
Towards Instantiating the Algebraic Group
Model

Julia Kastner1 and Jiaxin Pan?2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
julia.kastner@kit.edu

2 Norwegian University of Science and Technology, Trondheim, Norway
jiaxin.pan@ntnu.no

Abstract. The Generic Group Model (GGM) is one of the most im-
portant tools for analyzing the hardness of a cryptographic problem.
Although a proof in the GGM provides a certain degree of confidence in
the problem’s hardness, it is a rather strong and limited model, since it
does not allow an algorithm to exploit any property of the group structure.
To bridge the gap between the GGM and the Standard Model, Fuchsbauer,
Kiltz, and Loss proposed a model, called the Algebraic Group Model
(AGM, CRYPTO 2018). In the AGM, an adversary can take advantage
of the group structure, but it needs to provide a representation of its
group element outputs, which seems weaker than the GGM but stronger
than the Standard Model. Due to this additional information we learn
about the adversary, the AGM allows us to derive simple but meaningful
security proofs.
In this paper, we take the first step to bridge the gap between the

AGM and the Standard Model. We instantiate the AGM under Standard
Assumptions. More precisely, we construct two algebraic groups under
the Knowledge of Exponent Assumption (KEA). In addition to the
KEA, our first construction requires symmetric pairings, and our second
construction needs an additively homomorphic Non-Interactive Zero-
Knowledge (NIZK) argument system, which can be implemented by
a standard variant of Diffie-Hellman Assumption in the asymmetric
pairing setting. Furthermore, we show that both of our constructions
provide cryptographic hardness which can be used to construct secure
cryptosystems. We note that the KEA provably holds in the GGM. Our
results show that, instead of instantiating the seemingly complex AGM
directly, one can try to instantiate the GKEA under falsifiable assumptions
in the Standard Model. Thus, our results can serve as a stepping stone
towards instantiating the AGM under falsifiable assumptions.

Keywords. Public-key cryptography, algebraic group model, generic
group model, knowledge of exponent assumption.

? Work was conducted while he was employed by KIT, Germany under the DFG grant
HO 4534/4-1.

mailto:julia.kastner@kit.edu, jiaxin.pan@ntnu.no
mailto:julia.kastner@kit.edu, jiaxin.pan@ntnu.no

2 J. Kastner, J. Pan

1 Introduction

1.1 Motivation

Modern public-key cryptographic schemes are usually proposed with security
proofs. A security proof is commonly a reduction relating the security of a
scheme to the hardness of the underlying cryptographic problem (for instance,
the discrete logarithm (DLOG) problem). Naturally, the harder the underlying
problem is, the stronger the security guarantee that a scheme can provide.
From generic groups to algebraic groups. Since 1994, several works have
been analysing the hardness of cryptographic problems over cyclic groups in the
generic group model (GGM) [37,16,43,36,35] and some works have used the GGM
to directly argue the security of cryptographic schemes [19,41,5,7]. In the GGM,
an algorithm can only perform abstract group operations and check the equality
of two group elements. On the one hand, due to the fact that the algorithm’s
operations are generic, algorithms in the GGM can be carried on to any cyclic
group, and it allows us to show information-theoretical lower bounds of a generic
algorithm’s running time. On the other hand, a generic algorithm cannot exploit
any special properties of the encoding of a group element, and thus a security
argument in the generic group model can only provide weaker guarantees than
one in the Standard Model. Therefore, a security proof in the GGM only shows
that there is no “trivial” attack on the proven scheme or problem.

In order to overcome this limitation, the Algebraic Group Model (AGM) which
models all adversaries as algebraic was proposed at CRYPTO 2018 [25]. Informally,
an algorithm Aalg is algebraic if, whenever Aalg outputs a group element, one can
efficiently extract a representation of the output element w.r.t Aalg’s input group
elements. To be a bit more formal, let H be a cyclic group with prime order q.
Whenever an algebraic algorithm Aalg outputs an element [y]H ∈ H3, there is an
efficient extractor E that computes a representation z := (z1, ..., zn) ∈ Znq of [y]H
such that [y]H =

∏n
i=1 [zixi]H, where [x]H := ([x1]H , . . . , [xn]H) ∈ Hn is the list

of all group elements which were given to Aalg during its run so far.
Applications of the AGM. Algebraic algorithms were firstly considered by
Boneh and Venkatesan [18] to analyse the hardness of the RSA problem based
on the factoring problem. After that, algebraic algorithms have been widely used
to prove impossibility results on cryptographic schemes (for instance, [38,6,3]).
Interestingly, all the early stage research only considers reductions to be algebraic,
in order to disprove the existence of an algebraic security reduction between two
primitives with certain good quality. For instance, it has been used to show that
the security of Schnorr’s signature [40] cannot be proven based on the DLOG
assumption without random oracles via algebraic reductions [38], and that the
non-tight security reduction [39] of Schnorr’s signature based on DLOG is an
optimal algebraic reduction in terms of security loss [42]. In particular, algebraic

3 In this paper, we follow the implicit notion [23] of a group element. We write [y]H as
an element from a group H instead of hy, where h is the generator of H and y ∈ Zq.

Towards Instantiating the Algebraic Group Model 3

algorithms are important tools (or even the only tool) to show the lower bounds
of structure-preserving cryptographic primitives [6,3,2].

Different to the previous works, Fuchsbauer, Kiltz, and Loss [25] not only
define algebraic algorithms formally via the AGM, but also consider algebraic
algorithms in the role of adversaries in a security game and prove positive results
on cryptographic assumptions and schemes. Security implications in the AGM are
similar to the standard model, namely, they are done by constructing reductions,
but the reductions have the representation of a group element from the adversary
as additional helper information. Due to the additional information available
about the adversary, the reduction becomes simpler. In particular, some of the
security implications in [25] even bypass certain known lower bounds on the
reduction quality.

We highlight their security reductions for two important schemes: the BLS
signature [17] and the most efficient zero-knowledge SNARK scheme so far by
Groth [27]. Interestingly, their tight reduction on the BLS signature based on
the DLOG assumption has bypassed its security loss lower bound [21,31] and it
also has the practical impact that one can implement the BLS signature with
shorter keys an an algebraic group. Moreover, the previous proof on the Groth
SNARK is only in the GGM. A security proof in the AGM can offer stronger
security guarantee, since an adversary is allowed exploit special properties of the
group structure.
The problem. Behind all these interesting results stands the fundamental
question whether we can trust the AGM or, more precisely, whether there is an
algebraic group in the Standard Model.

Intuitively, it seems reasonable to assume that group-specific algorithms and
reductions are algebraic, since most of them are indeed algebraic (cf. reductions in
[42,12,1]). However, there is still no formal proof on the existence of an algebraic
group. Furthermore, both the impossibility results (for instance, [6,42]) and the
positive results in [25] require an explicit extraction of the representation. If one
wants to carry the proven results in the AGM over to the Standard Model, a
promising way is to simulate the AGM with assumptions in the Standard Model.
Thus, the question whether there exists a group where algorithms are algebraic
becomes very interesting.

1.2 Our contribution

We carry out the first formal treatment on the feasibility of the AGM. More
precisely, we construct groups that are algebraic under the (Generalized) Knowl-
edge of Exponent Assumption ((G)KEA) [22,10,44]. We propose two different
constructions. They are both based on the GKEA. Our two constructions require
additional primitives to check group membership. Our first construction uses
pairings of Type 1 or 24 for membership verification, and our second construction

4 Type 2 pairing e : G × Ĝ → GT is an asymmetric pairing, namely, G 6= Ĝ, where
there exists an efficient homomorphism from G to Ĝ.

