s attack.

(ii) Protocols. Our transformation from n-party fair protocols (with output to all) to (n + 1)-
party fully secure protocols with solitary output to Q describes a compiler that takes a fair protocol
Π and transforms it into a fully secure protocol Π′ with solitary output. The idea is to emulate
Π by sharing the view of each party Pi in the original protocol Π between Pi and Q in Π′. This
way, an adversary corrupting a subset of parties not including Q learns nothing, while an adversary
corrupting a subset of parties that includes Q only learns the views of the corresponding parties
in Π. The latter cannot be used to mount an attack, given the presumed security of the original
protocol. Our protocols for the forced output distribution class and for the fully revealing input
class are very different. Interestingly, these two cases are symmetric in some sense, where each
has “problematic” parties. In the former (forced output distribution) case, the problematic party
is the one that does not have a forced output distribution. The protocol we propose in this case
funnels the communication through the others parties. Thus, by design, the problematic party only
contributes to the computation once. For the latter (fully revealing input) case, the problematic
parties are the ones without fully revealing input. The protocol we propose for this case funnels
the communication through the party with a revealing input, say P1. Thus, by design, unless P1 is
corrupt (in which case there are no secrets), computation only occurs once.

Related Work. Below, we discuss some related work that deals with full security and other
related security notions (in particular, fairness).

In the two-party case, it is known that fairness is equivalent to full security (with guaranteed
output delivery), since if an honest party aborts it can safely replace the input of the corrupted party
by a default value and compute the resulting output locally. In contrast, Cohen and Lindell [12]
show that in the multiparty case there are functionalities that admit fair protocols but do not admit
fully secure protocols.

Since the work of Cleve [11], it is known that full security, or even fairness, cannot be achieved
in general unless there is an honest majority. This led to a rich line of work [23, 29, 2, 3, 14]
attempting to characterize which functions can be computed with full security. Most works along
this line focused on the two-party case, starting with the results of [23], and culminating in a full
characterization for the class of fair Boolean functions with the same output for both parties [3].

Less is known for the multi-party case. Examples of multi-output functions for which fair proto-
cols exist (specifically, n-party OR and 3-party majority) are given in [22]. In [24, 26] (see also [25]),
the notion of “Best-of-both-worlds security” is introduced as a hybrid between full security and se-
curity with abort. A protocol satisfies this definition, if there is one protocol that simultaneously
provides full security if there is an honest majority and otherwise it guarantees security with abort.
Note that, in the context of best-of-both-worlds, [24] already gives an example of a 3-party soli-
tary function for which no constant-round protocol exists (concretely, the function feq mentioned
above). This was improved to logn rounds in [26].

Open Problems. As mentioned above, the most obvious open problems are obtaining a charac-
terization or at least reducing the gap between the positive and negative results, and working out
the exact round complexity for fully secure computation of solitary functionalities. Less obviously,
we identify the following interesting open questions.

1. Our attack in Section 3 crucially relies on the rushing capability of the adversary. It would

5

be interesting to show that this is inherent for impossibility or to extend the negative result
to the case of a non-rushing adversary.

2. In this work, we are mainly concerned with the feasibility questions of solitary MPC. There-
fore, for obtaining malicious security, our protocols use a generic step that we have not tried
to optimize. We leave the interesting question of improving concrete efficiency for future
work, or designing concretely efficient fully secure protocols for useful special cases such as
PSI.

3. As explained in subsequent sections, broadcast is necessary for solitary MPC. However, some
functionalities do not require broadcast. While the question is orthogonal to the goal of the
paper, it would be interesting to understand which functionalities require broadcast in the
solitary setting.

2 Preliminaries
The following models and definitions are adapted from [17, 12].

2.1 Models

In this section we outline the definition of secure computation, following Canetti’s definition ap-
proach for the standalone model [8], and highlight some details that are important for our purposes.
The following version of the definition is somewhat simplified. We refer the reader to [8] for more
complete definitions.

Communication model. We consider a network of n processors, usually denoted P1, . . . , Pn and
referred to as parties. Each pair of parties is connected via a private, authenticated point-to-point
channel. In addition, all parties share a common broadcast channel, which allows each party to
send an identical message to all other parties. In some sense, the broadcast channel can be viewed
as a medium which “commits” the party to a specific value.2

Functionality. A secure computation task is defined by some n-party functionality f : X1× . . .×
Xn → Σn, specifying the desired mapping from the parties’ inputs to their final outputs. Party
Pi’s input domain is denoted by Xi, for each i ∈ [n], and the outputs of the parties are assumed
to belong to some alphabet Σ. When n = 3, the parties’ input domains will be denoted X, Y and
Z to make the distinction more explicit. One may also consider randomized functionalities, which
take an additional random input; however, in this work we focus on the deterministic case.

Functionality with Solitary Output. A n-party functionality f : X1 × . . .×Xn → Σn admits
solitary output if it delivers output to (the same) one party alone, i.e. f is of the form (x1, . . . , xn) 7→
(∅, . . . , ∅, σ, ∅, . . . , ∅), where the index of σ does not depend on the input. The output-receiving party
will be denoted by, Q, and, unless stated otherwise, will be identified with Pn. If no confusion arises,
we simply write f : X1 × . . .×Xn → Σ or f : (x1, . . . , xn) 7→ σ.

2We remark that our assumption regarding broadcast is in fact necessary for fully secure computation of solitary
functionalities. This observation follows from the fact that “convergecast” implies broadcast [16].

6

Some Notations. Denote by P = {P1, . . . , Pn} the set of all parties. If no confusion arises, we
sometimes identify P with the numbers in [n] = {1, . . . , n}. Subsets of these parties are denoted
by calligraphic letters (S, T , . . .), and their complements will be denoted by (S, T , . . .). Random
variables are denoted by lower-case boldface (x,y, . . .) and distributions by upper-case boldface
(X,Y, . . .). For a functionality f taking input from X1× . . .×Xn we will write xS to denote an ele-
ment of the subspace×i∈SXi and, abusing notation, f(xS , xS) denotes the value of f(x1, x2, . . . , xn).
Furthermore, for integers m and k, we let

([m]
k

)
denote the subsets of [m] of size exactly k and 2[m]

the set of all subsets of [m]. For set S and distribution S, we write s ← S and s ← S to denote
that element s is sampled uniformly at random from S or according to distribution S, respectively.

Protocol. Initially, each party Pi holds an input xi, a random input ρi and, possibly, a common
security parameter κ. The parties are restricted to (expected) polynomial time in κ. The protocol
proceeds in rounds, where in each round each party Pi may send a “private” message to each party
Pj (including itself) and may broadcast a “public” message, to be received by all parties. The
messages Pi sends in each round may depend on all its inputs (xi, ρi and κ) and the messages it
received in previous rounds. Without loss of generality, we assume that each Pi sends xi, ρi, κ to
itself in the first round, so that the messages it sends in each subsequent round may be determined
from the messages received in previous rounds. We assume that the protocol terminates after a
fixed number of rounds, denoted r (that may depend on the security parameter κ), and that honest
parties never halt prematurely, i.e. honest parties are active at any given round of the protocol.
Finally, each party locally computes some output based on its view. We note that our negative
results extend to protocols that have expected polynomial number of rounds (in κ) via a simple
Markov inequality argument.

Fail-Stop Adversary. We consider a fail-stop t-adversary A, where the parameter t is referred to
as the security threshold. The adversary is an efficient interactive algorithm,3 which is initially given
the security parameter κ and a random input ρ. Based on these, it may choose a set T of at most t
parties to corrupt. The adversary then starts interacting with a protocol (either a “real” protocol
as above, or an ideal-process or hybrid-process protocol to be defined below), where it takes control
of all parties in T . In particular, it can read their inputs, random inputs, and received messages
and, contrary to the malicious case (see below), it can control the messages that parties in T send
only by deciding whether to send them or to abort. We assume by default that the adversary has a
rushing capability: at any round it can first wait to hear all messages sent by uncorrupted parties
to parties in T , and use these to make its decisions whether to abort or continue (some of) the
parties he corrupts. Corrupted parties that do not abort send their prescribed messages for the
present round, while corrupted parties that abort send a special abort symbol to all parties.4

Malicious Adversaries. Adversaries that deviate arbitrarily from the protocol are not discussed
in the present paper. Using the GMW compiler [19], our positive results can be extended to

3It is usually assumed that the adversary is given an “advice” string a, or is alternatively modeled by a nonuniform
algorithm. In fact, the proofs of our negative results are formulated in this nonuniform setting, but can be modified
to apply to the uniform one as well.

4This assumption implies that an abort is detected by all parties, even one that occurred on a private channel.
This assumption can be enforced via a dispute resolution mechanism, thanks to the broadcast channel.

7

malicious adversaries. Negative results trivially extend to such adversaries (since fail-stop is a
special kind of malicious adversary).

Security. We consider two types of security known as full security and security with identifiable
abort. The former is the focus of the paper, i.e. it corresponds to the security notion we want
to realize or rule out. The latter is a weaker security notion that is useful towards realizing our
positive results. Informally, a protocol computing f is said to be t-secure if whatever a t-adversary
can “achieve” by attacking the protocol, it could have also achieved (by corrupting the same set
of parties) in an ideal process in which f is evaluated using a trusted party. To formalize this
definition, we have to define what “achieve” means and what the ideal process is. The ideal
process for evaluating the functionality f is a protocol πf involving the n parties and an additional,
incorruptible, trusted party TP.

Ideal model with full security. The protocol proceeds as follows: (1) each party Pi sends its
input xi to TP; (2) TP computes f on the inputs (using its own random input in the randomized
case), and sends to each party its corresponding output. Note that when the adversary corrupts
parties T in the ideal process, it can pick the inputs sent by parties in T to TP (possibly, based on
their original inputs) and then output an arbitrary function of its view (including the outputs it
received from TP). Honest parties always output the message received from the trusted party and
the corrupted parties output nothing.

