
Trustee: Full Privacy Preserving Vickrey
Auction on top of Ethereum

Hisham S. Galal and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

Abstract The wide deployment of tokens for digital assets on top of
Ethereum implies the need for powerful trading platforms. Vickrey auc-
tions have been known to determine the real market price of items as
bidders are motivated to submit their own monetary valuations without
leaking their information to the competitors. Recent constructions have
utilized various cryptographic protocols such as ZKP and MPC, however,
these approaches either are partially privacy-preserving or require com-
plex computations with several rounds. In this paper, we overcome these
limits by presenting Trustee as a Vickrey auction on Ethereum which
fully preserves bids’ privacy at a relatively much lower fees. Trustee
consists of three components: a front-end smart contract deployed on
Ethereum, an Intel SGX enclave, and a relay to redirect messages be-
tween them. Initially, the enclave generates an Ethereum account and
ECDH key-pair. Subsequently, the relay publishes the account’s address
and ECDH public key on the smart contract. As a prerequisite, bidders
are encouraged to verify the authenticity and security of Trustee by us-
ing the SGX remote attestation service. To participate in the auction,
bidders utilize the ECDH public key to encrypt their bids and submit
them to the smart contract. Once the bidding interval is closed, the
relay retrieves the encrypted bids and feeds them to the enclave that au-
tonomously generates a signed transaction indicating the auction winner.
Finally, the relay submits the transaction to the smart contract which
verifies the transaction’s authenticity and the parameters’ consistency
before accepting the claimed auction winner. As part of our contribu-
tions, we have made a prototype for Trustee available on Github1 for the
community to review and inspect it. Additionally, we analyze the secu-
rity features of Trustee and report on the transactions’ gas cost incurred
on Trustee smart contract.

Keywords: Sealed-Bid Auction. Trusted Execution Environment, Intel
SGX, Ethereum, Blockchain.

1 Introduction

The wide success of Ethereum [30] with a market capitalization around 10 bil-
lion USD at the time of the writing [2] has led to the deployment of thousands

1 https://github.com/hsg88/Trustee

https://github.com/hsg88/Trustee

of asset-specific tokens [1]. Such a large-volume market demands powerful trad-
ing platforms. Auctions have been known to be an effective and efficient way to
trade highly-valuable goods. Additionally, sealed-bid auctions have an important
advantage compared to their open-cry counterparts. Precisely, given an honest
auctioneer, bidders are assured that their competitors will not gain any informa-
tion about their bids. Moreover, in a Vickrey auction which is a particular type
of sealed-bid auctions, the auction winner pays the second highest-price. Con-
sequently, Vickrey auctions motivate bidders to submit bids based on their own
monetary valuation which essentially helps in determining the real market price
of the auctioned items. Nonetheless, a corrupt auctioneer can easily compromise
the aforementioned advantages. For instance, the auctioneer can (i) expose the
bids’ information to a colluding bidder, (ii) declare a false auction winner, (iii)
set a fake second-highest price that is slightly lower than the highest price in
order to gain an advantage. Consequently, the major challenges in constructing
a Vickrey auction are maintaining bids’ privacy and verifying the correctness of
the auction winner and the amount of the second-highest price.

Building a Vickrey auction on top of Ethereum to trade the deployed to-
kens essentially involves writing a smart contract that adheres to a predefined
protocol. A smart contract is an autonomous agent that resides at a specific
address in the Ethereum blockchain. It contains functions to make decisions,
and persistent storage to save state. The execution model of a smart contract is
to lie passive and dormant until it is poked. More specifically, a smart contract
only becomes active once any of its designated functions is invoked due to the
receipt of either a message from another smart contract, or a transaction from
an externally-owned account (i.e., informally called a wallet). The lifetime of a
smart contract is to exist as long as the whole Ethereum network exists unless
it was programmed to self destruct which essentially renders it completely in-
active. With the help of the consensus protocol in Ethereum, a smart contract
gains control flow integrity. In other words, it executes as its code dictates to
the extent that even its creator cannot modify or patch it. The consensus pro-
tocol requires miners to do an expensive operation (proof of work) in addition
to processing and validating the transactions. Therefore, miners are compen-
sated by a block reward in addition to transaction fees. Essentially, the more
complex the transaction, the higher fees are incurred. Additionally, processing
and validating transactions imply that miners have a fully transparent access to
smart contract’s state. Therefore, the lack of privacy in addition to the expensive
transaction fees are the main challenging issues in building a secure and efficient
Vickrey auction on top of Ethereum.

To address the above issues, various constructions for sealed-bid auctions in
general utilize different cryptographic protocols such as Zero-Knowledge Proofs
(ZKP) and secure Multi-Party Computations (MPC) to ensure the verifiability
of the auction winner without sacrificing bids’ privacy. However, in the former,
the auctioneer is an entity that learns bids’ values and proves the correctness of
the auction winner to the bidders. This approach is partial privacy-preserving
since the bids’ values are exposed to the auctioneer who may maliciously exploit

2

this information in future auctions. In addition to the inherent high transaction
fees in Ethereum, the verification of the auctioneer’s proof is executed inside a
smart contract which significantly incurs a high cost (e.g., zkSNARK verification
roughly takes 3 million gas [15]) that renders the whole approach to be an ex-
pensive option. In contrast, the MPC approach can offer full bids’ privacy at the
cost of higher transactions fees since it requires several of complex computations
between the bidders and using a smart contract as a public bulletin board in
addition to an escrow of funds.