4 J. Kastner, J. Pan

uses an additively homomorphic Non-Interactive Zero-Knowledge (NIZK) Argu-
ment system for subspace membership. An example for such a proof system is the
Kiltz-Wee scheme [33] which requires a Type 3 pairing where the Kernel Matrix
Diffie-Hellman assumption holds in the second source group. We note however
that it is possible to use any additively homomorphic NIZK Argument system of
subspace membership for our construction, even one without a pairing, if such a
scheme exists. Our results offer a foundation for the aforementioned positive and
negative results on cryptographic schemes. In particular, in both algebraic groups
constructed by us, all the previous security results can be transformed to the
Standard Model by assuming the GKEA. We note that the GKEA holds provably
in the GGM. Our results are just to bring the AGM closer to the Standard Model
and essentially we show that, instead of instantiating the seemingly complex
AGM directly, one can try to instantiate the GKEA under falsifiable assumptions
in the Standard Model.

We provide a technical overview of our construction. By definition an algebraic
group (denoted by H) needs to offer two properties:
– Extractability: there is an efficient extraction algorithm that extracts the

representation of an H element output by Aalg w.r.t its input group elements
from H.

– Cryptographic hardness: since the algebraic group is also used to show security
implications of schemes, there should be some cryptographic hard problem
over the algebraic group.

Task 1: Achieving extractability. Intuitively, it seems hard to compute any
representation over Zq from only group elements, since the DLOG problem is hard.
However, if the given group elements satisfy certain relations, the KEA (cf. [22]
and KEA1 in [10]) can provide an alternative way to extract a representation.
More precisely, let G be a group with prime order q, where the KEA holds and
[1]G := g is a random generator of G.

Definition 1 (The KEA, informal). For an efficient adversary A that, given
(q, [1]G, [a]G) and a random tape rA, outputs ([b]G , [ab]G), there exists an effi-
cient extractor Ekea that, given the same inputs as A and its output elements
([b]G , [ab]G), returns b ∈ Zq.

Essentially, the KEA states that the only way to compute ([b]G , [ab]G) efficiently,
given (q, [1]G , [a]G), is to “know” b over Zq.

Starting with G where the KEA holds, we have our first candidate of an
algebraic group H. Choosing a← Zq, we define H (G×G and an element [x]H
(x ∈ Zq) has the form

[x]H := ([x]G , [ax]G). (1)

It seems that H almost achieves extractability with the KEA extractor. For
simplicity, we consider a very simple adversary A, which only takes the group
generator of H, [1]H, and outputs a vector ([y1]G , [y2]G). In order to make H
extractable, we need to solve the following two problems: (i) We need to ensure
the output vector ([y1]G , [y2]G) is in H, namely, the vector satisfies Equation (1).
That is mainly because the KEA extractor can only compute the representation

Towards Instantiating the Algebraic Group Model 5

y1 w.r.t [1]H if y2 = ay1. Moreover, checking whether an element belongs to a
group is usually implicitly used in a scheme (for instance, in the BLS signature).
This group membership check should be publicly available. (ii) The extraction
should work in the general case, where A gets more than only a group generator.
For instance, A can receive a vector of group elements.
Solution to Problem (i): Pairing-based validation. In order to verify
group membership, we use a base group G for which a pairing e : G× Ĝ→ GT
exists. We consider Type 1 (G = Ĝ) and 2 (G 6= Ĝ, but it is efficient to compute
[a]Ĝ from [a]G) pairing groups, respectively. In both cases, we can efficiently check
the group membership of a pair ([x]G , [y]G) by checking the pairing equation
e([x]G, [a]Ĝ) = e([y]G, [1]Ĝ). We note that some decisional assumptions, such as
the Decisional Diffie-Hellman assumption, are easy in G when G is a base group
of a Type 1 or 2 pairing. Therefore we cannot hope for the same decisional
assumption in H which is constructed from G, since by the definition of our
construction the problem challenge in H can be easily mapped back to G. Thus,
we need to consider a more general construction.
More General Solution to Problem (i): NIZK. We observe that Equa-

tion (1) defines a linear subspace in G×G generated by [M]G :=
[(

1
a

)]
G
. To

achieve public membership verification, we can attach a NIZK argument in the
encoding of an H element (defined by Equation (1)) and the NIZK argument
proves that the vector ([y1]G , [y2]G)> is in the span of [M]G. Our second construc-
tion of an algebraic group H := Span([M]G)×Π and an element [x]H (x ∈ Zq)
has the form

[x]H := (([x]G , [ax]G)>, π), (2)

where Span([M]G) := {[Mw]G|w ∈ Zq}, π is a NIZK argument for language
L[M]G :=

{
[y]G ∈ G2

∣∣∃w ∈ Zq such that [y]G = [Mw]G
}
and Π is the set of the

π values from the NIZK system.
We reconsider the previous simple adversary A, which outputs [y]H := (([y1]G ,

[y2]G)>, π′), given [1]H := (([1]G , [a]G)>, π). The soundness of the NIZK system
guarantees that the output vector ([y1]G , [y2]G)> ∈ Span([M]G) (i.e. y2 = ay1),
and thus one can use the KEA extractor to compute the representation y1 of
[y]H w.r.t. A’s input [1]H.

This NIZK system can be implemented with the Groth-Sahai system [28]. In
this paper, we use a more efficient and simpler Quasi-Adaptive NIZK (QANIZK)
for linear subspaces from Kiltz and Wee [33], since the basis [M]G can be
generated in the setup phase. The notion of QANIZK was first proposed by Jutla
and Roy [30]. The Kiltz-Wee scheme requires an asymmetric Type 3 pairing,
e : G × Ĝ → GT , and its soundness is based on the Kernel Matrix Diffie-
Hellman (KerMDH) assumption in Ĝ. Thus, our construction also needs these
two requirements.

Additionally, one should be able to add two group elements inH, and, therefore,
our construction needs an additively homomorphic property of the QANIZK sys-
tem: Given two valid proofs π1 and π2 for two vector [v1]G , [v2]G ∈ Span([M]G),

6 J. Kastner, J. Pan

respectively, one can publicly compute the sum of π1 and π2; moreover, the sum
of π1 and π2 should be a valid proof for the sum of [v1]G and [v2]G. We observe
that the Kiltz-Wee scheme has this additively homomorphic property.

We emphasize that our second construction is not necessarily limited to
pairings, although we only have an instantiation based on pairings. If we have
an additively homomorphic QANIZK system without pairings, then we can
instantiate the AGM without pairings via our second construction. We leave
constructing an additively homomorphic QANIZK system without pairings as an
interesting open problem.
Solution to Problem (ii): GKEA. We require the generalized KEA (GKEA)
[44] to compute the representation in the general case.

Definition 2 (The GKEA, informal). For an efficient adversary A, given
(q, [1]G , [a]G , [x1]G , [ax1]G , . . . , [xn]G , [axn]G) (for some x1, ..., xn ∈ Zq and a←
Zq) and a random tape rA, outputs ([b]G , [ab]G), there is an efficient extractor
Egkea given the same inputs as A returns a vector (z0, ..., zn)> =: z ∈ Zn+1

q such
that b = z0 +

∑n
i=1 xizi.

Let A be a general adversary which gets q, [1]H , [x1]H , ..., [xn]H as input
and outputs an element in H, [y]H := (([y1]G , [y2]G)>, πy), where [xi]H :=
(([xi,1]G , [xi,2]G)>, πi). Similar to the simple adversary, by the correctness of
the group membership validation algorithm, the input and output elements of
the general adversary have the right format, namely, xi,2 = axi,1 and y2 = ay1.
Hence, by running the extractor of the GKEA, we can obtain the representation
of [y]H w.r.t. ([1]H , [x1]H , ..., [xn]H).