Ideal model with identifiable abort. In this case, an adversary can abort the computation in
the ideal model after learning its outputs, at the cost of revealing to the honest parties the identity
of at least one of the corrupted parties. The protocol proceeds as follows: (1) each Pi sends its
input xi to TP; (2) TP computes f on the inputs (using its own random input in the randomized
case), and sends to each of the corrupted parties its corresponding output. (3) By sending to TP
either (continue, ∅) or (abort, Pi), for some Pi in T , according to whether the adversary continues
the execution, or aborts the execution at the cost of revealing one corrupted party. (4) TP sends
the outputs to the honest parties if the adversary continues, or the identity of the corrupted Pi
together with a special abort-symbol, if the adversary aborted the computation. Similarly to the
previous case, when an adversary corrupts parties in the ideal process, it can pick the inputs sent by
parties in T to TP (possibly, based on their original inputs) and then output an arbitrary function
of its view (including the outputs it received from TP). Honest parties always output the message
received from the trusted party and the corrupted parties output nothing.

2.2 Security Definition

To formally define security, we capture what the adversary “achieves” by a random variable con-
catenating the adversary’s output together with the outputs and the identities of the uncorrupted
parties. For a protocol Π, adversary A, input vector x, and security parameter κ, let execΠ,A(κ, x)
denote the above random variable, where the randomness is over the random inputs of the uncor-
rupted parties, the trusted party (if f is randomized), and the adversary. The security of a protocol
Π (also referred to as a real-life protocol) is defined by comparing the exec variable of the protocol
Π to that of the ideal process πtype

f , where type ∈ {full_sec, id_abort} specifies the ideal process to
be compared with (either full security or identifiable abort). Formally:

8

Definition 2.1. We say that a protocol Π t-securely computes f if, for any (real-life) t-adversary
A, there exists (an ideal-process) t-adversary A′ such that the distribution ensembles execΠ,A(κ, x)
and execπtype

f
,A′(κ, x) are indistinguishable. The security is referred to as perfect, statistical, or

computational according to the notion of indistinguishability being achieved. For instance, in the
computational case it is required that for any family of polynomial-size circuits {Cκ} there exists
some negligible functionality neg, such that for any x,

|Cκ(execΠ,A(κ, x))− Cκ(execπtype
f

,A′(κ, x))| ≤ neg(κ).

An equivalent form of Definition 2.1 quantifies over all input distributions X rather than specific
input vectors x. This equivalent form is convenient for proving our negative results.

Intuitive discussion. Definition 2.1 asserts that for any real-life t-adversary A attacking the
real protocol there is an ideal-process t-adversary A′ which can “achieve” in the ideal process as
much as A does in the real life. The latter means that the output produced by A′ together with the
inputs and outputs of uncorrupted parties in the ideal process is indistinguishable from the output
(wlog, the entire view) of A concatenated with the inputs and outputs of uncorrupted parties in
the real protocol. This concatenation captures both privacy and correctness requirements. On the
one hand, it guarantees that the view of A does not allow it to gain more information about inputs
and outputs of uncorrupted parties than is possible in the ideal process and, on the other hand, it
ensures that the inputs and outputs of the uncorrupted parties in the real protocol be consistent
with some correct computation of f in the ideal process. We stress that ideal-world adversary can
indeed choose whatever input it likes, and it need not restrict itself to the input chosen by the
real-world adversary.

Default Security Threshold. Throughout the paper, we assume that the security threshold is
t = n − 1, namely an arbitrary strict subset of the parties can be corrupted. We therefore do not
mention the parameter t in the rest of the paper.

2.3 Hybrid Model & Composition

Hybrid Model. The hybrid model extends the real model with a trusted party that provides
ideal computation for predetermined functionalities. In more detail, the parties communicate with
this trusted party as per the specifications of the ideal models described above (either fully secure
or identifiable abort, to be specified). Let Fn be a functionality. Then, an execution of a protocol Π
computing a functionality f in the Fn-hybrid model involves the parties interacting as per the real
model and, in addition, having access to a trusted party computing Fn. The protocol proceeds in
rounds such that, at any given round, the parties send normal messages as in the standard model,
or, make a single invocation of the functionality Fn. Security is defined analogously to Definition 2.1
by replacing the real protocol with the hybrid one. The model in question is referred to as the
(Fn, type)-hybrid model, depending on the specification of the ideal functionality.

Composition. The hybrid model is useful because it allows cryptographic tasks to be divided
into subtasks. In particular, a fully secure hybrid protocol making ideal invocations to an ideal
functionality with identifiable abort can be transformed into a fully secure real protocol, if there

9

exists a real protocol for the ideal functionality that is secure with identifiable abort. This technique
is captured by Canneti’s sequential composition theorem.

Theorem 2.2 (Canetti [8]). Suppose that protocol Π securely computes f in the (Fn, id_abort)-
hybrid model with full security, and suppose that Ψ securely computes f in the real model. Then,
protocol ΠΨ securely computes f in the real model, where ΠΨ is obtained by replacing ideal invo-
cations of Fn with real executions of Ψ. Furthermore, the quality of the security (computational,
statistical or perfect) of the resulting protocol is the weakest among the security of Π and Ψ.

Finally, we define the notion of backup values. It is immediate from the security definition that
any fully secure protocol admits well defined backup values.

Definition 2.3 (Backup values). The following definitions are with respect to a fixed honest execu-
tion of an n-party, r-round correct protocol (determined by the parties’ random coins) for solitary
functionality f . The ith round backup value of a subset of parties Q = {Q} ∪ S ⊆ P at round
i ∈ [r], denoted Backup(Q, i), is defined as the value Q would output, if all parties in P \ Q abort
at round i + 1 and no other party aborts. For consistency, we let Backup(Q, r) denote the output
of the protocol if no parties abort (i.e Backup(Q, r) = Backup(Q′, r), for every Q and Q′).

3 Impossibility: The Double-Dipping Attack
In this section we prove our main negative result. Namely, we show impossibility of achieving full
security for a number of solitary functionalities, including the following natural families:

• Equality testing with leakage of input (including feq from the introduction).

• Private Set Intersection for fixed input size (i.e. PSI as defined in Definition 3.1).

Definition 3.1. Let PSIidm,k :
([m]
k

)
×
([m]
k

)
→ 2[m] be such that PSIidm,k(S1, S2) = S1 ∩ S2. As a three

party functionality, PSIidm,k receives inputs from P1 and P2 and delivers output to an additional party
Q.

Namely, PSIidm,k takes as input two sets of size k and outputs their intersection. We point out that
feq ≡ PSIidm,1. In this section, we show impossibility for a class of functions that includes PSIidm,k, for
every 0 < k < m/2. As a warm-up, we sketch our impossibility result for the specific functionality
feq; the general case is essentially an extrapolation of this case. We will be using the following
notation.

Notation 3.2. Let Π be a three-party, r-round protocol for computing a function f : X×Y ×Z → Σ
with solitary output. Define random variables a0, . . . ,ar and b0, . . . ,br such that ai is the value of
Backup({Q,P1} , i) in a random execution of Π and, similarly, bi is the value of Backup({Q,P2} , i)
in a random execution of Π, where Backup(Q, i) is according to Definition 2.3.

3.1 Warm Up

Let Π be a three-party protocol for computing feq. Let X and Y denote the uniform distribution
for the inputs of P1 and P2 respectively. We proceed under the following simplifying assumptions
for Π: for every i ∈ [r], it holds that Prx←X [ai = x] = 1/3 and Pry←Y [bi = y] = 1/3. In words, if

10

P1 (resp. P2) chooses its input uniformly at random, then the backup output of Q and P1 (resp. Q
and P2) at round i is equal to the aforementioned input with probability exactly 1/3, regardless of
P2’s (resp. P1’s) choice of input. For the purposes of the present warm up, we will further assume
that a0 and b0 are independent random variables. Next, we rule out fully secure computation for
feq under these simplifying assumptions. When we tackle the general case in the next subsection,
we get rid of these simplifying assumptions, by showing additional attacks (adversaries) where the
aforementioned properties do no to hold.

We show that there exists an adversary that can guess the honest party’s input with probability
noticeably greater than what the ideal model allows. First, in the ideal model with full security,
notice that when an honest party P` chooses his input uniformly at random, then an adversary
corrupting {P3−`, Q} may guess (with certainty) the honest party’s input with probability at most
1/3 (by using the right input for the corrupted party). We show that for any real protocol, there
exists an adversary that can guess the input with noticeably greater probability, thus violating
security.

Consider two adversaries AP1 and AP2 corrupting {Q,P1} and {Q,P2}, respectively, acting as
follows. The honest party and corrupted party choose their inputs uniformly at random; write x
and y for the inputs chosen by P1 and P2. The adversary AP1 chooses a round i uniformly at
random. Then, before sending its messages for round i, if ai 6= x, the adversary aborts party P1
without sending further messages and instructs Q to continue honestly with P2; otherwise, it sends
its messages for round i and aborts P1 alone. The adversary AP2 chooses a round i uniformly at
random. Then, after sending its messages for round i, if bi 6= y, the adversary aborts P2 without
sending further messages and instructs Q to continue honestly with P1; otherwise, it sends its
messages for round i + 1 and aborts P2 alone. Adversary AP1 outputs bi−1 or bi (depending on
the round P1 aborted) and AP2 outputs ai or ai+1 (depending on the round P2 aborted). We show
that at least one of the adversaries outputs the honest party’s input with probability noticeably
greater than 1/3, in violation of privacy. Next, we compute each of the relevant probabilities.