We present Trustee as a trusted and efficient Vickrey auction on top of
Ethereum that substantially overcomes the limitations of ZKP and MPC ap-
proaches. Trustee utilizes Intel Software Guard Extensions (SGX) [4] as a Trusted
Execution Environment (TEE) to fully preserve bids’ privacy at a significantly
cheaper transaction fee to verify the auction winner correctness compared to the
aforementioned approaches. Intel SGX is a hardware architecture that provides
an isolated and tamper-proof environment called enclave. In essence, the control
flow integrity of the code and the confidentiality of the data inside an enclave
are well protected from the host operating system and other running processes.
Therefore, Intel SGX technology can complement smart contracts with confi-
dential data processing, a highly desirable property that Ethereum lacks.

Similar to other TEE technologies, Intel SGX has a poor availability, and
its operation can be easily terminated at any point of time. Hence, a stateful
application utilizing Intel SGX requires a storage with high availability such as
the blockchain or IPFS [6] to persist sensitive state (e.g., the sealed-bids and
sealed private keys). We are also aware that several side-channel attacks on
Intel SGX have been reported recently to leak information about the sensitive
data inside enclaves such as private keys (more details in Section 4). Therefore,
we do strongly note that rather than building Trustee using only Intel SGX,
we utilize a smart contract on Ethereum for two purposes. First, it acts as an
escrow to hold the initial deposits of bidders during the bidding phase for a
specific time interval. As a result, bidders are not exposed to the theft of funds
in the case they were sending their payments to an account controlled by the
enclave which might get compromised. Secondly, it acts as a trusted judge that
verifies on-behalf of the bidders the consistency of the inputs used by the enclave
to determine the auction winner. Hence, it allows bidders with low-processing
mobile devices to easily join the auction. Consequently, by integrating a smart
contract on Ethereum with Intel SGX technology, Trustee becomes a robust
Vickrey auction solution that inherits the best properties from the two worlds
of blockchain and TEEs.

Our contribution, we present the design and implementation of Trustee
that provides the following properties:

1. Full privacy preserving. The only information about bids that any bidder
can learn besides to their own is the winning bid.

2. Cheap correctness verification cost. Compared to other alternatives,
Trustee achieves significantly cheaper verification cost of the auction winner
correctness.

3

3. Rational fairness. Malicious participants gain no advantage over honest
parties. In fact, they are obligated to follow the proposed protocol to avoid
being financially penalized.

4. Efficiency. The core computations of sealing bids, decrypting them, and
selecting the auction winner are carried out in native environments off the
blockchain which are more efficient than the Ethereum Virtual Machine
(EVM).

We also provide an open-source prototype for Trustee on Github (https://
github.com/hsg88/Trustee) for the community to review it. The rest of this
paper is organized as follows. Section 2 provides a review of current constructions
of sealed-bid auctions on top of blockchains and the integration of TEEs with
blockchain. In Section 3, we present the cryptographic primitives utilized in
Trustee’s design. Then, in Section 4, we provide the protocol design behind
Trustee, analyze its security features, and report the gas cost of the relevant
transactions. Finally, we present our conclusions in Section 5.

2 Related Work

In this section, we provide a review of state-of-the-art constructions that utilize
a variety of cryptographic protocols such as ZKP and MPC to build sealed-
bid auction on top of blockchains. Then, we briefly present recent works that
integrate blockchain with TEE to provide elegant solutions.

2.1 Sealed-Bid Auctions On Blockchain

Blass and Kerschbaum [9] proposed Strain as a protocol to build a sealed-bid
auction on top of the blockchain technology. Strain utilizes a two-party computa-
tion protocol to compare pairs of bids, and the outcome is stored on a blockchain.
Additionally, Strain utilizes ZKP to prove that the outcome is correct with re-
spect to the compared pairs of bids. Strain fully preserve bids’ privacy. However,
its complexity scales proportionally to the number of bidders. Moreover, as re-
ported by its authors, it reveals the order of the bids as it behaves similar to
Order-Preserving Encryption (OPE) schemes.

Galal and Youssef [16] proposed a protocol that utilizes Pedersen commit-
ment and Honest-Verifier Zero-Knowledge (HVZK) range proof to build a public
verifiable sealed-bid auction on top of Ethereum. During the bidding phase, the
bidders submit Pedersen commitments of their bids to the auction smart con-
tract. Then at the reveal phase, they open their commitments individually to
the auctioneer using RSA public-key encryption. Finally, the auctioneer declares
the auction winner and utilizes HVZK range proof with the auction smart con-
tract as a verifier to prove the correctness of the auction winner. However, the
protocol has the following issues: (i) running an interactive HVZK with a smart
contract as a verifier is not secure due to the possible influence of miners on the
challenge step, (ii) the proof size and verification cost scales proportionally with

4

https://github.com/hsg88/Trustee
https://github.com/hsg88/Trustee

the number of bidders, and (iii) the protocol is partial privacy-preserving as the
auctioneer gains knowledge of all bids values.

