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Abstract. There is a large gap between theory and practice in the com-
plexities of sieving algorithms for solving the shortest vector problem in
an arbitrary Euclidean lattice. In this paper, we work towards reducing
this gap, providing theoretical refinements of the time and space com-
plexity bounds in the context of the approximate shortest vector problem.
This is achieved by relaxing the requirements on the AKS algorithm,
rather than on the ListSieve, resulting in exponentially smaller bounds
starting from µ ≈ 2, for constant values of µ. We also explain why these
improvements carry over to also give the fastest quantum algorithms for
the approximate shortest vector problem.

1 Introduction

A lattice L is defined as the set of all integer combinations of some linearly
independent vectors b1, . . . ,bn ∈ Rn. The matrix B = (b1, . . . ,bn) is called a
basis of L, and we write L(B) for the lattice generated by B.

Starting in the ’80s, the use of approximate and exact solvers for SVP
(and other lattice problems) gained prominence for their applications in algo-
rithmic number theory [LLL82], coding over Gaussian channels [dB89], crypt-
analysis [Sha84, Bri85, LO85], combinatorial optimization and integer program-
ming [Len83, Kan87, FT87]. Starting with the breakthrough result of Ajtai
[Ajt96], lattices began to be used in constructive cryptography. Ajtai showed
that lattice problems have a very desirable property for cryptography: a worst
case to average case reduction. This property yields one-way functions and
collision resistant hash functions, based on the worst case hardness of lattice
problems. This is in a stark contrast to the traditional number theoretic con-
structions which are based on the average-case hardness e.g., factoring, discrete
logarithms. Many powerful cryptographic primitives, such as fully homomorphic
encryption [Gen09, BV11, BV14], now have their security based on the worst-
case hardness of approximating the decision version of SVP (and other lattice
problems) to within polynomial factors [Ajt04, MR07, Reg09, BLP+13].

Perhaps the most central computational problem on lattices is the Shortest
Vector Problem (SVP). Given a basis for a lattice L ⊆ Rn, the SVP is to compute
a non-zero vector in L of minimum Euclidean norm. We call this length λ1(L).
For the purpose of breaking cryptosystems, we are more interested in solving
ApproxSVPµ, where the goal is to find a lattice vector of length at most µ ·λ1(L).
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From the computational complexity perspective, much is known about SVP in
both its exact and approximate versions. On the hardness side, SVP was shown
to be NP-hard to approximate within any constant factor (under randomized
reductions) and hard to approximate to within nc/ log logn for some constant c > 0
under reasonable complexity assumptions [Mic01, Kho05, HR12].

Thus, we do not expect a polynomial time algorithm for solving exact SVP.
The fastest known algorithm for exact SVP runs in time 2n+o(n) and is due
to [ADRS15].

The type of algorithms that have seen the most progress in the literature and
is also the topic of this work is the so called sieving algorithms. AKS [AKS01]
devised a method based on “randomized sieving”, whereby exponentially many
randomly generated lattice vectors are iteratively combined to create shorter and
shorter vectors, to give the first 2O(n)-time (and space) randomized algorithm for
SVP. Many extensions and improvements of their sieving technique have been
proposed, both provable [AKS02, MV10, PS09] and heuristic [NV08, WLTB11,
ZPH14, BGJ14, Laa14], where the fastest provable sieving algorithm [PS09] for
exact SVP requires 22.465n+o(n) time. The gap between the complexity of the
fastest provable algorithm and that of the fastest heuristic algorithm that works
well in practice is huge, and it is desirable to understand this gap better, and
attempt to close the gap.

For the purpose of cryptanalysis of cryptosystems based on ApproxSVP, it is
reasonable to ask whether one can come up with faster algorithms if we relax the
goal to output only an approximation of the shortest vector for a small enough
approximation factor µ.

In particular, it was shown in [LWXZ11, WLW15] that one can modify the
ListSieve algorithm from [MV10, PS09] to obtain a faster algorithm for approxi-
mate SVP. Additionally, there is a 2n/2+o(n) time and space algorithm [ADRS15]
for GapSVP (which is a decision variant of approx SVP)

In this work we show that if we apply a similar modification as [LWXZ11,
WLW15] to [AKS01], then we obtain asymptotically faster classical and quantum
algorithms for small enough approximation factors. This is particularly surprising
since the exact SVP algorithm based on ListSieve in [PS09] is significantly faster
than the exact algorithm in [AKS01].

Organization of the paper. In Section 2, we give the mathematical preliminaries,
in Section 3, we recall the AKS algorithm for solving exact SVP, and then in
Section 4, we show our main result, i.e., an algorithm for solving approximate
SVP. In Section 5, we conclude with some open questions.

2 Background and Notation

Lemma 1 (A corollary of the Chernoff Bound). Let X1, ..., Xn be in-
dependent random Bernoulli variables which take values in {0, 1}. We define



Faster Sieving Algorithm for Approximate SVP 3

X
def
=
∑n
i=1Xi and 0 < δ < 1. Then

P (X ≥ (1− δ)E[X]) ≥ 1− 1

eδ2E[X]/2
.

Hyperspheres and Hyperspherical caps. By Bn(x, R) we denote the n-dimensional
hypersphere of radius R centered in x, i.e.

Bn(x, R) = {y ∈ Rn : ‖x− y‖ ≤ R} .

Let Bn(R) be the shorthand notation for Bn(0, R).
From now on, we denote by θ(x,y) the common angle between the vectors x

and y, which is always between 0 and π. For any R, h,x such that ‖x‖ = R, we
define a hyperspherical cap Sn(x, h,R) of dimension n and height h at x as:

Sn(x, h,R)
def
=
{

y ∈ Bn(R) : ‖y‖ = R and θ(x,y) ≤ arccos
(

1− h

R

)}
.