Pr
[
AP1 outputs y

]
= 1
r
·
r∑
i=1

(
Prx←X

y←Y
[ai 6= x ∧ bi−1 = y] + Prx←X

y←Y
[ai = x ∧ bi = y]

)

Pr
[
AP2 outputs x

]
= 1
r
·
r−1∑
i=0

(
Prx←X

y←Y
[bi 6= y ∧ ai = x] + Prx←X

y←Y
[bi = y ∧ ai+1 = x]

)
Next, we compute the average of the two quantities above.(

Pr
[
AP1 outputs y

]
+ Pr

[
AP2 outputs x

])
/2 =

1
2r

(
Prx←X

y←Y
[b0 6= y ∧ a0 = x] + Prx←X

y←Y
[ar = x ∧ br = y] +

r−1∑
i=1

Prx←X
y←Y

[ai = x] +
r−1∑
i=0

Prx←X
y←Y

[bi = y]
)

By correctness of the protocol and simplifying assumptions,(
Pr
[
AP1 outputs y

]
+ Pr

[
AP2 outputs x

])
/2 = 1

2r · Prx←X
y←Y

[b0 6= y ∧ a0 = x] + 1
3

= 1
3 + 1

2r ·
2
9

We conclude that at least one of the adversaries can guess with certainty the opponent’s input with
probability noticeably greater than 1/3, thus violating privacy.

11

3.2 General Case

We define a class Ω of 3-party functions, and we show that no function in this class admits a fully
secure realization. Intuitively, this class of functions satisfies the following requirement: For both
` ∈ {1, 2}, there is a (non-trivial) partition of the inputs of P` and a distribution over the inputs
of P` such that if P` samples its input according to the specified distribution then, with some fixed
probability bounded away from 0 or 1, the output alone5 fully determines what set of the partition
P`’s chosen input belongs to, no matter how the inputs of Q and P3−` were chosen. Furthermore,
if both parties sample their inputs according to their respective distributions, then either for both
inputs their sets in the partitions are determined from the output alone, or for neither. Formally,
Definition 3.3. The class of functions Ω consists of all functions f satisfying the following con-
ditions, for some γ1, γ2 ∈ (0, 1). There exist distributions X and Y over X and Y , respectively,
such that supp(X) = X and supp(Y) = Y , and partitions X1 . . . Xk and Y1 . . . Y` of X and Y ,
respectively, such that

1. For every distribution ∆1 over X × Z,
Pr(x0,z0)←∆1

ỹ←Y

[
∃j s.t. Pry′←Y [y′ ∈ Yj | f(x0, ỹ, z0) = f(x0, y

′, z0)] = 1
]

= γ1

2. For every distribution ∆2 over Y × Z,
Pr x̃←X

(y0,z0)←∆2

[∃j s.t. Prx′←X [x′ ∈ Xj | f(x̃, y0, z0) = f(x′, y0, z0)] = 1] = γ2

3. There exists z0 ∈ Z such that, for every σ ∈ Σ,
∃j s.t. Pr [x̃ ∈ Xj | f(x̃, ỹ, z0) = σ] = 1 if and only if
∃j s.t. Prx̃←X

ỹ←Y
[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1

Note that PSIidm,k, with 0 < k < m/2, satisfies the above definition: define X = Y as the uniform
distribution and define partitions {Xx = {x}}x∈X and {Yy = {y}}y∈Y .
Remark 3.4. The class of functions Ω can be generalized in few ways that we omitted, for the sake
of presentation. The first generalization considers functions that take more than three inputs and
can be reduced to functions in Ω by grouping parties together. The second generalization relaxes the
requirement on the support of the distributions X and Y (allowing supp(X) (X or supp(Y) (Y).
The proof for the latter is almost identical to the one below.
Theorem 3.5. For any f ∈ Ω and for any protocol Π computing f , at least one of the following
holds.
• There exists an adversary corrupting either P1 or P2 that can violate correctness.

• There exists an adversary corrupting either Q and P1, or Q and P2 that can violate privacy.
Hereafter, fix a function f , real numbers γ1, γ2 ∈ (0, 1), distributions X and Y and partitions
X1 . . . Xk and Y1 . . . Y`, and z0 satisfying Definition 3.3. It is immediate that γ1 = γ2, hence we
simply write γ (= γ1 = γ2). We define 4r + 1 adversaries {AP1

i }ri=1, {A
P2
i }

r−1
i=0 , {C

P`
i }ri=1 and ÃP1

0
(See Figure 2). Let Σ′ ⊂ Σ denote all the elements σ ∈ Σ such that there exists j for which
Prx̃←X

ỹ←Y
[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1. Such a Σ′ is guaranteed to exist by Item 2 of Definition 3.3.

5Without knowledge of the inputs of Q and P3−`.

12

Adversaries {CP`i }ri=1, Ã
P1
0 , {AP1

i }ri=1 and {AP2
i }

r−1
i=0

• Each CP1
i corrupts party P1 and uses input sampled according to X.

Party P1 aborts at round i.

• Each CP2
i corrupts party P2 and uses input sampled according to Y.

Party P2 aborts at round i.

• Adversary ÃP1
0 corrupts P1 and Q and is non-rushing. The adversary instructs P1 to use an

input sampled according to X and Q to use input z0. The adversary computes a0 using the
aforementioned inputs and P1 and Q’s random input. If a0 ∈ Σ′, the adversary aborts P1
alone without sending the first message and computes b0 with the honest party. It outputs
1 if b0 ∈ Σ′; otherwise, it continues honestly till the end and computes br with the honest
party. The adversary outputs 1 if br ∈ Σ′.

• Each AP1
i corrupts P1 and Q and is rushing. The adversary instructs P1 to use an input

sampled according to X and Q to use input z0. At round i, before sending the i-th round
message, the adversary computes the backup value ai and checks whether ai ∈ Σ′ i.e. whether
the backup value leaks its own input. If so, the adversary aborts P1 alone at round i+ 1 and
computes bi with the honest party, or the adversary aborts P1 alone at round i and computes
bi−1 with the honest party. The adversary outputs 1 if bi ∈ Σ′ (or bi−1 ∈ Σ′).

• Each AP2
i corrupts P2 and Q and is non-rushing. The adversary instructs P2 to use an input

sampled according to Y and Q to use input z0. At round i, after sending the i-th round
message, the adversary computes the backup bi and checks whether bi ∈ Σ′ i.e. he checks
whether the backup leaks his own input. If so, the adversary aborts at round i+ 2 (i.e. sends
one more message) and learns ai+1, or the adversary aborts at round i + 1 learns ai. The
adversary outputs 1 if ai ∈ Σ′ (or ai+1 ∈ Σ′), and 0 otherwise.

Figure 2: Description of the Adversaries

Proof. Define ã0, . . . , ãr and b̃0, . . . , b̃r such that ãi = 1 (resp. b̃i = 1) if and only if ai ∈ Σ′
(resp. bi ∈ Σ′) and 0 otherwise. In the following, we consider an execution of the protocol where
Q uses z0 as input, P1 uses input sampled according to X and P2 uses input sampled according to
Y, regardless of whether the parties are corrupted or not.

Claim 3.6. Unless CP1
i or CP2

i violate correctness, it holds that |Pr[b̃i = 1]−γ|, |Pr [ãi = 1]− γ| ≤
neg(κ), for every i ∈ {0, . . . , r − 1}.

Next, we analyze the probability that AP1
i and AP2

i output 1. Observe that, by correctness, with all
but negligible probability, whenever AP1

i (resp. AP2
i) outputs 1, the adversary succeeds in guessing

the “bucket” the honest party’s input belongs to, with certainty. To prove our theorem, we show
that one of the adversaries AP`i or ÃP1

0 outputs 1 with probability greater than γ, violating privacy.

13

Pr
[
AP1
i outputs 1

]
= Pr

[
ãi = 0 ∧ b̃i−1 = 1

]
+ Pr

[
ãi = 1 ∧ b̃i = 1

]
Pr
[
AP2
i outputs 1

]
= Pr

[
b̃i = 0 ∧ ãi = 1

]
+ Pr

[
b̃i = 1 ∧ ãi+1 = 1

]
Therefore,

r∑
i=1

Pr
[
AP1
i outputs 1

]
+
r−1∑
i=0

Pr
[
AP2
i outputs 1

]
= (1)

Pr
[
b̃0 = 0 ∧ ã0 = 1

]
+
r−1∑
i=1

Pr [ãi = 1] +
r−1∑
i=0

Pr
[
b̃i = 1

]
+ Pr

[
ãr = 1 ∧ b̃r = 1

]
Thus

r∑
i=1

Pr
[
AP1
i outputs 1

]
+
r−1∑
i=0

Pr
[
AP2
i outputs 1

]
= Pr

[
b̃0 = 0 ∧ ã0 = 1

]
+ 2r · γ (2)

The last equation follows by correctness and Items 1 to 3 of Definition 3.3. Next, we argue that
Pr[b̃0 = 0 ∧ ã0 = 1] is a noticeable quantity. If not, then we claim that adversary ÃP1

0 can violate
privacy. Suppose that Pr[b̃0 = 0 ∧ ÃP1

0 = 1] ≤ neg(κ) and let ρ denote the (joint) randomness of
parties P1 and Q. In the presence of adversary ÃP1

0 , we claim that the events a0 /∈ Σ′ and ar /∈ Σ′
are independent of each other. To prove it, first notice that a0 may be viewed as deterministic
function of the inputs of P1 and Q and ρ, and ar may be viewed as a deterministic function of the
inputs of f (the latter assumption holds by correctness, with all but negligible probability). We
write a0(x, z0; ρ) and ar(x, y, z0) to make the dependency explicit and compute:

Prx←X,y←Y,ρ←R
[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′

]
=∑

x0∈X
Pry←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′ | x = x0

]
· Prx←X [x = x0]

Observe that for any fixed x0, the random variables a0(x0, y; ρ) and ar(x0, y, z0) are independent
random variables. Therefore,

