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Abstract

We give a method to transform any indistinguishability obfuscator that suffers from correct-
ness errors into an indistinguishability obfuscator that is perfectly correct, assuming hardness
of Learning With Errors (LWE). The transformation requires sub-exponential hardness of the
obfuscator and of LWE. Our technique also applies to eliminating correctness errors in general-
purpose functional encryption schemes, but here it is sufficient to rely on the polynomial hardness
of the given scheme and of LWE. Both of our results can be based generically on any perfectly
correct, single-key, succinct functional encryption scheme (that is, a scheme supporting Boolean
circuits where encryption time is a fixed polynomial in the security parameter and the message
size), in place of LWE.

Previously, Bitansky and Vaikuntanathan (EUROCRYPT ’17) showed how to achieve the
same task using a derandomization-type assumption (concretely, the existence of a function with
deterministic time complexity 2O(n) and non-deterministic circuit complexity 2Ω(n)) which is
non-game-based and non-falsifiable.
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1 Introduction

Randomness is a key resource in cryptography. Basic cryptographic primitives cannot be constructed
without randomization, even when only requiring security against deterministic adversaries. Un-
fortunately, randomized algorithms are often error prone, which makes the resulting constructions
suffer in correctness. As an example, consider an encryption scheme based on “noisy” assumptions
(such as the ones related to lattices). In these cases, there are often a few random coins that lead to
ciphertexts that do not decrypt correctly, thus preventing the scheme from being perfectly correct.

Perfectly correct schemes provide a substantive advantage over schemes that are imperfect. Par-
ticularly, there are applications in which the security relies on the perfect correctness of the underly-
ing building blocks (these include, e.g., [10, 12, 13]). For example, Bitansky and Paneth [12] showed
how to get non-interactive witness indistinguishable proofs from perfectly correct indistinguishability
obfuscation and one-way functions (see more on this below).

The importance of perfect correctness has motivated many works in the past to focus on elimi-
nating correctness errors in cryptographic primitives. Some works, such as [23, 34, 39, 15, 3], address
correctness in encryption schemes and obfuscation-related primitives, and show how to amplify cor-
rectness, while not fully eliminating all errors. Other works, such as [27, 24, 26], fully eliminate
correctness errors in interactive proofs and concrete encryption schemes. Recently, Bitansky and
Vaikuntanathan [16] gave a generic technique to fully eliminate correctness errors which applies
to a wide range of cryptographic primitives, including encryption schemes and indistinguishability
obfuscation.

The technique of [16] is inspired by ideas from complexity theory, or more precisely, from the
field of derandomization. They use a (non-cryptographic) pseudorandom generator (PRG) that
fools bounded-resource algorithms. Given the complexity of the algorithm one wishes to fool, such
PRGs are known to exist based on worst-case size lower bounds for Boolean circuits [43, 35, 47].
In the concrete application of Bitansky and Vaikuntanathan [16], the assumption is the following
(plausible) worst-case size lower bound on non-deterministic Boolean circuits: there is an n-input
Boolean function in E , DTime(2O(n)) with non-deterministic circuit complexity 2Ω(n). Previously,
this assumption was used by Barak et al. [9] in a related way yet for a different purpose: saving
rounds of interaction in commitment schemes and ZAPs.

The transformation of [16] is very general, and enables correcting errors in various types of
cryptographic primitives. However, while the use of derandomization is natural and elegant in
the context of obtaining perfect correctness, it introduces a new dimension of assumptions for
cryptographic constructions. In particular, the assumption above is not a game-based assumption
and not a falsifiable one [41] (under any plausible definition).1 This raises the question of whether
derandomization is necessary to eliminate correctness errors in cryptographic primitives, or whether
we can achieve this with only “standard” game-based cryptographic assumptions.

To date, there is no generic way to completely immunize indistinguishability obfuscation from
errors using only falsifiable or game-based assumptions, and the only way to achieve this goal is
using the derandomization approach of [16]. In this work, we show (perhaps surprisingly) how to
completely immunize sub-exponentially secure indistinguishability obfuscation by relying only on
perfectly correct, sub-exponentially secure, single-key Boolean functional encryption, which as we
show can be instantiated with Learning With Errors (LWE). We also show a similar result for
functional encryption (FE).

1To break the assumption one has to present a non-deterministic circuit of size 2o(n) that computes a function in
E, but verifying the latter takes exponential time.
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1.1 Our Results

We give a generic transformation that starts with indistinguishability obfuscation (iO) with imperfect
correctness and results in perfectly correct iO. By imperfect correctness, we mean that with all
but negligible probability over the choice of the randomness of the obfuscator, for any circuit C,
the output of the obfuscation on any input x is C(x). Our transformation additionally relies on
perfectly correct, single-key functional encryption for Boolean circuits in the public-key setting,
which is succinct in the sense that the time to encrypt is independent of the circuit size that the
scheme supports (up to poly-logarithmic factors). Henceforth, we will refer to this as succinct FE.
Our first result is a generic transformation.

Theorem 1.1 (Informal). Assume the existence of iO with imperfect correctness and succinct FE
with perfect correctness, both with sub-exponential security. Then, there exists iO with perfect cor-
rectness.

Moreover, we show that with some modifications, perfectly correct succinct FE can be instanti-
ated using the construction of Goldwasser et al. [28], which relies only on the hardness of LWE. We
therefore obtain the following corollary.

Corollary 1.2 (Informal). Assume the existence of sub-exponentially secure iO with imperfect cor-
rectness and sub-exponential hardness of LWE. Then, there exists iO with perfect correctness.

Note that our assumption on the correctness of the initial iO can be relaxed by using known
generic correctness amplification transformations [15, 3]. Concretely, using the transformation of
Ananth et al. [3], without additional assumptions, we can start with an iO that guarantees correct-
ness for every C only on most inputs and most random strings used by the obfuscator.

Our techniques also apply to functional encryption (FE) schemes, but in this case, our trans-
formation relies only on polynomial hardness of both succinct FE and the given FE scheme. Here,
imperfect correctness means that for a function f , with all but negligible probability over the choice
of the master public key and secret key pair, the decryption of any input x together with a key for
f results with f(x). Our result applies both in the public-key and private-key settings, but we focus
on the public-key setting for concreteness.

Theorem 1.3 (Informal). Assume the existence of a public-key functional encryption scheme with
imperfect correctness and succinct FE with perfect correctness. Then, there exists a public-key
functional encryption scheme with perfect correctness.

By again instantiating the perfectly correct succinct FE with LWE, we obtain the following
corollary.

Corollary 1.4 (Informal). Assume the existence of a public-key functional encryption scheme with
imperfect correctness. Then, assuming (polynomial) hardness of LWE, there exists a public-key
functional encryption scheme with perfect correctness.

As in the case with iO, our assumption on the correctness of the initial FE scheme can be relaxed
by using known generic transformations [15].

Applications. Our transformation gives a way to get applications from imperfect iO that were
only previously known from perfect iO.

For example, consider non-interactive commitments. These are known to exist based on one-way
permutations (Blum [17]), from any one-way function plus the same derandomization assumption
from above (Barak et al. [9]), or from LWE (Goyal et al. [32]). Bitansky, Paneth, and Wichs [13] also
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gave a construction based on iO with perfect correctness and one-way functions.2 Using the result of
Bitansky and Vaikuntanathan [16] to fix the errors in an imperfect iO gives a strictly weaker result
than that of [9], as it additionally requires assuming the existence of imperfect iO. Applying our
result changes the picture: it gives a generic construction of non-interactive commitments from (sub-
exponentially secure) iO, even if the latter has imperfect correctness, assuming also sub-exponentially
secure succinct FE with perfect correctness.

The same reasoning applies to non-interactive witness indistinguishable proofs (NIWI). There
are three known constructions. One, of Barak et al. [9], is based on ZAPs (NIZKs in the common
random string model) [22] plus the derandomization assumption mentioned above. The second, of
Groth et al. [33], is based on a specific number theoretic assumption on bilinear groups. The latest
construction, of Bitansky and Paneth [12], is based on iO with perfect correctness, ZAPs (which can
in turn be based on iO and one-way functions [12]), and non-interactive commitments (discussed
above). Our result therefore implies a construction of NIWI that is based on (sub-exponentially
secure) imperfect iO and perfectly correct succinct FE and no derandomization or specific number
theoretic assumptions.

Corollary 1.5. Assuming sub-exponentially secure iO, even with imperfect correctness, and sub-
exponentially secure succinct FE with perfect correctness, there exist non-interactive commitments
and non-interactive witness indistinguishable proofs.

1.2 Technical Overview

Our transformations rely on many known building blocks and transformations from the literature.
Most of the technical engineering effort is devoted to revisiting and adapting them to our setting in
a way that achieves and preserves perfect correctness.

Correcting iO. Suppose we have an obfuscator iO for which there is a tiny possibility that the
obfuscated circuit does not agree with the given circuit. Namely, for every circuit C and security
parameter λ:

Pr
r←{0,1}poly(λ)

[
∀x : C(x) = C̃(x), where C̃ = iO(1λ, C; r)

]
≥ 1− 2−λ .

Can this be transformed into a perfectly correct scheme? Intuitively, this is possible by cleverly
choosing the randomness for the obfuscator to find a “good” r that works for all circuits. Indeed,
this calls for techniques from the realm of derandomization. In the context of derandomizing BPP,
one has an algorithm A(x, r) that decides (with some bounded error) whether x is a member of
some language L. The error is eliminated by running A on many random tapes corresponding to the
images of a Nisan-Wigderson PRG [42], and then outputting the majority. Such NW-PRGs produce
poly(λ)-long strings using short logarithmic-size seeds, and can be constructed under worst-case size
lower bounds on circuits [43, 35, 47].

Applying this idea directly for iO would result in a deterministic obfuscator, and therefore
would be insecure. Bitansky and Vaikuntanathan [16] showed how to combine true randomness

2Their main observation is that in (a minor variant of) Blum’s construction [17] it is sufficient to have a family
of injective one-way functions such that every key in the support of the key-generation algorithm defines an injective
function. Indeed, [13] constructed such a family from iO with perfect correctness and one-way functions. We observe
that their construction is insufficient for the application if the iO has imperfect correctness.