The next lemma provides an estimate on the relative volume of a hyperspherical
cap with respect to the volume of the corresponding hypersphere.

Lemma 2. [BDGL, Lemma 2.1][MV10, see also Lemma 4.1]: Let x be a unit
vector and consider the hyperspherical cap Sn(x, h,R) of height h of a hyperball
of radius R. Then the ratio of its volume with respect to the volume of the Bn(R)
hyperball satisfies:

vol(Sn(x, h,R))

vol(Bn(R))
= poly(n)

(
1−

(
1− h

R

)2)n2
.

Lattices. A rank d lattice L ⊂ Rn is the set of all integer linear combinations of
d linearly independent vectors B = (b1, . . . ,bd). B is called a basis of the lattice
and n is the dimension of the lattice. Formally, a lattice is represented by a basis
B for computational purposes, though for simplicity we often do not make this
explicit. If n = d, we say that the lattice has full rank, and we assume this for
the rest of the paper as results for full-rank lattices naturally imply results for
arbitrary lattices.

Given a basis, (b1, . . . ,bn), we write L(b1, . . . ,bn) to denote the lattice with
basis (b1, . . . ,bn). The length of a shortest non-zero vector in the lattice is
written λ1(L). The fundamental parallelepiped P(B) of the lattice is defined as
the set of all vectors that can be written as

∑n
i=1 αibi where 0 ≤ αi < 1 for

1 ≤ i ≤ n. For any vector x ∈ Rn, x mod P(B) denotes the unique vector y
in P(B) such that x − y is a lattice vector. There is an efficient algorithm to
compute y = x mod P(B) given x and B since we can express x as

∑n
i=1 βibi

for some βi ∈ R, and then y =
∑n
i=1(βi − bβic)bi.

We next define an LLL-reduced basis [LLL82].

Definition 3. Given a basis B = [b1 b2 . . . bn], the Gram-Schmidt orthogo-

nalization of B is defined by b̃i = bi −
i−1∑
j=1

µi,jb̃j, where µij =
〈bi,b̃j〉
〈b̃j ,b̃j〉

.
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Note that the Gram-Schmidt orthogonal basis satisfies 〈b̃i, b̃j〉 = 0, for all
i 6= j.

Definition 4. A basis B = [b1 . . . bn} with Gram-Schmidt orthogonal basis

[b̃1 . . . b̃n] is LLL reduced if for all 1 ≤ i < n, ‖b̃i‖2 ≤ 2‖b̃i+1‖2 and for all

1 ≤ j < i ≤ n, µij =
〈bi,b̃j〉
〈b̃j ,b̃j〉

≤ 1
2 .

The LLL reduced basis property can be interpreted as “b̃i+1 is not much

shorter than b̃i”. It is possible to LLL reduce any basis in polynomial time, and
in particular, this implies that b̃1 = b1 is a lattice vector of length at most
2(n−1)/2 · λ1(L(B)) [LLL82].

Now, we define the main computational problems that we study in this paper.

Definition 5 (Shortest vector problem - SVP). Given a basis b1, ...,bn of
a lattice L, find a shortest non-zero vector of L.

Definition 6 (µ-Approximate SVP - µSVP). Given a basis b1, ...,bn of a
lattice L, find a non-zero lattice vector of length at most µλ1(L).

The following result shows that in order to solve µSVP it is sufficient to
find an algorithm that solves µSVP assuming the knowledge of a very good
approximation of the length of the shortest vector.

Lemma 7. [Reg04, HPS11] For any µ ≥ 1, let A be an algorithm that given as
input a basis B of an n-dimensional lattice and a hint λ such that λ1(L(B)) ≤
λ ≤ (1 + 1

n )λ1(L(B)) computes a non-zero vector in L(B) of length at most
µ · λ1(L(B)) and runs in time at most T (n). Then there is an efficient algorithm
A′ which uses A as a subroutine and solves µSVP in time T (n) · n2, where n is
the dimension of the lattice.

The algorithm A′ first runs the LLL algorithm to obtain ν such that

λ1(L(B)) ≤ ν ≤ 2(n−1)/2 · λ1(L(B) .

Then, it guesses a value i in the set {0, ..., dn−1
2 log(1+ 1

n ) 2e} and calls A with

λ = λ(i) = ν(1 + 1
n )−i. As there are at most n2 possible values for i, the running

time of the algorithm is upper bounded by T (n) · n2 and the success of the
algorithm follows from the fact that for at least one value of i, we have that
λ1(L(B)) ≤ λ(i) ≤ (1 + 1

n )λ1(L(B)). For a more precise explanation, we direct
the reader to [Reg04, HPS11].

The following result shows that the basis vectors of an LLL-reduced basis
that are significantly larger than the shortest vector do not contribute to the
shortest vector.

Lemma 8. [NV08, Lemma 3.3] Let (b1, ...,bn) be an LLL-reduced basis of a
lattice L. If s is a shortest vector of L, then there exists an index i ∈ {1, .., n}
such that s belongs to the lattice spanned by (b1, ...,bi) and ‖bj‖ ≤ 23nλ1(L) for
every j = 1, i.
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Therefore, upon applying the LLL algorithm it is possible to safely remove all
the basis vectors of norm bigger than 23nλ1(L) without losing the shortest vector
in the lattice. Thus, from now on we assume without loss of generality that the
input of the algorithm is an LLL-reduced basis of a lattice L with all basis vectors
of norm less than 23nλ1(L). Additionally, we assume that we are given λ such
that λ1(L) ≤ λ ≤ (1 + 1/n)λ1(L).