If an algorithm A outputs more than one (say, `-many) elements in H, then
we run the above extraction ` times to compute the representations of all these
elements.
Task 2: Achieving cryptographic hardness. We provide hard cryptographic
problems in H, since security implications in the AGM rely on assumptions. We
are interested in the DLOG and variants of Diffie-Hellman assumptions, which
are used to prove security of schemes such as the BLS and CL [20] signatures
and Groth’s SNARK. Instead of going through these assumptions one by one,
we use the notion of security games where the challenger provides a set of oracle
procedures to the adversary, including an initialisation oracle that starts the
game, and a finalisation oracle that the adversary calls with his final output.

We prove that if the game is hard to win in the base group G then the
same game is also hard to win in the resulting algebraic group H (denoted by
PG ⇒ PH). We use the DLOG problem to sketch our strategy here and a formal
treatment is provided in Sections 3.1 and 4.1.

Let A be an adversary that breaks the DLOG problem in H. We get the
DLOG challenge ([1]G , [x]G) in the base group G from the initialisation procedure
and we make use of A to compute x ∈ Zq. We choose a random a ← Zq and,
in case of construction with membership verification through QANIZK, we
also generate the CRS of the QANIZK and keep its trapdoor. Now we need
to provide A with ([1]H , [x]H). It is easy to generate [1]H. For [x]H, we can

Towards Instantiating the Algebraic Group Model 7

compute [ax]G by multiplying [x]G with an explicit a ∈ Zq. However, since [x]G
is from the DLOG challenger in G, we do not have the witness x ∈ Zq to show
([x]G , [ax]G)> ∈ Span([M]G). Instead, we use the zero-knowledge simulator to
simulate the proof for the above statement.

To capture all our ideas formally, we use the notion of group schemes [9,8] to
define our algebraic group H.

1.3 More related work and open problems
Our representation extraction is heavily based on the KEA. We suppose that
it is very unlikely that the KEA does not hold, due to an analysis of the KEA
over bilinear groups in the GGM [4]. Moreover, it is worth mentioning that the
(generalized) KEA is widely used in the literature. It has been used to bypass some
impossibility results in the (non-interactive) zero-knowledge protocols [10,4], as a
means to construct extractable collision resistant hash functions and SNARK [13],
and to prove the the security of the well-known key exchange protocol HMQV
(cf. Theorem 18 in the full version of [34]).

As a further generalisation of the KEA3, the GKEA and AI-KEA were
introduced by [44] to use for identification protocols. We note here that the
GKEA – the assumption that it is possible to extract exponents even when the
adversary is given multiple KEA-tuples – implies the AI-KEA – the assumption
that it is possible to extract exponents from a set of multiple turing machines
that communicate with each other, sending and receiving KEA-tuples.

The KEA is a non-black-box assumption, since its extractor needs to know
an adversary’s random tape. A non-black-box assumption seems crucial for
instantiating the AGM. Imagine the BLS signature: there is a tight reduction
for it in the AGM, but it is provably impossible in the Standard Model. If we
instantiate the AGM without any non-black-box access to the adversary, then
we will contradict the proven impossibility results on the BLS signature [21,31].
We leave as an open problem to instantiate the AGM with other non-black-box
assumptions in such a way that we can have more confidence in the AGM.

2 Preliminaries
2.1 Notations
Let A be a set. a ← A denotes picking a from A according to the uniform
distribution. Let A be an probabilistic polynomial time (PPT) algorithm. a←
A(b) denotes the random variable which is defined as the output of A on input b.
If we want to denote the randomness rA of A explicitly, we write A(b; rA). We
denote our security parameter as λ.

2.2 Cryptographic assumptions

Pairing groups and matrix Diffie-Hellman. We consider finite cyclic
groups with prime order in this paper. We say that a group is cyclic if it is
generated by a single element, the generator g.

8 J. Kastner, J. Pan

We also use pairing groups for which we recall the following definition from
[32]: Let GGen be a probabilistic polynomial time algorithm that on input 1λ

returns PG =
(
G, Ĝ,GT , g1, g2, e

)
where G, Ĝ,GT are groups of order q for a

λ-bit prime q and g1, g2 are generators of G and Ĝ, respectively. e : G× Ĝ→ GT
is an efficiently computable non-degenerate bilinear map where gT = e(g1, g2) is
a generator in GT . We consider three different types of pairings as in [26]:
– Type 1: G = Ĝ,
– Type 2: G 6= Ĝ but there is an efficiently computable homomorphism5

ψ : G→ Ĝ, and
– Type 3: G 6= Ĝ and there is no efficiently computable homomorphism between

G and Ĝ.
We follow [23] to use the implicit notation for a group element. For a cyclic

group G with prime order q and generator g we write [a]G for elements ga with
a ∈ Zq. For a matrix A ∈ Zn×mq with entries aij (1 ≤ i ≤ n and 1 ≤ j ≤ m), we
write [A]G for the matrix in Gn×m that has the entries [aij]G. For [X]G ∈ Ga×b

and [Y]Ĝ ∈ Ĝb×c, we write [X]G ◦ [Y]Ĝ for e([X]G , [Y]Ĝ) := [XY]GT
.

Definition 3 (The Kernel Matrix Diffie-Hellman assumption). Let Dk
be a matrix distribution and s ∈ {1, 2}. We say that the Dk Kernel Matrix Diffie-
Hellman (Dk-KerMDH) Assumption holds relative to Gen in group Gs if for all
PPT-adversaries A

AdvDk-kmdh
Gs,A (λ) := Pr

c>A = 0
∧

c 6= 0

∣∣∣∣∣∣[c]G3−s
← A(par, [A]Gs

)

is negligible, where the probability is taken over par← GGen(1λ),A← Dk.

We recall the Knowledge of Exponent assumption that was introduced in [22]
and has since been used in several papers [29,10,34].

Definition 4 (The Knowledge of Exponent Assumption, KEA). Let G
be a cyclic group of prime order q. The Knowledge of exponent assumption states
that for any adversary A that on input [1]G , [a]G outputs a tuple [b]G , [c]G there
exists a PPT-extractor EA that takes inputs of A and any random coins rA of A
and outputs b′ ∈ Zq such that

Advkea
G,A,EA (λ) := Pr

 [b′]G 6= [b]G
∧

[ab]G = [c]G

∣∣∣∣∣∣ ([b]G , [c]G)← A(par, [1]G , [a]G ; rA)
b′ ← EA(par, [1]G , [a]G , rA)

is negligible.

We recall the Generalized Knowledge of Exponent assumption from [44]. It is
also known as the n-KEA [13]. We add that similar to the KEA, the extractor is
given the random coins of the adversary.
5 To simplify the presentation, we define the computable homomorphism mapping
from G to Ĝ instead of from Ĝ to G. It is only a syntactic difference.

Towards Instantiating the Algebraic Group Model 9

Definition 5 (The Generalized Knowledge of Exponent Assumption,
GKEA). Let G be a cyclic group of prime order q. The Knowledge of exponent
assumption states that for any adversary A that on input X := ([x0 := 1]G ,
[a]G , [x1]G , [ax1]G , . . . , [xn]G , [axn]G) outputs a tuple [b]G , [c]G, there exists an
extractor EA that takes inputs of A and any random coins of A and outputs
z := (z1, ..., zn)> ∈ Znq such that

Advgkea
G,A,EA (λ) := Pr

∏n
i=0 [xi · zi]G 6= [b]G

∧
[ab]G = [c]G

∣∣∣∣∣∣ ([b]G , [c]G)← A(par, X; rA)
z← EA(par, X, rA)

is negligible.

We present our security games and cryptographic assumptions with the
code-based game-playing framework similar to [11,15].

Definition 6 (Security Game). A security game Game consists of an initial-
isation procedure Init, a finalise procedure Final, and possibly some additional
procedures P1, . . . ,Pn. All procedures are described in pseudo-codes. We say that
an adversary A is playing a game Game if he first calls Init, obtaining its output.
It may then make oracle queries to procedures P1, . . . ,Pn until it makes its final
call to Final.

