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Abstract 

Multi-proxy multi-signature schemes are useful in distributed networks, where a group 

of users cooperatively could delegate their administrative rights to the users of another 

group, who are authorized to generate the proxy signatures cooperatively on behalf of 

the original signers. In this paper, we aim to propose an ID-based lattice-based multi-

proxy multi-signature (ILMPMS) scheme, which enjoys security against quantum com-

puters and efficiency due to ID-based framework, linear operations and possibility of 

parallel computations based on lattices. For this purpose, we first propose an ID-based 

lattice-based multi-signature scheme, used as the underlying signature in our ILMPMS 

scheme. We prove existential unforgeability of both schemes against adaptive chosen-

message attack in the random oracle model based on the hardness of the learning with 

errors problem over standard lattices.  

Keywords: multi-proxy multi-signature scheme, multi-signature scheme, ID-based signature, 

lattice-based signature, learning with errors problem. 

_____________________________________________________________________ 

1 Introduction 

Multi-proxy multi-signature schemes are useful in distributed networks, where a group 

of users could delegate their administrative rights to the users of another group. As 

another instance consider the case where a large number of users have some complaints 

against some internet service providers. The users could delegate a group of lawyers to 

pursue the complaints on their behalf through the multi-proxy multi-signature scheme.  

The concept of proxy signature scheme is useful in cases when an original signer wishes 

to delegate his/her signing rights to the other one, called a proxy signer. The first proxy 

signature scheme was introduced by Mambo et al. in 1996 [1] and [2]. Several proxy 

signature schemes and their variants have been proposed using classical methods of 

cryptography including integer factorization, discrete logarithm and elliptic curve-

based methods [3-,4,5,6,7]. The advent of quantum computers in the near future threatens 
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security of the existing public-key cryptosystems such as RSA [8] and ElGamal [9], 

because of vulnerability of integer factorization and discrete logarithm problems with 

respect to Shor's polynomial time quantum algorithms [10]. Lattice-based cryptography 

is one of the important branches of post-quantum cryptography that benefits from prov-

able security based on worst-case intractability of the lattice hard problems and conjec-

tured security against quantum computers [11] and [12], following the pioneering work 

of Ajtai [13]. Besides, lattice-based algorithms take advantage of simplicity and rela-

tively efficient linear operations and possibility of parallel computations [44]. Since 

then, there are some lattice-based proxy signature schemes such as lattice-based iden-

tity-based (ID-based) proxy signature [14], lattice-based multiple grade proxy signature 

[15] and lattice-based ID-based proxy blind signature [16].  

Proxy signatures can be categorized into three groups including proxy multi-signature, 

multi-proxy signature and multi-proxy multi-signature, based on the number of original 

signers and proxy signers involved.  

The concept of proxy multi-signature (PMS) scheme is useful in cases when a group of 

original signers wish cooperatively to delegate their signing rights to a proxy signer. 

The first proxy multi-signature scheme was introduced by Yi et al. in 2000 [17]. Several 

proxy multi-signature schemes and their variants have been proposed using classical 

methods of cryptography [18-19,20]. Wang and Cao proposed an ID-based proxy multi-

signature scheme in 2007 [21] and Shao showed the vulnerability of their scheme [22]. 

In 2009, Cao and Cao proposed an ID-based proxy multi-signature scheme with formal 

definition and security model for the first time [23]. In 2012, Anand and Padhye pro-

posed an ID-based proxy multi-signature scheme using random oracle model [24]. 

However, their scheme is not secure in the security model they used.  

Multi-proxy signature (MPS) scheme was first introduced by Hwang and Shi in 2000 

[25]. It is useful when a group of proxy signers are authorized to generate the proxy 

signatures cooperatively on behalf of an original signer. Several multi-proxy signature 

schemes and their variants have been proposed using classical methods of cryptography 

[18], [26-2728]. 

The extension of the previous scenarios leads to the concept of multi-proxy multi-sig-

nature (MPMS) schemes, where a group of original signers wish to delegate their sign-

ing rights to a group of proxy signers. The first multi-proxy multi-signature scheme 

introduced by Hwang and Chen in 2004 [29]. Several multi-proxy multi-signature 

schemes and their variants have been proposed using classical methods of cryptography 

[30-31,32,3334].  

In some multi-proxy multi-signature schemes such as [35-36], the proxy signers should 

cooperate with the original signers in the multi-delegation generation phase. In our 

opinion, this extra cooperation reduces the bandwidth efficiency of their scheme and 

on the other hand it is only expected that the original signers be involved in the multi-

delegation generation phase.  

Asaar et al., in 2014 proposed an ID-based multi-proxy multi-signature (IMPMS) 

scheme without bilinear pairings [37]. Besides, they showed that the scheme proposed 

in [20] and [34] are not secure in the underlying security models. However, the scheme 
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proposed in [37] could be non-interactive. Anand and Padhye, in 2015 proposed a se-

cure IMPMS scheme in random oracle model [38]. However, it seems that their scheme 

suffers from the leakage of the original signers' private keys. 

In this paper, we focus on the IMPMS, to achieve bandwidth efficiency and avoid the 

heavy public key infrastructure in real scenarios because of large number of users in-

volved. Hence, we propose a provable secure ID-based lattice-based multi-proxy multi-

signature (ILMPMS) scheme in the random oracle model, based on standard assump-

tions. To the best of our knowledge, the proposed scheme is the first ID-based lattice-

based one which enjoys security against quantum computers and efficiency due to ID-

based framework, linear operations and possibility of parallel computations based on 

lattices. 

In this paper, we first propose an ID-based lattice-based multi-signature (ILMS) 

scheme. We use the proposed ILMS scheme as the underlying signature to propose an 

ILMPMS scheme. The proposed ILMS scheme is based on LWE problem over standard 

lattices in the random oracle model. In the proposed ILMS scheme, we use Bai-Gal-

braith's scheme as the underlying signature [39].  

We note that, El Bansarkhani and Sturm proposed the first lattice-based multi-signature 

scheme in 2016 [40]. Their interactive multi-signature scheme is relied on the signature 

scheme of Güneysu et al. [41]. The proposed scheme in [40] is provable secure in the 

random oracle model based on ideal lattice problems using Forking Lemma. However, 

Forking Lemma in general is an obstacle in quantum security proof [42]. 

Roadmap: The rest of this paper is organized as follows. Section 2 deals with prelim-

inaries. The proposed signature models and security requirements are given in Sec-

tions 3 and 4, respectively. Sections 5 and 6 embrace the proposed ILMS scheme and 

its security analysis, respectively. Section 7 is devoted to our proposed ILMPMS 

scheme. The security analysis of the proposed ILMPMS scheme is given in Section 8. 

Finally, Section 9 draws all the points together and gives concluding remarks. 

2 Preliminaries 

2.1 Notations 

The Euclidean norm is denoted by ‖. ‖. We denote by ‖. ‖∞  the infinity norm. The 

ring ℤ𝑞, for a positive integer 𝑞, represents the set of integers in the interval [−
𝑞

2
,
𝑞

2
). 

We use uppercase letters for matrices and by the length of a matrix we mean the largest 

norm of its columns. A vertical bar is used for horizontal concatenation of vectors and 

matrices. The notation ⌈. ⌋𝑑 indicates dropping the 𝑑 least significant bits and [𝑐]2𝑑  is 

the unique integer in the set (−2𝑑−1, 2𝑑−1] such that 𝑐 ≡ [𝑐]2𝑑( 𝑚𝑜𝑑 2
𝑑). 

The standard notations 𝒪(. ) and 𝜔(. ) used to describe asymptotic growth rates and 

�̃�(. ) and �̃�(. ) indicate hiding the logarithmic factors. In a polynomial time algorithm 

the running time is upper bounded by 𝒪(𝑙𝑘), where 𝑙 is the input size of the algorithm 

and 𝑘 is a constant value. We represent the negligible function by 𝑛𝑒𝑔𝑙 (𝑛), where for 

every 𝑐 > 0 there is an integer 𝑛𝑐 such that for all 𝑛 > 𝑛𝑐 the inequality |𝑛𝑒𝑔𝑙 (𝑛)| <
𝑛−𝑐 holds [43]. 
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2.2 Lattices and the hard problems 

Definition 1 (lattice) [44]: An 𝑚-dimensional lattice is generally a subspace of ℝ𝑚. 

An integer lattice ℒ with a basis 𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} ∈ ℤ𝑞
𝑚×𝑛 is a subspace of ℤ𝑚 (𝑛 ≤

𝑚), where 

 ℒ(𝐵) = ℒ(𝑏1, ⋯ , 𝑏𝑛) = {𝐵𝑥|𝑥 ∈ ℤ𝑛} = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 : 𝑥𝑖 ∈ ℤ;  1 ≤ 𝑖 ≤ 𝑛} (1) 

The integers 𝑚 and 𝑛 are called the dimension and the rank of the lattice, respectively. 