Prx←X,y←Y,ρ←R
[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′

]
=∑

x0∈X
Prρ←R

[
a0(x, z0; ρ) /∈ Σ′ | x = x0

]
· Pry←Y

[
ar(x, y, z0) /∈ Σ′ | x = x0

]
· Prx←X [x = x0]

Finally, by correctness and Item 2 of Definition 3.3

Prx←X,y←Y,ρ←R
[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′

]
=
∑
x0∈X

Prρ←R
[
a0(x, z0; ρ) /∈ Σ′ | x = x0

]
· (1− γ) · Prx←X [x = x0]

= (1− γ) · Prx←X,ρ←R
[
a0(x, z0; ρ) /∈ Σ′

]
= (1− γ)2

The last equality follows from correctness and Item 1 of Definition 3.3. Thus, if Pr[b̃0 = 0 ∧ ã0 =
1] ≤ neg(κ), then adversary ÃP1

0 outputs 1 with probability 1− (1−γ)2 > γ, in violation of privacy.
In conclusion, using an averaging argument in Equation (2), at least one of {AP1

i }ri=1, {A
P2
i }

r−1
i=0

outputs 1 with probability noticeably greater than γ and, thus, violates privacy. �

14

4 Positive Results
In this section, we present our positive results. First, we give a generic transformation from a
fully secure n-party protocol with non-solitary output to a fully secure (n+ 1)-party protocol with
solitary output; The latter protocol computes the associated functionality that delivers output to
an additional auxiliary party that doesn’t provide input. In light of the positive results for fair two-
party computation, our transformation enables fully secure computation for (almost all) Boolean
functions with unequal domain size. For instance, it yields a secure protocol for the following PSI
variant that escapes our other criteria: From a universe of size n, party P1 picks a set of size between
1 and k, for some arbitrary fixed k ≤ n− 2, party P2 picks a set size between 1 and k+ 1 (i.e. one
party has more inputs to pick than the other), and Party Q receives value 1 if the sets intersect
and 0 if not.6 Interestingly, this technique yields protocols with super-constant (in fact, super-
logarithmic) round complexity since, with few exceptions, super-logarithmic number of rounds is
necessary for fair computation. In Section 5, we show that super-constant round complexity is
inherent for fully secure MPC with solitary output.

Then, we present a generic protocol for functionalities that satisfy the “forced output distri-
bution” criterion. Intuitively, these are functionalities where (almost) all parties can “force” the
distribution of the output to be invariant of the other parties’ choice of input. These functionalities
should be contrasted with the above fair ones, since they are utterly unfair viewed as non-solitary
functionalities (they imply coin-tossing). Interestingly, every functionality in this class can be
computed in a constant number of rounds.

We also present a generic protocol for functionalities that satisfy the “fully revealing input”
criterion. Intuitively, these are functionalities where at least one party has a choice of input that
reveals all other parties’ inputs. While this family may appear somewhat pathological from a
cryptographic point of view, it contains several natural examples. In particular, it contains a PSI
variant where one party may choose the entire universe as input. Similarly to the previous case,
every functionality in this class can be computed in constant number of rounds.

Finally, for a functionality that escapes the above criteria, we design a fully secure protocol that
runs in superlogarithmic number of rounds. This protocol is inspired by the GHKL protocol [23].
We emphasize that the feasibility of this functionality does not follow from the fairness criterion
since, viewed as a non-solitary functionality, it cannot be computed fairly. Furthermore, in the
next section, we show that superconstant round complexity is inherent for this function.

4.1 Security via Fairness

Let f : X1× . . .×Xn → Σ be an n-party functionality that delivers the same output to all parties.
Let Π be a fully secure protocol for f . Write m(`,`′)

i ∈ {0, 1}µκ for the message sent by P` to P`′
at round i. Let Mκ = µκ · n denote the total length of messages received by party P` in a single
round (without loss of generality µκ and Mκ do not depend on i, `′ or `). In this section, we show
how to transform protocol Π into a protocol Π′ that computes the associated solitary functionality
that delivers the output to one of the parties, or to an additional auxiliary party. We note that the
transformation and analysis of the two cases are the same, therefore we only focus on the latter
transformation (i.e. from n-party to n + 1-party protocol, where the output receiving party does
not provide input). The rest of this sub-section is dedicated to the proof of the following theorem.

6Viewed as a two-party non-solitary functionality, the fact that it can be computed with full security (fairness)
follows from the criteria of [3].

15

Theorem 4.1. Let Π be a protocol for computing non-solitary functionality f with full security.
Then, there exist a protocol Π′ that computes with full security the associated (n+ 1)-party solitary
functionality that delivers the output to an additional auxiliary party.

At a high level, to transform the n-party non-solitary protocol Π into an (n+ 1)-party solitary
protocol Π′, we have each party P` in Π′ share the view of the party P` in the original protocol Π
between himself and the auxiliary party Q. To do so, we begin by defining protocol’s Π message
function NxtMsgΠ that deterministically maps each party P`’s view until some round i (a view that
includes its identity, its input, its private coins and all incoming messages until that round) to all
messages that P` sends at the upcoming round.

Definition 4.2. Let NxtMsgΠ denote the next message function of r-round protocol Π. Formally,
NxtMsgΠ maps viewP`i 7→ (m(`,1)

i+1 , . . . ,m
(`,n)
i+1) such that

1. viewP`i ∈ {0, 1}i·Mκ corresponds to the view of party P` up to and including round i (wlog, we
assume that the value of i and the identity of P` are contained in its view).

2. If i 6= r, then m
(`,`′)
i+1 ∈ {0, 1}µκ corresponds to P`’s prescribed message to P`′ at round i + 1

according to Π. If i = r then m(`,`′)
i+1 ∈ {0, 1}µκ corresponds to P`’s prescribed output.

In our protocol design, all messages will be additively-shared between party P and a helper
party Q. That is, a message m will be randomly split into m1, m2 such that m = m1 ⊕m2 and
party P will hold m1 and Q will hold m2. In the following functionality ShrNxtMsgΠ (Figure 3) we
describe how the messages of the protocol are created to deliver this sharing. Party P and Q hold
viewPi , P ’s view up to and including round i, in shared form as vP , vQ and they receive the next
round messages of P also in shared form.

Functionality ShrNxtMsgΠ

• Input: Party P holds vP ∈ {0, 1}i·Mκ and party Q holds vQ ∈ {0, 1}i·Mκ , vP ⊕ vQ = viewPi .

• Output:

1. Case i 6= r. Party P receives random m1 ← {0, 1}Mκ and Q receives m2 = m1 ⊕
NxtMsg(vP ⊕ vQ).

2. Case i = r. Party P receives m1 = 0Mκ and Q receives m2 = NxtMsg(vP ⊕ vQ).

Figure 3: Two-Party Functionality ShrNxtMsgΠ for Parties P and Q.

We describe the protocol for computing a function with an auxiliary party Q that receives the
solitary output. The idea is that each party P` will invoke with party Q the protocol for creating
the messages that P` needs to send to all the other parties in the upcoming round. This is done
by utilizing the functionality ShrNxtMsgΠ. The result is that P` and Q receive the set of messages
(m(`,1)

i+1 , . . . ,m
(`,n)
i+1) in shared form. Then, P` send to each other party Pj its share of the message

m(`,j). The auxiliary party Q holds in a string viewQ`i its share of the view of the messages of
party P` up to and including round i (a different string for each P`). If (some) parties abort, then

16

proceed under the specifications of the original protocol Π, while maintaining the invariant that
each P`’s view from the original protocol is shared between P` and Q. At the end of the execution,
Q together with one of the P`’s that hasn’t aborted reconstruct the output (which is a deterministic
function of their joint views).

(n+ 1)-Party Solitary Protocol from n-party Non-Solitary Protocol

Input: Each party P` holds input x`, random input ρ` and security parameter 1κ. Party Q holds
security parameter 1κ and does not hold any private input.

Protocol:

1. Q sets {viewQ`0 = 0Mκ}`∈[n] and every other party sets viewP`0 = (1κ, x`, ρ`)

2. For i = 1, . . . , r

(a) Each P` and Q invoke ShrNxtMsgΠ on input viewQ`i−1 and viewP`i−1.

(b) Each party P` (other than Q) is instructed to send his share of message m`,`′

i to P`′ .
(c) Each P` (other than Q) computes viewP`i by concatenating viewP`i−1 with the (shares of

the) messages they received at Step 2b. Party Q computes each viewQ`i by concatenating
viewQ`i−1 with the (shares of the) messages he received from the invocations at Step 2a
(collating them appropriately).

Abort scenarios:

• If Q aborts, then all parties halt.
• If any of the Pj abort, then each remaining P` and Q update viewP`i and viewQ`i , respec-

tively, such that the latter jointly reflect that Pj stopped sending messages from that
round onward (since the original protocol Π is fully secure, the remaining parties will be
able to continue with the execution).

3. Initialize ctr = 1.

(a) As long as ctr ≤ n and Pctr is not alive or aborted, then increment ctr.
(b) If ctr ≤ n, then Pctr and Q invoke ShrNxtMsgΠ on input viewQctr

r and viewPctr
r . Party

Q outputs whatever he receives from the invocation, and notifies all parties to halt.
Otherwise, if ctr = n + 1, then Q outputs f(x̃1, . . . , x̃n) where (x̃1, . . . , x̃n) is chosen
uniformly at random from X1 × . . .×Xn.

Output: Party Q’s output is determined at Step 3b. Other parties output nothing.

Figure 4: (n+ 1)-Party Protocol for Solitary f in the ShrNxtMsgΠ-Hybrid Model with Identifiable
Abort

The above protocol is described where the output is delivered to the auxiliary party Q (not one

17

of the P1 . . . Pn). However, as noted at the beginning of this section, this party can be one of the n
original parties and simply serves both as himself and as party Q. Observe that, in this case, Q will
simply see all the messages that it sends and receives (as it holds both shares of the messages).