We will also need the following result that bounds the number of vectors in a
ball of radius R that are pairwise at least γR distance apart from each other for
some γ ∈ (0, 1). The result is obtained using bounds from [KL78a].

Lemma 9. [HPS11, Lemma 7.1] Let S ⊆ Bn(R) such that the distance between

any two vectors of S is at least γR, with 0 < γ < 1. Then |S| ≤ NT
def
= 2ctn+o(n),

where:

ct = − log2(γ) + 0.401.

3 The AKS Sieving Algorithm

The first provable lattice sieving algorithm has been proposed by [AKS01], and
has been subsequently improved in a number of papers [MV10, NV08, HPS11].
Since our µSVP algorithm is obtained by a modification of the AKS sieving
algorithm [AKS01], we describe the AKS sieving algorithm here for completeness.
Our presentation closely follows the exposition in [HPS11].

The main idea of the algorithm is to randomly sample a large enough set of
lattice vectors in a ball of radius R such that there are many pairs of vectors
in this set which are at most γR apart. This results in obtaining many lattice
vectors of length at most γR, and as long as we have enough vectors to start with,
we should be able to recursively get shorter vectors until we get a shortest vector
with good probability. However, one of the main difficulties in this approach lies in
understanding the distribution of lattice vectors. Instead of trying to understand
this distribution precisely, the algorithm ”blurs” the perspective of the lattice by
adding to each lattice vector v a small real perturbation x, which will mean that
depending on the size of x, the result v + x could have been obtained from other
lattice vectors close to v as well. The algorithm keeps pairs of lattice vectors and
their perturbed variants and sieves only based on information from the latter.
Then, once it finishes sieving, it uses the former in order to recover the shortest
vector.

Sampling

Rather than first sampling lattice vectors and then adding the perturbation, the
sampling procedure generates pairs by first choosing a perturbation x of small
norm. The description of the sampling algorithm as used in [AKS01, NV08] is
given in Algorithm 1.
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Algorithm 1 [AKS01]:Sample

Input: B = {b1, ...,bn} and perturbation x
Output: A lattice vector v and its perturbed variant v + x.
1: Compute v = −x + (x mod P (B)).
2: return pair (v,v + x).

Sieving

The sieving procedure receives as input a list of pairs in (v,v + x) ∈ L ∩Bn(R).
Then, it performs reductions so that for the output pairs, the perturbed vector is
in a ball of a smaller radius γR+ ε, where γ is a positive sub-unitary real and ε is
a parameter which is linear in λ1(L) and is an upper bound on the magnitude of
perturbations. During the process, a certain number of pairs will not be reducible
but will be used instead for the reduction of other pairs. These pairs are called
centers.

Before the start of the procedure, none of the pairs are designated as centers.
The initial list is processed sequentially: if a pair (v,v + x) is geometrically close
to a pair (c, c + x′), that has been labelled as a center, the pair is reduced by
computing two vector differences and outputting the pair (v − c, (v + x)− c).
Otherwise, if (v,v + x) is not close to any center, it will be designated as a center
itself. Geometrically close here means that the difference between the second
component of the two pairs is smaller than γR.

Notice that the sieving algorithm preserves the initial perturbations. This is
a technical detail needed for proving that we output a shortest non-zero lattice
vector with high probability. Also, the sieving routine only considers the second
component of each pair, thus it only concerns itself with the perturbed lattice
vectors and not the lattice vectors themselves. The formal description is given in
Algorithm 2.

Algorithm 2 [AKS01]:Sieving

Input: R, 0 < γ < 1 and a list List of vector pairs (v,v + x) in L ×Bn(R).
Output: Another list List′ of vector pairs
1: Centers← ∅.
2: List′ ← ∅.
3: for (v,v + x) ∈ List do
4: if there is no pair (v′,v′ + x′) ∈ Centers such that ‖v′ + x′ − (v + x)‖ ≤ γR

then:
5: Add (v,v + x) to Centers.
6: else add (v − v′, (v + x)− v′) to List′.
7: end if
8: end for
9: return List′.
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The Main Algorithm

The algorithm is given in Algorithm 3.

Algorithm 3 [AKS01]:AKS

Input: Integer Lattice Basis B = {b1, ...,bn}, ε0, γ, N and hint λ.
Output: A shortest non-zero vector of B.
1: ε← ε0 × λ.
2: List0 ← ∅.
3: for i = 1 to N do
4: Draw x uniformly at random from Bn(ε).
5: Add Algorithm 1(B,x) to List0.
6: end for
7: R← n×maxi‖bi‖.
8: j ← 1.
9: while R > (1 + 1

n
) ε
1−γ do

10: Listj ← Algorithm 2(Listj−1, R, γ).
11: R← γR+ ε.
12: j ← j + 1
13: end while
14: Consider all pairs (v,v + x1), (w,w + x2) in Listk and return minimal non-zero

difference v −w.

Correctness of the AKS Algorithm

Theorem 10. [HPS11] The AKS algorithm succeeds in finding a shortest non-
zero vector in the lattice L(B) in time 23.397n with probability at least 1

2 −
1

2Θ(n) ,
when run with N = 21.984n, with γ = 0.496 and ε0 = 0.676.

For brevity, we will not detail the proof of correctness for the AKS algorithm.
Nevertheless, the main outline and ideas of this proof will appear in our proof
for the µAKS algorithm from the following section.

