
A preliminary version of this paper appears in Asiacrypt 2019. This is the full version.

The Local Forking Lemma and its Application to

Deterministic Encryption

Mihir Bellare1 Wei Dai2 Lucy Li3

September 9, 2019

Abstract

We bypass impossibility results for the deterministic encryption of public-key-dependent mes-
sages, showing that, in this setting, the classical Encrypt-with-Hash scheme provides message-
recovery security, across a broad range of message distributions. The proof relies on a new
variant of the forking lemma in which the random oracle is reprogrammed on just a single fork
point rather than on all points past the fork.

1 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in
part by NSF grants CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft.

2 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: weidai@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~weidai/. Supported
in part by a Powell Fellowship and grants of first author.

3 Department of Computer Science & Engineering, Cornell Univeristy, Ithaca, New York 14850, USA. Email:
lucy@cs.cornell.edu. URL: http://cs.cornell.edu/~lucy/. Supported in part by NSF grant CNS-1564102.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 The Local Forking Lemma 7

4 Public-Key-Dependent Message-Recovery security 10

5 Possibility Results 14
5.1 Security of EwH for a single message . 15
5.2 Resampling Indistinguishability . 18
5.3 Security of EwH against Sup ∩ Sri . 21

6 Impossibility Results 22

2

1 Introduction

Deterministic encryption. In a scheme DE for Deterministic Public-Key Encryption (D-PKE) [2], the
encryption algorithm DE.Enc takes public encryption key ek and message m to deterministically
return a ciphertext c. The standard privacy goal is most easily understood as the same as for
randomized public-key encryption —IND-CPA, asking for indistinguishability of encryptions of
different messages— but with two restrictions: (1) That messages not depend on the public key,
and (2) that messages be unpredictable, meaning have high min entropy. We will use the IND
formalism of [5], shown by the latter to be equivalent to the PRIV formalization of [2] as well
as to several other formalizations. A canonical and practical construction is EwH (Encrypt with
Hash) [2]. It encrypts message m under a (any) randomized IND-CPA scheme RE with the coins
set to a hash of ek‖m, and is proven IND-secure if the hash function is a random oracle [2]. Further
schemes and considerations can be found in [13, 14, 27, 30, 19, 6, 20].

Why D-PKE? Determinism allows sorting of ciphertexts, enabling fast search on encrypted data,
the motivating application in BBO’s introduction of D-PKE [2]. Determinism also closes the door
to vulnerabilities arising from poor randomness [15, 28]. Understood to be a threat already when
its causes were inadvertent system errors [31], poor randomness is now even more a threat when
we see that it can be intentional, arising from the subversion of RNGs happening as part of mass-
surveillance activities [11].

Narrowing the gap. We benefit, in light of the above motivations for D-PKE, from the latter pro-
viding privacy as close to IND-CPA as possible. We can’t expect of course to entirely close the
gap —no D-PKE scheme can achieve IND-CPA— but we’ll narrow it. Our target will be the first
of the two limitations of IND noted above, namely that it guarantees no privacy when messages
depend on the public key. In particular, for all we know, in this case, one could recover the entire
message from an EwH-ciphertext. This is the gap we will close, showing EwH message recovery is
not possible across a broad range of public-key-dependent message distributions. We’ll explain how
this bypasses, rather than contradicts, prior impossibility results that have inhibited progress on
the question, while also contributing new, more fine-grained impossibility results to indicate that
our own possibility results will not extend much beyond the message distributions for which we
establish them. Underlying our possibility result is a new variant of the forking lemma [29, 7, 1],
that we call the Local Forking Lemma, of independent interest. We now look at all this in more
detail.

Prior work. Given that the public key is, as the name indicates, public, messages depending on it
are a possibility in practice, and IND-CPA provides privacy even for such messages. But, for D-
PKE, the literature says that security for public-key-dependent messages is impossible [2, 5]. The
argument supporting this claim is that the following attack violates IND-security of any D-PKE
scheme DE. In its message finding stage, the adversary, given the public key ek, picks m0,m1

at random —of length, say, equal to the security parameter— subject to the constraint that the
first bits of h0 ← Hash(DE.Enc(ek,m0)) and h1 ← Hash(DE.Enc(ek,m1)) are 0, 1, respectively,
where Hash is a random oracle. The messages m0,m1 are unpredictable, but given a ciphertext
c ← DE.Enc(ek,mb) encrypting mb, the adversary can determine b as the first bit of the hash
Hash(c) of the ciphertext.

That IND cannot be achieved for public-key dependent messages doesn’t mean no security is
possible in this setting; perhaps guarantees can be provided under some other, meaningful metric
(definition) of security X. Raghunathan, Segev and Vadhan (RSV) [30] were the first to pursue this,
making a choice of X that we’ll refer to as PDIND. In X=PDIND, security is parameterized by

3

the number N(·) of (public-key dependent) distributions from which the message may be drawn.
RSV [30] show that, if one first fixes an upper bound N(·) = 2p(·) on the number of allowed
message distributions, then one can build a PDIND secure D-PKE scheme, with the scheme and
its parameters depending on N(·). While theoretically interesting, this result has limitations from
a practical perspective. The scheme is expensive, with key size and computation time growing
polynomially with p, and this is inherent. Security is fragile: If the number of message distributions
exceeds the bound N(·), security may —and in some of their schemes, will— fail. There is difficulty
of use: it is not clear how a designer or implementer can, with confidence, pick N(·) a priori, but
they must have N(·) in hand to build the scheme.

PDMR security. Our target is a simple, meaningful security guarantee (when deterministically en-
crypting public-key dependent messages) that we can establish for practical schemes. We reach
this by making a different choice of X above. We formalize and target X=PDMR, message recovery
security for public-key-dependent messages. The definition, in Section 4, considers a source S that,
given the public key ek and access to the random oracle Hash, returns a sequence of unpredictable
messages. Encryptions under ek of these messages are then provided to the adversary A, who,
continuing to have ek and access to Hash, must, to win, recover (in full) one of the messages.
Unlike PDIND [30], there is no a priori restriction on the number of message distributions (here,
sources).