Proof of Theorem 4.1. We prove the claim by showing that protocol Π′ from Figure 4 is fully
secure in the ShrNxtMsgΠ-hybrid model with identifiable abort. Then, the theorem follows from
composition [8]. Let A be an adversary corrupting up to n parties (of the n+ 1 parties). Observe
that, if party Q is not among the corrupted parties, then A’s view can be trivially simulated since
it is just a uniform random string, and it is not hard to see that he cannot affect correctness.
It remains to prove that the protocol is secure when Q is among the corrupted parties. Let C
denote the set of corrupt parties, assuming that Q ∈ C. For adversary A attacking Π′ corrupting
parties in C, we construct an adversary Ã attacking Π (on the same input distribution and auxiliary
information) and corrupting parties C̃ = C \ {Q} (there are at most n− 1 such parties). Since A’s
and Ã’s views are identically distributed (modulo a 2-out-of-2 secret sharing), and since the latter
can be simulated in the ideal model with full security, it follows that the former can be simulated
as well. Formally, let S̃ denote the simulator for Ã and define simulator S for A as follows:

1. S runs S̃ on the relevant inputs, security parameter and auxiliary information. Write (vPi)Pi∈C̃
for S̃’s output corresponding to the joint simulated view of the parties.

2. S samples (νPi)Pi∈C̃ uniformly at random from the relevant space and outputs (vPi ⊕νPi)Pi∈C̃
(the simulated views of parties in C̃) and (νPi)Pi∈C̃ (the simulated view of Q).

�

4.2 Functions with Forced Output Distribution

In this section, we present the “Forced Output Distribution” criterion. First, we define the notion.

Definition 4.3. A party Pi 6= Q admits a forced output distribution for f if there exists a distribu-
tion ∆i over Xi such that the distribution of the random variable f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)|x̂i←∆i

is independent of the (n− 1)-tuple (x1, . . . , xi−1, xi+1, . . . , xn).

Intuitively, a party admits a forced output distribution if it can choose its input in a way
that “forces” the output, i.e. it makes the output distribution independent of the other parties’
inputs. The theorem below states that if all-but-one parties, not including Q, admit a forced output
distribution, then the functionality is computable with perfect full security in a constant number
of rounds in a hybrid model with ideal access with identifiable abort to functionality ShrGnf (to be
specified below). As a corollary, assuming OT, functions with a forced output distribution admit
fully secure protocol in the plain model.

Theorem 4.4. Assume that at least n−1 of the parties in P\{Q} admit a forced output distribution
for functionality f . Then, f is computable with perfect full security in the ShrGnf -hybrid model
with identifiable abort. Furthermore, the computation runs in a constant number of rounds.

We now introduce functionality ShrGnf (Figure 5) and we will prove our theorem in the ShrGnf -
hybrid model with identifiable abort. This functionality provides the following. It shares the output
of the function f between the parties that invoke it, by obliviously choosing a random input for the
parties that do not provide input. That is, it provides uniform random shares to all-parties-but-one,

18

and that last party gets the xor of these shares with the output of the function. We emphasize
that this functionality may be invoked by a subset of the n parties, and, as per the ideal model
with identifiable abort, the invocation can be aborted by any single party in that set (at the cost
of revealing its identity).

Functionality ShrGnf

• Input: Each Pi ∈ P provides input xi.

• Computation:

1. If parties in T do not provide input then xT ← ×
Pi∈T

Xi is chosen uniformly at random.

Write S1, . . . , S` for the parties in S = P \ T .

2. Compute
{
σSj ∈ Σ

}
Sj∈S

such that

(a) σSj ← Σ independently and uniformly at random, for each Sj 6= S1 (i.e., 2 ≤ j ≤ `).
(b) σS1 = f(xS , xT)⊕ σS2 ⊕ . . .⊕ σS` .

• Output: Each Sj ∈ S receives σSj .

Figure 5: n-Party Functionality ShrGnf .

Without loss of generality, if it exists, suppose that P1 is the party without forced output distribu-
tion (the protocol and our analysis remains sound if all parties have a forced output distribution).
The protocol (see Figure 6) proceeds as follows: the parties invoke the trusted party for computing
ShrGnf , and obtain shares of the output. Then, in two distinct steps (1) P1 sends its share of
the output to Q and (2) all other parties send their shares to Q. In case of abort, there are two
scenarios; either P1 aborts alone, in which case the process starts again without P1, or, if anyone
else aborts at this iteration or the next, the computation halts and Q outputs a value from the
forced distribution. Intuitively, the protocol maintains security because it is not useful to abort
any of the parties; aborting any party but P1 halts the execution, while aborting P1 does not reveal
anything about the output (since the honest party will not send its share before P1 sends his).

Proof of Theorem 4.4. First note that distribution D in Figure 6 is well defined since it is
unique. Let A denote an adversary corrupting a subset of parties. Like in the previous proof, it
is straightforward that if A does not corrupt Q then it cannot affect correctness and its view can
be trivially simulated. Let C be the set of corrupted parties. Define simulator S that does the
following: S invokes the trusted party on the inputs of the corrupted parties and receives output
out form the trusted party. Then, S samples |C| random elements {σ′C}C∈C and hands them to the
adversary.

• If P1 alone aborts, S samples |C| − 1 fresh random values {σ′′C}C∈C\{P1}, and hands them to
the adversary.

19

• If any other party aborts (at any point in the simulation), S samples d′ ← D, hands d to the
adversary, and outputs whatever A outputs.

• If no other party aborts, S hands out to the adversary and outputs whatever A outputs. �

n-Party Protocol Π for Computing f with Forced Output Distribution

Recall that P1 denotes the party that does not admit a forced output distribution (if there is such
party). Write D for the distribution induced by (any of) the forced distributions.

Input: Each party P` holds input x` (Recall that Q is one of the P`’s).

Protocol:

1. Set S = P.

2. Invoke the oracle computing ShrGnf . If parties in T ⊂ S abort the computation, then the
parties set S = S \ T and repeat the current step. If the computation is not aborted then
each P ∈ S receives σP .

3. If P1 is still alive,

(a) P1 sends σP1 to Q.
(b) Parties in S \ {P1} send their shares to Q.

Abort scenarios:

• If Q aborts, then the computation halts.
• If P1 aborts at Step 3a, then the parties set S = S \ T and go back to Step 2.
• If parties in T ⊆ S \ {Q,P1} abort, then Q outputs d← D and the computation halts.

4. If P1 already aborted,

(a) Parties in S send their shares to Q.

Abort scenarios:

• If Q aborts, then the computation halts.
• If parties in T ⊆ S \ {Q} abort the computation, then Q outputs d ← D and the

computation halts.

Output: If Q’s output hasn’t been determined yet, then Q outputs ⊕
P∈S

σP . All other parties
output nothing.

Figure 6: n-Party Protocol Π for f with Ideal Access to ShrGnf with Identifiable Abort

20

4.3 Functions with Fully Revealing Input

In this section, we present the “Fully Revealing Input” criterion. First, we define the notion.

Definition 4.5. Let S (P. We say that the parties in S admit a fully revealing input, if there
exists xS ∈ ×

Pi∈S
Xi such that the following function is injective

fxS : xS 7→ f(xS , xS).

The theorem below states that if there exists a fixing of the inputs of P1 and Q (or any Pi
and Q) that yields an injective function, then the overlying functionality f is computable with full
security in a constant number of rounds in the ShrGnf -hybrid model. Similarly to the previous
section, assuming OT, it follows as an immediate corollary that functions with fully revealing input
admit fully secure protocol in the plain model.

Theorem 4.6. Assume there exists i such that {Pi, Q} admit a fully revealing input. Then, func-
tionality f is computable with perfect full security in the ShrGnf -hybrid model with identifiable abort.
Furthermore, the computation runs in a constant number of rounds.

Without loss of generality, suppose that P1, Q admit a fully revealing input. The protocol (Figure 7)
proceeds as follows: the parties invoke the trusted party for computing ShrGnf , and obtain shares
of the output. Then, in two distinct steps (1) All-parties-but-P1 send their shares of the output
to Q and (2) P1 sends its share to Q. In case of abort, the process is repeated until it succeeds.
Intuitively, the protocol maintains security because the only way to extract more information from
the protocol is to corrupt both P1 and Q. In that case however, P1 and Q can provide input in the
ideal model that reveals everything about the inputs of the honest parties.

Proof of Theorem 4.6. Let A denote the adversary corrupting a subset of parties. Like in
the previous proof, it is straightforward that if A does not corrupt both Q and P1 then it cannot
affect correctness and its view can be trivially simulated. If A corrupts both P1 and Q, then by
instructing the simulator to send the fully revealing input in the ideal model, the adversary’s view
can be simulated perfectly, no matter what is its course of action.7 �

4.4 Outliers

In this section, we present protocol for a function that escapes the above criteria but is nevertheless
computable with full security. Define functionality f that takes inputs x ∈ {0, 1, 2} from P1 and
y ∈ {0, 1, 2} from P2 and delivers f(x, y) to Q such that

f(x, y) =

1 if x = y ∈ {0, 1}
2 if x = y = 2
0 otherwise

In this section, we show that the functionality f is computable with full security in ω(log(κ)) rounds.
In what follows, we identify {0, 1, 2} with {x0, x1, x2} or {y0, y1, y2} to make the distinction between

7We stress that honest-but-curious adversaries can be simulated without having recourse to the fully revealing
input, conforming to the standard definition. We have omitted the analysis here, since it is straightforward.

21

n-Party Protocol for Computing f with Fully Revealing Input

Recall that P1 denotes the party such that {P1, Q} admit a fully revealing input.

• Input: Each party P` holds input x` (recall that here Q is one of the P`’s).