More precisely, the modification that [13] suggest to Blum’s commitment scheme is that during the opening stage
the committer will reveal the randomness it used for the obfuscation. In other words, the obfuscation is treated as
a (statistical) commitment to the functionality of the circuit which prevents the committer from opening with two
different functionalities. However, when the obfuscation is imperfect, there could be two functionally different circuits
that are mapped under some randomness to the same obfuscated circuit. This can be used to break binding.
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together with the pseudorandomness produced by the NW-PRG, to end up with a scheme that is
simultaneously secure and fully correct.3

Instead of correcting the obfuscator by searching for “good” randomnesses, we follow a direct
route for correcting iO that obviates the need for derandomization and its associated assumption.
Suppose we had an efficient procedure to check whether a circuit C was obfuscated correctly, that
is, whether C(x) = C̃(x) for every x, where C̃ ← iO(C). Then, we could easily construct a perfectly
correct iO: Given a circuit C we run C̃ ← iO(C), and check whether C and C̃ are functionally
equivalent. If they are, we output C̃. Otherwise (which happens with negligible probability), we
simply output C. This degrades the security of the scheme by a negligible amount,4 and guarantees
perfect correctness.

Unfortunately, in general, there is no efficient procedure to check whether two circuits are func-
tionally equivalent. Nevertheless, this becomes possible if we restrict our attention to circuits with
only logarithmic-size input. Indeed, this already gives us (an unconditional!) method to convert an
imperfectly correct indistinguishability obfuscator for the class of circuits with logarithmic-size input
into a perfectly correct one. However, obtaining iO for such circuits is trivial (without assumptions)
as one can just output the truth table as the obfuscation. So, does this observation have any bearing
on iO for general circuits?

In [37], Lin et al. formalized the notion of exponentially-efficient iO (XiO), a relaxation of iO,
which applies to circuits with logarithmic-size input. In XiO, the obfuscator may run in exponential
time in the input length, but must output obfuscations of sublinear size in the truth table of the
circuit. This rules out the trivial constructions of iO mentioned above. The main result of Lin et al.
is that, assuming sub-exponentially secure succinct FE, sub-exponentially secure XiO is sufficient
to obtain full fledged iO. We observe that correcting XiO is possible with the trick described above
(and without any additional assumptions): let the obfuscator verify that the obfuscation is correct
and if not output the circuit itself.

Our first step is thus to view the given imperfect iO as an imperfect XiO. Then, we can transform
it into a perfectly correct one as described above. This was also done in Asharov et al. [7] in the
context of (directly) correcting XiO. Once we obtain a perfect XiO, we proceed with the outline of
[37]. Assuming succinct FE with perfect correctness, the steps of [37] are generic and can be easily
shown to preserve correctness.

We also show that our construction can be based on LWE, rather than succinct FE with perfect
correctness. To do so, we rely on the construction of succinct FE from LWE due to Goldwasser
et al. [29], and modify the necessary parts of their construction to obtain perfect correctness. In
particular, their construction of succinct FE is based (generically) on attribute-based encryption
(ABE) [31] and FHE [21], both of which can be based on LWE. Due to the noisy nature of LWE,
some of the known instantiations of these primitives introduce correctness errors. Therefore, to
make the above primitives perfectly correct, we identify the points where correctness errors might
occur and observe that they are all detectable. This allows us to give up once an error happens and
“push” the correctness errors into the security loss.

Correcting FE. Our transformation for FE follows a similar path, but is more complicated since
we wish to incur only polynomial security loss. First, we observe that FE implies XiO, by the results
of [11, 5]. We then correct the XiO, as described above. Then, one option is to go all the way to iO
(using [37]) and then back to FE, but this would require assuming sub-exponential security. Instead
we present a direct method to go from XiO to FE assuming succinct FE with perfect correctness,

3A delicate point in the their proof is showing that shifting real randomness by randomness that comes from
the NW-PRG is good enough. This is where they need to use the fact that the NW-PRG fools non-deterministic
computation. See [16] for more detail.

4The security degradation can be made arbitrary small by BPP-style amplification (i.e., parallel repetition and
majority).
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which can again be based on LWE. We note that for this result, it suffices to start with an FE that
is only weakly sublinear compact5 to obtain a perfectly correct FE with sublinear compactness (that
is, the type of compactness which suffices for applications such as iO).

1.3 Related Work

The task of eliminating correctness errors in cryptographic primitives was addressed in many works
in the past. Dwork, Naor, and Reingold [23], Holenstein and Renner [34], and Lin and Tessaro [39]
gave generic methods to immunize any encryption scheme. These guarantee that there are no
errors in the encryption and decryption procedures, but leave the possibility of errors in the key-
generation procedure. Partial elimination of errors was also recently achieved for indistinguishability
obfuscation (iO) by Bitansky and Vaikuntanathan [15], who relied on the sub-exponential security
of the given obfuscator and of the LWE assumption. This was later improved by Ananth, Jain, and
Sahai [3] by assuming only polynomial security of the given obfuscator and one-way functions.

Regarding completely eliminating correctness errors, the works of Goldreich, Mansour, and
Sipser [27] and Furer et al. [24] showed how to generically translate every interactive protocol
that has imperfect correctness into a perfectly correct one. Concrete implementations of encryption
schemes that are based on lattices (such as the ones of Ajtai and Dwork [1] and Regev [46]) are
usually noisy and thus prone to correctness errors. Goldreich, Goldwasser, and Halevi [26] suggested
variants that have perfect correctness. As was already mentioned, Bitansky and Vaikuntanathan [16]
suggested a generic technique, based on derandomization assumptions, to achieve this task for any
cryptographic primitive. The technique can be applied to any cryptographic scheme that remains
secure under parallel repetition (such as encryption schemes and indistinguishability obfuscation).

In this work, we rely on exponentially-efficient iO (XiO) [37] in our transformations (see Sec-
tion 1.2). Asharov et al. [7] previously showed how to correct errors in XiO, assuming (polynomial
hardness of) LWE and NIZK. Their transformation starts with an XiO which is only approximately
correct, that is, for every circuit C, the obfuscated circuit C̃ is correct with noticeable probability
over both the input to the circuit and the randomness for the obfuscator. In particular, they first
transform the approximate obfuscator to an imperfect one.6 Then, they observe that imperfect XiO
can easily be made perfect. We use this observation in this work (see Section 1.2 for details).

Organization. The preliminaries we use in our paper are given in Section 2. In Section 3 we
provide our transformation from imperfect iO into perfect iO, and in Section 4 we provide our
transformation for FE. In order to obtain our results, we combine known building blocks from
the literature, and in some cases, make modifications to ensure perfect correctness. The known
transformation are mostly given in the appendices.

2 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. We use PPT as an abbreviation for probabilistic polynomial time.

Throughout the paper, we denote the security parameter by λ. A function negl : N → R+

is negligible if for every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c

5This is a somewhat weak notion of FE that guarantees that the length of a ciphertext is sublinear in the size of
the functions for which we generate keys. Our transformation thus works even if we start with stronger notions of FE.

6In [7], an imperfect obfuscator was called a worst-case correct obfuscator.
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for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are µ-
computationally indistinguishable if for any probabilistic polynomial-time algorithm A it holds that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ µ(λ) for all large enough λ ∈ N. We denote that {Xλ}
and {Yλ} are computationally indistinguishable by {Xλ} ≈ {Yλ}.

2.1 Circuits and Algorithms

Boolean circuits correspond to directed acyclic graphs in which every gate is labeled by a Boolean
operation. We parametrize Boolean circuits by their size s, the number of inputs they accept n, and
their depth d. As usual, the size of a circuit is defined to be the number of wires in it.

Definition 2.1. For any functions s(·), n(·), and d(·), we define Cs,n,d to be the class of circuits
{Cλ}λ∈N for which for any C ∈ Cλ, the size of C is at most s = s(λ), the input length of C is at
most n = n(λ), and the depth of C is at most d = d(λ). We sometimes omit the depth d and refer
to Cs,n as the class of circuits {Cλ}λ∈N with size s and input length n.

Definition 2.2. We define the following classes of circuits:

• Plog: the collection of circuit classes Cs,n for which s is a polynomial and n is logarithmic
function.

• P: the collection of circuit classes Cs,n for which s and n are polynomials.

• NCi: the class of circuits Cs,n,d where s and n are polynomials and d(λ) = O(logi(λ)).

Definition 2.3. For a (uniform) algorithm A, described by a Turing machine, with input x, we
denote by Time [A(x)] and Outlen [A(x)] upper bounds on the running time and output length of A
on input x, respectively.

2.2 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation (iO) for circuits. Informally, iO is a
compiler that gets as input a circuit and outputs a functionally equivalent circuit. Concretely,
we consider an imperfect notion of correctness, which only guarantees that with overwhelming
probability over the randomness of the obfuscator, the obfuscator outputs an equivalent circuit [36].
For security, it ensures that obfuscations of functionally equivalent circuits are computationally
indistinguishable.

Definition 2.4 (Functional Equivalence). We say that two circuits C and C ′ are equivalent and
denote it by C ≡ C ′ if they compute the same function (i.e., ∀x : C(x) = C ′(x)).

Definition 2.5 (Indistinguishability Obfuscation [8, 25]). An indistinguishability obfuscator (iO)
for the circuit class Cs,n = {Cλ}λ∈N is a pair of polynomial time algorithms (Obf,Eval) with the
following syntax:

• C̃ ← Obf(1λ, C): The obfuscator is a randomized algorithm that receives the security parameter
1λ and a circuit C ∈ Cs,n and outputs a circuit C̃. The running time of this procedure is a
polynomial in λ, s, and n.

• y ← Eval(C̃, x): The evaluator is a deterministic algorithm that receives C̃ and an input x,
and outputs a string y or ⊥.