One might object that message recovery security is a weak security guarantee, in response to
which we note the following. First, in practice adversaries benefit more by recovering the full
message from a ciphertext than by merely distinguishing the encryptions of two messages. So,
even when distinguishing attacks are possible, a scheme preventing message recovery can add
significant security. Second, right now, practical schemes like EwH are not proven to provide any
security for public-key dependent messages, so if we can show PDMR is present, we have improved
security guarantees without increasing cost. Third, in providing PDMR, we will insist that IND
be maintained, so that overall security only goes up, not down. In other words, for messages not
depending on the public key, we continue to provide the guarantee that is standard and viewed as
best possible (IND), supplementing this with a meaningful guarantee (PDMR) for messages that
do depend on the public key.

It is useful to define n(·)-PDMR security as PDMR security for sources that output n messages.
We will establish PDMR first for n = 1 and then boost to more messages.

One-message PDMR security of EwH. The core possibility result of this paper is that EwH is 1-
PDMR secure, meaning provides message-recovery security for the encryption of one unpredictable
message even when the latter depends arbitrarily on the public key. The underlying randomized
public-key encryption scheme RE is assumed, only and correspondingly, to itself provide security
against message-recovery. (This is implied by IND-CPA and hence true for EwH [2], but strictly
weaker.) The hash function Hash continues, as in [2], to be modeled as a random oracle.

The proof requires new techniques. Let m denote the challenge message produced by the source,
and let c1 ← RE.Enc(ek,m; r1) where r1 ← Hash(ek‖m). The approach of [2] would replace c1 with
a ciphertext c0 ← RE.Enc(ek,m; r0) for random r0, allowing a reduction to the assumed message-
recovery security of RE. This requires that neither the source nor the adversary make query ek‖m
to Hash, for otherwise they can differentiate c0 from c1. But this in turn requires that the source
not have ek. Indeed, in our setting, where it does have ek, it can query ek‖m to Hash, and we must
assume that it does so. The prior argument now breaks down entirely and it is not clear how to do
the reduction. We obtain our result, instead, via a novel rewinding argument. Two executions are
forked at the crucial hash query, one corresponding to response r1 and the other to response r0,

4

but with a twist. In the classical rewinding technique [29, 7], all answers to random-oracle queries
after the fork are random and independent in the two forks. This fails to work in our case. Instead
we are able to re-program the random oracle at just one point in the rewinding and argue that the
two executions both result in correct guesses by the adversary.

The analysis relies on what we call the Local Forking lemma, a (new) variant of the forking
lemmas of [29, 7, 1] that we give and prove. As with the General Forking Lemma of BN [7], our
Local Forking Lemma is a purely probabilistic result, knowing or saying nothing about encryption.
Handing off to our Local Forking Lemma the core probabilistic analysis in the above-discussed proof
of 1-PDMR security not only makes the latter more modular but allows an extension to security
against chosen-ciphertext attacks.

Many-message PDMR security of EwH. We show that EwH provides PDMR security for all sources
(distributions on message sequences) that are what we call resampling indistinguishible (RI). Very
roughly —the formal definition is in Section 5— RI asks that different messages in the sequence,
although all allowed to depend on the public key in different ways, are themselves almost indepen-
dently distributed.

Our first step is a general result showing that if a D-PKE scheme is 1-PDMR then it provides
PDMR for any RI source. That is, once we have PDMR security when encrypting just one, single
message, we also have it when encrypting any polynomial number of RI messages. This is a general
result, holding for any D-PKE scheme. An interesting element of this result is that the public-key
dependence of messages is a plus, exploited crucially in the proof.

To put this in context, for IND, security for one message does not, in general —that is, for
arbitrary message distributions— imply security for multiple messages [2]. It has been shown to do
so for particular message distributions, namely block sources, by Boldyreva, Fehr and O’Neill [13].
But they do not consider public-key-dependent messages, and block sources and RI distributions
are not the same.

That EwH provides PDMR security for all RI sources now of course follows directly from the
general reduction just mentioned and our above-discussed result establishing 1-PDMR security of
EwH.

That these results are for EwH rather than some other scheme is important for two reasons. The
first is that EwH is efficient and practical. The second is that we know that EwH already achieves
IND for messages that do not depend on the public key [2]. As discussed above it is important that
PDMR be provided while maintaining IND so that we augment, not reduce, existing guarantees.

CCA too. All the above considered security under chosen-plaintext attack (CPA). This is certainly
the first and foremost goal, but one can ask also about security against chosen-ciphertext attack
(CCA), particularly if our quest is parity (to the best extent possible) with randomized encryption,
where motivated by applications [12], efficient IND-CCA schemes have been sought and provided [9,
18, 17, 25, 23, 21].

Our results extend to CCAs. Namely, we show that, under chosen-ciphertext attack, EwH
continues to provide 1-PPDMR, and PDMR for RI sources, assuming the underlying randomized
public-key encryption scheme itself provides message recovery under CCA, which is implied by
IND-CCA. Put another way, EwH promotes message-recovery security of RE to message-recovery
security of the constructed DE, in both the CPA and the CCA cases, for public-key dependent
messages produced by RI sources. In the body of the paper, we give unified definitions and a
single, unified result that cover both CCA and CPA by viewing the latter as the special case of
the former in which adversaries make no decryption queries, exploiting our Local Forking lemma
to provide a modular proof.

5

Impossibility results. Our possibility results show that PDMR security is achievable when messages
in the sequence are somewhat independent of each other, formalized as RI. We complement these
possibility results with negative ones, showing that, when messages in a sequence are closely related,
PDMR security is not possible. Section 6 gives attacks to show that PDMR security can be
violated even when encrypting just two, closely related messages, even though both messages are
unpredictable. This is true for any D-PKE scheme. These attacks are novel; the above-mentioned
attacks understood in the literature violate indistinguishability security for public-key-dependent
messages, but do not recover messages and thus, unlike ours, do not violate PDMR. We believe
that a contribution here is not just to give these attacks, but with rigorous and formal analyses
(Theorems 7 and 8), which is unusual in the literature. The proof of unpredictability in Theorem 8
relies on techniques from the proof of the Leftover Hash Lemma [24].