We say that the adversary A has won Game if Final outputs 1 on the input
received from the adversary. The adversary has lost if Final outputs 0. We will
denote an adversary A playing a game Game = (Init,P1, . . . ,Pn,Final) by
AP1,...,Pn .

We call a game non-interactive if there are no procedures besides Init and
Final.

Similar to the notion of non-interactive problems in groups from [24], we distin-
guish between group elements in the inputs and outputs of procedures, and other
inputs or outputs that are not group elements. More precisely, every input or
output X to a procedure P consists of the following parts:
– group elements x1, . . . , xu
– and a bit string x′.

We note that this distinction is especially relevant in the AGM, as we want to
exclude pathological cases where an adversary receives some encoding of a group
element in the bit string part x′ that would not be counted towards his input
elements. It is obvious that this might cause problems when trying to extract, as
the adversary and the extractor might not know a representation of this encoded
group element.

Furthermore, in the AGM, any vector v of group elements defines an ex-
tractable OWF (EOWF) if the DLOG is hard (simply define fv : Znq → G; z 7→
v> · z. In [14] it was shown that EOWFs with auxiliary input are impossible
assuming indistinguishability obfuscation. They conjecture, however, that if the
distribution from which the auxiliary input is drawn is benign (i.e. it is unlikely
that the auxiliary input contains an obfuscated circuit) EOWFs may still exist.

10 J. Kastner, J. Pan

We therefore require that all bitstrings x′ contained in oracle responses are drawn
from benign distributions.

We say that an adversary solves a problem P if he wins the corresponding
security game. We say that a problem is hard if the probability that a PPT
adversary solves the problem is negligible in the security parameter λ, more
formally if

Pr
[
Final(S) = 1

∣∣∣∣ C ← Init
S ← AP1,...,Pn(C, 1λ)

]
is negligible.

As an example, we describe the Discrete Logarithm Problem as a game with
Init and Final in Figure 1.

Init():
x← Zq
Return ([1]G , [x]G)

Final(y):
Return y = x

Fig. 1. The Discrete Logarithm Game GameDLOG with respect to a cyclic group G

2.3 The Algebraic Group Model

A cryptographic group allows us to perform the group operation (usually denoted
as multiplication), exponentiation, inversion, validity check, and equality check on
group elements. We abstract all these properties as a group scheme [9,8] defined
as follows.

Definition 7 (Group Scheme). A group scheme Γ := (GGen,Multi,Exp, Inv,
V,Eq) has the following 6 algorithms:
– The probabilistic setup algorithm GGen(1λ) outputs a public group description

gp of a group H. Particularly, gp contains a generator h = [1]H and the
group order q. For simplicity, we assume that gp is implicitly given to all the
following algorithms.

– The deterministic group operation algorithm Multi([x1]H , [x2]H) outputs the
multiplication of [x1]H and [x2]H for [x1]H , [x2]H ∈ H and we denote the result
by [x1]H · [x2]H = [x1 + x2]H.

– The deterministic exponentiation algorithm Exp([x]H , y) for x, y ∈ Zp outputs
[xy]H.

– The deterministic inverse algorithm Inv([x]H) outputs the inversion of [x]H,
denoted by [−x]H, for [x]H ∈ H.

– The deterministic validity check algorithm V([x]H) outputs 1 if [x]H is a valid
element from H and 0 otherwise.

– The deterministic equality check algorithm Eq([x]H , [y]H) outputs 1 if [x]H
and [y]H are the same group element.

Towards Instantiating the Algebraic Group Model 11

To save space we sometimes write [x]H · [y]H or [x+ y]H instead of Multi([x]H ,
[y]H), [x]H = [y]H of Eq([x]H , [y]H) = 1, and [x · y]H of Exp([x]H , y).

Definition 8 (Correctness of a Group Scheme). Let Γ := (GGen,Multi,
Exp, Inv,V,Eq) be a group scheme. We say that a group scheme is correct if for
all gp ∈ GGen(1λ) (which define the group H) the following holds:
– The group is closed, namely, for all valid group elements x, y ∈ H (i.e.

V(x) = V(y) = 1), V(Multi(x, y)) = 1,
– There exists a neutral element, namely, there exists an element a ∈ H such
that for all group elements x Eq(Multi(x, a), x) = 1,

– Each group element has an inverse, namely, for all valid group encodings x,
V(Inv(x)) = 1 and Eq(Multi(x, Inv(x)), a) = 1 where a is an encoding of the
neutral element, and

– The group operation is associative, i.e. for group elements x, y, z, Eq(
Multi(Multi(x, y), z),Multi(x,Multi(y, z)))

Remark 1. In this work, we only consider abelian groups, i.e. groups where
Eq(Multi(x, y),Multi(y, x)) = 1.

In the following, we define the algebraic group model [25]. The algebraic
group model is a computational model where all adversaries are modeled as
algebraic algorithms. We recall the definition of an algebraic algorithm, which
capture the intuition that the only way for an algebraic algorithm to output
a new group element is to perform group multiplications from known group
elements. Furthermore, we say a group is algebraic if all PPT adversaries operate
on its elements in an algebraic way.

Definition 9 (Algebraic Group). Let H be a cyclic group of prime order
q defined by a group scheme Γ := (GGen,Multi,Exp, Inv,V,Eq). We say that
a PPT algorithm A is algebraic if there exists an efficient extractor E that,
given the inputs ([x1]H , . . . [xn]H) ∈ Hn of A, which are generated according to
some distribution defined by the security game, and A’s random tape, outputs a
representation z := (z1, . . . , zn)> ∈ Znq for every group element [y]H ∈ H in the
output of A such that

Advalg
H,A (λ) := Pr

[
n∏
i=1

[xi · zi]H 6= [y]H

∣∣∣∣∣ [y]H ← A([x1]H , . . . , [xn]H ; rA)
z← EA([x1]H , . . . , [xn]H , [y]H , rA)

]

is negligible.
We call the group H algebraic if every algorithm that operates on its elements

is algebraic.

We have a syntactic difference here, namely, we define an additional algorithm
to extract a representation and it is similar to [38], while [25] required the adver-
sary outputs a representation. Moreover, we require the outputted representation
to be valid with overwhelming probability, which is (slightly) weaker than [25].

12 J. Kastner, J. Pan

2.4 Quasi-Adaptive Non-interactive Zero-Knowledge Arguments

In this paper, we use a quasi-adaptive non-interactive zero-knowledge argument
system (QANIZK) for linear subspaces, and we recall the useful definitions from
[30,33] as follows.

In the following, we consider public parameters par generated by Genpar. Since
we use a QANIZK argument system for a linear subspace only, we define it
specifically for linear subspaces. Let Dpar be a probability distribution over a set
of matricesM = {M ∈ Zn×mq } for some integers n > m where the associated
language to a matrix is L[M]G = {[y]G ∈ Gn | ∃x ∈ Zm : [Mx]G = [y]G}.

Definition 10 (Quasi-Adaptive Non-interactive Zero-Knowledge Argu-
ments). A Quasi-Adaptive Non-Interactive Zero-Knowledge Argument (QANI-
ZK) Π for a language distribution Dpar consists of five PPT-Algorithms Φ =
(Genpar,Gencrs,Prove,Sim,Ver)
– The probabilistic key generation algorithm Genpar(1λ) returns the public pa-
rameters par, which implicitly defines the proof space Π.

– The probabilistic algorithm Gencrs(par, [M]G) returns a common reference
string crs and a trapdoor td.

– The probabilistic proving algorithm Prove(crs,x, [y]G) returns a proof π.
– The deterministic verification algorithm Ver(crs, [y]G , π) returns 1 or 0 where

1 means that π is a valid proof of [y]G ∈ L[M]G .
– The probabilistic simulation algorithm Sim(crs, td, [y]G) returns a proof π for
y (note that [y]G is not necessarily in L[M]G).