Motivated to improve on their latest work, Galal and Youssef [15] utilized
Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK)
[5] which is an innovative cryptographic method in the field of Verifiable Compu-
tation. In contrast to their previous work [16], this protocol has several desirable
properties that synergies with the blockchain technology: (i) a constant short-
size proof, (ii) a constant verification cost, (iii) a non-interactive protocol that
takes one message to convince the verifier (i.e., the smart contract). However,
generating a zkSNARK proof scales proportionally with the number of mul-
tiplication gates in the arithmetic circuit of their computation problem which
further depends on the number of bidders. Moreover, the protocol assumes a
trusted setup of the proving and verification keys. Finally, the protocol is a par-
tial privacy-preserving where bidders have to trust the auctioneer to not exploit
their bids values in future auctions.

2.2 SGX with Blockchain Solutions

Several recent constructions utilized TEE technologies such as Intel SGX to solve
privacy and performance issues on the blockchain, (e.g., see [3,7,14,20,22,27,33]).
In here, we provide a brief review of the works that Trustee shares some simi-
larities with. In [33] Zhang et al. proposed Town Crier (TC): an authenticated
data feed that gives smart contracts on Ethereum the ability to request data
from existing HTTPS-enabled data sources. TC consists of three components: a
front-end smart contract, a back-end Intel SGX enclave, and a relay to redirect
messages between them. Initially, the TC’s front-end receives a request from a
smart contract on Ethereum. The relay monitors the Ethereum blockchain for
such a request and forwards it to TC’s back-end. Then, the TC’s back-end re-
solves this request and outputs a transaction containing the response. Finally,
the relay submits the transaction to TC’s front-end where it triggers the execu-
tion of a callback on the relying smart contract.

Cheng et al. [14] proposed Ekiden: a platform for confidentiality-preserving,
trustworthy, and performant smart contract execution to solve the inherent lack
of privacy and poor performance in blockchains. Ekiden’s architecture separates
smart contract execution from the consensus protocol. It preserves the confiden-
tiality of a smart contract’s states, besides to, achieving high throughput and
scalability. The authors evaluated a prototype (with Tendermint as the consen-
sus layer) and reported a performance of 600x more throughput and 400x less
latency at 1000x less cost than the Ethereum mainnet.

Tran et al. [27] proposed Obscuro: an Intel SGX-backed mixer to address the
anonymity issue on Bitcoin. Due to the pseudo-anonymity offered by Bitcoin,
the link between the transaction’s sender and receiver can be exploited to cluster
and track users which defeats the goal of anonymous payment. Obscuro utilizes
Intel SGX to preserve the privacy of the mixer’s participants and perform a se-
cure shuffle of bitcoins. Users post their deposits indirectly on Bitcoin blockchain
rather than directly interacting with Obscuro. Consequently, malicious operators

5

cannot prevent benign users from mixing their bitcoins. Furthermore, Obscuro
does not store any operation states outside of the TEE to counter the possibility
of state-rewind in conjunction with eclipse attacks. The authors evaluated Ob-
scuro on Bitcoin testnet and reported that they were able to mix 1000 inputs in
just 6.49 seconds.

3 Preliminaries

In this section, we briefly introduce the cryptographic primitives that are utilized
in our design for Trustee.

Ethereum utilizes Elliptic Curve Digital Signature Algorithm (ECDSA) to
verify the authenticity of transactions. To create an account on Ethereum, one
has to statistically randomly generate a unique ECDSA key-pair (pk, sk) on the
curve secp256k1 [10,12]. Keeping the private key secure is essential because it is
used to sign transactions originating from the associated account. The address of
an account is the rightmost 20-bytes of the Keccak256 [8] hash of the public key.
This results in a more compact address size compared to the 64-bytes public key.
When a transaction is sent to the network, miners are tasked with verifying the
transaction’s signature with respect to the sender’s address. Precisely, ECDSA
consists of the following three algorithms:

1. (pk, sk) ← Gen(1λ) which generates the public key pk and the associated
private key sk based on the security parameter λ.

2. σ ← Sign(H(m),sk) which generates the signature σ for the hash of the
message m under a designated hash function H and the private key sk.

3. (>/⊥)← Verify(σ,H(m), pk) which verifies the signature σ on the hash of
message m under the public key pk.

The second cryptographic protocol we utilize is Elliptic Curve Integrated
Encryption Scheme (ECIES) [17]. It enables two parties to communicate au-
thenticated confidential messages. As its name indicates, ECIES integrates the
following functions:

1. (sk, pk)← KGen(params): a key generation function that takes elliptic curve
parameters params to produce a random private key sk and the associated
public key pk.

2. ss ← KA(ski, pkj): a key agreement function to generate a shared secret ss
based on the private key of party i and the public key of party j.

3. (k1, k2)← KDF(ss): a key derivation function to produce keys k1 and k2 from
the shared secret ss.

4. ct ← Enck1(m): a symmetric encryption function to encrypt a message m
using the symmetric key k1.

5. tag ← MACk2(m): a message authentication code function to generate a tag
based on the key k2 and the message m.

To demonstrate how ECIES works, assume that Alice wants to encrypt a mes-
sage m and send it to Bob. They initially agree on common ECIES parameters

6

params. Then, Alice and Bob individually generate the ephemeral key pairs
(skA, pkA), (skB , pkB), respectively. Subsequently, Alice does the following steps:

1. Create a shared secret ss← KA(skA, pkB)
2. Derive two keys (k1, k2)← KDF(ss).
3. Obtain the ciphertext of her message ct← Enck1(m).
4. Authenticate the ciphertext by creating a tag ← MACk2(ct).
5. Send the tuple (pkA, ct, tag) to Bob.