Discussion and further directions. It is interesting to note that Goldwasser and Micali’s original def-
inition of semantic security for public-key encryption [22] only required privacy for messages not
depending on the public key. This was pointed out by Micali, Rackoff and Sloan (MRS) [26], who
strengthened the definition in this regard. (In their terminology, this corresponds to three pass
versus one pass notions.) Modern definitions of semantic security (IND-CPA) [4, 16] accordingly
ask for privacy even for messages that depend on the public key, and modern public-key encryption
schemes provide this privacy. Our work continues the quest, started by RSV [30], to bring D-PKE
to parity as much as possible in this regard.

There is a great deal of work on D-PKE including many schemes without random oracles [13,
14, 27, 30, 19, 6, 20]. A direction for future work is to assess whether these schemes provide PDMR
security, or give new schemes without random oracles that provide both IND and PDMR security.

The full and most current version of this paper is available as [3].

2 Preliminaries

Notation and terminology. By λ ∈ N we denote the security parameter and by 1λ its unary rep-
resentation. We denote the number of coordinates of a vector x by |x|, the length of a string
x ∈ {0, 1}∗ by |x| and the size of a set S by |S|. If x is a string then x[i] is its i-th bit. Al-
gorithms are randomized unless otherwise indicated. Running time is worst case. “PT” stands
for “polynomial-time,” whether for randomized algorithms or deterministic ones. For integers
a ≤ b we let [a..b] = {a, a + 1, . . . , b}. We let y ← AO1,...(x1, . . . ; r) denote executing algorithm
A on inputs x1, . . . and coins r with access to oracles O1, . . . and letting y be the result. We let
y←$AO1,...(x1, . . .) be the resulting of picking r at random and letting y ← AO1,...(x1, . . . ; r). We
let [AO1,...(x1, . . .)] denote the set of all possible outputs of A when invoked with inputs x1, . . .
and oracles O1, We use qOiA to denote the number of queries that A makes to Oi in the worst
case. We recall that a function f : N → R is negligible if for every positive polynomial p, there
exists np ∈ N such that f(n) < 1/p(n) for all n > np. An adversary is an algorithm or a tuple
of algorithms. The running time of a tuple of algorithms is defined as the sum of the individual
running times. We use tA to denote the running time of an adversary A.

Games. We use the code based game playing framework of [10]. (See Fig. 4 for an example.) By
G ⇒ y we denote the event that the execution of game G results in output y, the game output
being what is returned by the game. We write Pr[G] as shorthand for Pr[G⇒ true], the probability
that the game returns true.

Random Oracle Model (ROM). In the ROM [8], we give parties a random oracle Hash that on
input a string x ∈ {0, 1}∗ returns a an output y that is (conceptually at least) a random, infinite

6

Game Gsingle
Samp,F

π←$ Samp()
T ←$ T
(α, x)← F T (π)
Return (α ≥ 1)

Game Gdouble
Samp,F

π←$ Samp()
T ←$ T
(α, x)← F T (π)
T ′ ← T
T ′[x]←$ {0, 1}∞
(α′, x′)← F T

′
(π)

Return ((α = α′) ∧ (α ≥ 1))

Figure 1: Games Gsingle
Samp,F (single run) and Gdouble

Samp,F (double run) associated with algorithms Samp
and F .

string. The caller will then read a prefix of y, of any length it wants, and be charged, in terms of
computation, an amount proportional only to the number of bits read.

Let T denote the set of all functions T : {0, 1}∗ → {0, 1}∞. Then, mathematically, a random
oracle Hash is a function drawn at random from T. We view each T ∈ T as a table so that
values in it can be reprogrammed, and thus may write T [·] in place of T (·). Hash could be a
procedure in games, for example in Fig. 3, where return values are sampled lazily as they are
needed. Alternatively, we also sample the table T that describes Hash uniformly at random from
T at the beginning of the game (and write T in place of Hash), for example in Fig. 1. We note
that the above two ways of implementing the random oracle Hash are equivalent.

It is sometimes useful to give parties a variable output length random oracle. This takes two
inputs, x ∈ {0, 1}∗ and ` ∈ N, and returns a random `-bit string, and, even for a fixed x, the outputs
for different lengths ` must be independent. We can implement such a variable output length RO
in our model above, and now discuss how. First, what does not work is to query x and take the
`-bit prefix of the infinite-length string returned, since in this case the result for x, ` is a prefix of
the result for x, `′ whenever `′ > `, and so the two are not independent as required. However, one
can first fix an efficient injective encoding of the form {0, 1}∗ × N→ {0, 1}∗. Then, a query of the
form x, ` to a variable-length RO can be simulated by quering encoding of the pair (x, `) to our
single-input random oracle Hash. With this understood, we will work in our model above.

3 The Local Forking Lemma

We consider two algorithms Samp and F . The first could be randomized but has no oracle. The
second is deterministic and has access to a random oracle Hash as defined in Section 2. These
algorithms work as follows.

Via π←$ Samp(), algorithm Samp returns a value π that we think of as parameters that are
input to F . Via (α, x) ← F T (π), algorithm F , with input π, and with access to oracle T ∈ T,
returns a pair, where α ≥ 0 is an integer and x is a string. We require that if α ≥ 1 then x must
be the α-th query that F has made to its oracle. If α = 0, there is no requirement on x. Think of
α = 0 as denoting rejection and α ≥ 1 as denoting acceptance. We let q denote maximum value
that α can take. Furthermore, we require that the first q queries that F make must be distinct.

Consider the games Gsingle
Samp,F and Gdouble

Samp,F in Fig. 1. They are parameterized by algorithms

Samp and F . Game Gsingle
Samp,F is a “normal” execution, in which π is sampled via Samp, then F is

executed with oracle T , the game returned true if α ≥ 1 (acceptance) and false if α = 0 (rejection).

7

Game Gsingle
π,F

T ←$ T
(α, x)← F T (π)
Return (α ≥ 1)

Game Gdouble
π,F

T ←$ T
(α, x)← F T (π)
T ′ ← T
T ′[x]←$ {0, 1}∞
(α′, x′)← F T

′
(π)

Return ((α = α′) ∧ (α ≥ 1))

Figure 2: Games Gsingle
π,F (single run) and Gdouble

π,F (double run), with the parameter π now fixed.