We require the following properties to hold.

• Imperfect Correctness. Unless otherwise specified, we require the following correctness prop-
erty. There exists a negligible function such that for all λ ∈ N, all C ∈ Cλ it holds that

Pr
[
∀x : C(x) = Eval(C̃, x)

]
≥ 1− negl(λ)

where C̃ ← Obf(1λ, C) and the probability is over the random coins of Obf.
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• Security. For any probabilistic polynomial-time distinguisher D, there exists a negligible function
negl(·) such that for all λ,∈ N and all C0, C1 ∈ Cλ with C0 ≡ C1, it holds that∣∣∣∣ Pr

Obf,D

[
D
(
Obf(1λ, C0)

)]
− Pr

Obf,D

[
D
(
Obf(1λ, C1)

)]∣∣∣∣ ≤ negl(λ).

Sub-exponential security. We also consider sub-exponential security. We say that an obfuscator
is sub-exponentially secure if for some ε > 0 there exists functions t(λ) = 2λ

ε
and µ(λ) = 2−λ

ε
such

that for all adversaries A that run in time t(λ), the probability of distinguishing the above two
distributions is at most µ(λ).

We also define perfect correctness for iO.

Definition 2.6 (Perfect Correctness). An obfuscator for a circuit class Cs,n = {Cλ}λ∈N is perfectly
correct if for all λ ∈ N, all C ∈ Cλ, and all x ∈ {0, 1}n(λ), it holds that

Pr
[
C(x) = Eval(C̃, x)

]
= 1,

where C̃ ← Obf(1λ, C) and the probability is taken over the randomness of Obf.

We also recall the definition of exponentially-efficient iO, a relaxation of iO introduced by Lin
et al [37].

Definition 2.7 (Exponentially-Efficient Indistinguishability Obfuscation [37]). An exponentially-
efficient indistinguishability obfuscator (XiO) scheme for the circuit class Cs,n = {Cλ}λ∈N is a
tuple of algorithm (Obf,Eval) that satisfy the correctness and security properties of iO and have the
following efficiency requirement:

• Nontrivial Efficiency. There exists a constant ε > 0 such that for any λ ∈ N, any circuit
C ∈ Cλ, there exists a polynomial poly such that

Time
[
Obf(1λ, C)

]
= poly(λ, s, 2n),

and
Outlen

[
Obf(1λ, C)

]
= 2n(1−ε) · poly(λ, s).

2.3 Functional Encryption

We recall the definition of functional encryption (FE). At a high level, FE is an encryption scheme
which enables issuing functional keys corresponding to circuits, such that decryption of a ciphertext
corresponding to a message m with a key corresponding to a circuit C reveals C(m). As in the case
of iO, we consider a notion of imperfect correctness, that guarantees that for every function, with
overwhelming probability over the output of the setup algorithm, the scheme operates correctly for
all messages.

Definition 2.8 (Functional Encryption [44, 20, 37]). A public key functional encryption (FE)
scheme for a class of circuits Cs,n is a tuple of polynomial-time algorithms (Setup,Keygen,Enc,Dec)
that behaves as follows:

• (msk, pk)← FE.Setup(1λ): The setup algorithm is a randomized algorithm that takes as input
the security parameter λ and outputs the master secret key msk and public key pk.

• skC ← FE.Keygen(msk, C): The key generation algorithm is a randomized algorithm that takes
as input the master secret key msk and some circuit C ∈ Cλ and outputs the functional secret
key skC .

7



• ct ← FE.Enc(pk,m): The encryption algorithm is a randomized algorithm that takes as input
the public key pk and a message m and outputs a ciphertext ct.

• y ← FE.Dec(skC , ct): The decryption algorithm is a deterministic algorithm takes as input the
functional secret key skC and ciphertext ct and outputs y ∈ {0, 1}∗.

We require that FE the following hold.

• Imperfect Correctness. There exists a negligible function negl such that for every λ ∈ N,
every C ∈ Cλ we have that:

Pr [∀m, rEnc, rKeygen : Dec(skC ,Enc(pk,m; rEnc)) = C(m)] ≥ 1− negl(λ),

where (pk,msk)← Setup(1λ), skC = Keygen(msk, C; rKeygen), and the probability is taken over
the randomness of Setup.

• Selective Indistinguishability Security. For every PPT A, there exists a negligible function
negl(·) such that for every λ ∈ N, every circuit C ∈ Cλ, and ever pair of messages m0,m1 ∈
{0, 1}n(λ) such that C(m0) = C(m1), it holds that∣∣∣∣Pr [A (z,FE.Enc(pk,mb)) = b]− 1

2

∣∣∣∣ ≤ negl(λ),

where z = (pk, C,m0,m1, skC), (pk,msk)← FE.Setup(1λ), b← {0, 1}, and skC ← FE.Keygen(msk, C).

As in the case of obfuscation, we define the perfect notion of correctness for functional encryption.

Definition 2.9 (Perfect Correctness). An FE scheme for a circuit class Cs,n = {Cλ}λ∈N is perfectly
correct if for every λ ∈ N, every C ∈ Cλ, every m ∈ {0, 1}n(λ), we have that:

Pr [Dec(skC ,Enc(pk,m)) = C(m)] = 1,

where (pk,msk)← Setup(1λ), skC ← Keygen(msk, C), and the probability is taken over the random-
ness of Setup.

We also give a selective simulation security definition for FE. The following definition is adapted
from the definition of full simulation security [29], and suffices for our purposes.

Definition 2.10 (Simulation Security). Let FE = (Setup,Keygen,Enc,Dec) be an FE scheme for a
class of circuits Cs,n = {Cλ}λ∈N. For every PPT A and PPT simulator S, define the following two
experiments:

ExprealFE,A(λ):

1 : (m,C, st)← A(1λ)

2 : (mpk,msk)← Setup(1λ)

3 : skC ← Keygen(msk, C)

4 : ct← Enc(mpk,m)

5 : Output (ct, st)

ExpidealFE,A,S(λ):

1 : (m,C, st)← A(1λ)

2 : (mpk,msk)← Setup(1λ)

3 : skC ← Keygen(msk, C)

4 : ctSim ← S(mpk, skC , C, C(m))

5 : Output (ctSim, st)

We say that FE is simulation secure if there exists a PPT simulator S such that for all PPT A,{
ExprealFE,A(λ)

}
λ∈N
≈
{
ExpidealFE,A,S(λ)

}
λ∈N

.
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2.3.1 Compactness of FE

Definition 2.11 (Notions of Compactness for Functional Encryption [14, 4, 38]). We say that a
functional encryption scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) for the class of circuits
Cs,n = {Cλ}λ∈N is

• compact if it holds that

Time [FE.Enc(pk,m)] = poly(λ, |m|, log(s)),

• sublinearly compact if there exists a constant η > 0 such that

Time [FE.Enc(pk,m)] = s1−η · poly(λ, |m|),

• weakly sublinearly compact if there exists a constant η > 0 such that

Time [FE.Enc(pk,m)] = poly(λ, |m|, s)
Outlen [FE.Enc(pk,m)] = s1−η · poly(λ, |m|),

• succinct if FE is a compact FE scheme for a class of circuits with 1-bit outputs,

where the above definitions hold for every λ ∈ N, (pk,msk)← FE.Setup(1λ) and m ∈ {0, 1}n(λ), and
where s = s(λ).

2.4 Learning with Errors

Definition 2.12 ([46]). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over Zq,
the learning with errors problem LWEn,m,q,χ is to distinguish between{

A← Zm×nq ; s← Znq ; e← χm : (A,As + e)
}

and {
A← Zm×nq ; u← Zmq : (A,u)

}
.

Definition 2.13 (Bounded Distributions). Let B = B(n) such that B(n) ∈ N for all n ∈ N. A
family of distributions χ = {χn}n∈N over the integers is B-bounded if for all n ∈ N,

Pr [x← χn : |x| ≤ B(n)] = 1.

Some of the literature (e.g., [21]) defines B-bounded distributions as those that are bounded
with overwhelming probability. Regarding cryptographic constructions from LWE (such as those
in [21]), the distribution χ is used as the error distribution, and thus the bound B directly influences
the correctness of the resulting scheme. Since the two definitions are statistically close, the hardness
of LWE and connection to lattices [46, 45] extend to the case where χ is bounded with probability 1.

Perfectly correct PKE from LWE [46]. The public-key encryption scheme of [46], when sam-
pling the noise from a bounded distribution, results in a perfectly correct scheme. The key generation
algorithm chooses a random secret s ∈ Znq , which would serve as the private key. In addition, the

key generation algorithm chooses A ← Zm×nq , noise e ← χm, and sets b
def
=As + e. The public key

is defined as (A,b). The encryption algorithm on input message m ∈ {0, 1} and public key (A,b),

chooses a random r← Zmq and outputs (u, v)
def
=(rT ·A, 〈r,b〉+m/2). The decryption of (u, v) is 0 if

v−〈u, s〉 is closer to 0 than to 1/2, and 1 otherwise. The decryption algorithm is in NC1, the scheme
is perfectly correct if the noise distribution χ is bounded, and is secure under the LWE assumption.
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3 Correcting Errors in Indistinguishability Obfuscation

In this section we present our main result—a transformation from imperfectly correct iO to perfectly
correct iO.

Theorem 3.1. Assume the existence of a sub-exponentially secure iO scheme for P that is imper-
fectly correct. Then, assuming sub-exponentially secure succinct FE with perfect correctness for P,
there exists a perfectly correct iO scheme for P.

Relaxing imperfect correctness. The above transformation can be made to work with an iO
scheme that is only approximately correct, rather than imperfectly correct. In particular, suppose iO
is correct for any circuit C with probability (1/2+1/poly(λ)) over the randomness of the obfuscator
and the choice of input (i.e., iO is approximately correct). Using the results of Ananth et al. [3] and
Bitansky et al. [15], this can be transformed to an imperfect iO scheme (in which failure is only due
to the randomness of the obfuscator and not the choice of the input). In particular, [3] showed how
to obtain an imperfect iO scheme relying only on one-way functions (improving on [15], who gave
the same result based on DDH).