4 Adapting the AKS for Solving µSVP

In this section we describe a natural adaptation of the AKS sieve for finding
approximations of the non-zero shortest vector. This course of action has first
been explored for modifications of ListSieve, as proposed in [LWXZ11] and
[WLW15]. The ListSieve is another sieving algorithm which has lower time and
space complexity compared to the AKS, and its fastest variant uses the birthday
paradox and has been introduced in [PS09] and [HPS11]. Nevertheless, we show
that when the goal is to recover only an approximation of the shortest vector
up to a factor µ, adapting the AKS is more natural and results in an algorithm
that has both lower time and lower space complexity than adaptations of the
ListSieve. Current findings suggest that designing a provable sieving algorithm



8 Faster Sieving Algorithm for Approximate SVP

for finding an approximation of the shortest vector results in time and space
complexities only limited by the known bounds [KL78a] on the kissing number.
In particular, an improvement in the result of Lemma 9 will immediately imply
an improvement in all sieving based algorithms including ours.

What changes with respect to the original outline of the AKS is the introduc-
tion of a different sieving procedure based on the description of the AKS-Birthday
from [HPS11]. The idea of this modification is to preselect the pairs that are to
be used as centers right after the sampling phase, and to keep two separate lists
of vectors, as in the ListSieve-Birthday algorithm. One list will only be used for
reductions, while the other will provide a sufficiently large set of reduced pairs at
the end of the sieving steps, so that using Lemma 13 we obtain at least one good
pair. The new idea here is that, by separating the pairs used for reductions from
the pairs among which we search for the approximate shortest vector, it is not
necessary anymore to require that the pairs used as centers contain good pertur-
bations. This idea could also be used to improve the AKS-Birthday algorithm
for exact SVP described in [HPS11], but unfortunately the resulting improved
algorithm does not have a better time complexity than the ListSieve-Birthday.
We proceed by giving a detailed description of the modified sieving procedure
used first in AKS-Birthday, followed by a description of the modified AKS, its
proof of correctness and a comparison with previous results.

Modified Sieving Procedure

In Algorithm 4, we give a full description of the sieving procedure described in
[HPS11] for the AKS-Birthday algorithm. In particular, throughout our algorithm
we maintain two lists of vectors instead of just one. List C will provide the centers
which will help reduce another list S, along with the rest of list C.

For each call to the sieving procedure, we first preselect NC pairs (the number
NC will be determined later) from a list C and we add them to a new set, call it
Centers. For each (v,v + x) ∈ (C ∪ S) \ Centers, we attempt to reduce the pair
by finding a center pair (c, c + x′) such that the difference (v + x)− (c + x′) is
smaller than γR. We keep these small differences for the next iteration of the
sieve.

The Main Algorithm

For recovering the shortest vector in the lattice up to an approximation factor µ,
we use the outline of the original AKS algorithm and we modify it in Algorithm 5
to allow for the incorporation of the modified sieving procedure explained in
the previous paragraph. The algorithm starts with a great number of pairs
(v,v + x) ∈ L ∩ Bn(R), where the second component is bounded by an initial
radius R. Then, it reduces the norm of all elements repeatedly until it is left with
many pairs in the hyperball of small radius R0, which will have to be close to µ.
At each step j, the set Cj will provide the centers which will be used to reduce
both itself and the set Sj , obtaining sets Cj+1 and Sj+1. At the end of all the
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Algorithm 4 (Adapted from [HPS11]):Sieving

Input: Lists C, S, Centers included in L ×Bn(R), along with R, 0 < γ < 1.
Output: Lists C′ and S′ of vector pairs
1: C′ = S′ = ∅.
2: for (v,v + x) ∈ C do
3: if there is a pair (v′,v′ + x′) ∈ Centers such that ‖v′ + x′ − (v + x)‖ ≤ γR

then
4: Add (v − v′, (v + x)− v′) to C′.
5: end if
6: end for
7: for (v,v + x) ∈ S do
8: if there exists (v′,v′ + x′) ∈ Centers such that ‖v′ + x′ − (v + x)‖ ≤ γR then
9: Add (v − v′, (v + x)− v′) to S′.

10: end if
11: end for
12: return C′, S′.

runs of the sieving procedure, we only look at vectors in the last set Sj−1 and
output the shortest non-zero one.

4.1 Correctness of the µAKS

As mentioned before, the proof of correctness for the µAKS algorithm follows the
same outline as the proof given in [HPS11], with the exception that in this case
we analyse how to find approximations of the shortest non-zero vector rather
than the exact solution.

Lemma 11. Define Rend
def
= ε

1−γ . When run with ε0 > 0, 0 < γ < 1, λ1(L(B)) ≤
λ ≤ λ1(L(B))(1 + 1

n ) and R0 ≥ Rend(1 + 1
n ), the µAKS algorithm reaches radius

R0 after O(n) radius reductions.

Proof. Denote the number of sieving steps by a variable k, which will be upper-
bounded below. Let R denote the initial radius from which the AKS algorithm
starts sieving. We will prove that we can reach radius Rend(1 + 1

n ) after O(n)
runs of the sieve, which will imply the same for R0. In fact, when radius Rend

is reached, it is not possible to reduce the radius anymore. Nonetheless, Rend is
achieved only as the number of sieving executions reaches infinity, since after k

iterations the reached radius is γkR+ 1−γk
1−γ ε = Rend +γk(R−Rend). This quantity

is equal to Rend only when k →∞. Instead, consider the number of steps needed
to obtain radius Rend(1 + 1

n ) and ask that Rend + γk(R−Rend) = (1 + 1
n )Rend.