We require that the algorithms satisfy the following properties:
Perfect Completeness. For all λ, all par ← Genpar(1λ), all M ← Dpar,
all (crs, td) ← Gencrs(par, [M]G) all ([y]G ,x) with [Mx]G = [y]G and all π ←
Prove(crs, [y]G ,x), we have Ver(crs, [y]G , π) = 1.
Perfect Zero-Knowledge. For all λ, all par output by Genpar(1λ), all [M]G ←
Dpar, all (crs, td) ← Gencrs(par, [M]G), and all ([y]G ,x) with [Mx]G = [y]G the
distributions

Prove(crs, [y]G ,x) and Sim(crs, td, [y]G)

are identical (where the coin tosses are taken over Prove, Sim).
Adaptive soundess. We define the adaptive soundness game GameΦas for ar-
gument system Φ in Figure 2. We say Φ is adaptively sound if for all PPT

Init():
par← Genpar; M← Dpar
(crs, td)← Gencrs(par, [M]G)
Return (par, crs, [M]G)

Final([y∗]G , π
∗):

Return (M⊥ [y∗]G = [0]G∧Ver(crs, [y∗]G , π
∗))

Fig. 2. Game GameΦas for the adaptive soundness of Φ. Given M ∈ Zn×mq it is efficient
to compute a non-zero kernel matrix M⊥ ∈ Z(n−m)×n

q such that M⊥ ·M = 0

Towards Instantiating the Algebraic Group Model 13

adversaries A

Advas
Φ,A (λ) := Pr

[
Final([y∗]G , π

∗) = 1
∣∣∣∣C := (par, crs, [M]G)← Init()

([y∗]G , π∗)← A(C, 1λ)

]
is negligible.

We will later use the QANIZK system from [33]. We recall it in Figure 3. Its
adaptive soundness is based on the KerMDH (Definition 3) for the matrix
distribution Dk.

Gencrs(par, [M]G ∈ Gn×m):
A← Dk
K← Zn×(k+1)

q

C := KA ∈ Zn×kq

P := M>K
td := K
crs := ([P]G , [C]Ĝ , [A]Ĝ)
Return (crs, td)

Prove(crs, [y]G ,x): //y := Mx
π :=

[
x>P

]
G

Return π ∈ G1×(k+1)

Ver(crs, [y]G , π):
Return (π ◦ [A]Ĝ =

[
y>
]
G
◦ [C]Ĝ)

Sim(crs, td, [y]G):
π :=

[
y>K

]
G

Return π

Fig. 3. A QANIZK scheme from [33]

We recall the theorem from [33] for the soundness of the system shown in
Figure 3.

Theorem 1 (Adaptive soundness, Theorem 1 in [33]). Protocol Πas from
Figure 3 is a Quasi-Adaptive Non-Interactive Zero Knowledge Argument. Fur-
thermore, under the Dk-KerMDH Assumption in Ĝ, it has adaptive soundness.

This argument system is additively homomorphic. More precisely, given two
valid proofs π1 and π2 for two vectors [y1]G and [y2]G, respectively, and a integer
x ∈ Zq, one can efficiently compute a valid proof for [y1 + y2]G and also a valid
proof for [y1 · x]G.

Formally, this property is captured by the algorithms PAdd and PMult de-
fined in Figure 4. The correctness of PAdd and PMult is defined as: For all
λ, all par ← Genpar(1λ), all [M]G ← Dpar, all crs ← Gencrs(par, [M]G), all
([y1]G ,x1) with [Mx1]G = [y1]G, all ([y2]G ,x2) with [Mx2]G = [y2]G, all
π1 ← Prove(crs, [y1]G ,x1), all π2 ← Prove(crs, [y2]G ,x2), πadd := PAdd(π1, π2)
and πmult := PMult (x, π1) and all x ∈ Zq, we have

Ver(crs, [y1 + y2]G , πadd) = 1 and Ver(crs, [y1 · x]G , πmult) = 1.

3 Construction with Type 1 or 2 Pairings

We construct an algebraic group with the Generalized Knowledge of Exponent As-
sumption (GKEA) and pairings. Our pairing e : G×Ĝ→ GT can be implemented

14 J. Kastner, J. Pan

PAdd (π1, π2)
Parse π1 := [s]G
Parse π2 := [t]G
Return πr := [s + t]G

PMult (π1, x ∈ Zq)
Parse π1 := [s]G
Return πr := [s · x]G

Fig. 4. Algorithms PAdd and PMult for Φ from Figure 3

with a (symmetric) Type 1 pairing (where G = Ĝ) or an (asymmetric) Type
2 pairing (where G 6= Ĝ and there is an efficiently computable homomorphism
ψ : G→ Ĝ).

The constructed group H (G× Ĝ and an element of H has the form

([x]G , [a · x]G),

where a is a random element in Zq. The group parameter gp of H contains the pair-
ing group and a generator of H, [1]H := ([1]G , [a]G). To verify if ([x1]G , [x2]G) ∈ H,
we check if [x1]G ◦ [a]Ĝ = [x2]G ◦ [1]Ĝ and [a]Ĝ is easy to have in Type 1 or 2
pairings: For Type 1 G = Ĝ and thus [a]Ĝ = [a]G, and for Type 2 [a]Ĝ = ψ([a]G).
Our algebraic group is defined by the group scheme in Figure 5.

GGen(1λ):
a← Zq
PG ← GGen
[1]H = ([1]G , [a]G)
gp := (PG, q, [1]H)

Eq(X,Y):
If V(X) = 0 or V(Y) = 0 then
return ⊥

Parse X =: ([x1]G , [x2]G)
Parse Y =: ([y1]G , [y2]G)
If ([x1]G , [x2]G) = ([y1]G , [y2]G) then

return 1
Else return 0

Inv(X):
If V(X) = 0 then return ⊥
Return Exp(X, q − 1)

Multi(X,Y):
If V(X) = 0 or V(Y) = 0 then
return ⊥

Parse X =: ([x1]G , [x2]G)
Parse Y =: ([y1]G , [y1]G)
Return ([x1 + y1]G , [x2 + y2]G)

Exp(X, y ∈ Zq):
If V(X) = 0 then return ⊥
Parse X =: ([x1]G , [x2]G)
Return ([x1 · y]G , [x2 · y]G)

V(X):
Parse X =: ([x1]G , [x2]G)
Return [x1]G ◦ ψ([a]G) = [x2]G ◦ [1]Ĝ

Fig. 5. Construction of an algebraic group with a pairing based verification. ψ : G→
Ĝ is either the identity function (for Type 1 pairings) or an efficiently computable
homomorphism (for Type 2 pairings).

Correctness of the Group Scheme. The group generated by [1]H is a
subgroup of G×G and has order q. The group operation Multi is associative and

Towards Instantiating the Algebraic Group Model 15

commutative due to the associativity and commutativity of the group operation
in the base group G. The group is closed w.r.t. Multi because each valid element

lies in the span of
(

1
a

)
. This is a one-dimensional subspace of G×G and therefore

contains q elements. The neutral element is ([0]G , [0 · a]G) = ([0]G , [0]G). The the
exponentiation algorithm is correct due to the correctness of the corresponding
algorithm in G, and the inversion algorithm is correct due to the correctness of
Exp

The group membership is verified through pairings: V([x1]G , [x2]G) outputs 1
if and only if [x1]G ◦ [a]Ĝ = [x2]G ◦ [1]Ĝ ⇔ x2 = x1 · a.
Algebraicity of the Group. The algebraicity of the group scheme in Figure 5
is based on the extraction through the GKEA. If an adversary outputs valid
group elements, the GKEA-extractor can be used to extract a representation
vector z. We state this in the following theorem.