A lattice basis is not unique and for any unimodular matrix 𝑈, 𝑈 ∈ ℤ𝑛×𝑛  with determi-

nant ±1, 𝐵. 𝑈 is another basis of ℒ(𝐵). 

For the rest of this paper we consider integer lattices and use simply "lattice" instead of 

"integer lattice". 

Definition 2 (fundamental parallelepiped) [44]: For a lattice with a basis 

𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} ∈ ℤ𝑞
𝑚×𝑛 , the fundamental parallelepiped is  𝒫1/2(𝐵) =

{∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 : − 1/2 ≤ 𝑥𝑖 < 1/2}.  

Definition 3 (Gram-Schmidt orthogonalization) [44]: For a given set of linearly in-

dependent vectors 𝐵 = {𝑏1, … , 𝑏𝑛}, the corresponding Gram-Schmidt algorithm out-

puts the orthogonal linearly independent vectors 𝐵∗ = {𝑏1
∗, 𝑏2

∗, … , 𝑏𝑛
∗}, where 

 𝑏𝑖
∗ = 𝑏𝑖 − ∑ 𝜇𝑖,𝑗𝑏𝑗

∗𝑖−1
𝑗=1 ;  𝜇𝑖,𝑗 =

⟨𝑏𝑖,𝑏𝑗
∗⟩

⟨𝑏𝑗
∗,𝑏𝑗

∗⟩
      1 ≤ 𝑖 ≤ 𝑛 (2) 

Definition 4 (𝒒-ary lattice) [11]: A lattice ℒ is called 𝑞-ary if 𝑞ℤ𝑛 ⊆ ℒ ⊆ ℤ𝑛, for some 

integer 𝑞. For a matrix 𝐵 ∈ ℤ𝑞
𝑚×𝑛 and some integers 𝑞,𝑚 and 𝑛 (𝑛 ≤ 𝑚), the corre-

sponding 𝑞-ary lattices with dimension 𝑚 are as follows:  

 ℒ𝑞(𝐵) = {𝑦 ∈ ℤ
𝑚: 𝑦 = 𝐵𝑠 𝑚𝑜𝑑 𝑞 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠 ∈ ℤ𝑛} (3) 

 ℒ𝑞
⊥(𝐵) = {𝑦 ∈ ℤ𝑚: 𝐵𝑇𝑦 = 0 𝑚𝑜𝑑 𝑞} (4) 

Gaussian heuristic [11]: The number of variables in ℒ𝑞
⊥(𝐵) ∩ [−𝛼, 𝛼]𝑚 is approxi-

mated by the so-called Gaussian heuristic as follows: 

|ℒ𝑞
⊥(𝐵) ∩ [−𝛼, 𝛼]𝑚| =

𝑣𝑜𝑙 ([−𝛼, 𝛼]𝑚)

det(ℒ𝑞
⊥(𝐵))

=
(2𝛼 + 1)𝑚

𝑞𝑛
 

Definition 5 (Shortest Vector Problem (𝑺𝑽𝑷) and 𝑮𝒂𝒑𝑺𝑽𝑷) [45]: for a given lattice 

basis 𝐵, 𝑆𝑉𝑃 is the problem of finding the shortest nonzero vector in ℒ(𝐵). 𝑆𝑉𝑃𝛾  is the 

problem of finding a nonzero vector 𝑣 ∈ ℒ(𝐵) in the approximation variant of 𝑆𝑉𝑃, 

where 𝛾 = 𝛾(𝑛) ≥ 1 is the approximation factor, such that 

 ‖𝑣‖ ≤ 𝛾 min
𝑤∈ℒ(𝐵)\{0}

‖𝑤‖ (5) 

Let 𝜆1(ℒ) be the length of the shortest nonzero vector in ℒ(𝐵). 𝐺𝑎𝑝𝑆𝑉𝑃𝛾 is the deci-

sional variant of 𝑆𝑉𝑃𝛾 determining either 𝜆1(ℒ) ≤ 𝑟 or 𝜆1(ℒ) > 𝛾𝑟, for 𝑟 > 0 [12]. 
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There is neither classical nor quantum polynomial time algorithm known to approxi-

mate the above-mentioned problems to within polynomial approximation factor 𝛾 [12] 

and [46].  

Definition 6 (statistical distance) [47]: The statistical distance between two distribu-

tions Α and Β over a countable domain 𝐷 is 
1

2
∑ ‖Α(𝑑) − Β(𝑑)‖𝑑∈𝐷 . Two distributions 

are statistically close if their statistical distance is negligible. 

Definition 7 (discrete Gaussian distribution) [48]: The continuous Gaussian distri-

bution over ℝ𝑚 with mean 𝑐 and real standard deviation 𝑠 > 0 has the following den-

sity function  

 𝜌𝑠,𝑐
𝑚 (x) = (

1

√2𝜋𝑠2
)
𝑚

𝑒
−‖𝑥−𝑐‖2

2𝑠2  (6) 

Therefore, 𝜌𝑠,𝑐
𝑚 (ℤ𝑚) = ∑ 𝜌 𝑠,𝑐

𝑚 (𝑧)𝑧∈ℤ𝑚 . Discrete Gaussian distribution over ℤ𝑚 and over 

a lattice ℒ are defined as follows, respectively 

 𝐷𝑠,𝑐
𝑚 (x) = 𝜌𝑠,𝑐

𝑚 (x)/𝜌𝑠,𝑐
𝑚 (ℤ𝑚) (7) 

 ∀𝑥 ∈ ℒ, 𝐷ℒ,𝑠,𝑐(𝑥) = 𝜌𝑠,𝑐
𝑚 (x)/𝜌𝑠,𝑐

𝑚 (ℒ) (8) 

Definition 8 (smoothing parameter) [12] and [47]: Informally, the smoothing param-

eter of an 𝑚-dimensional lattice  ℒ is the minimum positive 𝑠 to blur the discreteness 

of the corresponding lattice, which has the following bound  

 𝜂𝜖(ℒ) ≤ min
𝐵
‖𝐵∗‖√log(2𝑚(1 + 1/𝜖))/𝜋 (9) 

Where 𝐵  is a basis of the lattice ℒ, ‖𝐵∗‖ is the length of the corresponding Gram-

Schmidt orthogonalized matrix, 𝑚 ≥ 2𝑛𝑙𝑜𝑔 𝑞 and 𝜖 is a real positive number. There-

fore, there is a negligible 𝜖(𝑛) where 

 𝜂𝜖(ℒ) ≤ 𝑚𝑖𝑛
𝐵
‖𝐵∗‖𝜔(√log𝑚) (10) 

Theorem 1 [47]: On inputs a basis 𝐵 ∈ ℤ𝑞
𝑛×𝑚 of the lattice ℒ, parameters 𝑐 ∈ ℝ𝑚 and 

a real 𝑟 ≥ ‖𝐵∗‖. 𝜔(√log𝑚), there is a probabilistic polynomial-time (PPT) algorithm 

that outputs a sample from a distribution statistically close to  𝐷ℒ,𝑟,𝑐 . Besides, 

for x ← 𝐷ℒ,𝑟,𝑐 the following assertion holds 

 𝑃 𝑟{‖x − 𝑐‖ > 𝑟√𝑚} ≤ 𝑛𝑒𝑔𝑙(𝑚) (11) 

Definition 9 (ring-SIS problem) [12]: Consider the ring 𝑅, we define 𝑅𝑞 = 𝑅/𝑞𝑅. 

Given an arbitrary vector 𝑎 ∈ 𝑅𝑞
𝑚 and 𝛽 > 0, 𝑟𝑖𝑛𝑔 − 𝑆𝐼𝑆𝑞,𝑚,𝛽 is to find a non-trivial 

vector 𝑧 ∈ 𝑅𝑚 such that ‖𝑧‖ ≤ 𝛽 and 𝑎𝑡 . 𝑧 = 0 ∈ 𝑅𝑞. 

Definition 10 (decisional learning with errors (LWE) problem) [12]: Let 𝑛,𝑚, 𝑞 be 

positive integers,  𝑠 ∈ ℤ𝑞
𝑛 , and  𝜒 be a discrete Gaussian distribution of width 𝛼𝑞  for 

some 𝛼 < 1. 𝐴𝑠,𝜒 is the LWE distribution which outputs (𝑎, < 𝑎, 𝑠 > + e (𝑚𝑜𝑑 𝑞)) ∈

ℤ𝑞
𝑛 × ℤ𝑞, where 𝑎

𝑅
← ℤ𝑞

𝑛 and e ← 𝜒. For given arbitrarily many samples from ℤ𝑞
𝑛+1, the 
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decisional-LWE problem distinguishes whether the samples are distributed uniformly 

or from the LWE distribution for some fixed vector 𝑠.  

The hardness of LWE is maintained even if LWE has short secrets, where the secret 

vector 𝑠 is sampled according to the error distribution 𝜒 [49]. LWE problem is at least 

as hard as solving 𝐺𝑎𝑝𝑆𝑉𝑃𝛾  in the worst case, for 𝑞 ≥ 2𝑛/2 and 𝛾 = �̃�(𝑛/𝛼)  [50] and 

[12].  