Then k = dlogγ( Rend

n(R−Rend) )e.
Parameter ε0 is not dependent on n, which along with the fact that λ1(L) ≤

λ ≤ (1 + 1
n )λ1(L) implies that ε = ε0λ is in Θ(λ1(L)). Since γ is not dependent

on n, this means that Rend = Θ(λ1(L)) as well. Now, it is known that using
Lemma 8 it is guaranteed to obtain R = 2O(n)λ1(L), which means that k =
log1/γ(n2O(n)) = O(n). ut
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Algorithm 5 µAKS

Input: Integer Lattice Basis B = {b1, ...,bn}, ε0, 0 < γ < 1, N1, N2, µ, R0 and λ.
Output: A µ−approximation of the shortest non-zero vector of L(B).
1: C0 = S0 = ∅.
2: ε← ε0 × λ
3: for i = 1 to N1 do
4: Draw x uniformly at random from Bn(ε).
5: Add Algorithm 1(B,x) to C0.
6: end for
7: for i = 1 to N2 do
8: Draw x uniformly at random from Bn(ε).
9: Add Algorithm 1(B,x) to S0.

10: end for
11: R← n×maxi‖bi‖+ ε.
12: j ← 1.
13: while R > R0 do
14: Centers← ∅.
15: Add first NC pairs of Cj−1 to Centers.
16: (Cj , Sj)←Algorithm 4(Cj−1 \ Centers, Sj−1, Centers,R, γ).
17: R← γR+ ε.
18: j ← j + 1.
19: end while
20: Consider all (v,v + x) ∈ Sj−1 and output shortest non-zero v.

We now return to the description of the proof of correctness. Some explanations
regarding the last steps of the algorithm are also necessary. Let r0 be the last
radius for the corresponding lattice vectors obtained. If the perturbed vectors
output at the end of the algorithm reside in Bn(R0), it follows that r0 = R0 + ε.
Once radius R0 has been reached, the goal is to obtain sufficient lattice vectors
so as to ensure that with high probability at least one lattice vector is a non-zero
vector.

At this point, it is certainly possible to choose the initial N1 = n2NT (where
NT is as defined in Lemma 9), and N2 = 1 to ensure that after all the sieving
steps at least one lattice vector in Bn(r0) is obtained, but there are no guarantees
that this lattice vector is non-zero. To formally prove that this is the case, it is
necessary to use some special types of vector pairs which are denoted as good.
These are those pairs whose perturbation satisfies the following condition:

Definition 12 (Good perturbations and good pairs). Let us define Ts
def
=

Bn(0, ε)∩Bn(−s, ε) and T−s
def
= Bn(0, ε)∩Bn(s, ε), where s is a shortest vector in

L. Then a pair (v,v + x) is defined to be good when x ∈ (Ts ∪ T−s) \ (Ts ∩ T−s).

When the perturbations are drawn uniformly at random from the n-dimensional
ball of radius ε = ε0λ, the following lemma provides a lower bound on the
probability that a perturbation and by extension a pair is good. The formulation
for the case when ε0 ≤ 1 can be found in [NV08], whilst the case ε0 ≤ 1

2 is not
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interesting, as there would be no good perturbations. Values of ε0 > 1 have been
used before in [LWXZ11, WLW15], what we do in addition is to motivate that
this case is identical to the case of 1

2 ≤ ε < 1.

Lemma 13. [NV08, Adapted from Lemma 3.4]: Consider ε0 >
1
2 and λ, where

λ1(L) ≤ λ ≤ (1 + 1
n )λ1(L). For any perturbation x drawn uniformly at random

from Bn(ε0λ), the probability that x is good is given by:

P
x

$←−Bn(ε0λ)
(x ∈ (Ts ∪ T−s) \ (Ts ∩ T−s)) ≥

1

NG
,

where NG
def
= 2−cgn+o(n) and cg = − 1

2 log2(1− 1
4ε20

).

Proof. First recall that from Lemma 7, the hint λ satisfies λ1(L) ≤ λ ≤ (1 +
1
n )(λ1(L)). Consider the case λ = λ1(L). When ε0 ≤ 1, it is sufficient to use
Lemma 2 for height h = (ε0 − 1

2 )λ and radius ε = ε0λ, as the two spherical caps
corresponding to Ts and T−s do not intersect, as in Figure 1. We obtain that the
relative volume is:

poly(n)
(

1−
(

1−
(ε0 − 1

2 )λ1(L)

ε0λ1(L)

)2)n2
= poly(n)

(
1− 1

4ε20

)n
2

= 2
n
2 log2

(
1− 1

4ε20

)
+o(n)

.

This is the expression we wanted.
Nevertheless, for ε0 > 1, it is necessary to take into account the intersection

which is composed of two spherical caps of height (ε0 − 1)λ, and we are left with:

poly(n)
((

1− 1

4ε20

)n
2 −

(
1− 1

ε20

)n
2
)
.

Using the fact that log(a+ b) = log(a)+ log(1+ b
a ), we obtain the relative volume

2c
′
gn+o(n), where:

c′g = −1

2
log2

(
1− 1

4ε20

)
− 1

n
log2

(
1−

( ε20 − 1

4ε20 − 1

)n
2
)
.

For asymptotically large n, the second term vanishes and we obtain cg ≈n→∞ c′g.

Now, let us see what happens when λ1(L) ≤ λ. The error is at most 1
n , which

results in hyperspheres Bn(ε0λ) of volumes larger than the volume of Bn(ε0λ1(L))
by a factor (1+ 1

n )n. Thus, this difference belongs to 2o(n) and will be disregarded.

