A Simple and Efficient Key Reuse Attack on NTRU
Cryptosystem

Abstract. In 1998, Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman intro-
duced the famous NTRU cryptosystem, and called it "A ring-based public key
cryptosystem". Actually, it turns out to be a lattice based cryptosystem that is
resistant to Shor’s algorithm. There are several modifications to the original
NTRU and two of them are selected as round 2 candidates of NIST post quan-
tum public key scheme standardization.

In this paper, we present a simple attack on the original NTRU scheme. The
idea comes from Ding et al.’s key mismatch attack. Essentially, an adversary
can find information on the private key of a KEM by not encrypting a mes-
sage as intended but in a manner which will cause a failure in decryption if the
private key is in a certain form. In the present, NTRU has the encrypter gen-
erating a random polynomial with "small" coefficients, but we will have the
coefficients be "large". After this, some further work will create an equivalent
key.
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1 Introduction

1.1 Background

Public-key cryptosystems have undergone a revolutionary breakthrough in cryptog-
raphy since its invention in 1976 [5]. Today, public-key cryptosystems have become
an indispensable part of modern communication systems. RSA, DSA, ECDSA, and
similar cryptosystems are widely in use providing a secure way of exchanging keys
to be used by the more efficient symmetric-key cryptosystems. Hence, the security
of data relies on its weakest part, which is the transfer of the symmetric key by the
public-key cryptosystem. The security of those systems are based on the hardness
of classical number theory problems such as integer prime factorization or discrete
logarithm. These problems are thought difficult enough to resist attack from classi-
cal computing technology. However, Peter shor [19] from Bell Laboratories theoreti-
cally showed that some hard number theory problems such as Integer Prime Factor-
ization Problem and the Discrete Logarithm Problem could be solved if a quantum
computer were built. Peter Shor’s polynomial-time integer factorization algorithm
has led a potential crisis to crytopraphy. It is now evident that new public-key cryp-
tosystems that have potential to resist quantum algorithms are urgently needed.

1.2 Post-Quantum Cryptography Standardization

Due to the rapid development of quantum computers, NIST believes that it is pru-
dent to begin developing standards for post-quantum cryptography. Moreover, it is
reasonable to plan ahead because a transition to post-quantum cryptography will
not be simple. A significant effort will be required in order to develop, standardize,
and deploy new post-quantum cryptosystems. The call for proposals started in De-
cember 2016. NIST expects to perform multiple rounds of evaluation over a period
of three to five years. The goal of this process is to select a number of acceptable
candidate cryptosystems for standardization. These new standards will be used as
quantum resistant counterparts to existing standards. The evaluation will be based
on the following three criteria: security, cost, and algorithm implementation char-
acteristics [15]. By the end of 2017, 23 signature schemes and 59 encryption/KEM
schemes were submitted, of which 69 participated in the first round, 26 of these sur-
vived the second round. Two of these submissions to the second round are based on
the original NTRU scheme, with some modifications [4][3].

1.3 Lattice based Cryptosystem

Lattice-based public-key cryptosystems are believed to be one of the candidates that
have potential to resist quantum attack. The most important computational prob-
lem in lattice-based cryptosystems is the shortest vector problem (SVP) which asks
to find the length of the shortest non-zero vector in a lattice. This problem is believed
hard to solve efficiently even with a quantum computer. SVP also derives other inter-
esting problems such as the learning with error (LWE) problem introduced by Oded
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Regev in 2005 along with an encryption system [17].In 2012, Ding et al. published the
first key exchange system based on IWE problem that is provably secure [9]. It can
be easily proven that the security of NTRU depends on the difficulty to solve the SVP
in NTRU lattice. In this paper, we try to find short vectors in NTRU lattice that can be
used as equivalent keys if both private and public keys are reused. We hope to show
that certain implementations of NTRU are breakable due to their use in symmetric
key exchanges.

1.4 Previous Attacks against NTRU

There have been several attacks on NTRU, namely brute force attack, multiple trans-
mission attack etc. The closest attack to ours is by Jaulmes and Joux [13]. This is a
chosen ciphertext attack in which they use intersection polynomial of the private
key polynomials f and g. The i'” coefficient of this intersection polynomial is de-
fined to be 1 if f and g both have their i’ coefficient equal to 1, -1 if f and g both
have their i*" coefficient equal to -1, and 0 otherwise.