Definition 11: Let 𝑛,𝑚, 𝑞 be positive integers, 𝑠 ∈ ℤ𝑞
𝑛, and 𝜒 be a discrete Gaussian 

distribution of width 𝛼𝑞 for some 𝛼 < 1, 𝑎
𝑅
← ℤ𝑞

𝑛 and e ← 𝜒. We say that LWE𝑛,𝑚,𝑞,𝛼 

is 𝜖-hard, if for any PPT algorithm 𝒜, Pr {𝑠 ← 𝒜(𝑎,< 𝑎, 𝑠 > + e (𝑚𝑜𝑑 𝑞))} ≤ 𝜖, for 

any negligible 𝜖. 

Definition 12 (trapdoor basis) [47]: A trapdoor basis 𝑇 of a lattice for signature gen-

eration corresponds to a random basis 𝐵 (as the public key) from an appropriate distri-

bution. The length of the Gram-Schmidt vectors of the trapdoor basis is relatively short.  

There are efficient PPT algorithms 𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1𝑛) that output a basis 𝐵 ∈ ℤ𝑞
𝑛×𝑚 statis-

tically close to the uniform and a trapdoor basis 𝑇 ∈ ℤ𝑞
𝑚×𝑚 for ℒ𝑞

⊥(𝐵), on inputs posi-

tive integers 𝑛, 𝑞 ≥ 2 and 𝑚 = 𝒪(𝑛 log 𝑞) [51] and [52]. 

Definition 13 (preimage-samplable trapdoor functions (PSFs)) [12] and [47]: PSFs 

include the following PPT algorithms:  

 (𝐵, 𝑇 ) ← 𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1𝑛), where 𝐵 is used to compute efficiently 𝑓𝐵: 𝐷𝑛 ⟶

𝑅𝑛, and 𝑇 is used as a trapdoor. 

 𝐷𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 (1𝑛) chooses a point 𝑥 from 𝐷𝑛such that the distribution 

of 𝑓𝐵(𝑥) is uniformly over 𝑅𝑛. 

 𝑃𝑟𝑒𝑆𝑎𝑚𝑝𝑙𝑒 (𝐵, 𝑇, 𝑦) computes a preimage 𝑥 ← 𝑓𝐵
−1(𝑦), given 𝑓𝐵(𝑥) = 𝑦 

for any 𝑦 chosen uniformly from 𝑅𝑛. 

Micciancio and Peikert proposed a new method for trapdoors generation [53], which is 

very simple and fast in the generation phase, also parallel, mostly offline and practical 

in the inversion phase. Compared to [47] and [51-52], their scheme enjoys from smaller 

and tighter parameters 𝑚 and 𝑟, and smaller key size. They use a fixed, structured and 

public matrix 𝐺 ∈ ℤ𝑞
𝑛×𝑚1 , nominated as "gadget matrix" for which solving the 𝐿𝑊𝐸 

problem is easy. The matrix 𝐺 is randomized with a unimodular matrix to generate a 

matrix 𝐴 ∈ ℤ𝑞
𝑛×𝑚, statistically close to the uniform. Computing 𝑓𝐴

−1 is reduced to 𝑓𝐺
−1 

with the trapdoor matrix 𝑇 along with pre-/post-processing. 

Theorem 2 [53]: Given positive integers 𝑛, 𝑞 ≥ 2, 𝑚1 = 𝑛 log 𝑞, 𝑚2 ≥ 𝑛 log 𝑞, 𝑚 =

𝑚1 +𝑚2 and a matrix �̅� ∈ ℤ𝑞
𝑛×𝑚2 , there is an efficient PPT algorithm 𝑇𝑟𝑎𝑝𝐺𝑒𝑛(�̅�) 

which outputs a basis 𝐴 ∈ ℤ𝑞
𝑛×𝑚 statistically close to the uniform, and a trapdoor ba-

sis 𝑇 ∈ ℤ𝑞
𝑚2×𝑚1 , where: 

 𝐴 = [�̅�|𝐺] [
𝐼 −𝑇
0 𝐼

] = [�̅�|𝐺 − �̅�𝑇] (12) 

𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1𝑛) could be used when �̅� is chosen randomly from uniform distribution. 
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Theorem 3 [53]: Let  𝓈(𝑇)  be the largest singular value of the matrix  𝑇 ,  𝓈′ =

√𝓈(𝑇)2 + 1 and  𝑓𝐺(𝑠, 𝑒) = 𝐺𝑠 + 𝑒 𝑚𝑜𝑑 𝑞, where 𝐺 is a gadget matrix. Consider that 

the algorithm correctly computes  𝑓𝐺
−1(𝑠′, 𝑒′)  for any  𝑒′ ∈ 𝒫1/2(𝑞𝐵

−𝑡), for some  𝐵 . 

Let 𝑏 = 𝑓𝐴(𝑠, 𝑒) for any 𝑠 and e ← 𝐷ℤ𝑚,𝛼𝑞, where 1/𝛼 ≥ 2‖𝐵‖𝓈′. 𝜔(√log 𝑛). There is 

a PPT algorithm 𝐼𝑛𝑣𝑒𝑟𝑡 (𝐴, 𝑇, 𝑏) that outputs 𝑠 and 𝑒, on inputs a basis 𝐴 ∈ ℤ𝑞
𝑛×𝑚, a 

trapdoor basis 𝑇 ∈ ℤ𝑞
𝑚2×𝑚1  for 𝐴 and 𝑏 with overwhelming probability, where 𝑚1 =

𝑛 log 𝑞, 𝑚2 ≥ 𝑛 log 𝑞, 𝑚 = 𝑚1 +𝑚2. 

Definition 14 (the 𝑪𝒉𝒆𝒄𝒌 (. ) algorithm) [54]: For the given 𝐸, consider 𝐸𝑟  as the rth 

row of the matrix E. The function max
𝑘
(𝐸𝑟) outputs the kth largest element of the given 

vector. Output of the 𝐶ℎ𝑒𝑐𝑘 (𝐸) algorithm is false if for any row of E, ∑ max
𝑘
(𝐸𝑟)

𝜔
𝑘=1  

is greater than some bound L, otherwise the output is true. 

3 The proposed signature models 

3.1 Model of ID-based lattice-based multi-signature (ILMS) schemes 

Consider there are 𝑁 signers with identity set 𝐼𝐷𝑆 = {𝐼𝐷𝑆1, … , 𝐼𝐷𝑆𝑁}. An ILMS scheme 

consists of the following algorithms.  

Table 1. Algorithms of ILMS scheme 

Algorithm Input(s) Output(s) 

Setup the system security parameter 

system parameters 
and master pri-
vate/public key 
pair 

Key 
Extraction 

the system parameters, the master private key, the 
master public key and a user identity 𝐼𝐷𝑖 

user's private key 
𝑠𝑘𝑖  

MS 
Generation 

the system parameters, the master public key, a mes-
sage 𝜇, the signers' identity set 𝐼𝐷𝑆, the signers' private 
keys 𝑠𝑘𝑖 , 𝑖 ∈ {1, … , 𝑁}, and the partial signature of the 
co-signers* 

*This is an interactive algorithm between signers to 
sign the message 𝜇. 

multi-signature 𝜎𝑠 
on 𝜇 

MS 
Verification 

the system parameters, the master public key, the sign-
ers' identity set 𝐼𝐷𝑆 and their multi-signature 𝜎𝑠 on 𝜇 

“accept” if 𝜎𝑠 is 
valid, and “reject” 
otherwise 

 

3.2 Model of ID-based lattice-based multi-proxy multi-signature (ILMPMS) 

schemes 

Consider there are 𝑀  original signers and 𝑁 proxy signers with identity sets  𝐼𝐷𝑂 =
{𝐼𝐷𝑂1, … , 𝐼𝐷𝑂𝑀} and 𝐼𝐷𝑃 = {𝐼𝐷𝑃1, … , 𝐼𝐷𝑃𝑁}, respectively. An ILMPMS scheme con-

sists of the following algorithms.  
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Table 2. Algorithms of ILMPMS scheme 

Algorithm Input(s) Output(s) 

Setup the system security parameter 

system parameters 
and master pri-
vate/public key 
pair 

Key 
Extraction 

the system parameters, the master private key, the 
master public key and a user identity 𝐼𝐷𝑖 

user's private key 

𝑠𝑘𝑖  

MD 
Generation 

the system parameters, the master public key, a war-
rant 𝑤, the original signers' identity set 𝐼𝐷𝑂, the origi-
nal signers' private keys 𝑠𝑘𝑖 , 1 ≤ 𝑖 ≤ 𝑀, and the par-
tial signature of co-original signers* 

*This is an interactive algorithm between original 
signers to sign the warrant 𝑤. 

multi-delegation 
signature 𝜎𝑤 on 𝑤 

MD 
Verification 

the system parameters, the master public key, the orig-
inal signers' identity set 𝐼𝐷𝑂 and multi-delegation sig-
nature 𝜎𝑤 on 𝑤 

 “accept” if 𝜎𝑤 is 
valid, and “reject” 
otherwise 

ILMPMS 
Generation 

the system parameters, the master public key, a mes-
sage 𝜇, the warrant 𝑤, the proxy signers' identity 
set 𝐼𝐷𝑃, the original signers' identity set 𝐼𝐷𝑂, the proxy 
signers' private keys 𝑠𝑘𝑖 , 𝑖 ∈ {1,… , 𝑁}, multi-delega-
tion signature 𝜎𝑤 on 𝑤, and the partial signature of co-
proxy signers* 

*This is an interactive algorithm between proxy sign-
ers to sign the message 𝜇. 