Once Bob receives the tuple (pkA, ct, tag), he can decrypt the ciphertext and
verify its authenticity by doing the following:

1. Create a shared secret ss← KA(skB , pkA)
2. Derive two keys (k1, k2)← KDF(ss).
3. Assert that tag = MACk2(ct), otherwise, he rejects.
4. Obtain the message m← Enc−1

k1
(ct, k1).

4 Trustee’s Design and Analysis

In this section, we briefly present the architecture of Trustee and illustrate the
interaction flow between its components. Then, we explain the protocol in de-
tails. Next, we mention the threat model, security assumptions, and elaborate
by analyzing various possible adversary attacks. Finally, we provide the imple-
mentation details of Trustee’s prototype and evaluate the transactions gas costs.

4.1 Trustee’s Architecture

Trustee consists of three components: a smart contract C which resides on top
of Ethereum, a back-end Intel SGX enclave E and a relay R which both run
off-chain on a server. We refer to the user who deploys C and controls R as the
auctioneer. Furthermore, E is only accessible through R, and R interacts with
C on behalf of the auctioneer and E. The general flow of interactions between
Trustee’s components, and bidders is depicted in Fig. 1.

Initially, the auctioneer deploys C on Ethereum and publishes its address so
that interested sellers and buyers can learn about it. To start an auction, the auc-
tioneer sends a request to R which loads E and calls the function Initialize().
As a response, E generates an externally owned Ethereum account with the pri-
vate key Tsk and the associated address Tadr, and an ECDH key-pair (Tdh, Tpk)
where Tdh is the private key and Tpk is the associated public key. Then, it re-
turns the values of Tadr and Tpk to R. Subsequently, the auctioneer instructs R
to set the stage for a new auction on C by calling the function StartAuction

which takes Tadr and Tpk. Next, assume a bidder Bob is interested in the auc-
tion, then he utilizes ECIES protocol with Tpk as the public key of the recipient
(i.e., Trustee’s enclave E) to seal his bid. Subsequently, he submits his sealed
bid Bct along with his ECDH public key Bpk to C. Once the bidding interval is
closed, R retrieves the sealed bids stored on the C, then it forwards them to E

7

ControlsDeploys

2. Call StartAuction(Tadr, Tpk,...)

Bidders

3. Call SubmitBid(Bct, Bpk)

4. Call GetBids()

5. Call RevealWinner(bids)

6. Call SetWinner(Twin)

Auctioneer

1. Call Initialize()

Return Tadr, Tpk

Trustee Enclave
E

Relay
R

Trustee Contract
C

Return bids

Return Twin

Figure 1. Interactions between Trustee’s components and bidders. The green
components are trusted

by calling the function RevealWinner. As a result, E opens the sealed bids and
determines the winner and second-highest price. Then, it returns a transaction
Twin signed by the private key Tsk to R. Finally, R sends Twin to C which is
essentially a call to the smart contract function SetWinner that declares the
auction winner and second-highest price.

Initializing an Auction The initialization process starts with the auction-
eer requesting R to load E inside Intel SGX enclave and invoke the function
Initialize() which is implemented as shown in Algorithm: 1.

Algorithm 1 Initializing State of Trustee’s Enclave

1: function Initialize
2: (Tpk, Tdh)←GenerateECDHKeys()

3: (Tadr, Tsk)←GenerateAccount()

4: sealedState← Seal(Tsk, Tdh)
5: return (sealedState, Tadr, Tpk)
6: end function

The Initialize() function generates two key-pairs. More precisely, one key-
pair (Tpk, Tdh) that enables bidders to seal their bids such that only E can open
them, and the second one to authenticate the result (i.e., auction winner and
second-highest price) generated by E. The former is an ECDH key-pair used

8

as part of ECIES protocol between E and each bidder to securely transmit the
sealed bids through C and R. The later is an ECDSA key-pair used to sign
the result. Verifying the signature on the result by C is a relatively expensive
operation (i.e., roughly 120,000 gas for using ecrecover). Therefore, in Trustee, we
utilize an intrinsic operation that happens on every transaction in Ethereum (i.e.,
transaction’s signature verification) to indirectly verify the authenticity of the
result for us. Hence, E generates an ECDSA key-pair on curve secp256k1 which
essentially creates an external owned Ethereum account with the private key
Tsk and the associated address Tadr. Then, whenever E determines the auction
winner and the second-highest price, it outputs a transaction Twin signed by
Tsk. Later, R sends Twin to the Ethereum network, where the miners verify its
signature. Finally, C only has to assert that the sender of Twin is the Tadr. As
a result, this approach yields a much cheaper transaction fee compared to the
explicit signature verification by calling ecrecover.

Intel SGX enclaves are designed to be stateless. In other words, once an
enclave is destroyed, its whole state is lost. However, in Trustee, we have to
persist the generated keys as long as the current auction is running. Therefore,
we utilize Intel SGX feature known as Sealing [4] to properly save the generated
private keys. Sealing is the process of encrypting enclave secrets in order to
persist them on a permanent storage such as a disk. This effectively allows us to
retrieve the private keys (Tsk, Tdh) even if the enclave was brought down for any
reason. The encryption is performed using a private Seal Key that is unique to
the platform and enclave, and is not accessible by any other entity.