The key difference between Jaulmes et al.’s and ours attack is that while our attack
could be viewed as a ciphertext attack, we only actually care about if the key is suc-
cessfully transferred, not the actual key that would get transferred. And, this is where
we use a key mismatch attack, which is explained in the following sections. For our
attack does not need the cleartexts corresponding to the feeded ciphertexts as this
works just on the basis of the decryption being successful or not. On contrary, the
attack by Jaulmes et al. works under the assumption that the attacker has an access
to a decryption oracle to create ciphertext/cleartext pairs, that is, this attack works
on the communication platform, whereas, although our attack could be viewed as a
chosen ciphertext attack, it works on a key mismatch level.

1.5 Key Reuse Attack

Key reuse actually is commonly used in the internet standard. For example, the pre-
shared keys in TLS 1.3 [18] are allowed to be reused. However, key reuse in lattice
based cryptosystem has high potential of risk due to the key reuse attack. There are
currently two types of key reuse attack, signal leakage attack and key mismatch at-
tack. In this paper, we will focus on key mismatch attack. The goal of key mismatch
attack is to create an equivalent private key by verifying if the shared information
generated by two parties agrees or not several times.

In 2015, NSA warned NIST Post-Quantum candidates against active attacks[14].
The first key resue attack was proposed by Fluhrer on the leakage of secret keys of
ring-IWE key exchange when one party reuses the public key [10]. Later, Ding et al.
gave a key leakage attack on the IWE key exchange[6]. Besides, Ding et al. also in-
troduced a key mismatch attack on RLWE key exchange without signal leakage [8].
In 2019, Bauer et al. analyzed the case when public key is resued in NewHope which
is a second round candidate of NIST post quantum standard process [2]. Yue Qin
et al. then proposed an optimized key mismatch attack on NewHope that improves
Bauer’s method [16]. Most recently, Ciprian Baetu et al. extended the key reuse attack



to quantum variant where the adversary has quantum access to a decryption oracle

(1].

1.6 Our contribution

We will present an attack on original NTRU (1998) [11] based on the fact that key mis-
match is accessible to the attacker. We will show that by choosing certain ephemeral
keys, the result of the decryption will make it possible for the attacker to create equiv-
alent private keys. First, we will recall the original design of NTRU due to Jeffrey
Hoffstein, Jill Pipher, and Joseph H. Silverman. Next, we will describe the method
to obtain the longest chain of consequent coefficients that consists of either consec-
utive 1’s or consecutive -1’s of a private key polynomial. This step can be done due
to the special structure of the ring and the construction of the private key. Having
the longest chain, one can guess the remaining coefficients of a private key polyno-
mial by using the longest chain as an anchor and by using the effective choices of
ephemeral keys. Last but not least, we will provide the experimental success rate of
our method.

2 Description of the NTRU Cryptosystem [11]

2.1 Notations and Definitions

For the rest of the paper, we assume that N is an odd prime number, and g is a even
integer.

z z, .
Zid Zpl ang x ’[xi respectively.

R, R, and R, denote the quotient rings ~x=7, v N
A polynomial is ternary if its coefficients are in {—1,0, 1}.
Let 9 denote the set of non-zero ternary polynomials of degree at most N — 1.

I (dy,d) denotes a subset of I consisting of polynomials that have exactly d; coef-
ficients equal to 1 and d, coefficients equal to —1.

Centerlift Let a(x) € R;. The centered lift of a(x) to R is the unique polynomial
a'(x) € R satisfying a’(x) modq = a(x) whose coefficients are chosen in the interval
from —qg/2to g/2-1.

Multiplication of polynomials in R; Letf(x) = ap+ a1 x + az 2+-+ay_1xVNand
8(x) = bo+ b1 x+byx*+---+by_1x"V~! be two polynomials in the ring R;. The product
f(x) * g(x) in R, can be expressed in the matrix form:

by by -+ by-1
bn-1 bg -+ by-2
by by by

The resultant vector gives the coefficients of f(x) x g(x) in R;.
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2.2 The NTRU scheme

In this section, we describe the NTRU scheme.

Keygen:

Randomly choose fe I (d + 1, d) such that f is invertible in both R, and R;. De-
note the inverses of f by f, and f; in R, and R respectively.

Randomly choose g€ 9 (d, d).

Leth=pg*f; modgq.

Public key is the polynomial h, and a private key pair is (f,g).

Encryption:

- Letme€ R, be a message.
- Randomly chooser € 9 (d, d).
— Computec=rxh+m mod q.

Decryption:

— Computea=cxf mod q.
- Center lift a to R and recover the message by computing f, xa mod p.

Definition 1. Two NTRU private keys (f,g) and &, 8) are said to be equivalent if they
lead to the same private key, i.e., pg*f; mod g=h=pg*f; modgq.

Definition 2. The NTRU assumption is that givenh, it is hard to findf and g.