ILMPMS 𝜎 on 𝜇 

ILMPMS 
Verification 

the system parameters, the master public key, the 
proxy signers' identity set 𝐼𝐷𝑃, the original signers' 
identity set 𝐼𝐷𝑂, the warrant 𝑤 and ILMPMS 𝜎 on 𝜇 

“accept” if 𝜎 is 
valid, and “reject” 
otherwise 

4 Security requirements 

4.1 Existential unforgeability of ILMS schemes 

In the security model, it is assumed w.l.o.g. that there is only one honest signer. Exis-

tential unforgeability of ILMS schemes requires that forging a valid multi-signature on 

a chosen message by an adversary be difficult, even if the adversary has obtained the 

private keys of the signers except for the honest signer, and some other valid multi-

signatures on its chosen messages. Consider the following game for a formal definition 

of existential unforgeability against a PPT adversary in an ILMS scheme. 

1. Let 𝑙 be the game parameter. The system parameters, the master private/public key 

pair and users' private keys are generated. Let the identities of the signers, the system 

parameters and the master public key are given to the adversary. 

2. Throughout the entire game, the adversary is able to make ILMS generation queries 

of the form (𝑡, 𝐼𝐷𝑆, 𝜇), where 𝑡 is the index of an honest signer such that 𝐼𝐷𝑆,𝑡 ∈ 𝐼𝐷𝑆 
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and  𝜇  is the message to be signed. A challenger simulates a valid  𝜎𝑠 ←
𝑆𝑖𝑔(𝑠𝑘𝑆,𝑡 , 𝜇, 𝐼𝐷𝑆). 

3. The adversary has also access to a corrupt oracle 𝐶𝑜𝑟𝑟𝑢𝑝𝑡(. ), which on input 𝐼𝐷𝑆,𝑖 

returns 𝑠𝑘𝑆,𝑖. 

4.  The adversary Outputs (𝜇∗, 𝜎𝜇∗, 𝐼𝐷𝑆∗) and succeeds if the following conditions are 

satisfied: 

 It never queried (𝑡, 𝐼𝐷𝑆∗ , 𝜇
∗), for any 𝑡. 

 One of the identities in 𝐼𝐷𝑆∗ is not in the set of the corrupted users.  

 𝑉𝑟𝑓𝑦(𝜇∗, 𝜎𝜇∗, 𝐼𝐷𝑆∗) = 1. 

Definition 15. We say that an ILMS scheme is existential unforgeable against adaptive 

chosen-message attack if no PPT adversary has a non-negligible advantage in the above 

game. 

4.2 Existential unforgeability of ILMPMS schemes 

In the security model, it is assumed w.l.o.g. that there is only one honest signer. Exis-

tential unforgeability of ILMPMS schemes requires that forging a valid multi-proxy 

multi-signature on a chosen message by an adversary be difficult, even if the adversary 

has obtained the private keys of the signers except for the honest signer, and some other 

valid multi-proxy multi-signatures on its chosen messages. To discuss the unforgeabil-

ity of ILMPMS schemes, we categorize the adversaries into three types according to 

different resources they can get.  

Type1: The adversary has only identities of the original signers and proxy signers. 

Type2: The adversary has private keys of the original signers and proxy signers except 

for the honest proxy signer, besides identities of the original signers and proxy signers. 

Type3: The adversary has private keys of the proxy signers and original signers except 

for the honest original signer, besides identities of the original signers and proxy sign-

ers. 

It can be found that if an ILMPMS scheme is existential unforgeable against Type2 and 

Type3 adversaries, it is also existential unforgeable against Type1 adversary. 

a. Existential unforgeability against Type2 adversary 

By existential unforgeability against Type2 adversary of ILMPMS schemes, we mean 

that it is difficult for an adversary to forge a valid ILMPMS on a message of its choice, 

even if it has obtained the private keys of the original signers and proxy signers except 

for the honest proxy signer, and some other valid multi-proxy multi-signatures on its 

chosen messages. Consider the following game for a formal definition of existential 

unforgeability against a PPT Type2 adversary in an ILMPMS scheme.   

1. Let 𝑙 be the game parameter. The system parameters, master private/public key pair 

and users' private keys are generated. Then the adversary is provided with identities of 

the original signers and proxy signers, the system parameters, the master public key and 

the original signers' private keys.  
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2. Throughout the entire game, the adversary is able to make ILMPMS generation que-

ries of the form (ℎ, 𝐼𝐷𝑃 , 𝜎𝑤 , 𝐼𝐷𝑂 , 𝑚), where ℎ is the index of an honest proxy signer 

such that  𝐼𝐷𝑃,ℎ ∈ 𝐼𝐷𝑃  ,  𝜎𝑤  is a multi-delegation signature generated by the users 

with  𝐼𝐷𝑂 and 𝑚 is the message to be signed. The challenger simulates a valid multi-

proxy multi-signature 𝜎 ← 𝑆𝑖𝑔(𝑠𝑘𝑃,ℎ , 𝜎𝑤, 𝑚, 𝐼𝐷𝑂 , 𝐼𝐷𝑃). 

3. The adversary has also access to a corrupt oracle 𝐶𝑜𝑟𝑟𝑢𝑝𝑡(. ), which on input 𝐼𝐷𝑃,𝑖, 

returns 𝑠𝑘𝑃,𝑖. 

4.  The adversary Outputs (𝑤∗, 𝑚∗, 𝜎∗, 𝐼𝐷𝑂∗ , 𝐼𝐷𝑃∗) and succeeds if the following con-

ditions are satisfied: 

 It never queried (ℎ, 𝐼𝐷𝑃∗ , 𝜎𝑤∗, 𝐼𝐷𝑂∗ , 𝑚
∗), for any ℎ. 

 One of the identities in 𝐼𝐷𝑃∗ is not in the set of the corrupted users.  

 𝑉𝑟𝑓𝑦(𝑤∗, 𝑚∗, 𝜎∗, 𝐼𝐷𝑂∗ , 𝐼𝐷𝑃∗) = 1. 

Definition 16.  We say that an ILMPMS scheme is secure against Type2 adversary if 

no PPT adversary has a non-negligible advantage in the above game. 

b. Existential unforgeability against Type3 adversary 

By existential unforgeability against Type3 adversary of ILMPMS schemes, we mean 

that it is difficult for an adversary to forge a valid multi-delegation signature on a war-

rant of its choice, even if it has obtained the private keys of the proxy signers and orig-

inal signers except for the honest original signer, and some other valid multi-delegation 

signatures on its chosen warrants. Consider the following game for a formal definition 

of existential unforgeability against a PPT Type3 adversary in an ILMPMS scheme. 

1. Let 𝑙 be the game parameter. The system parameters, master private/public key pair 

and users' private keys are generated. Then the adversary is provided with identities of 

the original signers and proxy signers, the system parameters, the master public key and 

the proxy signers' private keys.  

2. Throughout the entire game, the adversary is able to make multi-delegation genera-

tion queries of the form (ℎ, 𝐼𝐷𝑂 , 𝑤), where ℎ is index of an honest original signer such 

that 𝐼𝐷𝑂,ℎ ∈ 𝐼𝐷𝑂  and 𝑤 is the warrant to be signed. The challenger simulates a valid 

delegation signature  𝜎𝑤 ← 𝑆𝑖𝑔(𝑠𝑘𝑂,ℎ, 𝑤, 𝐼𝐷𝑂). 

3. The adversary has also access to a corrupt oracle 𝐶𝑜𝑟𝑟𝑢𝑝𝑡(. ), which on input 𝐼𝐷𝑂,𝑖, 

returns 𝑠𝑘𝑂,𝑖. 

4.  The adversary Outputs (𝑤∗, 𝜎𝑤∗ , 𝐼𝐷𝑂∗) and succeeds if the following conditions are 

satisfied: 

 It never queried (ℎ, 𝐼𝐷𝑂∗ ,𝑤
∗), for any ℎ. 

 One of the identities in 𝐼𝐷𝑂∗ is not in the set of the corrupted users.  

 𝑉𝑟𝑓𝑦(𝑤∗, 𝜎𝑤∗ , 𝐼𝐷𝑂∗) = 1. 