Because the expression 1
n log2

(
1−
(
ε20−1

4ε20−1

)n
2
)

is in o(1) as n goes to infinity, it

could be put aside as well and it is possible to use the formulation for ε0λ ≤ λ1(L)
in the case when ε0λ > λ1(L). ut

First, it is important to choose NC appropriately such that the number of
lost pairs is not too large. The main difference with the original AKS will be
that now we require that at the end of the sieving steps we obtain at least one
good pair. We are ready now to state our main result, the proof of which is very
similar to the proof for the AKS-Birthday algorithm as described in [HPS11].
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0−s s

ε

T−sTs

Fig. 1. Good perturbations in the case where ε < λ1(L) [Reg04]

Theorem 14. We consider the µSVP with parameters n and µ. We let param-
eters ε0 >

1
2 , 0 < γ < 1 be such that µ = ε0

1−γ (1 + 1
n ) + ε0. We define NT and

NG as in Lemma 9 and Lemma 13, respectively. For parameters N1 = n4NT ,
N2 = ( n

n−1 )2 × n4 × NG, NC = n2NT , λ1(L(B)) ≤ λ ≤ λ1(L(B))(1 + 1
n ) and

R0 = ε0λ
1−γ (1 + 1

n ), the µAKS algorithm succeeds in finding a µ−approximation

of the shortest non-zero vector with probability greater than 1
2 −

1
2θ(n) .

Proof. First remark that according to Lemma 7, we can assume we are given
λ1(L(B)) ≤ λ ≤ λ1(L(B))(1 + 1

n ) as an input to the algorithm, incurring only a
polynomial time overhead. From Lemma 11, the radius for the perturbed vectors
converges towards ε

1−γ . In order to ensure that the number of sieve operations

is in O(n), we ask that the last radius R0 is greater than ε
1−γ by at least 1

n .
The norm of the lattice vectors obtained will therefore be bounded by R0 + ε,
which is why we ask that µλ ≥ R0 + ε. This later condition is equivalent to
µ ≥ ε0

1−γ (1 + 1
n ) + ε0.

There is a crucial difference between the sieving procedure of the AKS and
the modified sieving procedure of the µAKS. In the first case all the pairs not
labelled as centers will be reduced and there will be at most NT centers. In the
second case however, since the centers are preselected, there might be pairs which
are at a distance greater than γR from all the centers, and are lost in subsequent
rounds. Let us call these pairs exterior pairs. In the following, we estimate the
number of exterior pairs using the approach used in [HPS11] for AKS-Birthday.

Assume for the moment that we are applying the sieving procedure of the
µAKS on the NC pairs that have been set aside in line 15. We want to upper
bound the probability that a pair is at a distance greater than γR from all these
NC pairs. Let this probability be p. Let pi be the probability that the ith pair is
far from all previous (i− 1) pairs. From Lemma 9, we know that the number of

pairs far from each other is smaller than NT , which means that
∑NC
i=1 pi ≤ NT .

Also, it is easy to see that pi is monotonically decreasing, and pNC ≥ p. Thus we
have that NC × p ≤ NT which implies p ≤ 1

n2 .
Let us return to the µAKS algorithm and the modified sieving procedure.

Now we look at the pairs which we want to reduce and which will not be among
the first n2NC pairs set aside as centers. The probability p′ of a pair being
exterior is smaller than pNC+1, as there are more centers than in the scenario
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mentioned in the previous paragraph. It is worth pointing out an observation
from [HPS11], that all the vectors from the last list S are independently and
identically distributed, which would allow us to use Lemma 1 to bound the
number of exterior pairs.

For simplicity, in the following we assume that the number of sieving steps
(number of entries in the while loop of line 13) is exactly n rather than O(n),
as proven in Lemma 11. The probability that a pair is not exterior after all the
executions of the sieve is greater than (1− 1

n2 )n. Therefore, the probability p′′

that a pair is exterior when sieving is completed is less than 1− (1− 1
n2 )n ≈ 1

n .
Let us consider the worst case scenario in which p′′ = 1

n . Consider Xi to be a
random variable equal to 1 if pair i is not exterior and to 0 if pair i is exterior.

Also, let X
def
=
∑N2

i=1Xi, N
′
2

def
= ( n

n−1 )2 × n3 × NG and N ′′2 = n3

1− 1
n

NG. In fact,

N ′2 = E[X] and N ′′2 = (1− 1
n )E[X]. From Lemma 1 with δ = 1

n , it follows that:

P (X ≥ N ′′2 ) ≥ 1− 1

e
N′2
2n2

≥ 1− 1

en
.

This means that with probability exponentially close to 1, the algorithm will
obtain after all the sieving steps at least N ′′2 pairs. In the following we are
interested in how many pairs out of N ′′2 are actually good, in the sense of
Definition 12. For this, first let Y be a random variable denoting the number
of good pairs out of the N ′′2 pairs obtained after sieving. Using Lemma 13 and
Lemma 1 with δ = 1

n , we have that:

P (Y ≥ n3) ≥ 1− 1

e
N′′2

2NGn
2

= 1− 1

e
n2

2(n−1)

.

So we obtain at least one good pair with probability exponentially close to 1.
To conclude, we use the tossing argument first introduced to prove the correctness
of the AKS by [AKS01].

Tossing argument We first show that the probability to obtain zero vectors in
Bn(r0) is at most double the probability of obtaining the shortest vector by using
a slight modification of the µAKS algorithm. The idea is to consider µAKS2, an
identical algorithm with the exception that in Algorithm 1 the algorithm applies
only once, with probability 1

2 , a function τ on all perturbations x ∈ Bn(0, ε).
The function τ is defined as:

τ(x) =


x + s, if x ∈ Ts \ (Ts ∩ T−s),where s denotes the shortest vector in L
x− s, if x ∈ T−s \ (Ts ∩ T−s)
x, otherwise.