The NTRU assumption can be formulated to a SVP in the NTRU lattice which is
spanned by the rows of the 2N by 2N matrix:

Ih
0gqgl

where I is the N dimensional identity matrix, h stands for the cyclical permutations
of the coefficients of h. Moreover 0 represents the zero matrix, and g1 is g times the
indentity matrix /.

Remark 1. By Proposition 6.48 in [12], if the NTRU parameters (V, p, g, d) are chosen
to satisfy g > (6d + 1) p, the decryption process will never fail.

Remark 2. The inequality in Remark 1 guarantees that the coefficients of a do not
change when it moves from R, to R. Therefore, it ensures the correctness of decryp-
tion. However, the attacker has the freedom to choose the ephemeral key r, and if r
is chosen honestly in 9 (d, d), the decryption will be successful and no information
is revealed. Hence, the attacker has to choose a special r outside of the set J (d, d)
which will fail the decryption so that he can get some information about the private
key.



3 Our Attack

It is the fundamental assumption of the attack that a fixed NTRU public/private key
pair will be used repeatedly as KEM (key encapsulation mechanism). The strategy,
following that of Ding’s key reuse attack to IWE and ring LWE [7], will be to system-
atically abuse the freedom given to the encrypting party to choose the coefficients
of r during the encryption step ¢ = r x h + m. We assume the message m to be 0 in
our attack. An appropriate choice for r will cause the key exchange to fail, meaning a
mismatch of symmetric keys instead of a proper exchange, if and only if the private
key polynomial g is of a specific shape. Through repeated uses, enough of the form
of g can be recovered to create an equivalent polynomial g. From there it is easy to
create an equivalent f to f forming an equivalent private key (f, ).
For a given NTRU private key (f, g), let

N-1
g(x) = Y gix' where g; € {-1,0,1}.
i=0

3.1 Finding an Equivalent g

Finding alongest chain in g First, we find a longest chain of consequent coefficients
of g that consists of either consecutive 1’s or consecutive -1’s. From now on, for our
convenience, whenever we say a longest chain in g, we mean a longest chain that
is described above, unless otherwise mentioned. By having such a longest chain, we
mean that there exists a unique integer k such that for some i € {0,---, N—1}, we have
8imodN = &(i-1)modN = *** = &(i—k+1)moaN = V € {=1,1}. An appropriate choice of an
ephemeral key r will lead us to find this chain.

In the decryption process, a:=fxcin Ry, so a:=fxh*r=fx (pf; xg) xr=pg*r
in R,. Note that a can be expressed as a multiplication of matrices:

P80 P81 - PEN-1

P8N-1 P80 - PEN-2
[ro rl“'rN—l] . .. .

pg& pg -+ P8o
Since it is easier to view the multiplication of two polynomials as a multiplication
of two matrices like above, therefore, for our convenience we will look the polyno-

mial multiplication as a matrix multiplication.
Now, observe that, for some j = 1, if we set r with coefficients i =r; =---=rj_1 =

[%-‘ andrj=rj. =---=ry-1 =0, then we get

b8 P8 --- P8i --- PEN-1

q q pEN-1 P80 --- P8i-1 .- PEN-2
[a()"'dN—ﬂ:”—-"”’V—.-‘O'”O] . L . .
2p] : : . . .

pg& P82 ... p8i+1 --- P8O
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q

Thus, a = (ag)o<¢<n-1, Where ap = p [mw (8¢modnN + -+ 8- j+1)modN)-

Note that, if the length of a longest chain is k, then M := max{|a,| : 0<¢ < N-1}
is equal to ‘j [%] pv‘ =j [%W pforj<k,

and M belongs to the set {pk [M(—ZH)—‘ , plk—1) [TZHJ} for j=k+1.

Therefore, for j < k, M goes outside of the interval from —g/2 to g/2 -1, and for
Jj =k, M lies inside of the above interval.

We say that a mismatch occurs (i.e. a decryption fails) when a coefficient of a goes
outside of the interval from —g/2 to q/2 —1 (the chosen representatives for the cen-
terlift), and a match occurs (i.e. a decryption is successful) when all the coefficients
of a are inside of the above interval.

Hence, a mismatch occurs for j < k, and a match occurs for j = k + 1.

We will use the above idea to obtain a longest chain of either consecutive 1’s or
consecutive -1’s in the coefficients of g. We just set the first j coefficients of r equal
to [%j] and rest equal to 0, and see whether the decryption goes through or not. If
the decryption fails, then this tells us that the length of the chain is atleast j. We keep
trying until the decryption goes through. If the first time decryption succeeds when
the first k + 1 coefficients of r are equal to [%], then we immediately know that
g has alongest chain of length k.