Definition 17. We say that an ILMPMS scheme is secure against Type3 adversary if 

no PPT adversary has a non-negligible advantage in the above game. 
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Definition 18. We say that an ILMPMS scheme is existential unforgeable against adap-

tive chosen-message attack if it is secure against both Type2 and Type3 adversaries. 

5 ILMS scheme 

Here, we propose an ILMS scheme, which enjoys security against quantum computers 

and efficiency due to ID-based framework, linear operations and possibility of parallel 

computations based on lattices. We use the proposed ILMS scheme as the underlying 

signature in our ILMPMS scheme in Section 7. Our ILMS scheme consists of the fol-

lowing algorithms, as mentioned in Section 3.1. 

5.1 Setup 

Consider a set of 𝑁 signers with identity set 𝐼𝐷 = {𝐼𝐷1, … , 𝐼𝐷𝑁}. Let 𝛼, 𝑘, 𝑑, 𝑞, 𝑛,𝑚 =
𝑛 log 𝑞 be positive integers, 𝐻1: {0,1}

∗ → ℤ𝑞
𝑚×𝑛  and 𝐻: {0,1}∗ → {0,1}𝑘  be as random 

oracles and 𝐹: {0,1}𝑘 → 𝑉𝑛,𝜔, where 𝑉𝑛,𝜔 denotes the set of binary vectors of length 𝑛 

and Hamming weight 𝜔. The key distribution center (KDC) chooses 𝐴0 ∈ ℤ𝑞
(𝑚+𝑛)×𝑛

 

and generates the corresponding trapdoor basis 𝑇0. KDC sets 𝑇0 as the master private 

key and generates the master public key 𝐴 = 𝐴0
′ ∈ ℤ𝑞

𝑚×𝑛 using the following lemma. 

Lemma 1 : Let  𝒃 = 𝑨𝒔 + 𝒆 (𝒎𝒐𝒅 𝒒) , where  𝑨 ∈ ℤ𝒒
(𝒎+𝒏)×𝒏

, 𝒔 ∈ ℤ𝒒
𝒏, 𝒆 ∈ 𝝌𝒎+𝒏 

and 𝒃 ∈ ℤ𝒒
𝒎+𝒏. We have the following trapdoor for LWE with short secrets. 

Proof: First, we use the trapdoor basis of 𝑨 to invert 𝒃. With overwhelming probabil-

ity, 𝑨 has rank 𝒏 and by swapping rows of 𝑨, if necessary, we have 𝑨𝟏 ∈ ℤ𝒒
𝒏×𝒏 as an 

invertible matrix and 𝑨𝟐 ∈ ℤ𝒒
𝒎×𝒏, therefore  

𝐴 = (
𝐴1
𝐴2
) , 𝑏 = (

𝑏1
𝑏2
) , 𝑒 = (

𝑒1
𝑒2
) 

⟹ 𝑏1 = 𝐴1𝑠 + 𝑒1 (𝑚𝑜𝑑 𝑞), 𝑏2 = 𝐴2𝑠 + 𝑒2 (𝑚𝑜𝑑 𝑞) 

⟹ 𝑏2 = 𝐴2𝐴1
−1(𝑏1 − 𝑒1) + 𝑒2 (𝑚𝑜𝑑 𝑞) 

⟹ 𝑏2 − 𝐴2𝐴1
−1𝑏1 = (−𝐴2𝐴1

−1)𝑒1 + 𝑒2 (𝑚𝑜𝑑 𝑞) 

ℎ = 𝐴′𝑠′ + 𝑒′, 𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 
ℎ = 𝑏2 − 𝐴2𝐴1

−1𝑏1 ∈ ℤ𝑞
𝑚

𝐴′ = −𝐴2𝐴1
−1 ∈ ℤ𝑞

𝑚×𝑛

𝑠′ = 𝑒1 ∈ ℤ𝑞
𝑛

𝑒′ = 𝑒2 ∈ ℤ𝑞
𝑚

∎

 

5.2 Key Extraction 

For each signer 𝐼𝐷𝑖 ∈ {𝐼𝐷1, … , 𝐼𝐷𝑁}, KDC computes 𝑆𝑖 ∈ 𝐷𝛼
𝑛×𝑛 and 𝐸𝑖 ∈ 𝐷𝛼

𝑚×𝑛  such 

that 𝐴𝑆𝑖 + 𝐸𝑖 = 𝐻1(𝐼𝐷𝑖)(𝑚𝑜𝑑 𝑞). If 𝐶ℎ𝑒𝑐𝑘 (𝐸) = 0, as mentioned in the preliminary, 

then the algorithm restarts. Otherwise, it outputs the private key 𝑆𝑖  to the signer 𝐼𝐷𝑖. 
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5.3 MS Generation 

Let  𝜇  denotes a message to be signed by the signers from the identity set  𝐼𝐷 =
{𝐼𝐷1 , … , 𝐼𝐷𝑁}. 

 The signer 𝐼𝐷𝑖 chooses 𝑦𝑖
𝑅
← [−𝛽, 𝛽]𝑛, where 𝛽 is obtained from Theorem 4, 

then computes 𝑣𝑖 = 𝐴𝑦𝑖  (𝑚𝑜𝑑 𝑞) and broadcasts 𝑣𝑖  to the co-signers. 

 The signer 𝐼𝐷𝑖, computes: 

𝑣 =∑𝑣𝑗

𝑁

𝑗=1

 (𝑚𝑜𝑑 𝑞) 

𝑐 = 𝐻(⌈𝑣⌋𝑑 , 𝜇, 𝐼𝐷) 

𝐶 = 𝐹(𝑐) 

𝑧𝑖 = 𝑆𝑖𝐶 + 𝑦𝑖  

 𝑤 = 𝐴𝑧𝑖 − 𝐻1(𝐼𝐷𝑖)𝐶 (𝑚𝑜𝑑 𝑞)  (13) 

𝑖𝑓  |[𝑤𝑖]2𝑑| > 2𝑑−1 − ℓ  , 𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑡𝑎𝑟𝑡. (for 1 ≤ 𝑖 ≤ 𝑚) 

Otherwise, the signer  𝐼𝐷𝑖  broadcasts  𝑧𝑖  to the co-signers with probabil-

ity min{
𝐷𝑦
𝑛(𝑧𝑖)

𝑁.𝐷𝑦,𝑆𝐶
𝑛 (𝑧𝑖)

, 1}. 

 When all the partial signatures are valid, the multi-signature of the mes-

sage 𝜇 w.r.t. the identity set 𝐼𝐷 is obtained as 𝜎𝑀𝑆 = (𝑧 = ∑ 𝑧𝑗
𝑁
𝑗=1 , 𝑐).  

5.4 MS Verification 

Upon receiving (𝐼𝐷, 𝜇, 𝜎𝑀𝑆 = (𝑧, 𝑐)), the verifier computes: 

𝐶 = 𝐹(𝑐) 

 𝑤′ = 𝐴𝑧 − ∑ 𝐻1(𝐼𝐷𝑖)
𝑁
𝑖=1 𝐶 (𝑚𝑜𝑑 𝑞)   (14) 

𝑐′ = 𝐻(⌈𝑤′⌋𝑑 , 𝜇, 𝐼𝐷) 

The multi-signature 𝜎𝑀𝑆 is accepted if the following relations are satisfied. Otherwise, 

it is rejected. 

‖𝑧‖∞ ≤ 𝑁𝛽 

𝑐′ = 𝑐 

6 Security analysis of the proposed ILMS 

In the security proof, it is assumed w.l.o.g. that there is only one honest signer. Here, 

we consider an adversary faced with either a valid public key of our ILMS scheme or a 
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random one and show that those keys cannot be distinguished with non-negligible prob-

ability. In Theorem 4 we show that our ILMS scheme is unforgeable based on deci-

sional LWE problem in the random oracle model. We consider adaptive chosen-mes-

sage attack scenario, where an adversary 𝒜 is allowed to make arbitrary many multi-

signature queries to the honest signer on the messages of its choice. The adversary 𝒜 

is provided with the private keys of all signers but the honest signer.  

Theorem 4: If 𝑳𝑾𝑬𝒏,𝒎,𝒒,𝜶 is 𝝐-hard, our ILMS scheme is 𝝐′-unforgeable against adap-

tive chosen-message attacks in the random oracle model, where at most 𝑵 users are 

involved and 𝓐 makes at most 𝒒𝟎 key extraction queries, at most 𝒒𝟏 hash queries of 

oracle 𝑯(. ) and at most 𝒒𝟐 signing queries. 

Before proving this theorem, it is needed to state the following lemmas. 