Upon the return from Initialize, R saves the values of sealedState on a
disk besides to having a backup. Furthermore, R publishes the values Tadr and
Tpk by calling the function StartAuction on C as shown in Fig. 2. The function
StartAuction also takes extra parameters that control the different intervals of
the current auctions. More precisely, T1, T2, and T3 which define the numbers
of the blocks before which: (i) bidders submit their sealed bids, (ii) R submits
Twin, (iii) honest participants (i.e., auctioneer and non-winning bidders) reclaim
the initially deposited fund D, respectively. The initial deposit D is paid by all
participants to penalize malicious behavior.

Provisioning of Bids Once the new auction has been initialized, an interested
bidder Bob can seal his bid x by utilizing ECIES as shown in Algorithm 2. It
starts with retrieving the public key Tpk from C. Then, it generates an ephemeral
ECDH key-pair (Bpk, Bsk) on curve25519 where Bsk is the private key and Bpk
is the associated public key. Then, it computes the shared secret s based on Tpk
and Bsk. After that, it derives two symmetric keys k1 and k2 in order to perform
an authenticated encryption on the bid value x. Finally, it returns the sealed-bid
Bct and the associated public key Bpk. Subsequently, Bob sends the values Bct
and Bpk to the function SubmitBid on C as shown in Fig. 2.

9

StartAuction: upon receiving (Tadr, Tpk, T1, T2, T3, D) from auctioneer A
Assert state = Init
Assert ledger[A] >= D
Set ledger[A] := ledger[A]−D
Set deposit := deposit+D
Set state := Bidding
Store Tadr, Tpk
Store T1, T2, T3, D

SubmitBid: upon receiving (Bct, Bpk) from a bidder B
Assert state = Bidding
Assert T < T1
Assert ledger[B] >= D
Set ledger[B] := ledger[B]−D
Set ledger[C] := ledger[C] +D
Set bids[B] := (Bct, Bpk)
Set Bidders := Bidders ∪ {B}

SetWinner: upon receiving (H, I, P) from the an address X
Assert X = Tadr
Assert state = Bidding
Assert T1 < T < T2
IF Keccak256(bids.Bct||bids.Bpk) 6= H

Set state := Rejected
Return

EndIF

Set state := Revealed
Set winner = Bidders[I]
Set price = P

Withdraw: upon receiving () from an address X
Assert T2 < T < T3
IF (state = Revealed and X ∈ {A}∪{Bidder}−{winner})

or (state = Rejected and X ∈ {Bidder})
Set ledger[C] := ledger[C]−D
Set ledger[X] := ledger[X] +D

EndIF

Reset: upon receiving () from the auctioneer A
Assert T3 < T
Set state := Init
Clear Bidders
Clear bids

Figure 2. Pseudocode for the Trustee’s smart contract C

The function SubmitBid first asserts that: (i) the current state is set to
Bidding, and (ii) the call is invoked before the end of the bidding interval. After
that, it deducts the initial deposit D from Bob and stores the Bct and Bpk into
the array bidders. Note that the size of the Bctis 32 bytes. Moreover, we utilize

10

Algorithm 2 Sealing of Bids using ECIES

1: function SealBid(x)
2: Tpk ←GetTrusteePublicKey()
3: (Bpk, Bsk)← GenerateECDHKeys()
4: s←ComputeSharedSecret(KA(Bsk, Tpk)
5: (k1, k2)← DeriveKeys(s)
6: iv ← InitRandomIV()
7: ct← Encrypt(x, iv,K1)
8: tag ← MAC(ct,K2)
9: Bct ← ct||iv||tag

10: return (Bct, Bpk)
11: end function

the Curve25519 for generating ECDH key-pairs due to two reasons: (i) it only
uses compressed elliptic point (i.e., X coordinate), so it provides fast and efficient
ECDH, (ii) the public-key size becomes 32-bytes rather than 64-bytes, therefore,
both the Bct and Bpk synergies effectively with Ethereum native variable type
uint256.

Revelation of the Auction Winner Once the bidding interval is over, R
retrieves the submitted array of sealed bids Bct and their associate public keys
Bpk from C. Then, it passes them along with sealedState (previously generated
by the function Initalize) to the function RevealWinner on E as shown in Al-
gorithm 3. In this function, E initially unseals the private keys from sealedState.
Then, for every bidder i, it runs the decryption part of ECIES protocol based on
the sealed-bid Bct[i], the public key Bpk[i], and the private key Tdh to extract
the bid value and find the winner. Once all sealed-bids Bct are decrypted, the
winner’s index and second-highest bid are set accordingly in the variables index
and second. Subsequently, E binds the auction winner to the inputs it received
by computing the Keccak256 hash value of Bct and Bpk. Finally, E creates a raw
transaction Twin with the destination address as C and signs it with the private
key Tsk. For the sake of simplicity, we defer explaining the details of Reset()

and Unseal() to Subsection 4.2.
Subsequently, the auctioneer has to send some funds to Tadr in order to pay

the transaction fees to be incurred by Twin. Next, the auctioneer requests R
to send the transaction Twin to C which is essentially a call to the function
SetWinner shown in the Fig. 2. It takes the following parameters: (i) H as
Keccak256 hash value of the inputs Bct and Bpk, (ii) as the index of the winner
in the array Bidders which is further used by C to determine the address of the
auction winner, and (iii) P as the second-highest price. On its call, it asserts
that: (i) Twin’s origin is the address Tadr, the call happens within the auction
winner revelation interval, and (iii) the state is set to Bidding. Then, it checks
if H is equal to the Keccak256 hash value of the sealed bids and their associated
public keys submitted by bidders. Accordingly, it decides whether to accept the
submitted values or reject them. Eventually, it reflects the decision on its state.