Theorem 2. Under the GKEA in G and the existence of a Type 1 or 2 pairing
e : G × Ĝ → GT , the group H from Figure 5 is algebraic in the sense of
Definition 9.

Proof. Let A([x1]H , . . . , [xn]H ; rA) be any algorithm that takes a list of elements
([x1]H , . . . , [xn]H) from Hn (n ≥ 1) and output an element [y]H ∈ H. We show
that A is algebraic so that H is an algebraic group. To show it, we construct
an extractor EH that takes group elements in A’s input and output and A’s
random tape as inputs and uses the GKEA extractor EGKEA as a subroutine.
The construction of EH is in Figure 6. For simplicity, we ignore non-H elements
in the input and output of A and, for an algorithm A′ that outputs more than
one H elements, we run EH defined in Figure 6 multiple time to show that A′ is
algebraic.

EH([x1]H , . . . , [xn]H , Y, rA):
If V(Y) = 0 Return ⊥
Parse [xi]H =: ([si]G , [ti]G)
Parse Y =: ([y1]G , [y2]G)
z← EGKEA(([si]G , [ti]G)i, ([y1]G , [y2]G), rA)
Return z

Fig. 6. Extractor for the group H from Figure 5

Here our group H is defined without knowing a ∈ Zq but using ([1]G , [a]G)
from the GKEA. With the generator [1]H := ([1]G , [a]G) ∈ H and a Type 1
or 2 pairing, one can perform any group operation and verification publicly.
It is easy to see that if A outputs an element in H then EH outputs a correct
representation with the same probability as EGKEA returns a correct vector. Thus,
Advalg

H,A (λ) = Advgkea
G,A,EA (λ). We note that this is a non-black-box extractor,

because it needs the random tape of A as an input. ut

16 J. Kastner, J. Pan

3.1 Cryptographic Hardness in H

We show that any computational problem that is hard in G is also hard in H. We
note that problems that are rendered easy due to the pairing are already easy in
G, because an adversary in G can also use the pairing to solve the problem in G.

We state this in the following theorem:

Theorem 3 (PG ⇒ PH). Let P be a computational problem defined by a game
Game := (Init,P1, . . . ,Pn,Final). We denote P in group X ∈ {G,H} by PX
and the corresponding security is defined by GameX := (InitX,PX,1, . . . ,PX,n,
FinalX).

If PG is hard then the problem PH is hard as well. More precisely, if there is
an adversary A that solves PH, then there is a reduction R that solves PG with
success probability

AdvPG,R (λ) = AdvPH,A (λ) .

Proof. Let A be an adversary against the hardness of PH. We prove the theorem
by constructing a reduction that calls A and tries to win GameG in G by
providing A oracle access to the corresponding procedures in group H. Note that
the constructed algebraic group H is defined in Figure 5. The construction of our
reduction R is shown in Figure 7.

InitH:
C = (PG, XG =
([x1]G , . . . , [xn]G , x

′))← InitG
a← Zq
[1]H = ([1]G , [a]G)
v = [a]Ĝ
gp := (PG, q, [1]H , v)
For i = 1 to n:

[xi]H = ([xi]G , [a · xi]G)
Return CH = (PG, XH =
([x1]H , . . . , [xn]H , x

′))

FinalH(S):
Parse S =: (s1, . . . , sm, s

′)
For i = 1 to n:
If V(si) = 0

Abort
Parse si =: (si,1, si,2)

SG := (s1,1, . . . , sm,1, s
′)

Return FinalG(SG)

PH,j(x1, . . . xu, x
′): // 1 ≤ j ≤ n

For i = 1 to u
If V(xi) = 0
Abort

Parse xi = (xi,1, xi,2)
([y1]G , . . . , [yv]G , y

′)← PG,j(x1,1, . . . xn,1, x
′)

For i = 1 to v:
[yi]H := ([yi]G , [yi · a]G)

Return YH = ([y1]H , . . . , [yv]H , y
′)

Fig. 7. Reduction R against P in H

In the Init procedure for the problem in H, the reduction R sets up the group
by choosing an exponent a and setting the other group parameters accordingly.

Towards Instantiating the Algebraic Group Model 17

It calls the Init procedure from its own security game in G and transforms the
received outputs into outputs for the game in H. Specifically, it replaces any
group element with a group element from the constructed H group, and replaces
the public group parameters PG with the public parameters gp of H. For any
procedure PG that R is allowed to use by GameG, R provides an equivalent
procedure PH in H. It does so by “forwarding” the requests and responses. In
order to forward the request, it first checks the validity of the supposed group
elements contained in the request, and then removes the second part in order to
obtain a representation as group elements in G. For forwarding the response, it
adds a second part [a · y]G to every group element [y]G contained in the response,
thus providing a representation in the group H. For the Final procedure, it
forwards the final output of A in a similar way. Thus, the adversary only wins
when the reduction wins and vice versa. ut

We note that in order to construct the problem instance, the reduction R
needs to have the exponent a as an element of Zq. It is therefore necessary for the
reduction to generate its own instance of the group scheme instead of re-using an
instance where it does not know the corresponding exponent a. The adversary
used as a subroutine needs to be an adversary who works on the group scheme
in general, not just certain instances of the scheme.

We further note that there might be problems that are easy in G but hard in
H, because adversaries in G are not required to be algebraic.

4 Construction with QANIZK

We present another construction of a group which is algebraic with respect to
Definition 9. Similar to the construction in Section 3, extractability is based on
the GKEA, but instead of using the pairing directly for group membership verifi-
cation, we use additively homomorphic QANIZK arguments of linear subspace
membership.

We construct a group H with elements of the form

([x]G , [ax]G , π)

where [x]G and [ax]G are group elements of G, and π is a QANIZK argument

proving that ([x]G , [ax]G)> ∈ Span
(

[1]G
[a]G

)
, where a is chosen uniformly at random

from Zq. This homomorphic argument of subspace membership can be instantiated
with the QANIZK system in Figure 3. We define our construction in terms of a
group scheme.

Let G be a cyclic group of prime oder q and Φ = (Genpar,Gencrs,Prove,
Sim,Ver) be a QANIZK system. We define our construction of an algebraic group
H via the following group scheme Γalg := (GGen,Multi,Exp, Inv,V,Eq).
Correctness of the group scheme. We argue that the scheme described
in Figure 8 describes a group. The Multi algorithm describes a group operation
that is associative (due to the associativity of the group operation in G) and

18 J. Kastner, J. Pan

GGen(1λ):

a← Zq,M :=
(

1
a

)
parqa ← Genpar(1λ)
crs← Gencrs(parqa, [M]G)
π1 ← Prove(crs, [M]G , 1)
[1]H := ([1]G , [a]G , π1)
gp := (G, q, parqa, crs, [1]H)

Eq(X,Y):
If V(X) = 0 or V(Y) = 0 then
return ⊥

Parse X =: ([x1]G , [x2]G , πx)
Parse Y =: ([y1]G , [y2]G , πy)
If ([x1]G , [x2]G) = ([y1]G , [y2]G) then
return 1

Else return 0

Inv(X):
If V(X) = 0 then return ⊥
Return Exp(X, q − 1)

Multi(X,Y):
If V(X) = 0 or V(Y) = 0 then
return ⊥

Parse X =: ([x1]G , [x2]G , π1)
Parse Y =: ([y1]G , [y1]G , π2)
π3 := PAdd(π1, π2)
Return ([x1 + y1]G , [x2 + y2]G , π3)

Exp(X, y ∈ Zq):
If V(X) = 0 then return ⊥
Parse X =: ([x1]G , [x2]G , π)
π′ := PMult(π, y)
Return ([x1 · y]G , [x2 · y]G , π

′)

V(X):
Parse X =: ([x1]G , [x2]G , π)
Return Ver(crs, ([x1]G , [x2]G), π)

Fig. 8. Group scheme for H

commutative (due to commutativity of the group operation in G), as well as
associativity and commutativity of PAdd. It is closed and has order q because only
valid group elements can be added, and there are only q valid group elements.
Furthermore the inversion and exponentiation algorithms are correct due to the
correctness of the corresponding algorithms in the group scheme of G as well as
the correctness of the PMult algorithm.
Algebraicity of the group H. We show that any adversary in the group H
is algebraic. First, we state this as a theorem:

Theorem 4. The group H as constructed above is an algebraic group in the
sense of Definition 9 under the GKEA in G and the adaptive soundness of the
QANIZK scheme.