Lemma 2: For 𝑆 ∈ [−𝛽, 𝛽]𝑛×𝑛, 𝐸 ∈ [−𝛽, 𝛽]𝑚×𝑛 and 𝐴, 𝐻1
𝑅
← ℤ𝑞

𝑚×𝑛, we have 

Pr {(𝑆, 𝐸)| 𝐴𝑆 + 𝐸 = 𝐻1} ≤
(2𝛽 + 1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
 

Proof: Using the conditional probability definition, we have 

Pr {(𝑆, 𝐸)| 𝐴𝑆 + 𝐸 = 𝐻1} = Pr {(𝑆, 𝐸), 𝐴𝑆 + 𝐸 = 𝐻1}/Pr  {𝐴𝑆 + 𝐸 = 𝐻1} 

≤
|{𝑆 ∈ [−𝛽, 𝛽]𝑛×𝑛}|. |{𝐸 ∈ [−𝛽, 𝛽]𝑚×𝑛}|

|{𝐻1 ∈ ℤ𝑞
𝑚×𝑛}|

=
(2𝛽 + 1)𝑛

2
. (2𝛽 + 1)𝑚𝑛)

𝑞𝑚𝑛
 

=
(2𝛽+1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
 

Lemma 3: For  𝑧 ∈ [−𝛼, 𝛼]𝑛, 𝑦
𝑅
← [−𝛽,𝛽]𝑛,𝐶

𝑅
←ℬ𝑛,𝜔  and  {𝐴, 𝐻1}

𝑅
← ℤ𝑞

𝑚×𝑛 , we 

have 

Pr  {𝑧 | ⌈𝐴𝑦 (𝑚𝑜𝑑 𝑞)⌋𝑑 = ⌈𝐴𝑧 − 𝐻1𝐶 (𝑚𝑜𝑑 𝑞)⌋𝑑} ≤
2𝑑𝑛(2𝛼 + 1)𝑛

𝑞𝑚
 

Proof: Using the notation ⌈. ⌋𝑑, we have 

Pr  {𝑧| ⌈𝐴𝑦 (𝑚𝑜𝑑 𝑞)⌋𝑑 = ⌈𝐴𝑧 − 𝐻1𝐶 (𝑚𝑜𝑑 𝑞)⌋𝑑} 

= Pr  {𝑧| 𝐴𝑦 = 𝐴𝑧 − 𝐻1𝐶 (𝑚𝑜𝑑 𝑞)}. 2
𝑑𝑛 

Therefore, it remains to prove that 

Pr  {𝑧| 𝐴𝑧 = 𝐴𝑦 + 𝐻1𝐶 (𝑚𝑜𝑑 𝑞)} ≤
(2𝛼 + 1)𝑛

𝑞𝑚
 

For using Lemma 1, we rewrite 𝐴 = (
𝐴1
′

𝐴2
′), where 𝐴1

′ ∈ ℤ𝑞
𝑛×𝑛  is an invertible matrix 

and 𝐴2
′ ∈ ℤ𝑞

(𝑚−𝑛)×𝑛
. Let  

𝑢 = 𝐴𝑧 = 𝐴𝑦 + 𝐻1𝐶 (𝑚𝑜𝑑 𝑞) = (
𝑢1
𝑢2
) 
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⟹ {
𝐴1
′ 𝑧 = 𝑢1 ∈ ℤ𝑞

𝑛      (𝑚𝑜𝑑 𝑞) (𝐼)

𝐴2
′ 𝑧 = 𝑢2 ∈ ℤ𝑞

𝑚−𝑛 (𝑚𝑜𝑑 𝑞) (𝐼𝐼)
 

First, we compute the number of variables 𝑧′ satisfying (𝐼). Then, we give the proba-

bility of satisfying 𝑧′ in (𝐼𝐼). 

(𝐼) : Using Gaussian heuristic, stated in Section 2.2, the number of variables 

in ℒ𝑢1,𝑞
⊥ (𝐴1

′ ) ∩ [−𝛼, 𝛼]𝑛 is 
(2𝛼+1)𝑛

𝑞𝑛
. 

(𝐼𝐼): Assume that 𝐴1
′ 𝑧′ = 𝑢1 (𝑚𝑜𝑑 𝑞), the probability that 𝑧′ satisfies the second equa-

tion for 𝑢2 ∈ ℤ𝑞
𝑚−𝑛 is 

1

𝑞𝑚−𝑛
. 

Lemma 4 [39]: For 𝐴
𝑅
← ℤ𝑞

𝑚×𝑛, we have 

Pr {⌈𝐴𝑦1 (𝑚𝑜𝑑 𝑞)⌋𝑑 = ⌈𝐴𝑦2 (𝑚𝑜𝑑 𝑞)⌋𝑑  | 𝑦1, 𝑦2
𝑅
← [−𝛽, 𝛽]𝑛} ≤

2(𝑑+1)𝑚/𝑞𝑚−𝑛

(2𝛽 + 1)𝑛
 

Proof of Theorem 4: Consider an adversary 𝒜 that makes 𝑞1 hash queries and 𝑞2 sign-

ing queries and outputs a valid forgery with probability 𝜖′, involving at most 𝑁 users. 

We show that a challenger 𝒞 could use 𝒜 and solve the 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝛼 problem with prob-

ability 𝜖. 

Assume that on input (𝐴, 𝑇), the challenger 𝒞 uses 𝒜 to decide whether 𝑇 is of the 

form 𝑇 = 𝐴𝑆 + 𝐸  for some 𝑆
𝑅
←𝐷𝛼

𝑛×𝑛  and 𝐸
𝑅
← 𝐷𝛼

𝑚×𝑛  (𝒞  outputs 1) or it is sampled 

uniformly from  ℤ𝑞
𝑚×𝑛  (𝒞  outputs 0). The challenger 𝒞  initializes empty lists  𝑅1[. ] 

and 𝑅[. ] and answers the queries as follows.  

 𝑯𝟏(𝑰𝑫𝒖) queries: Let 𝐼𝐷1 be the identity of the honest signer and 𝑅(𝐼𝐷1) =

(∗,∗, 𝑇). If 𝑅(𝐼𝐷𝑢) = (𝑆𝑢 , 𝐸𝑢 , 𝑇𝑢) then 𝒞 returns 𝑇𝑢 , otherwise it chooses 𝑆𝑢
𝑅
←𝐷𝛼

𝑛×𝑛 and 𝐸𝑢
𝑅
← 𝐷𝛼

𝑚×𝑛 and sets 𝑇𝑢 = 𝐴𝑆𝑢 + 𝐸𝑢 and returns 𝑇𝑢 to 𝒜. 

 𝑯(𝑸)  queries: If  𝑅1(𝑄)  is already filled, then 𝒞  returns it, otherwise 𝒞 

chooses 𝑅1(𝑄)
𝑅
← {0,1}𝑘 and returns it to 𝒜. 

 𝑪𝒐𝒓𝒓𝒖𝒑𝒕(𝑰𝑫𝒖) queries: If 𝑅(𝐼𝐷𝑢) = (𝑆𝑢 , 𝐸𝑢 , 𝑇𝑢) then 𝒞  returns  𝑆𝑢 , other-

wise it queries 𝐻1(𝐼𝐷𝑢) and returns 𝑆𝑢 to 𝒜. In the case of 𝑢 = 1, 𝒞 aborts. 

 MS Generation queries: On input message  𝜇  and identity set  𝐼𝐷  includ-

ing 𝐼𝐷1, 𝒞 chooses 𝑐
𝑅
← {0,1}𝑘 and 𝑧1

𝑅
← [−𝛽, 𝛽]𝑛, and computes 

𝐶 = 𝐹(𝑐), 𝑤 = 𝐴𝑧1 − 𝑇𝐶  

𝑖𝑓  |[𝑤𝑖]2𝑑| > 2𝑑−1 − ℓ 𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑡𝑎𝑟𝑡. 

Then 𝒞 broadcasts 𝑣1 = ⌈𝑤⌋𝑑 . At the same time 𝒞 receives 𝑣𝑖  from the cor-

rupted signers and computes  𝑣 = ∑ 𝑣𝑖
𝑁
𝑖=1  (𝑚𝑜𝑑 𝑞) . If  𝐻(⌈𝑣⌋𝑑, 𝜇, 𝐼𝐷)  was 

queried before, then 𝒞 aborts. Otherwise, it broadcasts 𝑧1, corresponding to 

the honest signer, while receiving  𝑧𝑖  from the corrupted signers and out-

puts (𝑧 = ∑ 𝑧𝑗
𝑁
𝑗=1 , 𝑐) as the multi-signature. 
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𝒜 finally outputs a forgery (𝑧′, 𝑐′) on a non-queried message. If it outputs a valid for-

gery, then 𝒞 outputs 1. Otherwise, it outputs 0. We have: 

𝜖 = | Pr{(𝑆, 𝐸): 𝒞(𝐴, 𝐴𝑆 + 𝐸) = 1} − Pr{𝑇
𝑅
←  ℤ𝑞

𝑚×𝑛: 𝒞(𝐴, 𝑇) = 1} | 

Where, 𝒞(𝐴, 𝐴𝑆 + 𝐸) = 1  means the correct output 1 in case of  𝑇 = 𝐴𝑆 + 𝐸  and 

𝒞(𝐴, 𝑇) = 1 means the false output 1 in case of 𝑇
𝑅
←  ℤ𝑞

𝑚×𝑛. Now, we compute the prob-

ability of correct 'output 1' in case of 𝑇 = 𝐴𝑆 + 𝐸 and the probability of false 'output 1' 

in case of 𝑇
𝑅
←  ℤ𝑞

𝑚×𝑛: 