Proof of Theorem 3.1. Let iO be a sub-exponentially secure, imperfectly correct iO scheme for P
(the class of all polynomial-size circuits). Let Plog be the class of all polynomial-size circuits with
logarithmic-size input (see Definition 2.2). The proof follows a sequence of two transformations:

Imperfect iO ⇒ Perfect XiO. Because iO is a special case of XiO and Plog ⊂ P, we can view
iO as an imperfectly correct XiO scheme xiO for Plog. Then, we can transform this scheme into
a perfectly XiO correct scheme, by slightly modifying the obfuscation algorithm: Upon receiving
a circuit C, obfuscate it to obtain C̃, and then verify that C̃ is correct by enumerating over all
inputs x and checking that C(x) = xiO.Eval(C̃, x). If the verification fails, output C, and otherwise,
output C̃. Perfect correctness of this transformation is immediate. As for security, by the imperfect
correctness of xiO it holds that with all but negligible probability over the random coins of the
obfuscator, any xiO obfuscation C̃ is correct on all inputs x. Thus, there is only a negligible loss in
security. In summary, this gives the following claim:

Claim 3.2 ([7]). Assuming the existence of a sub-exponentially secure, imperfectly cor-
rect XiO scheme for Plog, there exists a sub-exponentially secure, perfectly correct XiO
scheme for Plog.

XiO + sFE⇒ iO. Given a perfectly correct XiO scheme, our goal is to transform it to a perfectly
correct iO. Lin et al. [37] show that the existence of sub-exponentially secure XiO for Plog, together
with sub-exponentially secure succinct FE for P, suffice for achieving full-fledged iO for P. We revisit
this transformation and show that once both of the underlying primitives are perfectly correct, we
end up with perfectly correct iO for P. This transformation consists of some additional intermediate
steps (first transforming XiO and sFE into weakly sublinearly compact FE, then to randomized
encodings, and only then to iO). We verify that the transformation preserves the perfect correctness
and elaborate on it in Appendix B. No modifications are needed for this transformation.

Claim 3.3 ([37]). Assume the existence of a sub-exponentially secure, perfectly correct,
succinct FE scheme for P, and a sub-exponentially-secure, perfectly correct XiO scheme
for Plog. Then, there exists a perfectly correct iO scheme for P.

Thus, we end up with a perfectly correct iO scheme for P.

We also observe that perfectly correct succinct FE can be based on LWE.
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Claim 3.4. Assuming sub-exponential hardness of LWE, there exists a perfectly correct succinct FE
for P.

Combined with Theorem 3.1, this yields the following corollary.

Corollary 3.5. Assume the existence of a sub-exponentially secure iO scheme for P that is imper-
fectly correct. Then, assuming sub-exponential hardness of LWE, there exists a perfectly correct iO
scheme for P.

To prove Claim 3.4, we show how to instantiate the sFE construction of [29] to ensure perfect
correctness. The construction of [29] relies on two main building blocks: fully homomorphic en-
cryption (FHE) and attribute-based encryption (ABE), such that if both satisfy perfect correctness,
then sFE is perfectly correct. There are known constructions of FHE that satisfy perfect correctness
(e.g., the one of [21]; see Section A.1), but known ABE constructions (for example, those of [31, 19])
do not satisfy perfect correctness.7 To this end, we show how to modify the ABE construction of [31]
to get a perfectly correct ABE and thereby a perfectly correct sFE. The modification is presented
in Section 3.1, and we verify that the remainder of the sFE construction of [29] is perfectly correct
in Appendix A.

3.1 Perfectly Correct Succinct FE and ABE

One of the key ingredients in obtaining perfect iO is a perfectly correct, succinct FE. To give an
instantiation which satisfies perfect correctness, our starting point is the construction of succinct
FE of Goldwasser et al. [29]. Their construction relies on three building blocks: attribute-based
encryption (ABE), fully homomorphic encryption (FHE), and garbled circuits. In Appendix A, we
overview their construction, and verify that if all the building blocks are perfectly correct, then the
resulting succinct FE is perfectly correct. We also verify the correctness of known constructions
of FHE and garbled circuits. However, obtaining a perfectly correct ABE construction requires
more care. Therefore, in this section, we show how to modify the Gorbunov et al. [31] construction
of ABE, so that it can be used to construct perfectly correct, succinct FE. That is, we show the
following claim.

Claim 3.6 (Claim 3.4, restated). Assuming sub-exponential hardness of LWE, there exists a perfectly
correct succinct FE scheme for P that is sub-exponentially simulation secure.

We proceed by discussing the ABE construction of [31]. At a high level, ABE is an encryption
scheme which allows encrypting a message m together with an attribute a, and generating keys skP
corresponding to predicate circuits P . The correctness property is that the encryption of (m, a)
decrypts to m using skP whenever P (a) = 1. Gorbunov et al. [31] give a construction of ABE for
polynomial-size circuits with a-priori bounded depth.

Theorem 3.7 ([31, Corollary 6.2]). For all n and polynomials d = d(n), there exists a selectively
secure ABE scheme ABE for any class of polynomial-size circuits with n inputs and depth d, assuming
hardness of LWE`,m,q,χ for sufficiently large ` = poly(λ, d), q = `O(d), m = poly(`), and poly(`)-
bounded distribution χ.

Moreover, assuming sub-exponential hardness of LWE, it holds that ABE is sub-exponentially
secure.

7Note that in [31] it is claimed that the scheme satisfies perfect correctness, however, a closer look reveals that there
is negligible probability, over the setup stage and the key generation, that key generation fails (see [31, Lemma 3.2]).
Our modification confirms their claim for perfect correctness. See Section 3.1 for details.
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Let the ABE construction in [31] be ABE = (Setup,Enc,Keygen,Dec). It was shown in [31] that
ABE has the following correctness guarantee: For C ∈ Cλ, it holds that

Pr [∀a with C(a) = 1, ∀m, renc : Dec(skC ,Enc(mpk, a,m; renc) = m] ≥
1− negl(λ)

for a negligible function negl, where (msk,mpk)← Setup(1λ, 1n) and skC ← Keygen(msk, C) (and the
probability is taken over the randomness of Setup and Keygen). However, with a slight modification,
the scheme can be made perfectly correct. We start with a high level overview of the scheme.

The ABE construction. The construction uses two-to-one recoding (TOR), which is con-
structed from LWE, and serves as a re-encryption mechanism. At a high level, a TOR scheme
enables encoding a secret s under a key pk using an algorithm Encode, and then generating a recod-
ing key rk using an algorithm Recode, such that given encodings of s under pk0 and pk1, one can
use rk to compute an encoding of s under a new target key pktgt. Using a TOR scheme, the ABE
construction for circuits with n input bits is as follows.

The setup algorithm creates a TOR key-pair (pki,b, ski,b) for each input bit i ∈ [n] and each
b ∈ {0, 1}, as well as a special public key pkout. To encrypt a message m with an attribute a, a
random value s is encoded as ψi ← Encode(pki,ai , s) for each i ∈ [n]. The ciphertext contains these
encodings, as well as a masked value τ of m under Encode(pkout, s). To generate a key for a circuit
C, recoding keys rkg,b,c are generated for each gate g of C and each pair of inputs b, c ∈ {0, 1}.
These essentially enable one to translate encodings of input bits corresponding to an input x to an
encoding of C(x) under pkout if and only if C(x) = 1. Thus, at decryption, one can use the recoding
keys to translate ψ1, . . . , ψn into an encoding of s under pkout, which can be used to reveal m from τ .

We now analyze the correctness of ABE, and show that with a slight modification to the scheme,
it can satisfy perfect correctness.

Proposition 3.8. Assuming perfectly correct public key encryption and hardness of LWE, there
exists a perfectly correct ABE scheme for any class Cs,n,d ∈ P.

Proof. Let ABE be the [31] ABE scheme. To show this proposition, we show how to modify ABE
into a perfectly correct scheme. We note that there are two potential sources of errors that could
contribute to decryption errors: errors during encryption, and errors during key generation (either
of which may be caused by errors during setup).

Errors during encryption. The construction in [31] does not incur encryption errors. In par-
ticular, for any mpk in the support of Setup, any valid attribute a and message m, it holds that the
resulting ciphertext ct ← Enc(mpk, a,m) can be successfully decrypted using any well-formed key.
Recall that the ABE ciphertexts consist of TOR encodings ψi of s and a mask τ of the message m.
The TOR encodings are simply LWE encodings As + e where A is the TOR public key pki,ai , and
e is sampled from an error distribution χ. In [31], χ is truncated discrete Gaussian distribution,
which is a bounded distribution. In this way, they ensure that the error terms are bounded and
never cause values to wrap around the LWE modulus q. Thus, there are no malformed ciphertexts.
For more details, see the analysis of the correctness of TOR in [31].

Errors during key generation. The ABE construction can indeed result in errors during key
generation. This is because the TOR construction from LWE does not achieve perfect recoding
correctness. Namely, with negligible probability over the randomness of the TOR key generation,
Recode outputs a “bad” recoding key rk. Nevertheless, this can be detected by the scheme. In partic-
ular, a “bad” recoding key rk is one where ‖rk‖∞ is greater than some known threshold t, determined
as part of the parameters of the scheme.8 Therefore, we propose the following modification.

8We note that even though the error probability is over the randomness of key generation, the error is not detected
until a recoding key is generated. Therefore, in the case of a “bad” pair of public and secret keys, which lead to an
incorrect recoding key, we cannot verifiably generate a recoding key that would allow us to decrypt.
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Let PKE be any public-key encryption scheme with perfect correctness. The ABE scheme is
as follows. During Setup, generate a PKE key-pair (pk, sk) and include pk in the public key of the
ABE scheme, and sk in the master secret key. During encryption of a message m with an attribute
a, include an additional encryption ct? of (a,m) under pk. Then, in the case of the above error
in key generation for a circuit C, simply output the master secret key msk and C. Finally, during
decryption, in the case that (msk, C) is received in place of the key for C, decrypt ct? using sk to
obtain (a,m), and then output m if and only if C(a) = 1. If PKE is perfectly correct, then the
resulting scheme is perfectly correct. Moreover, security is not impacted by the fact that this case
only occurs with negligible probability, and by the semantic security of PKE.9

By combining Theorem 3.7 with Proposition 3.8, and noting that perfectly correct public-key
encryption follows from LWE (as discussed in Section 2.4), we obtain the following claim.