Game Gdouble
Samp,F begins with the same “normal” run. Then, it reruns F with a different oracle T ′.

The difference is in just one point, namely the reply to the α-th query. Otherwise, T ′ is the same
as T . This “local,” as opposed to “global” change in T ′ versus T is the main difference from the
General Forking Lemma of [7]. Our Local Forking Lemma relates the probability of these games
returning true. Our proof follows the template of [7].

Lemma 1 (Local Forking Lemma) Let Samp, F and q be as above. Then

Pr[Gdouble
Samp,F] ≥ 1

q
· Pr[Gsingle

Samp,F]2 . (1)

Proof of Lemma 1: Consider the games of Figure 2. They are like the corresponding games of
Figure 1 except that π ∈ [Samp()] is fixed as a parameter of the game rather than chosen via Samp
in the game. Our main claim, that we will establish below, is that for every π ∈ [Samp()] we have

Pr[Gdouble
π,F] ≥ 1

q
· Pr[Gsingle

π,F]2 . (2)

From this we obtain Equation (1) as in [7]. Namely, define Y1,Y2: [Samp()] → [0, 1] by Y1(π) =

Pr[Gsingle
π,F] and Y2(π) = Pr[Gdouble

π,F], and regard these as random variables over the choice of
π←$ Samp(). Then, from Equation (2), we have

Pr[Gdouble
Samp,F] = E[Y2]

≥ E

[
1

q
· Y2

1

]
≥ 1

q
E [Y1]2 (3)

=
1

q
· Pr[Gsingle

Samp,F]2 ,

where Equation (3) is by Jensen’s inequality. This establishes Equation (1). We proceed to the
main task, namely to prove Equation (2). Henceforth, regard π ∈ [Samp()] as fixed.

Since F makes a finite number of oracle queries and has finite running time, we can fix an integer
L such that any query x made by F has |x| ≤ L and also the maximum number of bits of any reply
read by F is at most L. This allows us to work over a finite sample space. Namely, let D = {0, 1}≤L
be the set of all strings of length at most L and let R = {0, 1}L be shorthand for the set of strings
of length L. Then let OS be the set of all functions T : D → R. Now we can view T in the games
as being sampled from the finite set OS.

8

We let Q1, Q2, . . . , Qq denote the query functions of F , corresponding to the first q queries. Function
Qi: R

i−1 → D takes a list h1, . . . , hi−1 of answers to queries 1, . . . , i−1 and returns the query that
F would make next. To be formal, the only possible input to Q1 is the empty string ε, and it
returns the first query made by F , which is uniquely defined since F is deterministic. On input a
string h1 ∈ R, function Q2 returns the query that F would make if it received h1 as the answer to
its first query. And so on, so that function Qi, given h1, . . . , hi−1 ∈ R, returns the i-th query that
F would make had it received h1, . . . , hi−1 as responses to its prior queries. We note again that
the determinism of F is important for these (deterministic) query functions to be well defined. For
i ∈ [1..q] we let Q(h1, . . . , hi−1) = (Q1(ε), Q2(h1), . . . , Qi(h1, . . . , hi−1)) be the vector consisting of
the first i queries given responses h1, . . . , hi−1. Note that by our assumptions on F , the i entries of
this vector are always distinct.

We will be wanting to tinker with a function T , erasing it at some points, and then adding in new
values. We now develop some language to facilitate this. If V is a vector, we let [V] denote the
set whose elements are the entries of V , for example [(1, 7, 5)] = {1, 7, 5}. For a vector Q ∈ Di

of possible queries, we let OSQ denote the set of all functions S: D \ [Q]→ R, meaning functions
just like those in OS but undefined at inputs in [Q]. Now if S ∈ OSQ and H ∈ Ri is a vector of
possible answers, we let S[H] denote the function T ∈ OS that reprograms S on the query points,
leaving it intact on others. In detail, for 1 ≤ j ≤ i we let T (Q[j]) = H[j], and for x 6∈ [Q], we let
T (x) = S(x).

Recall that F ’s output is a pair of the form (α, x) where 0 ≤ α ≤ q is an integer. We are
only interested in the first output α, and it is convenient to let F1 denote the algorithm that
returns this. Also if i, α ≥ 0 are integers, Indi(α) is defined to be 1 if α = i and 0 otherwise.
Now suppose i ∈ [1..q]. We let Ωi be the set of all (h1, . . . , hi−1, S) such that h1, . . . , hi−1 ∈ R
and S ∈ OSQ(h1,...,hi−1), meaning S is undefined at the first i queries made by F . The function
Xi: Ωi → [0, 1] is then defined by

Xi(h1, . . . , hi−1, S) = Pr
[
α = i : h←$R ; α← F

S[(h1,...,hi−1,h)]
1 (π)

]
=

1

|R|
·
∑
h∈R

Indi

(
F
S[(h1,...,hi−1,h)]
1 (π)

)
.

This function fixes the answers to the first i− 1 queries, which uniquely determines the i-th query,
and also fixes, as S the answers to all but these i queries, taking the probability only over the answer
h to the i-th query. Let I and I′ be the random variables taking values α and α′, respectively, in
game Gdouble

π,F . Then

Pr[Gdouble
π,F] = Pr[I ≥ 1 ∧ I′ = I]

=

q∑
i=1

Pr[I = i ∧ I′ = i]

=

q∑
i=1

Pr [I = i] · Pr[I′ = i | I = i]

=

q∑
i=1

1

|Ωi|
∑

(h1,...,hi−1,S)∈Ωi

Xi(h1, . . . , hi−1, S)2

=

q∑
i=1

E[X2
i] (4)

9

≥
q∑
i=1

E[Xi]
2 . (5)

In Equation (4), we regard Xi as a random variable over Ωi, and refer to its expectation. Equation (5)
is by Jensen’s inequality. Now recall that if q ≥ 1 is an integer and x1, . . . , xq ≥ 0 are real numbers,
then

q ·
q∑
i=1

x2
i ≥

(
q∑
i=1

xi

)2

.