1. The parties invoke the oracle computing ShrGnf and each Pi ∈ S receives σPi .
Abort scenarios:

• If Q aborts, then the computation halts.
• If parties in T (S\{Q} abort the computation, then the remaining parties set S = S\T
and repeat the present step.
• If parties in T = S \ {Q} abort the computation, then Q outputs f(x{Q}, xT) where
xT ← ×

Pi 6=Q
Xi is sampled uniformly at random.

2. If P1 is still alive then

(a) All parties except P1 send their shares to Q.
(b) P1 sends σP1 to Q.

Abort scenarios:

• If Q aborts, then the computation halts.
• If parties in T (S \ {Q} abort at Steps 3a or 2a, then the parties update S = S \ T
and go back to Step 1.
• If parties in T = S \ {Q} abort the computation, then Q outputs f(x{Q}, xT) where
xT ← ×

Pi 6=Q
Xi is sampled uniformly at random.

3. If P1 already aborted then

(a) Remaining parties send their shares to Q.

Abort scenarios:

• If Q aborts, then the computation halts.
• If parties in T (S \ {Q} abort at Step 2a, then the parties update S = S \ T and go
back to Step 1.
• If parties in T = S \ {Q} abort the computation, then Q outputs f(x{Q}, xT) where
xT ← ×

Pi 6=Q
Xi is sampled uniformly at random.

• Output: If Q’s output hasn’t been determined yet, then Q outputs ⊕
Pi∈S

σPi . All other parties
output nothing.

Figure 7: n-Party Protocol Π for f in the ShrGnf -Hybrid Model with Identifiable Abort

22

the parties’ input-spaces explicit. For readability, it is convenient to represent the function f by
its truth table: 1 0 0

0 1 0
0 0 2

Our protocol is inspired by the GHKL protocol and proceeds as follows. Formal descriptions

and more detailed security analysis appear in Appendix B. In the remainder of this section, we only
give a high level overview. Write x and y for the inputs used by the parties. In a share-generation
phase, the parties obliviously generate two sequences of values (a0, . . . , ar) and (b0, . . . , br) and an
integer i∗ ∈ [r] such that every value ai and bi is equal to f(x, y) for indices succeeding i∗, and,
for indices preceding i∗, ai is computed by obliviously choosing a fresh input from {y0, y1} for P2,
and using input x for P1 and, similarly, bi is computed by obliviously choosing a fresh input from
{x0, x1} for P1, and using input y for P2. The value of i∗ is chosen according to a distribution
specified in Figure 9. The two sequences are then shared in a 3-out-of-3 additive (modulo 3) secret
sharing among the parties. Then, in the share-exchange phase, in r iterations, P1 is instructed
to send its share of bi to Q, and P2 is instructed to send its share of ai to Q. If party P1 aborts
at round i, then P2 sends its share of bi−1 to Q, and, similarly, if P2 aborts at round i, then P1
sends its share of ai to Q. Party Q is instructed to output the value it can reconstruct from the
shares. The share-generation and share-exchange phases are fully specified in Figures 9 and 10,
respectively, in Appendix B.

We crucially observe that, prior to i∗, the obliviously chosen input for each party is sampled
from {0, 1}, and not {0, 1, 2}. This seemingly superficial technicality is what enables the protocol
to be secure, as we outline next.

High-level Security of Protocol Π from Figure 10. The only interesting case for security is
what happens when P1 and Q are both corrupt (and the symmetric case when P2 and Q are corrupt
that is handled analogously). It is straightforward that all other corruption configuration pose no
potential threat to the protocol’s security. We only focus here on the interesting. Let A denote
the adversary and consider the following simulator S: The simulator samples i∗ according to the
prescribed distribution, and reveals (shares of) the sequence a0, a1 . . . ai∗−1 in i∗−1 iterations; then,
at iteration i∗, the simulator invokes the trusted party to learn the correct output and proceeds in
r− i∗+1 iterations revealing (appropriate fresh shares of) f(x, y). If the adversary decides to abort
at round i, then the simulator computes (appropriate shares of) a bit bi−1 which it hands to the
adversary. The simulator then outputs whatever the adversary outputs and halts. The crux of our
security proof lies in carefully choosing the value of bi−1. The simulation is specified in Figure 11
(in Appendix B). On the surface, it appears that the adversary has an advantage in the real model
by guessing i∗ correctly (which happens with constant probability). In fact, this advantage can be
simulated in the ideal model since, when the adversary guesses the round wrongly (and thus fails),
the simulator can choose a different input than the one the adversary uses. Thus, on average,
the simulator in the ideal world and the adversary in the real world have the same amount of
information about the honest party’s input.

We conclude with the following theorem which immediately yields full security for f , assuming
a protocol for OT.

Theorem 4.7. Protocol Π computes f with statistical full security in the ShrGn∗f -hybrid model with
identifiable abort.

23

5 Lower-Bound on Round-Complexity
In this section, we present a lower bound for the functionality f from the previous section. Let f
be the three-party solitary functionality from Section 4.4. In what follows, let Π denote a protocol
for f , let κ denote the security parameter, and assume the round-complexity of Π is set to some
value r that is independent of κ. It follows as an immediate corollary of the theorem below that
no such protocol can be fully secure.

Theorem 5.1. Using the notation above, there exists i ∈ [r] such that at least one of the following
is true:

1. An adversary corrupting P2 and Q violates P1’s privacy by aborting P2 at round i.

2. An adversary corrupting P1 and Q violates P2’s privacy by aborting P1 at round i.

3. An adversary corrupting P1 violates correctness by aborting at round i.

4. An adversary corrupting P2 violates correctness by aborting at round i.

Proof. Following Notation 3.2, write a0 . . .ar and b0 . . .br for the backup values, i.e. ai (resp. bi)
is the random variable representing Q output if P2 (resp. P1) does not send the i-th message, and
P2 and Q (resp. P1 and Q) follow the protocols specifications. Let i denote the largest index such
that Pr [ai 6= bi−1] or Pr [ai−1 6= bi] is a noticeable quantity. Since the protocol constant round,
the value of i is well defined. Without loss of generality assume that Pr [ai 6= bi−1] ≥ ε for some
non-negligible ε. In what follows, all probabilities are computed over the parties’ random inputs
and choice of input for the functionality. To make the dependency explicit, we will write ai(x, y)
and bi(x, y). We will omit mention of the random input. The claim follows from the fact that
Pr [ai 6= bi−1] ≥ ε and Claims 5.2 to 5.4.

Claim 5.2. For every (x, y) ∈ X × Y , it holds that Pr [ai(x, y) 6= f(x, y)] ≤ neg(κ).

The above claim follows immediately from the definition of index i, and Π’s correctness. Next, we
define the following adversaries AP1(x), AP2(x) and CP1(x) and CP2(y).

1. Adversary AP1(x) corrupts P1 and Q, and uses input x for the computation. The adversary
aborts P1 at round i.

2. Adversary AP2(y) corrupts P2 and Q, and uses input y for the computation. The adversary
aborts P2 at round i+ 1.

3. Adversary CP1(x) corrupts P1 alone, and uses input x for the computation. The adversary
aborts P1 at round i.

4. Adversary CP2(y) corrupts P2 alone, and uses input y for the computation. The adversary
aborts P2 at round i+ 1.

Claim 5.3. Suppose there exists x ∈ {x0, x1} and y ∈ Y such that
Pr [ai(x, y) 6= bi−1(x, y)] ≥ 1/poly(κ), then AP1(x) violates privacy, or CP1(x) violates corectness,
for some x ∈ {x0, x1}.

24

Proof of Claim 5.3. Without loss of generality, suppose that Pry←Y [ai(x0, y) 6= bi−1(x0, y)] ≥
1/ poly(κ). We proceed under the assumption that CP1(x) does not violate correctness. First,
notice that ai and bi−1 cannot be equal to distinct nonzero values, by correctness. Therefore, at
least one of the following occurs with noticeable probability:

1. Pry←Y [ai(x0, y) = 1 ∧ bi−1(x0, y) = 0]

2. Pry←Y [ai(x0, y) = 0 ∧ bi−1(x0, y) = 1]

3. Pry←Y [ai(x0, y) = 0 ∧ bi−1(x0, y) = 2]

If either of Items 2 and 3 is noticeable, then A(x0) violates privacy in an execution where P2
chooses his input at random (sinbe bi−1(x0, y) and x0 together determine y). If only the first item
is noticeable, observe that

Pry←Y [ai(x0, y) = 0 ∧ bi−1(x0, y) = 0] =
Pr [ai(x0, y) = 0]− Pr [ai(x0, y) = 0 ∧ bi−1(x0, y) = 1] .

and thus Pry←Y [ai(x0, y) = 0 ∧ bi−1(x0, y) = 0] ≥ 2/3− neg(κ). Hence,

Pr [bi−1(x0, y) = 0] =
Pry←Y [ai(x0, y) = 1 ∧ bi−1(x0, y) = 0] + Pr [ai(x0, y) = 0 ∧ bi−1(x0, y) = 0]
≥ 2/3 + 1/ poly(κ).

and thus CP1(x) violates correctness, which we have ruled out by assumption. �

Claim 5.4. Suppose that Pr [ai(x2, y) 6= bi−1(x2, y)] ≥ 1/ poly(κ), for some y ∈ Y . Then, either
AP2(y) violates privacy, or AP1(x) violates privacy, for some x ∈ {x0, x1}, or CP1(x) violates
corectness, for some x ∈ {x0, x1}.

Proof of Claim 5.4. We distinguish two cases depending on whether y = y2.