Unsurprisingly, this function looks strange and might actually be uncomputable
in polynomial time. Also, it might appear that the proof employs a circular
argument. In fact, it is irrelevant what is the complexity of τ , since in the
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following it will be shown that the probability of a lattice vector being outputted
by µAKS2 or µAKS is the same. There are several properties to consider at this
point:

1. In Algorithm 1, pairs (v,v + x) are generated by sampling x uniformly from
a small hyperball. Then, the lattice vector v is computed as v = −x + (x
mod P (B)). Recall that when sieving, the sub-procedure makes its decisions
only based on perturbed vectors. In fact, these remain the same even if
function τ is applied, v + x = v + τ(x) for all x ∈ Bn(0, ε). Therefore, the τ
function has no impact on the perturbed vectors obtained after sampling.

2. Perturbations are being maintained throughout the algorithm. Moreover,
as the sets Ts and T−s have equal volumes, it follows that the τ function
maintains the same distribution of perturbations as in the original µAKS,
that is to say that τ(x) is also uniformly distributed in Bn(ε). This along
with the fact that sieving does not use lattice vectors translates to the same
distribution of the output pairs. Nevertheless, it cannot be said that the
initial µAKS and the modified variant have the same control flow, this is
true for the first execution of the sieve, but not for the others.

To conclude, first recall that with probability almost 1, at the end of the algorithm
there is at least one pair left for which the perturbation is good. This means
that in µAKS2, with probability 1

2 , this good pair had an application of τ on it.
Namely, what is obtained is that with probability 1

2 , any zero lattice vector is
taken by the τ function into s. Since µAKS2 has the same output distributions as
µAKS1, this means that the µAKS algorithm also recovers the shortest non-zero
vector s with probability at least half the probability of obtaining a zero vector.
Otherwise, if the good pair does not correspond to the zero vector we still have
an r0 approximation of s and we are done.

ut

In order to ensure a higher success probability, it is possible to run the µAKS
algorithm a polynomial number of times p(n), resulting in a success probability
larger than a threshold which is roughly 1− 1

2p(n) , a probability exponentially
close to 1. The complexity of the algorithm remains the same, as the polynomial
number of rounds is absorbed into the o(n) term in the exponent.

Our most important observation in the construction of our algorithm has been
that, since the perturbations associated with centers are irrevocably lost, it is not
absolutely necessary that we use only good pairs as centers. To our knowledge,
while center preselection has been described before in [HPS11], the idea of not
restricting ourselves to good center pairs is novel. The proof of correctness is
dependent on the pre-selection of the pairs we use for reduction and unlike
previous approaches to the AKS [HPS11, MV10] we process them separately
from the pairs on which we apply the tossing argument.

Complexity Analysis

Using the correctness analysis, it is sufficient to obtain just one good pair at the
end of the sieving steps. Therefore, set N1 = n4NT = 2ctn+o(n), N2 = ( n

n−1 )3 ×
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n3 ×NG = 2cgn+o(n) and NC = 2ctn+o(n). Let us denote the space complexity
by Nspace = 2cspacen+o(n) and the time complexity by Ntime = 2ctimen+o(n). The
space complexity is Nspace = N1 + N2, which means that cspace = max(ct, cg).
The most expensive operation is the sieving procedure, which requires time
NspaceNC . Therefore, we obtain ctime = cspace + ct. To obtain the expression of
the overall complexity we use the fact that the smallest possible radius for lattice
vectors is ε(1 + 1

1−γ ), which means that µ must be at least ε0(1 + 1
1−γ ). The

function ε0(1 + 1
1−γ ) is increasing with respect to both its arguments and γ and

ε0 must also be as large as possible to have a small number of centers and a big
probability of sampling good pairs. Therefore, we set µ = ε0(1 + 1

1−γ ). Plugging
the expressions from Lemma 9 and Lemma 13 we obtain the following result:

Lemma 15. The µAKS algorithm with parameters as in Theorem 14 solves the
approximate shortest vector problem in time complexity bounded by 2ctimen+o(n)

and space complexity bounded by 2cspacen+o(n), where:

ctime = max
[
− 1

2
log2

(
1− 1

4ε20

)
, log2

( µ− ε0
µ− 2ε0

)
+ 0.401

]
+

+ log2

( µ− ε0
µ− 2ε0

)
+ 0.401.

cspace = max
[
− 1

2
log2

(
1− 1

4ε20

)
, log2

( µ− ε0
µ− 2ε0

)
+ 0.401

]
,

where µ ≥ ε0
1− γ

(
1 +

1

n

)
+ ε0 and ε0 >

1

2
.

Note that since µ ≥ ε0
1−γ

(
1+ 1

n

)
+ε0, it follows that µ > 2ε0 and the logarithms

are well defined. In the expressions above, term log2

(
µ−ε0
µ−2ε0

)
corresponds to the

exponent describing the number of centers ct and thus to log( 1
γ ). The minimal

time complexity is reached when we have the following equality:

−1

2
log2

(
1− 1

4ε20

)
= log2

( µ− ε0
µ− 2ε0

)
+ 0.401.

Although this last equation is solvable in the general case by treating either
a quadratic or a cubic equation (using for the cubic the Cardano’s method),
we will omit giving a verbose expression just in terms of ε0. Another remark is
that for asymptotically large µ, an optimal value for ε0 is ε0 ≈ 0.765663, while
ctime ≈ 0.802.