Claim 3.9. Assuming sub-exponential hardness of LWE as in Theorem 3.7, for all n and polynomials
d = d(n), there exists a perfectly correct, sub-exponentially, selectively secure ABE scheme for any
class of polynomial-size circuits with n inputs and depth d.

These results give Claim 3.4.

Proof of Claim 3.4. Let Cs,n,d be any class of circuits in NC1. By Theorem A.3, assuming LWE,
there exists a perfectly correct d-leveled FHE scheme for any polynomial d = d(n) for encrypting n
bits. Thus, there exists FHE for Cs,n,d. Moreover, the circuit computing homomorphic evaluation
of any circuit C with size s and depth d has bounded, polynomial depth, and thus is in some class
Cs′,n′,d′ ∈ P. By Claim 3.9, assuming LWE, there exists a sub-exponentially secure ABE scheme for
predicates in Cs′,n′,d′ . Moreover, by Theorem A.4, assuming LWE, there exists a sub-exponentially
secure garbled circuit for Cs,n,d. Putting this all together, by Proposition A.2, there exists a succinct
FE scheme for Cs,n,d, which has sub-exponential security assuming sub-exponential LWE. Finally,
by Corollary A.5, this can be bootstrapped to a perfectly correct, sub-exponentially secure, succinct
FE scheme for P.

4 Correcting Errors in Functional Encryption

In this section, we show how to completely eliminate correctness errors in functional encryption
schemes. Concretely, starting with an imperfectly correct FE, which guarantees correctness only
with overwhelming probability over the randomness of the setup algorithm, we obtain perfectly
correct FE for P and incur only polynomial security loss. We note that the result of this section
also holds in the setting of secret-key FE, but for concreteness, the result is presented only in the
public-key setting.

Regarding compactness, we only require the FE that we start with to be weakly sublinear
compact, which guarantees that the output length of the encryption algorithm is sublinear in the
size of the circuits that we generate keys for. However, the time to encrypt may be long. Our
transformation results in an FE that is sublinearly compact, which guarantees that the time to
generate a ciphertext is sublinear in the size of the circuits that we generate keys for. Thus, this is
a significantly stronger notion.

Theorem 4.1. Assume the existence of an imperfectly correct, weakly sublinear compact FE scheme
for P and a perfectly correct succinct FE scheme for P. Then, there exists a perfectly correct,
sublinearly compact FE scheme for P.

9An alternative solution is to add a decoding mechanism to TOR, such that given Encode(pk, s), one could decode
the encoding using the secret sk to obtain s. This is possible since TOR is built using lattices and trapdoors, which
include inversion algorithms. In this case, if there is an error during key generation for a circuit C, one would output
the master secret key msk of the ABE scheme (which consists of TOR secret keys) and the circuit C, and then msk
could be used to directly decrypt ciphertexts.
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Using Claim 3.4, we obtain the following corollary.

Corollary 4.2. Assume polynomial hardness of LWE. If there exists an imperfectly correct, weakly
sublinear compact FE scheme for P, there exists a perfectly correct, sublinearly compact FE scheme
for P.

Relaxing imperfect correctness. The assumption on the initial FE scheme satisfying imperfect
correctness can be relaxed to assume only approximate correctness of the scheme. In particular,
given an FE scheme that is correct for all circuits with high probability over the output of the setup
algorithm and over the choice of the message, using the results of [15], this can be transformed into
an imperfect FE scheme.

Overview and Roadmap of Theorem 4.1. This transformation follows a similar blueprint to
that of perfect iO, but includes a new construction. We start with an imperfectly correct, weakly
sublinear compact FE scheme for P.

1. FE ⇒ XiO. Transform the imperfect FE scheme to an imperfect XiO scheme for Plog. This
transformation is given in Section 4.1, and is due to [11, 5].

2. Imperfect XiO ⇒ Perfect XiO. This follows from Claim 3.2.

3. XiO + sFE ⇒ Weakly sublinear compact FE. Transform the perfectly correct XiO
and succinct FE to a perfectly correct, weakly sublinear compact FE scheme FE for P. This
follows from Claim B.3, and is one of the intermediate steps in the proof of Claim 3.3, which
we already verified in Section 3.

4. Weakly sublinear compact FE + sFE ⇒ Compact FE. Combine FE, along with a
succinct FE scheme sFE for P, into a perfectly correct, sublinear compact FE scheme for P.
This transformation is given in Section 4.2.

Proof of Theorem 4.1. Let FE be an imperfectly correct, weakly sublinear compact FE scheme for
P. By Claim 4.3, there exists an imperfectly correct XiO scheme xiO for Plog. By Claims 3.2, 3.4,
3.4, and B.3, this can be transformed into a perfectly correct, weakly sublinear compact FE scheme
FE. Moreover, by Claim A.7, there exists a long-output succinct FE scheme such that we can apply
Claim 3.4, to obtain a perfectly correct, succinct FE scheme sFE for P. Then, by Claim 4.4, there
exists a sublinear compact, selectively secure FE scheme for P.

4.1 Weakly Sublinear Compact FE to XiO

In this section, we present an FE to XiO transformation which begins with weakly sublinear compact
FE and only has polynomial security loss. This transformation appears in [11, 5], but we include it
here for completeness.

Let Cs,n = {Cλ}λ∈N ∈ Plog be any circuit class for which we want to obtain XiO. For a circuit
C ∈ Cλ, we denote by Cb1...bt the circuit C where the first t bits of the input are hardwired to
b1, . . . , bt ∈ {0, 1}. We denote by T a circuit that receives as input a circuit and outputs its truth
table.

Let FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) be a weakly sublinearly compact, imperfectly
correct FE scheme for the class of circuits Cs′,n′ = {C′λ}λ∈N, where s′ = 2

n
d ·s and n′ = s. Let p be the

polynomial of degree d − 1 for some constant d such that Outlen [FE.Keygen(msk, C)] ≤ p(λ, s′, n′)
for any msk in the support of FE.Setup and any circuit C ∈ C′λ. The transformation is as follows.

Weakly sublinear compact FE to XiO. We define the XiO scheme xiO as follows:

• C̃ ← xiO.Obf(1λ, C) :
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1. Sample (msk, pk)← FE.Setup(1λ) and skT ← FE.Keygen(msk, T ).

2. For every x1 ∈ {0, 1}n−
n
d , let ctx1 ← FE.Enc(pk, Cx1).

3. Output C̃ =
(
skT ,{ctx1 }x1∈{0,1}n−nd

)
.

• y ← xiO.Eval(C̃, x) :

1. Parse x = x1x2 where |x1| = n− n
d .

2. Run FE.Dec(skT , ctx1) to obtain the truth table of Cx1 , and output the row corresponding
to input x2.

Claim 4.3. Let Cs,n be any circuit class in Plog. Let FE be an imperfectly correct, weakly sublinear
compact FE scheme for the class of circuits C2n/d·s,s. Then, there exists an XiO scheme for the class
of circuits Cs,n.

Proof. Let xiO be the scheme for Cs,n = {Cλ}λ∈N resulting from the above transformation. Let
s = s(λ) and n = n(λ). We show imperfect correctness, efficiency, and security of xiO.

Imperfect correctness. For every λ ∈ N, for any C ∈ Cλ, let C̃ be sampled from xiO.Obf(1λ, C)
and consider the probability that xiO.Eval(C̃, ·) agrees with C(·) on all inputs x = x1x1 where |x1| =
n− n

d . The obfuscation C̃ consists of pk, skT , and ctx1 for all x1. Thus, this is the probability that
for all x1x2, the x2th row of FE.Dec(skT , ctx1) is C(x1x2), which is equivalent to the event that for
all x1, FE.Dec(skT , ctx1) = T (Cx1), over the probability of FE.Setup, FE.Keygen, and FE.Enc. Since
FE is correct with overwhelming probability over the randomness of FE.Setup (for any randomnesses
of FE.Keygen and FE.Enc), imperfect correctness of xiO follows. Formally,

Pr
[
C̃ ← xiO.Obf(1λ, C) : ∀x, xiO.Eval(C̃, x) = C(x)

]

= Pr


(msk, pk)← FE.Setup(1λ)
skT ← FE.Keygen(msk, T )

∀x1 ∈ {0, 1}n−
n
d :

ctx1 ← FE.Enc(pk, Cx1)

:
∀x1 :

FE.Dec(skT , ctx1) = T (Cx1)


≥ 1− negl(λ),

for a negligible function negl, where |x1| = n− n
d , by the imperfect correctness of FE.

Efficiency. We have that |T | = s · 2
n
d and T receives inputs of size s, and has depth linear in s.

Therefore, for any C ∈ Cλ, by the weak sublinear compactness of FE we have that

Time
[
xiO.Obf(1λ, C)

]
= Time

[
FE.Setup(1λ)

]
+ 2n−

n
d · Time [FE.Enc(pk, Cx)] + Time [FE.Keygen(msk, T )]

≤ poly(λ, s · 2
n
d , s) + 2n−

n
d · poly(λ, s · 2

n
d , s) + poly(λ, s · 2

n
d , s) = poly(λ, s, 2n)

and

Outlen
[
xiO.Obf(1λ, C)

]
= Outlen [FE.Keygen(msk, T )] + 2n−

n
d · Outlen [FE.Enc(pk, Cx)]

= p(λ, s · 2
n
d , s) + 2n−

n
d · (s · 2

n
d )1−ε · poly(λ, s)

= 2n·
d−1
d · poly(λ, s) + 2n−

n
d · (s · 2

n
d )1−ε · poly(λ, s) ≤ 2n·(1−

ε
d

) · poly(λ, s)

for some constant ε > 0, by the weak sublinear compactness of FE.
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Security. It follows immediately by the construction that any distinguisher D that succeeds in
distinguishing between the xiO obfuscations of any two functionally equivalent circuits with prob-
ability noticeably greater than negligible in λ can be used to break the security of the underlying
functional encryption scheme.