11

Algorithm 3 Revelation of the Auction Winner

1: function RevealWinner(Bct[], Bpk[], sealedState)
2: max← 0
3: second← 0
4: index← −1
5: N ←Length(Bct)
6: (Tsk, Tdh, success) = Unseal(sealedState)
7: if success = 0 then
8: return
9: end if

10: for i← 1 to N do
11: bid← Decrypt(Bct[i], Bpk[i], Tdh)
12: if max < bid then
13: second← max
14: max← bid
15: index← i
16: end if
17: end for
18: hash← Keccak256(Bct||Bpk)
19: Twin ←CreateTransaction(C, hash, index, second, Tsk)
20: sealedState← Reset()

21: return (Twin, sealedState)
22: end function

Honest participants can reclaim their initial deposits within the withdraw
interval by calling the function Withdraw shown in Fig. 2. Additionally, in the
case of a successful winner revelation, then the winner’s initial deposit is locked
to set the stage for payment of the winning bid. Eventually, after the withdraw
interval, the auctioneer calls the function Reset in order to set the state of C to
Init so that new auctions can be started later by calling StartAuction.

4.2 Threat Model

In Trustee threat model, we assume the following:

1. The smart contract C is deployed on the mainnet of Ethereum with an open-
source code that is available for all bidders. Moreover, the functions on C
process the input parameters of transactions as their code dictate which is
essentially enforced by Ethereum. Furthermore, all transactions in Ethereum
are authenticated such that C can precisely determine the sender address.

2. The enclave E is loaded inside a properly implemented and manufactured
Intel SGX platform. Additionally, the source code of E is available for all
bidders. Finally, E is properly programmed such that it does not have a bug
that compromises the confidentiality of sealed-bids and private keys.

3. The relay R is the only interface to E and is controllable by the auctioneer.
The bidders have a black-box view of R (i.e., closed-source code). Further-

12

more, R is potentially untrusted component that can behave maliciously to
compromise the security of Trustee.

4. The Adversary is financially rational and powerful enough to have access to
the host running E and R. Hence, the adversary is able to control the exe-
cution of privileged software such as the operating system and the network-
stack driver. However, the adversary cannot compromise the security model
of Ethereum in order to maliciously change the state of C.

We acknowledge that several recent studies have uncovered side-channel attacks
to compromise the confidentiality of Intel SGX [13,19,23,28,29,31]. Also, multiple
mitigation techniques have been proposed to address attack-specific issues [18,
24–26]. Resolving side-channel attacks on Intel SGX enclave is beyond the scope
of this paper and is left for future work.

4.3 Security Analysis

We discuss the security of Trustee against possible scenarios including Intel SGX
masquerade, eclipse, fork, and replay attacks [11].
Intel SGX Masquerade. Since bidders do not have direct access to Trustee’s
enclave E, a corrupt auctioneer might generate the private keys and post the
corresponding public key Tpk and address Tdh on the smart contract C. Incau-
tious bidders would seal their bids by Tpk which effectively gives the corrupt
auctioneer access to the underlying bids. To counter this attack, we show how a
wary bidder Bob can verify that the private keys (Tsk, Tdh) were generated by
E inside a genuine Intel SGX enclave. Essentially, Bob has to do the verification
before submitting his sealed-bid. Therefore, once a new auction is started by the
function StartAuction, Bob and Trustee engage in a protocol that utilizes the
Remote Attestation [4] feature of Intel SGX as shown in Fig. 2. Initially, Bob

Bidder

1. Call Challenge(nonce)
2. Call GetQuote(nonce)

Trustee EnclaveRelayIntel Attestation
Service

4. Return quote
3. Return quote

5. Call Verify(quote)

6. Return result

Figure 2. Remote attestation of Trustee’s Enclave

challenges E through R by calling the function Challenge and passes a nonce
to it. Then, R forwards the nonce to E by calling the function GetQuote. Inside
GetQuote, E binds Tadr, Tpk, and nonce by hashing their concatenation and cre-
ating a digest h← SHA256(Tadr||Tpk||nonce). Then, it embeds h as a user data
into a report r by calling an Intel SGX supplied function sgx create report.
Finally, R passes r to an Intel provided enclave known as the Quoting Enclave

13

(QE) which verifies r then signs it with Intel Enhanced Privacy ID (EPID) secret
key to yield a quote. The Intel EPID is device-specific and is only accessible by
the QE. Subsequently, R returns the quote to Bob who in turn contacts Intel
Attestation Service (IAS) to verify the quote’s signature. On a successful verifi-
cation, Bob has to check the following: (i) the quote’s user data is equivalent to
h, and (ii) the source code of E when compiled produces the same measurement
(i.e., a digest of code and data of E) included in the quote. Assuming IAS to
behave honestly, then it is computationally infeasible for the adversary to gen-
erate a quote that asserts the authenticity of E on a fake Intel SGX enclave to
Bob.