This can be shown via Jensen’s inequality or the Cauchy-Schwartz inequality, and a proof is in [7].
Setting xi = E[Xi], we have

q ·
q∑
i=1

E[Xi]
2 ≥

(
q∑
i=1

E[Xi]

)2

.

At this point, we would like to invoke linearity of expectation to say that E[X1] + · · · + E[Xq] =
E[X1 + · · · + Xq], but there is a difficulty, namely that linearity of expectation only makes sense
when the random variables are over the same sample space, and ours are not, so the sum is not
really even defined. (This is glossed over in [7].) So instead we expand the expectations again,

q∑
i=1

E[Xi] =

q∑
i=1

1

|Ωi|
∑

(h1,...,hi−1,S)∈Ωi

Xi(h1, . . . , hi−1, S)

=

q∑
i=1

Pr[I = i]

= Pr[I ≥ 1] = Pr[Gsingle
π,F] .

Putting all the above together, we have Equation (2).

4 Public-Key-Dependent Message-Recovery security

We start by recalling definitions for public-key encryption schemes.

Public-key encryption. A public-key encryption (PKE) scheme PKE defines PT algorithms PKE.Kg,

PKE.Enc,PKE.Dec, the last deterministic. Algorithm PKE.Kg takes as input 1λ and outputs a
public encryption key ek ∈ {0, 1}PKE.ekl(λ) and a secret decryption key dk, where PKE.ekl: N →
N is the public-key length of PKE. Algorithm PKE.Enc takes as input 1λ, ek and a message m
with |m| ∈ PKE.IL(λ) to return a ciphertext c ∈ {0, 1}PKE.cl(λ,|m|), where PKE.IL is the input-
length function of PKE, so that PKE.IL(λ) ⊆ N is the set of allowed input (message) lengths, and
PKE.cl: N × N → N is the ciphertext length function of PKE. Algorithm PKE.Dec takes 1λ, dk, c
and outputs m ∈ {0, 1}∗ ∪ {⊥}. Correctness requires that PKE.Dec(1λ,dk, c) = m for all λ ∈ N,
all (ek,dk) ∈ [PKE.Kg(1λ)] all m with |m| ∈ PKE.IL(λ) and all c ∈ [PKE.Enc(1λ, ek,m)]. Let
PKE.rl: N→ N denote the randomness-length function of PKE, meaning PKE.Enc(1λ, ·, ·) draws its
coins at random from the set {0, 1}PKE.rl(λ).

Via game G$ind
PKE,A(λ) of Fig. 3, we recall the definition of what is usually called IND-CCA. We

use the notation $IND to emphasize that this is for randomized schemes and to avoid confusion
with “IND” also being a notion for D-PKE schemes [5], and we cut the “CCA” for succinctness.
We explicitly write the random oracle Hash as a variable-output-length one, so that it takes a
string x and integer ` to return a random `-bit string. (This can be implemented as discussed in

10

Game G$ind
PKE,A(λ)

(ek,dk)←$ PKE.Kg(1λ)

b←$ {0, 1}
b′←$ALR,Dec(1λ, ek)

Return (b = b′)

Hash(x, `)

If not T [x, `] then

T [x, `]←$ {0, 1}`
Return T [x, `]

LR(m0,m1)

If (|m0| 6= |m1|) Return ⊥
c←$ PKE.Enc(1λ, ek,mb)

S ← S ∪ {c}
Return c

Dec(c)

If c ∈ S then return ⊥
m←$ PKE.Dec(1λ,dk, c)

Return m

Figure 3: Game G$ind defining $IND security of PKE.

Section 2 via a RO that, like in Lemma 1, takes one string input and returns strings of infinite
length.) We let

Adv$ind
PKE,A(λ) = 2 Pr[G$ind

PKE,A(λ)]− 1 .

We say that PKE is $IND-secure if the function Adv$ind
PKE,A(·) is negligible for every PT adversary

A. We don’t have to define what is conventionally called IND-CPA separately, but can recover
it by saying that PKE is $IND-CPA secure if the function Adv$ind

PKE,A(·) is negligible for every PT
adversary A that makes zero queries to the Dec oracle.

We say that a PKE scheme PKE is a deterministic public-key encryption (D-PKE) [2] scheme if
the encryption algorithm DE.Enc is deterministic. Formally, PKE.rl(·) = 0, so that the randomness
can only be the empty string.

The EwH D-PKE scheme. We recall the Encrypt-with-Hash D-PKE scheme (formally, a trans-
form) [2]. Let PKE be a PKE scheme. Then DE = EwH[PKE] is a ROM scheme defined as
follows. First, DE.Kg = PKE.Kg and DE.Dec = PKE.Dec, meaning the key generation and decryp-
tion algorithms of DE are the same as those of PKE. We also have that DE.IL(λ) = PKE.IL(λ)
and DE.cl(λ, `) = PKE.cl(λ, `), for all λ and message lengths `. We let DE.rl(λ) = 0 for all λ. The
encryption algorithm of DE is as follows:

DE.EncHash(1λ, ek,m)

r ← Hash(ek‖m,PKE.rl(λ)) ; c← PKE.Enc(1λ, ek,m; r)
Return c

Above, Hash is the variable output length random oracle as discussed previously.

PDMR. We know that D-PKE cannot provide indistinguishability-style security for messages that
depend on the public key [2]. We ask whether, for public-key dependent messages, it could nonethe-
less provide a form of security that, although weaker, is desirable and meaningful in practice, namely
security against message recovery. Here we give the necessary definitions, but in the general setting
of PKE instead of restricting to D-PKE.