4.2 Weakly Sublinear Compact FE + sFE to Sublinear Compact FE

In this section, we present a transformation from weakly sublinear compact FE and succinct FE to
sublinear compact FE. This transformation is inspired by a similar transformation corresponding to
randomized encoding schemes rather than FE in [38].

Throughout this section, we let s = s(λ), s′ = s′(λ), n = n(λ), n′ = n′(λ), and ` = `(λ). The
transformation uses the following building blocks.

• FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) is a perfectly correct, weakly sublinear compact,
selectively-secure FE scheme for Cs,n = {Cλ}λ∈N. Let p1 be a fixed polynomial and let ε > 0
be a constant such that for any pk in the support of FE.Setup,

Time [FE.Enc(pk,m)] ≤ p1(λ, n, s),

Outlen [FE.Enc(pk,m)] ≤ s1−ε · p1(λ, n).

• lFE = (lFE.Setup, lFE.Enc, lFE.Keygen, lFE.Dec) is a perfectly correct, long-output succinct,
simulation secure FE scheme for a family of circuits Cs′,n′ = {C′λ}λ∈N where s′ < 2p1(λ, s, n)
and n′ = n+λ,and all circuits C ∈ C′λ have output length ` = s1−ε · p1(λ, n). Let p2 be a fixed
polynomial such that for any (pk,msk) in the support of lFE.Setup,

Time [lFE.Enc(pk,m)] ≤ p2(λ, log(s′)) · n′ · `.
The construction utilizes the efficiency properties of the (long-output) succinct scheme lFE and

weakly sublinear compact scheme FE to get a scheme that enjoys both properties. Concretely, we
know that the encryption algorithm of lFE is succinct in circuit size (both in time and output length)
but might be long in the output length of the circuit. FE, on the other hand, is succinct in output
length but might require a long encryption time. At a high level, our scheme consists of a functional
key using lFE that outputs a ciphertext for FE. Since the output size of the ciphertext is short, lFE
ciphertexts for it are compact.

Construction of FE′:

• (pk,msk)← FE′.Setup(1λ) :

1. Sample (pk1,msk1)← FE.Setup(1λ) and (pk2,msk2)← lFE.Setup(1λ).

2. Let G = G[pk1] be the circuit such that G(m, r) = FE.Enc(pk1,m; r).

3. Generate skG ← lFE.Keygen(msk2, G) and output pk = (pk1, pk2) and msk = (msk1, skG).

• ct← FE′.Enc(pk,m) :

1. Sample r ← {0, 1}λ and output ct← lFE.Enc(pk2, (m, r)).

• sk← FE′.Keygen(msk, C) :

1. Generate skC ← FE.Keygen(msk1, C) and output sk = (skG, skC).

• y ← FE′.Dec(sk, ct) :

1. Let ct′ = lFE.Dec(skG, ct) and output y = FE.Dec(skC , ct
′).

Claim 4.4. Assuming the existence of a weakly sublinear compact, perfectly correct FE scheme FE
for P and a long-output succinct, perfectly correct, simulation secure FE scheme sFE for P, there
exists a sublinear compact, perfectly correct FE scheme for P.

Proof. Let FE′ be the result of the above construction. Let Cs,n = {Cλ}λ∈N ∈ P. We will show that
FE′ is a perfectly correct, sublinear compact, selectively secure FE scheme for Cs,n. Let s = s(λ)
and n = n(λ).
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Perfect correctness. The correctness of FE′ follows directly from that of sFE and FE. In partic-
ular, for any m ∈ {0, 1}n, by the perfect correctness of lFE it holds that ct′ = lFE.Dec(skG, ct) =
G(m, r) = FE.Enc(pk1,m; r) and therefore, by the perfect correctness of FE, for any C ∈ Cλ, it holds
that FE.Dec(skC , ct

′) = C(m).

Sublinear compactness. Before analyzing compactness, we discuss the circuit classes for FE and
lFE. We have that FE is for circuits in Cs,n. Regarding lFE, we have that lFE must be able to generate
a functional key for G. The circuit G has input (m, r) and runs the FE encryption algorithm on m
with randomness r. Thus, lFE is for the class of circuits of size s′ = 2p1(λ, s, n) (the size of the FE
encryption circuit) and input length n′ = n + λ, because we can assume without loss of generality
that the FE encryption algorithm takes randomness of length λ (and may apply a PRG to stretch
this polynomially). Moreover, the output length ` of G is the output length of FE.Enc, which is
s1−ε · poly(λ, n).

We now show sublinear compactness. For sufficiently large λ, any C ∈ Cλ, and m ∈ {0, 1}n, by
the long-output succinctness of lFE and the weak sublinear compactness of FE we have that

Time
[
FE′.Enc(pk,m)

]
≤ Time [lFE.Enc(pk2,m)] = p2(λ, log(s′)) · n′ · `
= p2(λ, log(2p1(λ, s, n))) · (n+ λ) · s1−ε · p1(λ, n)

= p3(λ, n, log(s)) · s1−ε ≤ p4(λ, n) · s1−ε

for some polynomials p3 and p4, where pk = pk2 such that (pk2,msk2)← lFE.Setup(1λ).

Security. We show selective security via a sequence of hybrid games.

• Hyb0(λ): This is an honest encryption of m0. In particular, ct is generated by
lFE.Enc(pk2, (m0, r)) as the output of FE′.Enc(pk,m0). The output of this hybrid is ((pk1, pk2),
C,m0,m1, (skG, skC), ct).

• Hyb1(λ): This hybrid is formed from the previous hybrid by simulating the ciphertext ct. In
particular, if S is the simulator for lFE, then ct is calculated as ct← S(mpk2, skG, G,G(m0, r)).
This is indistinguishable from the previous hybrid by the simulation security of lFE.

• Hyb2(λ): This hybrid is formed from the previous hybrid by changing ct to be computed as
ct ← S(mpk2, skC , G,G(m1, r)), that is, S receives G(m1, r) instead of G(m0, r). This is
indistinguishable from the previous hybrid by the security of FE.

• Hyb3(λ): This hybrid is formed from the previous hybrid by changing ct to be computed as ct←
lFE.Enc(pk2, (m1, r)). This is indistinguishable from the previous hybrid by the simulation
security of lFE.

In Appendix C, we show that each pair of neighboring hybrids are computationally indistin-
guishable, which implies the security of FE′.
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[11] Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia
through secret-key functional encryption. In: Theory of Cryptography Conference. pp. 391–
418 (2016)

[12] Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability from indistin-
guishability obfuscation. In: Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC. pp. 401–427 (2015)

[13] Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos - trapdoor permu-
tations from indistinguishability obfuscation. In: TCC 2016-A. pp. 474–502 (2016)

18

https://doi.org/10.1007/s00037-006-0211-8
https://doi.org/10.1007/s00037-006-0211-8


[14] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015. pp.
171–190 (2015)

[15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: From approximate to ex-
act. In: TCC 2016-A. pp. 67–95 (2016)

[16] Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by derandomization. In: Ad-
vances in Cryptology - EUROCRYPT 2017. Lecture Notes in Computer Science, vol. 10211,
pp. 592–606 (2017)

[17] Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: - CRYPTO. pp. 11–15
(1981)

[18] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. J. Cryptology 14(2), 101–119 (2001)

[19] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit abe and com-
pact garbled circuits. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT. pp. 533–556 (2014)

[20] Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptog-
raphy. Commun. ACM 55(11), 56–64 (2012)

[21] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT) 6(3), 13 (2014)

[22] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–1543 (2007)

[23] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors.
In: Advances in Cryptology - EUROCRYPT 2004. vol. 3027, pp. 342–360 (2004)
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A Perfectly Correct Succinct FE

In this section, we review the succinct FE construction of [29]. In [29], they show that the correctness
of the scheme relies on the correctness of the underlying building blocks, but they do not explicitly
consider perfect correctness. We review this proof, and then verify that these building blocks (in
some cases, with minor modifications) have perfectly correct instantiations.

Theorem A.1 ([29, 37, 30]). Assuming (sub-exponential) hardness of LWE, there exists a succinct,
single-key functional encryption scheme sFE for NC1 that satisfies (sub-exponential) simulation se-
curity.

Moreover, for a class of circuits Cs,n = {Cλ}λ∈N, the time to encrypt is

Time [Enc(pk,m)] = n(λ) · poly(λ, log(s(λ))).

where pk is in the support of the public keys of sFE and m ∈ {0, 1}n(λ).

We proceed with a high level overview of the construction. To construct sFE for a class of circuits
Cs,n,d = {Cλ}λ∈N ∈ NC1, the transformation uses the following building blocks:

• FHE = (FHE.Keygen,FHE.Enc,FHE.Eval,FHE.Dec) is a leveled FHE scheme for Cs,n,d. Let
` = `(λ) be the length of the FHE ciphertexts.

• ABE = (ABE.Setup,ABE.Keygen,ABE.Enc,ABE.Dec) is a single-key, two-outcome ABE scheme
for the class of predicates P = PCλ,FHE where

PCλ,FHE =
{
FHE.EvaliC , 1− FHE.EvaliC : C ∈ Cλ, i ∈ [`]

}
,

where FHE.EvaliC is a circuit that on input (hpk, ψ1, . . . , ψn) computes the ith bit of the ho-
momorphic evaluation of C on ψ1, . . . , ψn.

• Gb = (Gb.Garble,Gb.Enc,Gb.Eval) is a garbling scheme that satisfies input- and circuit- privacy,
which can be constructed from one-way functions.