Proof. An extractor for a representation of the group elements output by the
adversary can be seen in Figure 9. The extractor EGKEA of the GKEA is used as
a subroutine to extract a representation from the elements.

There are two scenarios that lead to the extractor E of the AGM not being
able to output a representation. Either the elements do not have the correct form,
i.e. there is an element ([s]G , [t]G , π) where t 6= a · s, or we are in the unlikely
case that the GKEA-extractor fails even though the elements have the correct
form.

Towards Instantiating the Algebraic Group Model 19

E([x1]H , . . . [xn]H , ([y1]G , [y2]G , π); rA)
If (¬V(([y1]G , [y2]G , π))) return ⊥
Parse [xi]H =: ([si]G , [ti]G , πi)
Parse

[
y>
]
G

:= ([y1]G , [y2]G)
z← EGKEA(([si]G , [ti]G)i,

[
y>
]
G
, rA)

Return z

R([M]G , crs)
// generate challenge elements:
Define par as ([M]G , crs)(
([xi]H)i, C′

)
← InitA(par)

rA ← {0, 1}p(λ)

For ([y1]G , [y2]G , π
∗)← A(([xi]H)i; rA)

do
If (Ver(crs, ([y1]G , [y2]G), π∗) then

z← E(([xi]H)i, ([y1]G , [y2]G , π
∗), rA)

If (
∏n

i=1 [si · zi]G 6= [y1]G ∨∏n

i=1 [ti · zi]G 6= [y2]G) then
Finalas([y1]G , [y2]G , π

∗)
end for
y1, y2 ← Zq, π∗ ← Π
Finalas([y1]G , [y2]G , π

∗)

Fig. 9. Extractor for our algebraic group as well as a reduction to the adaptive soundness
of Πas from Figure 3.

In case that the elements do not have the correct form, but the proof part π is
valid anyway, this output element breaks the soundness of the QANIZK scheme.

Figure 9 shows a reduction that uses an adversary for which the extractor
is unable to extract a representation to attack the soundness of the QANIZK
scheme.

The reduction generates the input elements for A through the InitA procedure
of the game GameA that A is designed to play. We also note that in order to
be used for this game, the adversary A does not need to win the game GameA,
it merely needs to be an adversary for which the extractor fails, i.e. it either
outputs nothing or an incorrect representation. If the extracted representation z
only matches one of the elements [y1]G , [y2]G but not the other, the reduction
R knows that the adversary must have broken the soundness of the QANIZK
scheme. However, in the cases where z does not match either element of G output
by the adversary, or the extractor is unable to output any representation at all,
the reduction may not be able to decide whether the adversary has broken the
soundness or the extractor failed due to the negligible failure probability of the
GKEA-extractor. In fact, if the DDH problem is hard in G, it is difficult for
the reduction to decide why the extraction failed in these cases. Therefore, the
reduction attempts to use the output in any case where the extraction is not a
completely correct representation of the output of A. If A’s output is correctly
extractable or the proof is incorrect, the reduction chooses its solution at random
instead.

We obtain the following probability that the reduction wins its game Gameas
against the soundness of the QANIZK scheme.

Advas
Φ,R (λ) = Advalg

H,A (λ)−Advgkea
G,A,EA (λ) ,

20 J. Kastner, J. Pan

where Advalg
H,A (λ) is the advantage of A in the algebraic game, i.e. the probability

that A outputs a group element for which EGKEA can not extract a representation.
ut

Remark 2. We note that the QANIZK argument system by Kiltz and Wee
requires an asymmetric Type 3 pairing and the KerMDH assumption. Beyond
that, any additively homomorphic QANIZK argument system for linear subspace
can be used to instantiate this construction. It is possible to instantiate algebraic
groups without pairings if the underlying additively homomorphic QANIZK
system does not require pairings.

4.1 Cryptographic Hardness in H

We show that all computational hardness assumptions that hold in G also hold
in H. This means that our construction can be used to turn any cyclic prime-
order group into an algebraic group while preserving computational hardness
assumptions.

Theorem 5 (PG ⇒ PH). Let P be a computational problem in group G (denoted
by PG) and PH be the same problem but in group H. Then, if the argument system
Φ is perfectly zero-knowledge and the problem P is hard in G then the problem P
is hard in H.

More precisely, if there is an adversary A that solves P in H, then there is a
reduction R that solves P in G with success probability

AdvPG,R (λ) = AdvPH,A (λ)

Proof. This proof works the same way as the proof for Theorem 3 with the only
difference being the way the group elements are “forwarded”. Group element
“forwarding” involves checking the attached NIZK arguments (in the case of
forwarding from A to the procedures in G), and simulating arguments to attach
(in the case of forwarding responses from procedures to A). The procedure imple-
mentations are shown in Figure 10. We note that since the elements constructed
by R are in the span of M, the distribution of the simulated arguments is the
same as the distribution of arguments generated with Prove would be. ut

5 Conclusion

In this paper, we propose the first formal treatment on instantiating the Al-
gebraic Group Model (AGM). More precisely, we have two constructions of
algebraic groups from different primitives. Both constructions require the Gen-
eralized Knowledge of Exponent Assumption (GKEA) to achieve the algebraic
property. Additionally, they require either pairings or additively homomorphic
Non-Interactive Zero-Knowledge (NIZK) Argument systems. The additively ho-
momorphic NIZK can be implemented by a variant of Diffie-Hellman assumption
in pairing groups. We leave it as an interesting open problem to construct such a

Towards Instantiating the Algebraic Group Model 21

InitH:
C = (PG, XG =
([x1]G , . . . , [xn]G , x

′))← InitG

a← Zq;M :=
(

1
a

)
crs, td← Gencrs(PG, [M]G)
π1 ← Prove(crs, [M]G , 1)
[1]H := ([1]G , [a]G , π1)
gp := (G, q, parqa, crs, [1]H)
For i = 1 to n:

[xi]H = ([xi]G , [a · xi]G ,

πi ← Sim
(

crs, td,
(

[xi]G
[xi · a]G

))
)

Return XH = ([x1]H , . . . , [xn]H , x
′)

FinalH(S):
Parse S =: (s1, . . . , sm, s

′)
For i = 1 to n:
If V(si) = 0

Abort
Parse si =: (si,1, si,2, πsi)

SG := (s1,1, . . . , sm,1, s
′)

Return FinalG(SG)

PH(x1, . . . xu, x
′):

For i = 1 to u
If V(xi) = 0
Abort

Parse xi = (xi,1, xi,2, πsi)
([y1]G , . . . [yv]G , y

′)← PG(x1,1, . . . xn,1, x
′)

For i = 1 to v:
[yi]H = ([yi]G , [yi · a]G ,

πyi ← Sim
(

crs, td,
(

[yi]G
[yi · a]G

))
)

Return YH = ([y1]H , . . . , [yv]H , y
′)

Fig. 10. The oracles provided by the reduction R in H

NIZK argument system without pairings. By our construction, that will give us
an algebraic group without using pairings. In the end, our constructions show
that all the results in the AGM also hold in the Standard Model by assuming
the KEA and pairings.

We propose instantiating the AGM with other (weaker) assumptions and
primitives as the main future direction.