Comparison with Previous Results

The effect of relaxing the search for a minimal difference of lattice vectors has
been applied before on modifications of the ListSieve-Birthday algorithm. A first
proposal has been put forward in [LWXZ11, WLW15], of complexity:
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Lemma 16. ([WLW15, Theorem 6]) The optimal time complexity of the µListSieve-
Birthday (introduced in [WLW15] as Algorithm 2) is 2ctimen+o(n), where ctime =
0.802− 1.5 log2(1− µ−2/3). The corresponding space complexity is 2cspacen+o(n),

where cspace = 0.401− 0.5 log2(1− µ−2/3) and ε0 =
3
√
µ

2 .

A second proposal appears in [LWXZ11], where the authors impose an addi-
tional restriction on the lattice vectors in the list constructed by the ListSieve
algorithm. Namely, they ask that the distance between every two lattice vectors
be greater than µλ. The complexity of this adaptation of the ListSieve is given
by the following result:

Lemma 17. ([LWXZ11]) The time and space complexities of the algorithm re-
ferred to as Modified Algorithm in [LWXZ11] are 2ctimen+o(n) and 2cspacen+o(n),
respectively. Expressions ctime and cspace are defined as ctime = max(2cl+cg, 2cg),

cspace = max(cl, cg), with cg as defined in Lemma 13 and cl = log2(

√
ε2+µ2+ε

µ ) +
0.401.

We have numerically verified up to approximation factor 216 that this adapta-
tion of the AKS algorithm has a lower time complexity than both approximation
variants of the ListSieve-Birthday, in Table 1 we compare the first values, keep-
ing the same approximation factors as given in [LWXZ11, WLW15]. It should
be noted that a trivial adaptation of the AKS does not perform better com-
pared to the ListSieve-Birthday. For approximation factors in ω(1), even taking
ε0 = 1− 1

2µ will yield that the complexity of the ListSieve-Birthday adaptation is
in o(complexity of µAKS). Our algorithm starts providing better time complexity
bounds starting from µ ≈ 2.

Table 1. Comparison of time complexity bounds for µListSieve-Birthday variants and
µAKS. A table entry ctime indicates a time complexity of 2ctimen+o(n), when n→∞.

Modified ListSieve[LWXZ11] µListSieve-Birthday[WLW15] µAKS
µ ctime ctime ε0 γ ctime

2.71 1.99758 2.36552 0.595838 0.718168 1.75721
3.61 1.77978 1.99933 0.624387 0.790868 1.47898

8 1.36434 1.42456 0.687324 0.90601 1.0868
15 1.16723 1.19071 0.719597 0.94961 0.951187
100 0.903217 0.904852 0.757947 0.992363 0.824121

In order to compare the space complexity, first we observe that our algorithm
improves on the space complexity of the more efficient version of the ListSieve-
Birthday variants at around µ ≈ 3.37 and we have numerically verified that this
behaviour holds up to a 216 approximation factor. In Table 2 we compare the
complexities for the same small values of µ.

The ListSieve-Birthday algorithm seems to be more efficient because in the
list of vectors we use for reduction we keep only vectors of norm greater than a
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Table 2. Comparison of corresponding space complexity bounds for µListSieve-Birthday
variants and µAKS. A table entry cspace indicates a space complexity of 2cspacen+o(n),
when n→∞.

Modified ListSieve[LWXZ11] µListSieve-Birthday[WLW15] µAKS
µ cspace cspace cspace

2.71 0.833343 0.922173 0.878607
3.61 0.749856 0.800109 0.739491

8 0.59624 0.608519 0.543402
15 0.526077 0.53057 0.475594
100 0.435 0.435284 0.41206

threshold r0λ, which when optimized is around 3.01λ. Nevertheless, the proof of
correctness for the ListSieve-Birthday requires that the shrinking factor has to be
chosen as 1− 1

n . We have no such restrictions on the algorithm we propose, and
this is why we achieve a better time complexity when considering the approximate
version of the shortest vector problem.

Quantum Search

Most cryptographic primitives based on lattices are normally regarded as se-
cure with respect to quantum computers. Nevertheless, it remains relevant to
see whether quantum computers can employ speed-ups of the known classical
algorithms solving the SVP in our case. In particular, the Grover quantum search
algorithm can be used to speed up sieving algorithms, as pointed out in [LMP15].
The algorithm considers a list L of size N along with a function f : L→ {0, 1}
such that the set f−1(1) is small. When the memory model considered is a
RAM memory, which is also quantumly addressable, the search requires O(

√
N)

operations, as opposed to O(N) in the classical setting. In the quantum setting,
reducing our list of centers is done in 2cspace+ct/2, which unsurprisingly yields, for
asymptotically large approximations factors, a time complexity of 20.602n+o(n),
just as the adaptations of ListSieve-Birthday. Naturally, as the quantum search
algorithm brings only a speedup in the exponent of 1

4 , it follows that µAKS will
still have a smaller time and space complexity when compared to ListSieve.

5 Conclusions and Open Questions

In this work, we give a new algorithm for approximate SVP that is slightly
faster than previously known algorithms. More importantly, it justifies that the
ListSieve algorithm by [MV10] does not outperform [AKS01] in every respect.

There are a number of open questions that still remain. In particular, all known
algorithms for the shortest vector problem are constrained by the kissing constant
from [KL78b], and it is not completely clear whether this is a fundamental
bottleneck or just a shortcoming of the current techniques. Another reason for
the gap in theoretical and practical results originates in the current bounds on
the kissing constant, which are not presently known to be tight.
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