Let PKE be a PKE scheme. A source S for PKE specifies PT algorithms S.cx and S.msg, the
first called the context sampler and the second called the message sampler. A PDMR adversary for
source S is an algorithm A. We associate to PKE, S, A, and λ ∈ N the game Gpdmr

PKE,S,A(λ) in the right

panel of Fig. 4. Via cc←$ S.cx(1λ), the game samples the context. Via m←$ S.msgHash,Dec(1λ,
cc, ek), the message sampler S.msg produces a target-message vector m. We require that |m[i]| ∈

11

Game Gpred
PKE,S,P (λ)

(ek,dk)←$ PKE.Kg(1λ)

cc←$ S.cx(1λ)

m←$ S.msgHash,Dec(1λ, cc, ek)

For i = 1, . . . , |m| do

`[i]← |m[i]|
(m, i)←$ PHash,Dec(1λ, cc, ek, |m|, `)

Return (m = m[i])

Hash(x, 1`)

If not T [x, `] then

T [x, `]←$ {0, 1}`
Return T [x, `]

Dec(c)

Return DE.Dec(1λ,dk, c)

Game Gpdmr
PKE,S,A(λ)

(ek,dk)←$ PKE.Kg(1λ)

cc←$ S.cx(1λ)

m←$ S.msgHash,Dec(1λ, cc, ek)

For i = 1 to |m| do

c[i]←$ PKE.EncHash(1λ, ek,m[i])

(m, i)←$AHash,Dec(1λ, cc, ek, c)

Return (m = m[i])

Hash(x, 1`)

If not T [x, `] then

T [x, `]←$ {0, 1}`
Return T [x, `]

Dec(c)

If (∃i : c = c[i]) then Return ⊥
Return PKE.Dec(1λ,dk, c)

Figure 4: Left: Game defining unpredictability of source S. Right: Game defining PDMR security
of PKE scheme PKE with source S and PDMR adversary A.

PKE.IL(λ) for all i. The fact that S.msg has ek as input means that target messages may depend on
the public key. For i = 1, . . . , |m|, the game then encrypts message m[i] to create target ciphertext
c[i]. Via (m, i)←$AHash,Dec(1λ, cc, ek, c), the adversary A produces a (guess) message m and an
index i in the range 1 ≤ i ≤ |c|; it is guessing that m[i] = m, and wins if this guess is correct.
Note that A is not allowed to query Dec on any of the ciphertexts in the vector c. The PDMR-
advantage Advpdmr

PKE,S,A(λ) = Pr[Gpdmr
PKE,S,A(λ)] of A is the probability that the game returns true. For

convenience of notation, we omit writing Dec in the superscript if the source or adversary do not
query it.

Classes of sources. We define classes of sources (a set of message samplers) as a convenient way to
state our results. For n: N → N, we let Sn denote the class of sources whose message sampler’s
output vector m ← S.msgHash,Dec(1λ, ·, ·) has length |m| = n(λ). In some of our usage, n will be
a constant and we will refer, for example to S1 or S2. Later we will define other classes as well. A
summary is in Figure 5.

Unpredictability. We cannot expect PDMR security for predictable target messages. Indeed, if, say,
there are s known choices for m[1] then A can return one of them at random to get PDMR advantage
1/s. Alternatively, A could encrypt all s candidates and return the one whose encryption equals

c[1], getting an advantage of 1. We formalize unpredictability of a source S via game Gpred
PKE,S,P

specified in the left panel of Fig. 4, associated to D-PKE scheme PKE, source S and an adversary P
that we call a predictor. Source S is run as in the message-recovery game. Next, instead of running
A, predictor P is run and it tries to predict (guess) some component of m. Unlike A, predictor P is
not given c. Instead it gets |m|, the lengths of all component messages of this vector, and 1λ, cc, ek.
Note that P gets the decryption oracle Dec, with no restrictions on querying it. Predictor P wins
the game if m = m[i]. For λ ∈ N we define the prediction advantage of P to be

AdvpredPKE,S,P (λ) = Pr[Gpred
PKE,S,P (λ)] .

12

Sn Sources that output n(λ) messages

Sup Unpredictable sources

Sri Resampling-indistinguishable sources

Figure 5: Classes of message samplers of interest. See text for explanations.

For λ ∈ N we also define

AdvpredPKE,S(λ) = max
P

AdvpredPKE,S,P (λ) .

where the maximum is over all predictors P , with no limit on their running time or the number of
Hash queries. We say that S is unpredictable if AdvpredPKE,S(·) is negligible. We let Sup be the class
of all unpredictable sources S.

Parameterized security. We will see that achievability of PDMR security depends very much on the
class (set) of sources. Let S be a class of sources. We say that PKE scheme PKE is PDMR-secure

against S if Advpdmr
PKE,S,A(·) is negligible for all S ∈ S and all PT A. We say that PKE scheme PKE is

PDMR-CPA-secure against S if Advpdmr
PKE,S,A(λ) is negligible for all S ∈ S that make no Dec queries

and all PT A that make no Dec queries.

$IND implies PDMR. We show that $IND-security implies PDMR security for randomized PKE
schemes. It is important that this does not apply to D-PKE schemes as these cannot achieve $IND
security. Let PKE be a PKE scheme, S be a source for PKE and A be a PDMR adversary for S.
The following implies that if PKE is $IND secure, then it is PDMR-secure against Sn ∩Sup for any
polynomial n. Since the reduction preserves the number of decryption queries, the result holds in
that case as well.

Proposition 2 Let PKE be a PKE scheme, and n a polynomial. Let S ∈ Sn be a source for PKE
and let A be a PDMR adversary. The proof gives $IND adversary B and predictor P such that

Adv$ind
PKE,B(λ) + AdvpredPKE,S,P (λ) ≥ Advpdmr

PKE,S,A(λ) .

Furthermore, the resources of adversary B and predictor P relate to those of S and A as follows:

qLRB = n, qHash
B = qHash

S + qHash
A , qDec

B = qDec
S + qDec

A , tB ≈ tS + tA ,

and

qHash
P = qHash

A + n · qHash
PKE.Enc, qDec

P = qDec
A , tP ≈ n · tPKE.Enc + tA .