Eclipse Attack. Generally, Intel SGX enclaves do not have trusted access to
the network; therefore, Trustee’s enclave E is oblivious of the current state (i.e,
sealed bids) on the smart contract C. Consequently, a corrupt auctioneer can
provide an arbitrary subset of the sealed bids to E in order to give advantage
to a cartel of colluding bidders. A trivial solution to this challenge is to embed
a full-node Ethereum client inside E such that it can verify the PoW (Proof of
Work) of Ethereum blocks and determine the correct state of the smart contract
C. This solution is computationally secure against an adversary who controls
less than 51% of the hash rate power of the network. However, the TCB of E
becomes bloated with and susceptible to bugs founds in the client source code.
Alternatively, in Trustee, we bind the output (i.e., winner’s index and second-
highest price) to the input (i.e., the set of sealed-bids and associated public
keys) by including the hash of the input as a parameter in the transaction Twin
as shown in Algorithm 3. Therefore, the smart contract C can determine whether
all or a subset of the sealed bids were provided to E by comparing hash parameter
of Twin to the hash of all bids and associated public keys in its state as shown
in the function SetWinner in Fig. 2.

Replay and Fork Attack. We assess the possibility of a corrupt auctioneer
Eve trying to compromise the privacy of the sealed-bids without being noticed
and penalized. Recall that in the design of Trustee, R initially calls the function
Initialize, then at a later point in time, it calls the function RevealWinner to
finalize the auction. The idea behind this attack is that Eve can launch multiple
instances of E and replay the same sealedState to all instances but provide
different subsets of the sealed-bids. Obviously, Eve gives one of the instances the
correct number of sealed-bids and its output is forwarded to C to avoid penalty as
discussed above. However, for the other instances she simply learns the outputs
and discard them which effectively gives her access to all the underlying bids
values.

To counter this attack, we enforce Trustee’s design of using fresh sealedState
for every call to the function RevealWinner by utilizing Intel SGX non-volatile
hardware monotonic counters. Simply, the function Seal called inside the func-
tion Initialize increments and reads the monotonic counter ctr, then it com-
bines ctr, Tsk, and Tdh and seals them into sealedState. Later, when the function
RevealWinner is called, it invokes the function Unseal which unseals sealedState,
then it reads the current monotonic counter and compares it with the unsealed

14

ctr. Hence, if the equality check passes, then the function RevealWinner incre-
ments the counter as well and proceeds to the next steps, otherwise, it aborts
without determining the auction winner (i.e., returning an empty Twin that does
not indicate the auction winner.) Consequently, Eve can get valid output from
RevealWinner only one time per a single auction regardless of how many in-
stances of E are launched. Alternatively, to avoid the low performance of using
monotonic counters which takes approximately 80 to 200 ms for read/write op-
eration, we can utilize a distributed system of Intel SGX enclaves to manage the
state freshness as explained in [21].

4.4 Prototype Implementation and Gas Cost Analysis

Intel SGX cryptographic library does not support the curves secp256k1 and
curve25519, so we utilize an Intel SGX compatible port of mebdtls library [32]
as a static enclave library linked to Trustee’s enclave. Mbedtls library is mainly
used in ECDH and ECDSA key generation, ECDH shared secret derivation, and
ECDSA signing. We evaluate Trustee on a Dell Inspiron 7577 laptop that is
SGX-enabled with the 6th Generation Intel Core i5 CPU and 8-GB of memory.
We enable Intel SGX feature on the laptop’s BIOS and allocate maximum al-
lowed 128-megabytes memory for individual SGX enclave. Also, we implement
Trustee’s smart contract in Solidity which is the de-facto programming language
for developing smart contracts in Ethereum. Furthermore, we utilize Ganache to
set up a personal Ethereum blockchain in order to run tests, execute commands,
and inspect state while controlling how the chain operates.

We report on the gas cost of transactions in Trustee for a Vickrey auction
with N = 100 bidders and compares it with approaches in [15, 16] in Table 1.
At the time of writing, December 14th, 2018, the median gas price is 3.3 GWei
and the average exchange rate for 1 ether = $83 USD. In other words, 1 million
gas incurs transaction fees ≈ $0.27 USD.

Table 1. Gas cost of transactions in Trustee and auctions [15,16]

Function Trustee Auction [16] Auction [15]

Deployment 1173779 3131261 1346611
StartAuction 188201 — —
SubmitBid 123350 262933 159759
SetWinner 82847 2872047 3487439
Withdraw 20370 47112 —
Reset 402351 — —

Compared to other sealed-bid auction constructions on top of Ethereum [15,
16], Trustee achieves a significantly low and constant gas cost on the revelation
of auction winner. The reason behind this is because most of the computations
happen off-chain. Therefore, it costs the auctioneer less than 1 USD to deploy

15

Trustee’s smart contract C, start an auction, set the winner, and withdraw initial
deposit. It has to be noted that, the initial deposit must be large enough to
penalize malicious participants such as an auctioneer who corrupts R to redirect
inconsistent messages between E and C, and a malicious winner who refuses to
pay the second-highest price. Certainly, the value of the initial deposit should
be proportional to the estimated value of the auctioned item.