Two-Outcome ABE. Before reviewing the construction, we give an overview of two-outcome
ABE using in this scheme. Two-outcome ABE differs from standard ABE in that the encryption
algorithm, in addition to receiving the public key pk and an attribute a, also receives two messagesm0

and m1. The correctness requirement is that when decrypting a ciphertext ct = Enc(pk, a,m0,m1)
under a key skP = Keygen(msk, P ), if P (a) = 0, then the result of decryption is m0, and otherwise
if P (a) = 1, it is m1. In [28], they give a construction of two-outcome ABE from standard ABE.
Moreover, the correctness of the new scheme follows directly from the correctness of the underlying
ABE scheme. See [28] for details.

The construction. We now present the high level construction of sFE. The master public and
secret keys consist of ` master public keys {pki}i∈[`] and secret keys {mski}i∈[`], respectively, for the
ABE scheme. A functional key for a circuit C consists of ABE keys ski generated using mski for
the predicate FHE.EvaliC for each i ∈ [`]. To encrypt a message x, they generate an FHE key-pair
(hpk, hsk) and encrypt x one bit at a time using FHE to obtain a vector ψ of FHE ciphertexts. Then,
they garble the FHE decryption algorithm FHE.Dec(hsk, ·) to obtain a garbled circuit Γ and labels
L0
i , L

1
i for each i ∈ [`]. To enable evaluating the garbled circuit with the correct labels for x, they

create ABE ciphertexts cti generated using pki of L0
i , L

1
i under the attribute (hpk, ψ) for each i ∈ [`],

and output these ciphertexts as well as the garbled circuit Γ. To decrypt, they simply decrypt each
ABE ciphertext cti under ski to get the corresponding labels for FHE.Eval(hpk, ψ), which thus enable
them to evaluate the garbled circuit and obtain C(x).

22



Proposition A.2 ([29]). If FHE, ABE, and Gb all satisfy perfect correctness, then sFE is a perfectly
correct succinct FE scheme.

Proof. This follows directly from the correctness of the underlying primitives. By the correctness of
ABE, it holds that if cti ← ABE.Enc(pki, (hpk, ψ), L0

i , L
1
i ) and ski ← ABE.Keygen(mski,FHE.Eval

i
C),

then ABE.Dec(ski, cti) = Ldii where di = FHE.EvaliC(hpk, ψ) for all i ∈ [`]. Then, by the correctness

of Gb, evaluating the garbled circuit Γ using labels Ldii gives FHE.Dec(hsk,FHE.Eval(hpk, C, ψ)),
which evaluates to C(x) by the correctness of FHE.

A.1 Perfectly Correct FHE

Brakerski et al [21] show a perfectly correct, leveled FHE scheme. In particular, they observe that
as long as the initial noise from LWE is bounded, and the noise does not wrap around the modulus,
correctness is preserved. They show how to set the parameters to ensure that the latter holds,
and as discussed in the preliminaries, we can assume that the LWE noise comes from a bounded
distribution, thus ensuring the former.

Theorem A.3 ([21], restatment in [29]). Assuming hardness of LWE, for every n and polynomial
d = d(n), there is a perfectly correct d-leveled FHE scheme for encrypting n bits, such that given any
circuit C of size s′ and depth d′, the circuit for homomorphic evaluation of C has size s′ ·poly(λ, n, d)
and depth d′ · poly(log(n), log(d)).

Moreover, assuming sub-exponential hardness of LWE, the FHE scheme is sub-exponentially
secure.

A.2 Perfectly Correct Garbled Circuits

In this section, we overview the correctness of Yao’s garbled circuits, as presented in [40].

Theorem A.4 ([40], restatement in [29]). Assuming (sub-exponentially secure) one-way functions,
there exists a (sub-exponentially secure) perfectly correct garbled circuit scheme for P.

The sFE construction requires a garbled circuit that satisfies input-privacy and circuit-privacy.
Thus, they use Yao’s garbled circuit, because, as shown in [40], there is an instantiation that satisfies
these specific security requirements needed to construct sFE.

Regarding perfect correctness, the Lindell et al [40] construction Gb is correct with all but
negligible probability. Recall that in Yao’s garbled circuit, to garble a function represented by a
circuit C, each wire w of C is assigned two keys kw0 and kw1 for a symmetric encryption scheme,
such that key kwb corresponds to a value of b on wire w. Then, for a gate g with input wires u, v
and output wire w, four ciphertexts are created, such that for every pair a, b ∈ {0, 1}, there is an

encryption ctga,b of k
g(a,b)
w under keys kau and kbv. Given labels corresponding to the inputs of the

circuit, one can simply decrypt the corresponding ciphertexts at each gate to reveal the keys for the
next gate, and following this pattern, evaluate the circuit.

There are two sources of potential error in Gb. As mentioned in [40], these can both be avoided,
giving a perfectly correct garbled circuit scheme. The first source of error is a decryption error among
one of the ciphertexts, which would be caused if the underlying symmetric encryption scheme did
not satisfy perfect correctness. This can be solved by using an encryption scheme that does not have
decryption errors, such as the standard symmetric-key encryption construction from PRFs which is
used in [40]. The second source of error is that for some gate g, there exist two different ciphertexts
ctga,b and ctga′,b′ that successfully decrypt under the same key. As shown in [40], the probability of
this event is negligible, and there are several possible solutions to mitigate this problem, such as
assigning randomly permuted indices to each wire, such that decryption at each gate reveals exactly
which ciphertext should be decrypted at the next gate. See [40] for details.
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A.3 Bootstrapping Succinct FE

The [29] scheme gives a succinct FE scheme for NC1. This is because the sFE ciphertext length
depends on the length of ABE ciphertexts, which depend polynomially on the depth of the circuits
representing the predicates it supports. Nevertheless, sFE can be bootstrapped to P through the
transformation in [2]. While we note that this transformation is in the case of secret-key FE, it can
be applied in the public-key case as well.

At a high level, this transformation uses randomized encodings for circuits [6] to bootstrap sFE
for NC1 to sFE for P. In particular, to generate a key for a circuit C, they generate a key using sFE for
the circuit which, on input x,K, computes the randomized encoding of C on x using randomness
derived from the PRF key K. To encrypt a message x, they encrypt x along with a PRF key.
As shown in [2], the correctness of the new scheme follows directly from the correctness of sFE
and the randomized encoding. Moreover, the randomized encoding used is constructed using Yao’s
garbled circuits with a symmetric-key encryption scheme with decryption in NC1. Therefore, using
the encryption scheme from LWE discussed in Section 2.4 and by Theorem A.4, the randomized
encoding scheme has perfect correctness, and thus the resulting succinct FE scheme for P has perfect
correctness.

Moreover, while simulation security was not considered in [2], their construction satisfies it,
assuming sFE is simulation secure. Thus, we obtain the following corollary.

Corollary A.5. Assuming sub-exponential hardness of LWE, if there exists a perfectly correct suc-
cinct, sub-exponentially simulation secure FE scheme for NC1, then there exists a perfectly correct,
succinct, sub-exponentially simulation secure FE scheme for P.

A.4 Long-Output Succinct FE

In the above section, we discussed succinct FE, which is, by definition, for functions that output
one bit. In this section, we observe that parallel repetition of such a scheme yields a scheme with
desirable succinctness properties, which we call long-output succinct FE. This will be useful in our
correctness amplification for FE.

Claim A.6. Let ` = `(λ) be any polynomial. Let sFE be a succinct, perfectly correct, simulation
secure FE scheme for P. Then, there exists a perfectly correct, simulation secure FE scheme lFE for
any class of circuits in P with ` output bits, such that the time to encrypt and the time to generate
a functional key using lFE are each ` times larger than those of sFE.

This theorem follows simply by `(λ) parallel repetitions of sFE (also described in [29]). The
following claim follows from the succinctness bounds given in Theorem A.1, as well as Claim 3.4.

Claim A.7. Assuming hardness of LWE, for every ` = `(λ), there is a perfectly correct, simulation
secure, FE scheme lFE for any polynomial-size class of circuits Cs,n = {Cλ}λ∈N with `-bit outputs,
such that for any C ∈ Cλ and m ∈ {0, 1}n, it holds that the time to encrypt is

Time [FE.Enc(pk,m)] = poly(λ, log(s)) · n · `

for (msk, pk)← lFE.Setup(1λ), n = n(λ), s = s(λ) and a fixed polynomial poly.

B Perfect XiO and Succinct FE to Perfect iO

B.1 From Perfect XiO to Perfect FE

In this section we review the transformation from XiO to weakly sublinear compact FE, due to [37].
We verify that it satisfies perfect correctness if the underlying building blocks satisfy perfect cor-
rectness.
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Theorem B.1 ([37]). Assume the existence of a sub-exponentially secure succinct FE scheme sFE
for P, and a sub-exponentially-secure XiO scheme xiO for Plog. Then, there exists a sub-exponentially
secure, weakly sublinear compact FE scheme FE for P.

At a high level, the construction of FE is as follows. The key-pair (pk,msk) is generated as
the output of sFE.Setup(1λ). To encrypt a message m under pk, the FE encryption algorithm uses
xiO to obfuscate a circuit G[pk,K,m], which, on input i, outputs an sFE encryption of (m, i) using
randomness derived from the hardcoded PRF key K. The functional secret key skC for a circuit C
is generated as an sFE functional secret key for a circuit C ′ such that on input (m, i), outputs the
ith bit of C(m). Finally, to decrypt an encryption ct under skC , the decryption algorithm obtains
the ith bit of the output by evaluating the obfuscated circuit on i to obtain a ciphertext cti and
then decrypting cti using sFE with skC . Concatenating these bits for all i gives the output of the
decryption.

Proposition B.2. If xiO and sFE are perfectly correct, then FE is perfectly correct.