Proof of of Proposition 2: $IND adversary B and predictor P are as follows:

Adversary BLR,Hash,Dec(1λ, ek)

cc←$ S.cx(1λ)
m←$ S.msgHash,Dec(1λ, cc, ek)
For i = 1, . . . |m| do

m′[i]←$ {0, 1}|m[i]|

c[i]←$ LR(m′[i],m[i])
(m, i)←$AHash,Dec(1λ, cc, ek, c)
Return (m = m[i])

Adversary PHash,Dec(1λ, cc, ek, `)

For i = 1, . . . , |`| do

m′[i]←$ {0, 1}`[i]

c[i]←$ PKE.EncHash(1λ, ek,m′[i])
(m, i)←$AHash,DecSim(1λ, cc, ek, c)
Return (m, i)

Algorithm DecSim(x)

If (∃i : x = c[i]) then return ⊥
Return Dec(x)

13

Adversary B uses m output by S.msg as well as m′ that is sampled uniformly at random at each
component i subjected to |m[i]| = |m′[i]|. Adversary B will query LR(m′,m) to obtain ciphertext
c. Adversary B then runs A on ciphertext c and checks if the guess of A matches message m.
Predictor P obtains the encryption of a randomly sampled messages m′ where component i has
length `[i]. Then it runs A and returns its output. We have

Adv$ind
PKE,B(λ) = 2 · Pr[b = b′]− 1

= Pr[b′ = 1 | b = 1]− (1− Pr[b′ = 0 | b = 0])

= Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ,

where b′ and b are random variables associated to game G$ind
PKE,B(λ). It is standard to check that

Pr[b′ = 1 | b = 1] = Advpdmr
PKE,S,A(λ) , (6)

and

Pr[b′ = 1 | b = 0] = AdvpredPKE,S,P (λ) . (7)

Combining the above two equations, we obtain Proposition 2.

5 Possibility Results

In this section, we show that when messages are not too strongly related to each other —more
precisely when they are resampling-indistinguishable, to be defined shortly— PDMR security is
possible. Furthermore this is not just in principle, but in practice: we show that such PDMR
security is provided by the simple and efficient EwH scheme. Thus we can add, to the IND security
for public-key independent messages we know this scheme already provides [2], a good privacy
guarantee for messages that depend on the public key. This supports the security of existing or
future uses of the scheme.

In more detail, our main technical result, Theorem 3, shows that DE = EwH[PKE] is PDMR-
secure against S1 sources (namely, for the encryption of a single message) as long as the same is true
for the randomized PKE. The proof relies crucially on Lemma 1. Note that this reduction does not
need to assume unpredictability of the source. It follows from Proposition 2 that DE = EwH[PKE]
is PDMR-secure against Sup ∩ S1 sources as long as the randomized PKE is $IND-secure.

The above is all for encryption of a single message. We will then turn to the encryption of
multiple messages. We define a class of sources Sri that we call resampling indistinguishable. Such
sources produce a polynomially-long vector of messages, reflecting that we are asking for privacy
when encrypting many messages. Theorem 5 is a general result saying that any scheme that is
PDMR-secure for S1∩Sup is automatically PDMR security for Sri∩Sup, meaning PDMR-security for
a single unpredictable message implies it for any polynomial number of unpredictable resampling-
indistinguishable messages. Putting all this together, we get that DE = EwH[PKE] is PDMR-secure
against Sup ∩ Sri sources as long as the randomized PKE is $IND-secure.

Remark regarding CPA. All of the results in this section are stated in the presence of a decryption
oracle. However, our reductions will preserve the number of decryption queries, so that analogous
CPA-type result can be obtained simply by restricting the number of decryption queries qDec to be
0 for all sources and adversaries involved. Thus the statement “. . . PDMR(-CPA)-secure . . . $IND(-
CPA)-secure . . . ”, is read as two separate statements: “. . . PDMR-secure . . . $IND-secure” and
“. . . PDMR-CPA-secure . . . $IND-CPA-secure . . . ”.

Remark regarding PKE schemes that rely on a random oracle. For simplicity we assume that the start-

14

BHash,Dec(1λ, cc, ek, c)

Q← ∅ ; µ←$AHSim,Dec(1λ, cc, ek, c)

x←$Q ; (ek‖m∗, `)← x

Return m∗

HSim(w)

Q← Q ∪ {w}
Return Hash(w)

Algorithm Samp

(ek,dk)←$ PKE.Kg(1λ)

cc←$ S.cx(1λ)

ρS ←$ {0, 1}S.msg.rl(λ)

ρA←$ {0, 1}A.rl(λ)
Return (ek,dk, cc, ρS , ρA)

Subroutine DecSim(d)

If (d = c) then return ⊥
Return PKE.Dec(1λ,dk, d)

Algorithm FHash((ek,dk, cc, ρS , ρA))

j ← 0 ; Q← ∅ ; ms← true

m← S.msgHSim,DecSim(1λ, cc, ek; ρS)

x← (ek‖m,PKE.rl) ; r ← Hash(x)[1..PKE.rl]
c← PKE.Enc(1λ, ek,m; r) ; ms← false
µ← AHash,DecSim(1λ, cc, ek, c; ρA)

If (x ∈ Q) then α← Idx(x) else α← 0

Return (α, x)

Subroutine HSim(w)

If (ms) then j ← j + 1 ; Idx(w)← j

Else Q← Q ∪ {w}
Return Hash(w)

Figure 6: Top is our PDMR adversary B against PKE in the proof of Theorem 3. It invokes a given
PDMR adversary A against EwH[PKE]. Bottom are algorithms Samp, F used in the analysis.

ing randomized PKE scheme is not a ROM scheme. However our result applies also to the case
where it is in fact a ROM scheme like those of [9, 18]. For this, we simply use domain separation,
effectively making the RO used by EwH and the RO used by PKE independent.

5.1 Security of EwH for a single message

Canonical 1-sources and PDMR adversaries. Let S ∈ S1 be a source for DE, and A be a PDMR
adversary for S. Since S.msg only produces one message, we can assume that the message index
given by A is always 1. Hence, we can view the output of both S.msg and A as a single message.
Next, we note that we can require S.msg and A to query Hash at (ek‖m,PKE.rl(λ)) if they output
m. This can always be done at the expense of one more query to Hash. For the following results,
we shall assume canonical 1-sources and PDMR adversaries for them.

PDMR-security of PKE implies PDMR of EwH. The following says that if randomized scheme PKE
is PDMR-secure for a source S ∈ S1, then so is deterministic scheme DE = EwH[PKE]. As noted
above, the theorem itself does not assume unpredictability of the source. That will enter later.