5 Conclusion

In this paper, we presented Trustee, an efficient and full privacy preserving Vick-
rey auction on top of Ethereum. In Trustee, we utilize Intel SGX to complement
a smart contract in Ethereum with confidential data processing, a desirable
property they lack. As a result, Trustee does not inherit the complexities of
heavy cryptographic protocols such as ZKP and MPC. More precisely, Trustee
fully preserves bids’ privacy and maintains the auction winner correctness at
a relatively cheap transaction fee. Furthermore, in Trustee, auctions take only
two-rounds to finalize, where the first round is the provision of bids and the
second one is the revelation of the winner. As a result, it is one round less than
the (commit - reveal - prove) approach. Moreover, the major computations in
Trustee happen on off-chain hosts, hence, it can be ported with minimum efforts
to blockchains with inflexible scripting capabilities such as Bitcoin.

References

1. Digital assets in Ethereum blockchain. https://tokenmarket.net/blockchain/

Ethereum/assets/.
2. Top 100 cryptocurrencies by market capitalization. https://coinmarketcap.com,

2018.
3. Mustafa Al-Bassam, Alberto Sonnino, Micha l Król, and Ioannis Psaras. Airtnt:

Fair exchange payment for outsourced secure enclave computations. arXiv preprint
arXiv:1805.06411, 2018.

4. Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative tech-
nology for CPU based attestation and sealing. In Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security and privacy,
volume 13. ACM New York, NY, USA, 2013.

5. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security
Symposium, pages 781–796, 2014.

6. Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

7. Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryptocurrency exchange using
trusted hardware. IACR Cryptology ePrint Archive, 2017:1153, 2017.

8. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Annual international conference on the theory and applications of cryptographic
techniques, pages 313–314. Springer, 2013.

16

https://tokenmarket.net/blockchain/Ethereum/assets/
https://tokenmarket.net/blockchain/Ethereum/assets/
https://coinmarketcap.com

9. Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for
blockchains. In European Symposium on Research in Computer Security, pages
87–110. Springer, 2018.

10. Joppe W Bos, J Alex Halderman, Nadia Heninger, Jonathan Moore, Michael
Naehrig, and Eric Wustrow. Elliptic curve cryptography in practice. In Inter-
national Conference on Financial Cryptography and Data Security, pages 157–175.
Springer, 2014.

11. Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro
Sorniotti. Blockchain and trusted computing: Problems, pitfalls, and a solution
for Hyperledger Fabric. arXiv preprint arXiv:1805.08541, 2018.

12. Daniel R. L. Brown. Standards for efficient cryptography sec 2: Recommended
elliptic curve domain parameters. http://www.secg.org/sec2-v2.pdf, 2010.

13. Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. SGXPECTREattacks: Leaking enclave secrets via speculative execu-
tion. arXiv preprint arXiv:1802.09085, 2018.

14. Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contract execution.
arXiv preprint arXiv:1804.05141, 2018.

15. Hisham S Galal and Amr M Youssef. Succinctly verifiable sealed-bid auction smart
contract. In Data Privacy Management, Cryptocurrencies and Blockchain Tech-
nology, pages 3–19. Springer, 2018.

16. Hisham S Galal and Amr M Youssef. Verifiable sealed-bid auction on the Ethereum
blockchain. In International Conference on Financial Cryptography and Data Se-
curity, Trusted Smart Contracts Workshop. Springer, 2018.

17. Vı́ctor Gayoso Mart́ınez, Luis Hernández Encinas, and Carmen Sánchez Ávila. A
survey of the elliptic curve integrated encryption scheme. 2010.

18. Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. Strong and efficient cache side-channel protection using hardware
transactional memory. In USENIX Security Symposium, pages 217–233, 2017.

19. Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium, USENIX Security, pages 16–18,
2017.

20. Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. Teechan: Payment
channels using trusted execution environments. arXiv preprint arXiv:1612.07766,
2016.

21. Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. Rote: Rollback protection for
trusted execution. IACR Cryptology ePrint Archive, 2017:48, 2017.

22. Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. Proof of luck:
An efficient blockchain consensus protocol. In Proceedings of the 1st Workshop on
System Software for Trusted Execution, page 2. ACM, 2016.

23. Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware guard extension: Using SGX to conceal cache attacks. In In-
ternational Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 3–24. Springer, 2017.

24. Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. SGX-shield: Enabling address space layout ran-
domization for sgx programs. In NDSS, 2017.

17

http://www.secg.org/sec2-v2.pdf

25. Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradi-
cating controlled-channel attacks against enclave programs. In Proceedings of the
2017 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, 2017.

26. Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Pre-
venting page faults from telling your secrets. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pages 317–328.
ACM, 2016.

27. Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek Saxena. Obscuro:
A bitcoin mixer using trusted execution environments. IACR Cryptology ePrint
Archive, 2017:974, 2017.

28. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Symposium. USENIX
Association, August 2018.

29. Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-
order execution. Technical report, 2018.

30. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

31. Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Security and Pri-
vacy (SP), 2015 IEEE Symposium on, pages 640–656. IEEE, 2015.

32. Fan Zhang. mbedtls-sgx: a TLS stack in SGX. https://github.com/bl4ck5un/

mbedtls-SGX, 2016.
33. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier:

An authenticated data feed for smart contracts. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 270–282.
ACM, 2016.

18

https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX

	Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