Proof. Consider the FE decryption algorithm. For any circuit C and input m, and any random
strings rEnc, rKeygen we have that

Pr

 (pk,msk)← FE.Setup(1λ)
skC = FE.Keygen(msk, C; rKeygen)
ct = FE.Enc(pk,m; rEnc)

: FE.Dec(skC , ct) = C(m)



= Pr


(pk,msk)← sFE.Setup(1λ)
skC = sFE.Keygen(msk, C ′; rKeygen)

G̃ = xiO.Obf(1λ, G; rEnc)

∀i, cti = xiO.Eval(G̃, i)

:
∀i cti = sFE.Enc(pk, (m, i))
∧ sFE.Dec(skC , cti) = C(m)i

 .
By using a union bound over all i and invoking the perfect correctness of sFE and xiO, it holds that
FE satisfies perfect correctness.

By combining Theorem B.1 and Proposition B.2, we obtain the following.

Claim B.3 ([37]). Assume the existence of a sub-exponentially secure, perfectly correct, succinct
FE scheme sFE for P, and a sub-exponentially-secure, perfectly correct XiO scheme xiO for Plog.
Then, there exists a sub-exponentially secure, perfectly correct, weakly sublinear compact FE scheme
FE for P.

B.2 From Perfect FE to Perfect RE

In this section, we discuss transformations from FE to randomized encodings (RE) for Turing
machines in the CRS model [38]. A randomized encoding enables encoding a machine Π and an
input x together to obtain Π̂x, such that Π̂x can be evaluated to obtain Π(x) (or more specifically,
the first ` bits of Π(x) when executed for T steps, where ` and T are known). The security of RE
is that Π̂x does not reveal anything other than Π(x), and is formalized using a simulation-based
definition. For more detail on the definitions of RE used in this section, see [38].

We verify that the FE to RE transformation of [38] preserves perfect correctness. Looking ahead,
we will apply this to both sFE and FE, and then combine the resulting RE schemes to obtain an RE
scheme that is sublinearly compact. We begin by overviewing the FE to RE transformation.

Theorem B.4 ([38]). If there exists a sub-exponentially secure PRG and a succinct (resp. weakly
sublinear compact) sub-exponentially secure FE scheme for P, then there exists a succinct (resp.
weakly sublinear compact) RE scheme for Turing machines in the CRS model with sub-exponential
simulation security.
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At a high level, the transformation is as follows. The setup algorithm generates (pk,msk) ←
FE.Setup(1λ) and generates a string c (which is irrelevant to our analysis of correctness). Then,
letting U be the universal circuit that on input (Π, x) runs Π for T steps and outputs the first ` bits,
it defines the circuit CU,c such that CU,c(Π, x, s

′, b) outputs U(Π, x) when b = 0 and c⊕PRG(s′) when
b = 1. Finally, it outputs skC ← FE.Keygen(msk, CU,c) as the CRS and pk as the public key. The
encoding algorithm, on input (pk,Π, x) simply outputs the encryption ct← FE.Enc(pk, (Π, x, 0λ, 0)).
The evaluation algorithm, on input (ct, skC), outputs the corresponding decryption FE.Dec(ct, skC).

Proposition B.5. If FE is perfectly correct, then RE is perfectly correct.

Proof. For any TM Π, and input x, the RE evaluation algorithm is simply outputs the decryp-
tion y = FE.Dec(ct, skC) where ct ← FE.Enc(pk, (Π, x, 0λ, 0)) and skC ← FE.Keygen(msk, CU,c).
Therefore, by the perfect correctness of FE, it holds that y = CU,c(Π, x, 0

λ, 0) = U(Π, x) = Π(x).
Therefore, RE is perfectly correct.

Given a succinct RE and weakly sublinear compact RE scheme, they are then used to construct
a sublinearly compact RE scheme.

Theorem B.6 ([38]). Assume the existence of PRGs. If there is a succinct RE scheme and a
weakly sublinear compact RE scheme for Turing machines, both in the CRS model, then there is a
sublinearly compact randomized encoding scheme for Turing machines in the CRS model.

Let RE1 be the succinct RE scheme and let RE2 be the weakly sublinear compact RE scheme.
To encode a Turing machine Π and input x, the construction generates an RE1 encoding of the
RE2 encoding circuit with Π hardcoded inside. Then, to evaluate, it simply evaluates the outer
encoding to obtain the inner encoding, and evaluates the inner encoding to obtain the output.
Perfect correctness follows from the underlying correctness of RE1 and RE2.

Proposition B.7. If RE1 and RE2 are perfectly correct, then RE is a perfectly correct RE scheme.

By combining Theorems B.4 and B.6 with Propositions B.5 and B.7, we obtain the following.

Claim B.8 ([38]). Assuming the existence of sub-exponentially secure, succinct, perfectly correct FE
and sub-exponentially secure, weakly sublinear compact, perfectly correct FE, there exists a perfectly
correct, sublinearly compact RE scheme for Turing machines in the CRS model with sub-exponential
simulation security.

B.3 Perfect RE to Perfect iO

In this section, we verify that the RE to iO transformation of [38] preserves perfect correctness.
Given a sublinearly compact RE scheme, the last step is to apply the [38] transformation to obtain
iO.

Theorem B.9 ([38]). If there exists a sublinearly compact RE scheme in the CRS model with
sub-exponential simulation security, then there exists an iO scheme for P.

The construction is as follows. At a high level, to obfuscate a circuit C with n inputs, the
obfuscation algorithm creates an encoding of a machine Π⊥ corresponding to the empty string,
such that evaluating it produces an encodings of machines Π0 and Π1. More generally, evaluating
the encoding of Πs for a string s with |s| < n produces an encoding of Πs0 and an encoding of
Πs1. When the string s has length n, evaluating the encoding of Πs produces C(s). More formally,
the obfuscation consists of the “top-level” encoding of Π⊥ hardwired with C, RE public keys for all
levels i > 1, and a random string to use to derive randomness of all later encodings. The obfuscation
also consists of the CRS string for all levels. To evaluate the obfuscation of C on an input x, one
evaluates the encoding of Π⊥ to obtain an encoding of Πx0 , and then evaluates that the obtain an

26



encoding of Πx0x1 , and so forth, until one obtains an encoding of Πx that can be evaluated to reveal
C(x). If RE has perfect correctness, then the encodings at each level are correct, and thus the iO
scheme has perfect correctness.

Proposition B.10. If RE has perfect correctness, then the iO scheme from the above construction
has perfect correctness.

By combining Theorem B.9 and Proposition B.10, we obtain the following.

Claim B.11 ([38]). If there exists a sublinearly compact, perfectly correct RE scheme in the CRS
model with sub-exponential simulation security, then there exists a perfectly correct iO scheme for
P.

Thus, by combining Claims B.3, B.8, and B.11, we obtain Claim 3.3.

C Additional Proofs from Section 4.2

In this section, we complete the proof of security of Claim 4.4 by showing that each pair of neigh-
boring hybrids are computationally indistinguishable.

Claim C.1. For any PPT A, there exists a negligible function negl such that |Pr
[
A(Hyb0(λ)) = 1

]
− Pr

[
A(Hyb1(λ) = 1)

]
| ≤ negl(λ).

Proof. Suppose for the sake of contradiction that there exists an adversary A and a polynomial
p such that A distinguishes between Hyb0(λ) and Hyb1(λ) with probability 1

p(λ) . Then, we can
construct an adversary B that breaks the simulation security of lFE as follows.

Given m0,m1, C, the adversary B samples (pk1,msk1)← FE.Setup(1λ), samples r ← {0, 1}λ, and
generates G = G[pk1]. Then, B interacts with a challenger for either ExprealFE,B(λ) or ExpidealFE,B,S(λ),
where B sets the challenge message as (m0, r) and the key generation query as G, and in turn receives
the lFE public key pk2, the functional key skG, and the challenge ciphertext ct?.
B then generates skC ← FE.Keygen(msk1, C) and sends ((pk1, pk2), C,m0,m1, (skG, skC), ct?) to

A. Observe that if ct? is generated as in ExprealFE,B(λ), then the input to A is distributed according to

Hyb0(λ) and otherwise is distributed according to Hyb1(λ). Therefore, the distinguishing advantage
of A translates into the advantage of B, which contradicts the security of lFE.

Claim C.2. For any PPT A, there exists a negligible function negl such that |Pr
[
A(Hyb1(λ)) = 1

]
− Pr

[
A(Hyb2(λ) = 1)

]
| ≤ negl(λ).

Proof. Suppose for the sake of contradiction that there exists an adversary A and a polynomial
p such that A distinguishes between Hyb1(λ) and Hyb2(λ) with probability 1

p(λ) . Then, we can
construct an adversary B that breaks the security of FE as follows.

Given m0,m1, C, the adversary B samples (pk2,msk2) ← lFE.Setup(1λ). Then, B receives as
input (pk1, C,m0,m1, skC , ct

?) as in the FE security definition, where pk1 is an FE public key, skC
is an FE functional key for C, and ct? is the challenge ciphertext. Observe that by definition,
C(m0) = C(m1), so this is a valid challenge for the FE security game.
B then sets G = G[pk1] and generates skG ← lFE.Keygen(msk2, G) and ct ← S(mpk2, skG, G,

ct?). B then sends ((pk1, pk2), C,m0,m1, (skG, skC), ct) to A. Observe that if ct? is an encryption
of m0 under uniformly chosen randomness r then G(m0, r) = FE.Enc(pk1,m0; r) = ct? and thus the
input that A receives is distributed exactly as the output of Hyb1(λ), and otherwise, if ct? is an
encryption of m1 under randomness r, then G(m1, r) = FE.Enc(pk1,m1; r) = ct? and thus the input
to A is distributed exactly as the output of Hyb2(λ). Therefore, the distinguishing advantage of A
translates into the advantage of B, which contradicts the security of FE.
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Claim C.3. For any PPT A, there exists a negligible function negl such that |Pr
[
A(Hyb2(λ)) = 1

]
− Pr

[
A(Hyb3(λ) = 1)

]
| ≤ negl(λ).

Proof. This proof is analogous to the proof that Hyb0(λ) ≈ Hyb1(λ), with m0 replaced by m1.
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