 The case of 𝑻 = 𝑨𝑺 + 𝑬: Success is achieved in this case, when 𝒞 does not 

abort during MS Generation queries and Corruption queries, and 𝒜 does not 

fail. Using Lemma 4 and hybrid argument [55], the probability of abortion 

during the MS Generation queries is bounded by 𝑞2(𝑞1 + 𝑞2)
2(𝑑+1)𝑚/𝑞𝑚−𝑛

(2𝛽+1)𝑛
. It 

remains to compute the probability that 𝒞 does not abort during Corruption 

queries. The honest signer is considered to be uniformly chosen among 𝑁 us-

ers. The probability that 𝒞 does not abort after 𝑐 corruption queries is 1/(𝑁 −

𝑐). Consider that 𝒜 queries at most 𝑞0 corruption queries. The probability that 
𝒞 does not abort during Corruption queries is: 

(1 −
1

𝑁
) (1 −

1

𝑁 − 1
)…(1 −

1

𝑁 − (𝑞0 − 1)
) =

𝑁 − 𝑞0
𝑁

 

So, we have: 

 Pr{ 𝒞(𝐴, 𝐴𝑆 + 𝐸) = 1} ≥ (
𝑁−𝑞0

𝑁
) (1 − 𝑞2(𝑞1 + 𝑞2)

2(𝑑+1)𝑚/𝑞𝑚−𝑛

(2𝛽+1)𝑛
) 𝜖′ (15) 

 The case of 𝑻
𝑹
←  ℤ𝒒

𝒎×𝒏: For falsely 'output 1' in this case, we have scenarios 

of Lemma 2 and Lemma 3. Based on Lemma 2, for  𝑆 ∈ [−𝛽, 𝛽]𝑛×𝑛 

and 𝐸 ∈ [−𝛽, 𝛽]𝑚×𝑛, we have:  

 Pr {(𝑆, 𝐸)| 𝐴𝑆 + 𝐸 = 𝑇} ≤
(2𝛽+1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
 (16) 

Note that the entries of 𝑆 and 𝐸 are bounded by 𝛽 = 7𝛼, with high probability.  

Based on Lemma 3, for 𝑧 ∈ [−𝑁𝛽,𝑁𝛽]𝑛 , 𝐶
𝑅
←ℬ𝑛,𝜔 and {𝐴, 𝐻1}

𝑅
← ℤ𝑞

𝑚×𝑛, we have 

Pr  {𝑧| ⌈𝐴𝑦 (𝑚𝑜𝑑 𝑞)⌋𝑑 = 

 ⌈𝐴𝑧 − (𝑇 + ∑ 𝐻1(𝐼𝐷𝑖)
𝑁
𝑖=2 )𝐶 (𝑚𝑜𝑑 𝑞)⌋𝑑} ≤

2𝑑𝑛(2𝑁𝛽+1)𝑛

𝑞𝑚
  (17) 

 (16), (17) ⟹ Pr{𝒞(𝐴, 𝑇) = 1} ≤
(2𝛽+1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
+𝑞1

2𝑑𝑛(2𝑁𝛽+1)𝑛

𝑞𝑚
 (18) 

Eventually, from (15), (18) we have: 
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 𝜖 ≈ (
𝑁−𝑞0

𝑁
) (1 − 𝑞2(𝑞1 + 𝑞2)

2(𝑑+1)𝑚

𝑞𝑚−𝑛

(2𝛽+1)𝑛
) 𝜖′ − (

(2𝛽+1)𝑚𝑛+𝑛
2

𝑞𝑚𝑛
+ 𝑞1

2𝑑𝑛(2𝑁𝛽+1)𝑛

𝑞𝑚
) (19) 

7 ILMPMS scheme 

Here, we propose an ILMPMS scheme usable in real scenarios, which enjoys security 

against quantum computers and efficiency due to ID-based framework, linear opera-

tions and possibility of parallel computations based on lattices. Our ILMPMS scheme 

consists of the following algorithms, as mentioned in Section 0. 

7.1 Setup 

There are  𝑀  original signers and  𝑁  proxy signers with identity sets  𝐼𝐷𝑂 =
{𝐼𝐷𝑂1, … , 𝐼𝐷𝑂𝑀}  and  𝐼𝐷𝑃 = {𝐼𝐷𝑃1, … , 𝐼𝐷𝑃𝑁} , respectively. Let  𝛼, 𝑘, 𝑑, 𝑞, 𝑛,𝑚 =
𝑛 log 𝑞  be positive integers,  𝐹: {0,1}𝑘 → 𝑉𝑛,𝜔 , 𝐻1: {0,1}

∗ → ℤ𝑞
𝑚×𝑛  and  𝐻: {0,1}∗ →

{0,1}𝑘 be random oracles. KDC chooses 𝐴0 ∈ ℤ𝑞
(𝑚+𝑛)×𝑛

 and generates the correspond-

ing trapdoor basis 𝑇0. KDC sets 𝑇0 as the master private key and generates the master 

public key 𝐴 = 𝐴0
′ ∈ ℤ𝑞

𝑚×𝑛 using Lemma 1. 

7.2 Key Extraction 

For each signer  𝐼𝐷𝑖 ∈ 𝐼𝐷𝑂 ∪ 𝐼𝐷𝑃 , KDC computes  𝑆𝑖 ∈ 𝐷𝛼
𝑛×𝑛  and  𝐸𝑖 ∈ 𝐷𝛼

𝑚×𝑛  such 

that 𝐴𝑆𝑖 + 𝐸𝑖 = 𝐻1(𝐼𝐷𝑖)(𝑚𝑜𝑑 𝑞). If 𝐶ℎ𝑒𝑐𝑘 (𝐸) = 1, then the algorithm outputs the 

private key 𝑆𝑖  to the signer 𝐼𝐷𝑖. Otherwise, the algorithm is restarted. 

7.3 MD Generation 

Let 𝑤 denotes a warrant to be signed by the original signers 𝐼𝐷𝑂 = {𝐼𝐷𝑂1, … , 𝐼𝐷𝑂𝑀}. 

 For 1 ≤ 𝑖 ≤ 𝑀, the original signer 𝐼𝐷𝑂𝑖  chooses 𝑦𝑖
𝑅
← [−𝛽, 𝛽]𝑛, com-

putes 𝑣𝑖 = 𝐴𝑦𝑖  (𝑚𝑜𝑑 𝑞) and broadcasts 𝑣𝑖  to co-original signers. 

 For 1 ≤ 𝑖 ≤ 𝑀, the original signer 𝐼𝐷𝑂𝑖 , computes: 

𝑣𝑂 =∑𝑣𝑗

𝑀

𝑗=1

 (𝑚𝑜𝑑 𝑞) 

𝑐𝑂 = 𝐻(⌈𝑣𝑂⌋𝑑 , 𝑤, 𝐼𝐷𝑂) 

𝐶𝑂 = 𝐹(𝑐𝑂) 

𝑧𝑖 = 𝑆𝑖𝐶𝑂 + 𝑦𝑖  

 𝑢𝑂 = 𝐴𝑧𝑖 − 𝐻1(𝐼𝐷𝑂𝑖)𝐶𝑂 (𝑚𝑜𝑑 𝑞) (20) 

𝑖𝑓  |[𝑢𝑂𝑖]2𝑑| > 2
𝑑−1 − ℓ  𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑡𝑎𝑟𝑡. (for 1 ≤ 𝑖 ≤ 𝑚) 

and broadcasts 𝑧𝑖  to the co-original signers with probability min{
𝐷𝑦
𝑛(𝑧𝑖)

𝑀.𝐷𝑦,𝑆𝐶
𝑛 (𝑧𝑖)

, 1}. 
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 When all the partial signatures are valid, the multi-delegation signature 𝜎𝑤 

on 𝑤 w.r.t. 𝐼𝐷𝑂 is 𝜎𝑤 = (𝑧𝑂 = ∑ 𝑧𝑗
𝑀
𝑗=1 , 𝑐𝑂). 

7.4 MD Verification 

Upon receiving (𝐼𝐷𝑂 , 𝑤, 𝜎𝑤 = (𝑧𝑂 , 𝑐𝑂)), the verifier computes: 

𝐶𝑂 = 𝐹(𝑐𝑂) 

 𝑢𝑂
′ = 𝐴𝑧𝑂 − ∑ 𝐻1(𝐼𝐷𝑂𝑖)

𝑀
𝑖=1 𝐶𝑂  (𝑚𝑜𝑑 𝑞) (21) 

𝑐𝑂
′ = 𝐻(⌈𝑢𝑂

′ ⌋𝑑 , 𝑤, 𝐼𝐷𝑂) 

The multi-delegation signature 𝜎𝑤 is accepted if the following relations are satisfied. 