Case 1. Without loss of generality, assume that Pr [ai(x2, y0) 6= bi−1(x2, y0)] ≥ 1/ poly(κ). We
proceed under the assumption that CP1(x) does not violate correctness and AP1(x) does not violate
privacy, for x ∈ {x0, x1}. By Claim 5.3, Pr [ai(x, y0) 6= bi−1(x, y0)] ≤ neg(κ), for x ∈ {x0, x1}. By
the hypothesis of the theorem and by correctness, the following is noticeable:

1. Pr [ai(x2, y0) = 0 ∧ bi−1(x2, y0) = 1]

The above enables AP2(y0) to violate privacy in an execution where P1 chooses his input uniformly
at random (Since, by Claims 5.2 and 5.3, ai = 0 and bi−1 = 1 implies that P1 is holding input x2).

Case 2. Assume that Prx←X [ai(x, y2) 6= bi−1(x, y2)] ≥ 1/ poly(κ). We proceed under the as-
sumption that CP1(x) does not violate correctness and AP1(x) does not violate privacy, for x ∈
{x0, x1}. By Claim 5.3, Pr [ai(x, y0) 6= bi−1(x, y0)] ≤ neg(κ), for x ∈ {x0, x1}. Therefore, by the
hypothesis of the theorem, the following is noticeable:

1. Pr [ai(x2, y2) = 2 ∧ bi−1(x2, y2) = 0] = Pr [bi−1(x2, y2) = 0]

25

Therefore,

2
3 = Pry←Y [bi−1(x2, y) = 0]

= 1
3 · (Pr [bi−1(x2, y0) = 0] + Pr [bi−1(x2, y1) = 0] + Pr [bi−1(x2, y2) = 0])

Thus, we deduce that Pr [bi−1(x2, y
′) = 0] ≤ 1 − 1/poly(κ) for some y′ ∈ {y0, y1} and thus

Pr [bi−1(x2, y
′) 6= ai(x2, y

′)] ≥ 1/ poly(κ), which boils down to the previous case. �
�

Acknowledgments
We are grateful to Noam Mazor, Matan Orland and Jad Silbak for helpful discussions.

Y. Ishai and E. Kushilevitz were supported by ISF grant 1709/14, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technology, Israel and Department of Science and
Technology, Government of India. Y. Ishai and N. Makriyannis were additionally supported by
ERC Project NTSC (742754).

Bibliography
[1] Navneet Agarwal, Sanat Anand, and Manoj Prabhakaran. Uncovering algebraic structures in

the MPC landscape. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part II, pages 381–406, 2019.

[2] Gilad Asharov. Towards characterizing complete fairness in secure two-party computation.
In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of Cryptography Conference,
TCC 2014, volume 8349 of Lecture Notes in Computer Science, pages 291–316. Springer, 2014.

[3] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete characteri-
zation of fairness in secure two-party computation of boolean functions. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptography Con-
ference, TCC 2015, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 199–228. Springer, 2015.

[4] Donald Beaver. Multiparty protocols tolerating half faulty processors. In Advances in Cryp-
tology – CRYPTO ’89, pages 560–572, 1989.

[5] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority. In Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages
468–473, 1989.

[6] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat
Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Advances in Cryptol-
ogy - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2014, Proceedings, Part II, pages 387–404, 2014.

26

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of
the 29th Annual Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1988.

[8] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[9] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure pro-
tocols (extended abstract). In Proceedings of the 10th Annual ACM Symposium on Theory of
Computing (STOC), pages 11–19, 1988.

[10] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. on Discrete
Math., 4(1):36–47, 1991.

[11] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages
364–369, 1986.

[12] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multi-
party computation. Journal of Cryptology, 30(4):1157–1186, 2017.

[13] Deepesh Data and Manoj Prabhakaran. Towards characterizing securely computable two-party
randomized functions. In Publick Key Cryptography (PKC), pages 675–697, 2018.

[14] Vanesa Daza and Nikolaos Makriyannis. Designing fully secure protocols for secure two-party
computation of constant-domain functions. In Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I,
pages 581–611, 2017.

[15] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, 23-25 May 1994, Montréal, Québec, Canada, pages 554–563, 1994.

[16] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal complete
primitives for secure multi-party computation. J. Cryptology, 18(1):37–61, 2005.

[17] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty
computation. In Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, pages
178–193, 2002.

[18] Oded Goldreich. Foundations of Cryptography — Basic Applications. Cambridge University
Press, 2004.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[20] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of
immoral majority. In Advances in Cryptology – CRYPTO ’90, pages 77–93, 1990.

27

[21] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement.
Journal of Cryptology, 18(3):247–287, 2005.

[22] Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation without an
honest majority. In Proceedings of the 6th Theory of Cryptography Conference, TCC 2009,
pages 19–35, 2009.

[23] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in
secure two-party computation. J. ACM, 58(6):24:1–24:37, 2011.

[24] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In Advances in Cryptology –
CRYPTO 2006, pages 483–500, 2006.

[25] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On achieving
the "best of both worlds" in secure multiparty computation. SIAM Journal on Computing, 40
(1):122–141, 2011.

[26] Jonathan Katz. On achieving the "best of both worlds" in secure multiparty computation.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
11–20, 2007.

[27] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. on Discrete Math., 5(2):
273–284, 1992.

[28] Yehuda Lindell and Tal Rabin. Secure two-party computation with fairness - A necessary
design principle. In Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, pages 565–580, 2017.

[29] Nikolaos Makriyannis. On the classification of finite boolean functions up to fairness. In
Michel Abdalla and Roberto De Prisco, editors, Security and Cryptography for Networks -
9th International Conference, SCN 2014, 2014., volume 8642 of Lecture Notes in Computer
Science, pages 135–154. Springer, 2014.

[30] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science (FOCS), pages 73–85, 1989.

[31] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167, 1986.

28

A Appendix

A.1 Feasibility landscape of Boolean solitary functionalities (Cont’d)

For every M ∈ {0, 1}n×n, define SM = {y = Mx |
∑
i xi ≤ 0}.

Conjecture A.1. It holds that PrM [1n ∈ SM] ∈ o(1).
To support the above conjecture, for each value of n ∈ {4, . . . , 300}, we sampled 10000 random

binary matrices to check whether the condition is satisfied. The probability does appear to vanish,
albeit quite slowly.

Figure 8: Experimental upper bound of PrM [1n ∈ SM].

A.2 Sketch argument for the necessity of Broadcast

Let f : {x0, x1} × {y1, y2} → {0, 1, 2} such that f(xi, yj) = i · j. Suppose that P1 and P2 provide
input and Q is the output receiving party. The associated truth table has the following form.(

1 2
0 0

)
Suppose that f admits a fully secure protocol without broadcast. Now consider the following two
attacks: (Attack 1) P1 is corrupt and never sends any messages to P2. At the same time, P1
behaves seemingly honestly with Q as if P2 never sent a message. (Attack 2) P2 is corrupt and
never sends any messages to P1. At the same time, P2 behaves seemingly honestly with Q as if P1
never sent a message.

Because the protocol is assumed to be fully secure, at the end of the execution, party Q outputs
a value that should be (1) consistent with P2 input in the first case, and (2) consistent with P1
input in the second. However, from Q’s perspective, the executions above are indistinguishable
which means that Q’s output is consistent with both inputs (i.e. it’s the correct output). In turn,
this implies that f can be computed with full security even when all communication goes through
Q.

However, in that case, a corrupt Q can arbitrarily change the input of P1, which violates the
privacy of P2.

29

A.3 Tables With Examples

A.3.1 Equality Testing with Arbitrary leakage

Recall that EqTstgm(x, y) 7→ 0 if x 6= y and g(x) otherwise, for some Functionality g such that
0 /∈ im(g). Recall that EqTstgm(x, y) admits trivial leakage if (1) |im(g)| = 1 or (2) |im(g)| = 2 and∣∣g−1(σ)

∣∣ = 1, for some σ ∈ im(g).

Input param. Feasibility Criterion
Trivial leakage (1) Forced
Trivial leakage (2) Outlier Protocol
Nontrivial leakage Impossible

A.3.2 PSI Variants

Same Fixed-sized Input PSI. PSIgm,k takes as inputs sets of size k from universe [m] and
applies Functionality g to the output.

Input param. \ Functionality g S 7→ S S 7→ |S| S 7→
{

1 if S 6= ∅
0 otherwise

k < m/2 Impossible Forced Forced
k ≥ m/2 Open Forced Forced

Diff. Fixed-sized Input PSI. PSIgm,k1,k2
takes as inputs sets of size k1 and k2 from universe

[m] and applies Functionality g to the output.

Input param. \ Functionality g S 7→ S S 7→ |S| S 7→
{

1 if S 6= ∅
0 otherwise

Input param. k1 6= k2 Open Forced Forced

Same Range-Input PSI. PSIgm,kmax,kmin
takes as inputs sets of size from kmax and kmin from

universe [m] and applies Functionality g to the output.

Input param. \ Functionality g S 7→ S S 7→ |S| S 7→
{

1 if S 6= ∅
0 otherwise

kmin = 0 Forced Forced Forced & Fairness
kmax = n Revealing Open Forced & Fairness

kmax + kmin ≤ n Open Open Open
kmax + kmin > n Open Open Forced & Fairness

Diff. Range-Input PSI. PSIgm,r1,r2 takes as inputs sets of size, respectively, from r1
min and

r1
max, and r1

min and r2
max from universe [m] and applies Functionality g to the output. Write

µ` =
∑r`max
i=r`min

(m
i

)
i.e. µ` is the number of inputs for P`.

Input param. \ Functionality g S 7→ S S 7→ |S| S 7→
{

1 if S 6= ∅
0 otherwise

µ1 6= µ2 Open Open Fairness

30

A.3.3 OT Flavors

Standard OT. Let OTg : (I, (σ1, . . . , σm)) 7→ g(I, σI) takes as inputs sets of indices I ⊂ [m] and
a database of m elements from some space Σ and applies a functionality g to (I, σI).