Finding the remaining coefficients of g We will use the longest chain as an anchor
to test the other coefficients of g in relation to the chain. Let’s assume that a longest
chain in g starts at (i — k + 1)‘" position and ends at i’ position, that is, coefficients
of glooklike [go, ", &i—k> ¥, **» , 8i+1," "+, &N—-1], where v € {-1,1}.

To find the value of g(;+ ymoan in relation to the longest chain, one tests two val-
ues for r. First, choose

= _[_a
rQ=T11= =Tk =T(k+)modN = [m]l’

and r; = 0 otherwise. See if a mismatch occurs.
Second, choose

e =y — q — q
To=n=--=Tg= [m] » T(k+tymodN = — [mw

and r; = 0 otherwise. See if a mismatch occurs.

If only the first choice of r gives a mismatch, then g(;+nmoan = v. And, if only the
second choice of r gives a mismatch, then g(;+nmoan = —v. If neither of the above
choice gives a mismatch then g+ moan = 0. All three cases follow the stated rule for
a mismatch.

Now it may happen that both the positive and negative choice for r+nmoan
cause a mismatch. This could happen if there were two chains of length k of con-
secutive 1’s or consecutive -1’s in g with both coefficients at ¢ places to the right of



these chains agreed with the respective chains and had opposite signs. Now, one can-
not simply pick one of these two values for we want to know the relationship of all
the coefficients of g with a particular chain, not just one of these chains. To prevent
this, one can simply enlarge the anchor that tests the coefficients of g.

One treats the cases of when both the choices of 7+ moqn cause a mismatch as
undetermined for the moment. When a determined case occurs, say when we test
Ttk+nmoan and get the value of g(;+nmoan = € {—1,0,1}, then to check the value of
8(i+t"ymodN ONe€ uses

—‘ » F(k+HymodN = M1 IVL—‘

r0:r1:...:rk:’7 2p(k+2)

q
2p(k+2)
and a corresponding choice for 7+ 1y moan to see if g+ 11ymoan is v or —v. Asitisless
likely that there are two chains of consecutive 1’s or consecutive -1’s with the same
relationship with the #th place to the right of the chain but differing relationships to
the t'th place to the right, the number of undetermined cases will go down. In par-
ticular, we can recheck the previous undetermined cases with this new anchor. In a
similar manner, one can obviously increase the size of the anchor until all the cases
are determined. Due to the effect of the ceiling function, the number of nonzero el-
ements for our choice of r cannot be two large for it would cause false mismatches.
Our experimental results show that this is not an issue in practice for all the coeffi-
cients will be determined well before this happens.

3.2 Finding an Equivalent f

Once we obtain an equivalent key g by going through the process described in Sec-
tion 3.1, we can construct an equivalent key f for the other private key f. By nature
of its construction, g can differ from g only by a sign and a shifting of its coefficients.
Thatis, ifg= Y ! gix' € 7 (d, d) then for some integer m,

N-1 . N-1 )
& — i_ . .m i_ . m
g=v Z 8(i+m)modNX = VX Z gix'=vx"g,
i=0 i=0

where v is simply 1 if the longest chain in g consists of indeed 1’s, and is —1 if the said
chain is actually made of —1’s. We note that x"* has an inverse x"~"" in both R; and
Ry.

Thus, we see thath = f, xg = vx”"""f, xg. Let us denote f; = vx"~"f,. So, we may
write h = qu * §. Further, let us write f = qu_l = vx"f, where we view each polynomial
as a member of R;. Since we already know g and h, one can easily find qu which
results in f by solving a linear system of equations and that linear system of equations
can be solved efficiently in polynomial time.

3.3 Experimental Results

Below is a table expressing some experimental results on the mismatch attack in
finding an equivalent g for different parameters of NTRU. Each parameter set was
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ran 1000 times. In each instance we increased the size of the anchor until it had 12
nonzero entries. We also recorded the average time in seconds T and average num-
ber of key exchanges K needed to find the equivalent g. The computer we used has
a Intel Core i7-9700, 8 Core, 12MB Cache, 3.0Ghz. The programming language was
Magma version: V2-24.

Parameters (N, p, g, d) |Success Rate T K
(256, 3, 2048, 75) 100% 0.15425| 507.648
(512, 3, 2048, 150) 100% 0.61813|1019.051

(1024, 3, 2048, 300) 100% 2.47104|2042.381

4 Conclusion

We presented an efficient key reuse attack against an original NTRU cryptosystem
proposed by Jeffrey et al. Our experimental results show that this attack is very effi-
cient with 100 percent probability of success for the stated parameter sets.
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