Otherwise, it is rejected. 

‖𝑧𝑂‖∞ ≤ 𝑀𝛽 

𝑐𝑂
′ = 𝑐𝑂 

7.5 ILMPMS Generation 

Let 𝜇 denotes a message to be signed by the proxy signers 𝐼𝐷𝑃 = {𝐼𝐷𝑃1, … , 𝐼𝐷𝑃𝑁}. 

 For 𝑖 ∈ {1, … , 𝑁}, the proxy signer 𝐼𝐷𝑃𝑖  chooses 𝑦𝑖
𝑅
← [−𝛽, 𝛽]𝑛, com-

putes 𝑣𝑖 = 𝐴𝑦𝑖  (𝑚𝑜𝑑 𝑞) and broadcasts 𝑣𝑖  to co-proxy signers. 

 For 𝑖 ∈ {1, … , 𝑁}, the proxy signer 𝐼𝐷𝑃𝑖  computes: 

𝑣𝑃 =∑𝑣𝑗

𝑁

𝑗=1

 (𝑚𝑜𝑑 𝑞) 

𝑢𝑂
′ = 𝐴𝑧𝑂 −∑𝐻1(𝐼𝐷𝑂𝑖)

𝑁

𝑖=1

𝐶𝑂 (𝑚𝑜𝑑 𝑞) 

𝑐𝑝 = 𝐻(⌈𝑢𝑂
′ + 𝑣𝑃⌋𝑑 , 𝑤, 𝜇, 𝐼𝐷𝑂 , 𝐼𝐷𝑃) 

𝐶𝑃 = 𝐹(𝑐𝑃) 

𝑧𝑖 = 𝑆𝑖𝐶𝑃 + 𝑦𝑖  

 𝑢𝑃 = 𝐴𝑧𝑖 − 𝐻1(𝐼𝐷𝑃𝑖)𝐶𝑃 (𝑚𝑜𝑑 𝑞) (22) 

𝑖𝑓  |[𝑢𝑃𝑖]2𝑑| > 2
𝑑−1 − ℓ  𝑡ℎ𝑒𝑛 𝑟𝑒𝑠𝑡𝑎𝑟𝑡. (for 1 ≤ 𝑖 ≤ 𝑚) 

and broadcasts 𝑧𝑖  to the co-proxy signers with probability min{
𝐷𝑦
𝑛(𝑧𝑖)

𝑁.𝐷𝑦,𝑆𝐶
𝑛 (𝑧𝑖)

, 1}. 

 When all the partial signatures are valid, the ILMPMS signature σ 

on 𝜇 w.r.t. 𝐼𝐷𝑃 is 𝜎 = (𝑧𝑃 = z𝑂 + ∑ 𝑧𝑗
𝑁
𝑗=1 , 𝑐𝑂 , 𝑐𝑃). 
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7.6 ILMPMS Verification  

Upon receiving (𝐼𝐷𝑂 , 𝐼𝐷𝑃 , 𝜇, 𝜎 = (𝑧𝑃 , 𝑐𝑂 , 𝑐𝑃)), the verifier computes: 

𝐶𝑂 = 𝐹(𝑐𝑂) 

𝐶𝑃 = 𝐹(𝑐𝑃) 

 𝑢𝑝
′ = 𝐴𝑧𝑃 − ∑ 𝐻1(𝐼𝐷𝑂𝑖)

𝑀
𝑖=1 𝐶O −∑ 𝐻1(𝐼𝐷𝑃𝑖)

𝑁
𝑖=1 𝐶𝑃 (𝑚𝑜𝑑 𝑞) (23) 

𝑐𝑃
′ = 𝐻 (⌈𝑢𝑝

′ ⌋
𝑑
, 𝑤, 𝜇, 𝐼𝐷𝑂 , 𝐼𝐷𝑃) 

The ILMPMS signature σ is accepted if the following relations are satisfied. Otherwise, 

it is rejected. 

‖𝑧𝑝‖∞ ≤ 𝑁𝛽 

𝑐𝑃
′ = 𝑐𝑃 

8 Security analysis of the proposed ILMPMS 

The proposed scheme in Section 8 is warrant-based, in which the delegation is the orig-

inal signer’s signature on a warrant. The warrant includes proxy signers’ public key, 

the validity duration and the restrictions on the messages that the proxy signer can sign. 

The following properties originate from warrant that is preventing misuse of a delega-

tion, distinguishability from normal signatures and undeniability [5]. In this section we 

mainly analyze the existential unforgeability of the proposed scheme by Theorem 5, in 

details. 

Theorem 5. If 𝐿𝑊𝐸𝑛,𝑚,𝑞,𝛼 is 𝜖-hard, our ILMPMS is 𝜖′-unforgeable against adaptive 

chosen-message attacks in the random oracle model where at most 𝑀 original signers 

and 𝑁 proxy signers are involved and 𝒜 makes at most 𝑞𝑒 key extraction queries, at 

most 𝑞ℎ hash queries of oracle 𝐻(. ), at most 𝑞𝑑 MD Generation queries, and at most 

𝑞𝑠 MPMS Generation queries. 

Proof. We need to show that our proposed ILMPMS is secure against Type2 and Type3 

adversaries. For this purpose, we consider the following cases I and II. Security proofs 

of both cases can be achieved using Theorem 4. It is assumed w.l.o.g. that there is only 

one honest signer.  

Case I. In this case, we consider adversaries of Type2, where we have only one honest 

proxy signer. 

Proof. In this case, the adversary can make MPMS Generation queries. Therefore, in 

the proof of Theorem 4 we substitute MS Generation queries oracle with MPMS Gen-

eration queries oracle. In this case, there is no need to make MD Generation queries, 

because Type2 adversary has private keys of all original signers. Therefore, from equa-

tion (19) we have: 

 𝜖 ≈ (
𝑁−𝑞𝑒

𝑁
) (1 − 𝑞𝑠(𝑞ℎ + 𝑞𝑠)

2(𝑑+1)𝑚

𝑞𝑚−𝑛

(2𝛽+1)𝑛
) 𝜖𝑇𝑦𝑝𝑒2

′ −
(2𝛽+1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
− 𝑞ℎ

2𝑑𝑛(2𝑁𝛽+1)𝑛

𝑞𝑚
 (24) 
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Case II. In this case, we consider adversaries of type3, where we have only one honest 

original signer. 

Proof. In this case, the adversary can make MD Generation queries. Therefore, in the 

proof of Theorem 4 we substitute MS Generation queries oracle with MD Generation 

queries oracle. In this case, there is no need to make MPMS Generation queries, because 

Type3 adversary has private keys of all proxy signers. Therefore, from equation (19) 

we have: 

 𝜖 ≈ (
𝑀−𝑞𝑒

𝑀
) (1 − 𝑞𝑑(𝑞ℎ + 𝑞𝑑)

2(𝑑+1)𝑚

𝑞𝑚−𝑛

(2𝛽+1)𝑛
)𝜖𝑇𝑦𝑝𝑒3

′ −
(2𝛽+1)𝑚𝑛+𝑛

2

𝑞𝑚𝑛
− 𝑞ℎ

2𝑑𝑛(2𝑁𝛽+1)𝑛

𝑞𝑚
 (25) 

In Table 3, we compare our proposed ILMPMS scheme with the existing ones from the 

view of the underlying hard problems and the security flaws.  

Table 3: security comparison between the proposed scheme and the existing IMPMS schemes 

Scheme 
Security 

basis 

Post-quantum 

security 
Lattice-based ID-based 

Lattice-based multi-signa-

ture scheme [40] 
R-SIS 

2    

Proposed ILMS scheme LWE    

IMPMS [38] CDH1    

IMPMS [37] RSA    

Proposed ILMPMS 

scheme 
LWE    

1 Computational Diffie-Hellman 
2 Due to using Forking Lemma 

9 Conclusions 

Multi-proxy multi-signature schemes are useful when a group of original signers coop-

eratively delegate their signing rights to a group of proxy signers, who are authorized 

to generate the proxy signatures cooperatively on behalf of the original signers. For 

realizing this application, in this paper, we have proposed an ID-based lattice-based 

multi-proxy multi-signature (ILMPMS) scheme, which enjoys security against quan-

tum computers and efficiency due to ID-based framework, linear operations and possi-

bility of parallel computations based on lattices. For this purpose, we have first pro-

posed an ID-based lattice-based multi-signature (ILMS) scheme, used as the underlying 

signature in our ILMPMS scheme. To the best of our knowledge, these schemes are the 

first lattice-based ones, which benefit from provable security based on worst-case in-

tractability of the lattice hard problems. For the security analysis, we have proved that 

the proposed schemes are existential unforgeable against adaptive chosen-message at-

tack in the random oracle model based on the hardness of LWE problem over standard 

lattices. 
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