Acknowledgments. We thank one of the Eurocrypt 2019 reviewers for pointing
us to the construction with Type 1 pairings, and one of the Asiacrypt 2019
reviewers for the remark on extractable one-way functions and indistinguishability
obfuscations.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy. pp. 571–587. IEEE Computer Society Press, San Jose, CA, USA (May 17–
21, 2015)

2. Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-
preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.)

22 J. Kastner, J. Pan

SCN 18: 11th International Conference on Security in Communication Networks.
Lecture Notes in Computer Science, vol. 11035, pp. 3–22. Springer, Heidelberg,
Germany, Amalfi, Italy (Sep 5–7, 2018)

3. Abe, M., Camenisch, J., Dowsley, R., Dubovitskaya, M.: On the impossibility of
structure-preserving deterministic primitives. In: Lindell, Y. (ed.) TCC 2014: 11th
Theory of Cryptography Conference. Lecture Notes in Computer Science, vol. 8349,
pp. 713–738. Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26,
2014)

4. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007: 4th Theory of Cryptography Conference. Lecture Notes in Computer
Science, vol. 4392, pp. 118–136. Springer, Heidelberg, Germany, Amsterdam, The
Netherlands (Feb 21–24, 2007)

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) Advances in Cryp-
tology – CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 649–666.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2011)

6. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073,
pp. 628–646. Springer, Heidelberg, Germany, Seoul, South Korea (Dec 4–8, 2011)

7. Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving
signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology – EUROCRYPT 2015, Part II. Lecture Notes in Computer Science,
vol. 9057, pp. 35–65. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30,
2015)

8. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018: 21st International Conference on Theory and
Practice of Public Key Cryptography, Part II. Lecture Notes in Computer Science,
vol. 10770, pp. 341–370. Springer, Heidelberg, Germany, Rio de Janeiro, Brazil
(Mar 25–29, 2018)

9. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A: 13th
Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science,
vol. 9562, pp. 446–473. Springer, Heidelberg, Germany, Tel Aviv, Israel (Jan 10–13,
2016)

10. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004.
Lecture Notes in Computer Science, vol. 3152, pp. 273–289. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–19, 2004)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology –
EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1, 2006)

12. Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving CCA-security
of signed ElGamal. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016: 19th International Conference on Theory and Practice of Public Key
Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614, pp. 47–69.
Springer, Heidelberg, Germany, Taipei, Taiwan (Mar 6–9, 2016)

13. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:

Towards Instantiating the Algebraic Group Model 23

Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in Theoretical Computer Sci-
ence. pp. 326–349. Association for Computing Machinery, Cambridge, MA, USA
(Jan 8–10, 2012)

14. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing. pp. 505–514. ACM Press, New York, NY, USA (May 31 – Jun 3,
2014)

15. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 408–425.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014)

16. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) Advances in Cryptology –
CRYPTO’96. Lecture Notes in Computer Science, vol. 1109, pp. 283–297. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 1996)

17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in
Computer Science, vol. 2248, pp. 514–532. Springer, Heidelberg, Germany, Gold
Coast, Australia (Dec 9–13, 2001)

18. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In:
Nyberg, K. (ed.) Advances in Cryptology – EUROCRYPT’98. Lecture Notes in
Computer Science, vol. 1403, pp. 59–71. Springer, Heidelberg, Germany, Espoo,
Finland (May 31 – Jun 4, 1998)

19. Brown, D.R.L.: Generic groups, collision resistance, and ecdsa. Designs, Codes
and Cryptography 35(1), 119–152 (Apr 2005), https://doi.org/10.1007/
s10623-003-6154-z

20. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004.
Lecture Notes in Computer Science, vol. 3152, pp. 56–72. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–19, 2004)

21. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) Advances in Cryptology – EUROCRYPT 2002. Lecture Notes
in Computer Science, vol. 2332, pp. 272–287. Springer, Heidelberg, Germany,
Amsterdam, The Netherlands (Apr 28 – May 2, 2002)

22. Damgård, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) Advances in Cryptology – CRYPTO’91. Lecture
Notes in Computer Science, vol. 576, pp. 445–456. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 11–15, 1992)

23. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology – CRYPTO 2013, Part II. Lecture Notes in Computer Science, vol. 8043,
pp. 129–147. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22,
2013)

24. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signa-
tures. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014,
Part I. Lecture Notes in Computer Science, vol. 8873, pp. 512–531. Springer,
Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

25. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018,
Part II. Lecture Notes in Computer Science, vol. 10992, pp. 33–62. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

https://doi.org/10.1007/s10623-003-6154-z
https://doi.org/10.1007/s10623-003-6154-z

24 J. Kastner, J. Pan

26. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113 – 3121 (2008)

27. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part II. Lecture
Notes in Computer Science, vol. 9666, pp. 305–326. Springer, Heidelberg, Germany,
Vienna, Austria (May 8–12, 2016)

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in
Computer Science, vol. 4965, pp. 415–432. Springer, Heidelberg, Germany, Istanbul,
Turkey (Apr 13–17, 2008)

29. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) Advances in Cryptology – CRYPTO’98. Lecture Notes in
Computer Science, vol. 1462, pp. 408–423. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 23–27, 1998)

30. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) Advances in Cryptology – ASIACRYPT 2013, Part I.
Lecture Notes in Computer Science, vol. 8269, pp. 1–20. Springer, Heidelberg,
Germany, Bengalore, India (Dec 1–5, 2013)

31. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012.
Lecture Notes in Computer Science, vol. 7237, pp. 537–553. Springer, Heidelberg,
Germany, Cambridge, UK (Apr 15–19, 2012)

32. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology –
CRYPTO 2015, Part II. Lecture Notes in Computer Science, vol. 9216, pp. 275–295.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

33. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II.
Lecture Notes in Computer Science, vol. 9057, pp. 101–128. Springer, Heidelberg,
Germany, Sofia, Bulgaria (Apr 26–30, 2015)

34. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) Advances in Cryptology – CRYPTO 2005. Lecture Notes in Com-
puter Science, vol. 3621, pp. 546–566. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 14–18, 2005)

35. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In:
Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and Coding.
Lecture Notes in Computer Science, vol. 3796, pp. 1–12. Springer, Heidelberg,
Germany, Cirencester, UK (Dec 19–21, 2005)

36. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) Advances in Cryptology – EUROCRYPT’98. Lecture Notes in Computer
Science, vol. 1403, pp. 72–84. Springer, Heidelberg, Germany, Espoo, Finland
(May 31 – Jun 4, 1998)

37. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete loga-
rithm. Mathematical Notes 55(2), 165–172 (Feb 1994), https://doi.org/10.1007/
BF02113297

38. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B.K. (ed.) Advances in Cryptology – ASIACRYPT 2005.
Lecture Notes in Computer Science, vol. 3788, pp. 1–20. Springer, Heidelberg,
Germany, Chennai, India (Dec 4–8, 2005)

39. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000)

https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/BF02113297

Towards Instantiating the Algebraic Group Model 25

40. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (Jan 1991)

41. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 01: 3rd International Conference
on Information and Communication Security. Lecture Notes in Computer Science,
vol. 2229, pp. 1–12. Springer, Heidelberg, Germany, Xian, China (Nov 13–16, 2001)

42. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EURO-
CRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 554–571. Springer,
Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

43. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) Advances in Cryptology – EUROCRYPT’97. Lecture Notes in Computer
Science, vol. 1233, pp. 256–266. Springer, Heidelberg, Germany, Konstanz, Germany
(May 11–15, 1997)

44. Wu, J., Stinson, D.: An efficient identification protocol and the knowledge-of-
exponent assumption. Cryptology ePrint Archive, Report 2007/479 (2007), http:
//eprint.iacr.org/2007/479

http://eprint.iacr.org/2007/479
http://eprint.iacr.org/2007/479

	 Towards Instantiating the Algebraic Group Model