Input param. \ Functionality g Identity (I, σI) 7→ σI
|I| = 1 Revealing Forced
|I| = k Revealing Outlier Protocol

Arbitrary I Open Open

Symmetric OT. Let SymOTg : (I1, (σ1
1, . . . , σ

1
m), I2, (σ2

1, . . . , σ
2
m)) 7→ g(I1, σ

2
I1
, I2, σ

1
I2

). Open for
any interesting parameters.

A.3.4 Majority

Both of these functionalities are computable thanks to the Fairness criterion.

• 3-Party Majority where one of the parties receives output.

• 3-Party Majority where fourth party receives output.

All other cases are Open.

A.3.5 Return Max/Min

The n-party solitary functionality that returns the minimum (or maximum) of some input values
is computable with full security thanks to the forced criterion.

A.3.6 Millionaires’ Problem

f(x1, . . . , xn) 7→ i if ∀j, xi ≥ xi−j ∧ xi > xi+j

For n = 2 it follows from the forced output criterion. For larger n, it is unclear what the answer is.

n \ Party Q Q ∈ {P1, . . . , Pn} Q /∈ {P1, . . . , Pn}
n = 2 Trivial Forced/Fairness
n > 3 Open Open

B Formal Description and Security Analysis of Outlier Protocol
Theorem B.1 (Restatement of Theorem 4.7). Protocol Π computes f with statistical full security
in the ShrGn∗f -hybrid model with identifiable abort.

31

Functionality ShrGn∗f

• Input: P1 holds x ∈ X and 1κ, P2 holds y ∈ Y and 1κ, party Q holds 1κ.

• Computation:

1. If Q alone does not provide input, or any two parties do not provide input, then the func-
tionality returns a special default value def to the parties.

2. If P1 alone does not provide input

(a) An input x̃← {x0, x1} is chosen uniformly at random.
(b) Sample b#P2

0 ← {0, 1, 2} and compute b#Q0 = f(x̃, y)− b#P2
0 .

3. If P2 alone does not provide input

(a) An input ỹ ← {y0, y1} is chosen uniformly at random.
(b) Sample a#P1

0 ← {0, 1, 2} and compute a#Q
0 = f(x, ỹ)− a#P1

0 .

4. Otherwise

(a) Compute r = r(κ).
(b) Sample an integer i∗ ≥ 1 chosen according to the geometric distribution with parameter

1/3, i.e. the index of the first success in a sequence of Bernoulli trials with parameter
1/3 corresponds to i∗. Set i∗ =⊥ if the experiment does not succeed in the first r steps.

(c) Compute two sequences of r values (x̃1, . . . , x̃r) and (ỹ1, . . . , ỹr) such that x̃i and ỹi
uniformly at random from {x0, x1} and {y0, y1}, for i < i∗, and x̃i = x and ỹi = y, for
i ≥ i∗.

(d) Compute three sequences of 2r numbers {(a#S
1 , b#S1 , . . . , a#S

r , b#Sr)}S∈{P1,P2,Q} such that

i. a#P1
i ← {0, 1, 2} and b#P1

i ← {0, 1, 2} uniformly at random.
ii. a#P2

i ← {0, 1, 2} and b#P2
i ← {0, 1, 2} uniformly at random.

iii. a#Q
i = f(x, ỹi)− a#P1

i − a#P2
i and b#Qi = f(x̃i, y)− b#P1

i − b#P2
i .

• Output:

Case 1. The functionality returns a special default value def to the parties.
Case 2. Party P2 receives b#P2

0 and Q receives b#Q0 .
Case 3. Party P1 receives a#P1

0 and Q receives a#Q
0 .

Case 4. Each S ∈ {P1, P2, Q} receives (a#S
1 , b#S1 , . . . , a#S

r , b#Sr).

Figure 9: Three-Party Functionality ShrGn∗f .

32

Protocol Π in the ShrGn∗f -Hybrid Model with Identifiable Abort

• Input: P1 holds x ∈ X and 1κ, P2 holds y ∈ Y and 1κ, party Q holds 1κ.

1. Q compute c = f(x̃, ỹ) where x̃ and ỹ are chosen uniformly and independently at random
from X and Y respectively.

2. The parties invoke ShrGn∗f functionality on their respective inputs. We distinguish four cases
depending on the output of the invocation.

Case 1. If alive, Q outputs c.
Case 2. P2 sends b#P2

0 to Q who outputs b#Q0 + b#P2
0 .

Case 3. P1 sends a#P1
0 to Q who outputs a#Q

0 + a#P1
0 .

Case 4. Each S ∈ {P1, P2, Q} receives (a#S
1 , b#S1 , . . . , a#S

r , b#Sr) and proceed to Step 3.

Abort scenarios:

• If Q aborts, then the computation halts.
• If P1 (resp. P2) does not send its message in Case 3 (resp. Case 2) then Q output c.
• If the computation was aborted in Case 4 then the remaining parties Q and P1 (or Q
and P2) repeat the present step.

3. For i = 1 . . . r, P1 sends b#P1
i to Q, and P2 sends a#P2

i to Q.
Abort scenarios:

• If Q aborts, the computation halts.
• If i = 1 and P` alone does not send its message, then parties P3−` and Q repeat Step 2.
• If i 6= 1 and P1 (resp. P2) alone does not send its message, then P2 (resp. P1) sends b#P2

i−1
(resp. a#P1

i−1) to Q. Party Q outputs b#Qi−1 + b#P1
i−1 + b#P2

i−1 (resp. a#Q
i−1 + a#P1

i−1 + a#P2
i−1). If

the latter fails, refer to the next case.
• If both P1 and P2 abort the computation, then Q outputs c.

• Output: Q’s output is determined by the above. Parties P1 and P2 output nothing.

Figure 10: Protocol Π for computing f in the ShrGn∗f -hybrid model

33

Proof. As discussed above, we only address the case where the adversary both P1 and Q and sends
x0 for the computation (x1 is analogous and the remaining case, i.e. x2, is easy). Further, similarly
to the simulation of the GHKL protocol [23], it suffices to prove the theorem for an adversary
aborting at round i ≤ i∗ (since the complement case i > i∗ yields identical distributions for the
real and ideal world). The simulator is fully described in Figure 11 on p. 35. Finally, it suffices to
analyze the distribution of the pair (ai, bi−1), where i is the aborting round. The distribution of
the pair is described by the table below. We write α instead of 1/3 to make the table more legible.
We write the probabilities as vectors to account for every input of an honest P2. A straightforward
calculation yields that both worlds are identically distributed.

Pr [(ai, bi−1)] Real Ideal
(0, 0) α · (0, 1/2, 1) + 1−α

2 · (1/2, 1/2, 1) α · (0, 1, 1) + 1−α
2 · (

(1,0,1)
2 + (0,0,1)

2)
(0, 1) α · (0, 1/2, 0) + 1−α

2 · (1/2, 1/2, 0) α · (0, 0, 0) + 1−α
2 · (

(0,1,0)
2 + (1,1,0)

2)
(1, 0) α · (1/2, 0, 0) + 1−α

2 · (1/2, 1/2, 1) α · (1/2, 0, 0) + 1−α
2 · (1/2, 1/2, 1)

(1, 1) α · (1/2, 0, 0) + 1−α
2 · (1/2, 1/2, 0) α · (1/2, 0, 0) + 1−α

2 · (1/2, 1/2, 0)

�

34

Simulator S

Let x denote the input chosen by the adversary.

• Case x = x0. Choose i∗ according to the prescribed distribution.

– For i = 0 . . . i∗−1 set ai ← {0, 1} and reveal it to the adversary. If the adversary aborts,
do as follows.
∗ If ai = 1 then invoke the trusted party on input x2 and set

bi−1 =
{
b̃i−1 ← {0, 1} if f(x2, y) = 0
0 othwerwise.

output (a0, . . . , ai, bi−1) and halt.
∗ If ai = 0 then invoke the trusted party on input x̂← {x1, x2} and set

bi−1 =

f(x̂, y) if x̂ = x1

1 if x̂ = x2 and f(x2, y) = 0
0 if x̂ = x2 and f(x2, y) = 2

output (a0, . . . , ai, bi−1) and halt.
– At iteration i∗, invoke the trusted party on input x0 and set ai∗ = f(x0, y) and reveal

it to the adversary. If the adversary aborts, set bi∗−1 = 0 if ai∗ = 0 and bi∗−1 ← {0, 1}
otherwise, output (a0, . . . , ai, bi−1) and halt.

– For i = i∗ + 1 . . . r set ai = bi−1 = f(x0, y). If the adversary aborts, output
(a0, . . . , ai, bi−1) and halt.

• Case x = x1. Analogous to the above modulo a permutation of the inputs (swap x0 and x1).

• Case x = x2. Invoke the trusted party to obtain f(x, y). Choose i∗ according to the
prescribed distribution. Set

ai =
{

0 if i < i∗

f(x, y) othwerwise.

bi =

b̃i ← {0, 1} if i < i∗ ∧ f(x, y) 6= 2
0 if i < i∗ ∧ f(x, y) = 2
f(x, y) othwerwise.

Reveal the a’s one by one to the adversary. If the adversary aborts after seeing ai, output
(a0, . . . , ai, bi−1) and halt.

Figure 11: Simulation for a Fail-Stop adversary corrupting P1 and Q

35

	Introduction
	Our Results
	Our Techniques.

	Preliminaries
	Models
	Security Definition
	Hybrid Model & Composition

	Impossibility: The Double-Dipping Attack
	Warm Up
	General Case

	Positive Results
	Security via Fairness
	Functions with Forced Output Distribution
	Functions with Fully Revealing Input
	Outliers

	Lower-Bound on Round-Complexity
	Bibliography
	Appendix
	Feasibility landscape of Boolean solitary functionalities (Cont'd)
	Sketch argument for the necessity of Broadcast
	Tables With Examples

	Formal Description and Security Analysis of Outlier Protocol