Theorem 3 Let PKE be a public-key encryption scheme. Let DE = EwH[PKE] be the associated
deterministic public-key encryption scheme. Let S ∈ S1 be a 1-message source. Let A be a PDMR
adversary for S, and let B be the PDMR adversary for S given in Fig. 6. Then

Advpdmr
PKE,S,B(λ) ≥ 1

(1 + qHash
S) · (1 + qHash

A)
·
(

Advpdmr
DE,S,A(λ)

)2
.

Additionally qHash
B ≤ 1 + qHash

A , qDec
B = qDec

A and tB ≈ tA +O(qHash
A).

Proof of of Theorem 3: Let ` = PKE.rl. We assume that if SHash,Dec(1λ, cc, ek) outputs message
m then it has always queried (ek‖m, `) to Hash. Likewise, we assume that if AHash,Dec(1λ, cc, ek, c)

15

Games G0, G1

(ek,dk, cc, ρS , ρA)←$ Samp()

j, j′, j′′ ← 0 ; Q,Q′, Q′′ ← ∅ ; c, c′, c′′ ← ⊥ ; ms← true ; `← PKE.rl

T ←$ T ; m← S.msgHSim,DecSim(1λ, cc, ek; ρS) ; x← (ek‖m, `)
T ′ ← T ; T ′[x]←$ {0, 1}∞ ; m′ ← S.msgHSim′,DecSim′

(1λ, cc, ek; ρS) ; x′ ← (ek‖m′, `)
α← Idx(x) ; α′ ← Idx′(x′) ; ms← false

r ← T (x)[1..`] ; r′ ← T ′(x′)[1..`] ; r′′ ← T ′(x)[1..`]

c← PKE.Enc(1λ, ek,m; r) ; µ← AHSim,DecSim(1λ, cc, ek, c; ρA)

c′ ← PKE.Enc(1λ, ek,m′; r′) ; µ′ ← AHSim′,DecSim′
(1λ, cc, ek, c′; ρA)

c′′ ← PKE.Enc(1λ, ek,m; r′′) ; µ′′ ← AHSim′′,DecSim′′
(1λ, cc, ek, c′′; ρA)

If (x 6∈ Q) then α← 0

If (x′ 6∈ Q′) then α′ ← 0

Return (x ∈ Q′′) // G0

Return ((x ∈ Q′′) ∧ (α = α′) ∧ (α ≥ 1)) // G1

Procedure DecSim(d)

If (d = c) then return ⊥
Return PKE.Dec(1λ,dk, d)

Procedure DecSim′(d)

If (d = c′) then return ⊥
Return PKE.Dec(1λ,dk, d)

Procedure DecSim′′(d)

If (d = c′′) then return ⊥
Return PKE.Dec(1λ,dk, d)

Procedure HSim(w)

If (ms) then j ← j + 1 ; Idx(w)← j

Else Q← Q ∪ {w}
Return T (w)

Procedure HSim′(w)

If (ms) then j′ ← j′ + 1 ; Idx′(w)← j

Else Q′ ← Q′ ∪ {w}
Return T ′(w)

Procedure HSim′′(w)

If (not ms) then Q′′ ← Q′′ ∪ {w}
Return T (w)

Figure 7: Games G0,G1 for proof of Theorem 3, in the top box, differ only in their Return state-
ments, and use the procedures in the bottom box.

outputs message µ then it has always queried (ek‖µ, `) to Hash. In both cases, as discussed above,
this can be ensured by modifying the algorithm to make the required query if it did not already do
so, increasing the number of Hash queries by at most one. So, letting q1 = qHash

S and q2 = qHash
A ,

we now regard the number of Hash queries of S and A as 1 + q1 and 1 + q2, respectively. We
assume that all Hash queries of S are distinct, and also that all Hash queries of A are distinct.
Crucially, we do not, and cannot, assume distinctness across these queries, meaning A could repeat
queries made by S.

Fix some λ ∈ N. We start the analysis with the Samp algorithm of Figure 6. (Ignore the rest of
that Figure for now.) It picks keys, common coins cc, coins ρS for the message-finding phase of
sampler S, and coins ρA for A, so that these can be fixed and maintained across multiple executions
of the algorithms. Now consider games G0,G1 at the top of Figure 7. They invoke Samp at the
very beginning. They also invoke the procedures in the bottom of Figure 7. We claim that

Advpdmr
PKE,S,B(λ) ≥ 1

1 + q2
· Pr[G0] . (8)

16

Games G2, G3

(ek,dk, cc, ρS , ρA)←$ Samp()

j, j′, j′′ ← 0 ; Q,Q′, Q′′ ← ∅ ; c, c′, c′′ ← ⊥ ; ms← true ; `← PKE.rl

T ←$ T ; m← S.msgHSim,DecSim(1λ, cc, ek; ρS) ; x← (ek‖m, `)
T ′ ← T ; T ′[x]←$ {0, 1}∞ ; m′ ← S.msgHSim′,DecSim′

(1λ, cc, ek; ρS) ; x′ ← (ek‖m′, `)
α← Idx(x) ; α′ ← Idx′(x′) ; ms← false

r ← T (x)[1..`] ; r′ ← T ′(x)[1..`]

c← PKE.Enc(1λ, ek,m; r) ; µ← AHSim,DecSim(1λ, cc, ek, c; ρA)

c′ ← PKE.Enc(1λ, ek,m; r′) ; µ′ ← AHSim′,DecSim′
(1λ, cc, ek, c′; ρA)

µ′′ ← AHSim′′,DecSim′
(1λ, cc, ek, c′; ρA) // G2

µ′′ ← µ′ // G3

If (x 6∈ Q) then α← 0

If (x 6∈ Q′) then α′ ← 0

Return ((x ∈ Q′′) ∧ (α = α′) ∧ (α ≥ 1)) // G2

Return ((x ∈ Q′) ∧ (α = α′) ∧ (α ≥ 1)) // G3

Figure 8: Games G2,G3 for the proof of Theorem 3. They use the procedures at the bottom of
Figure 7.

This is justified as follows. The message m in G0 is created just as in game Gpdmr
PKE,S,A(λ), the

oracle Hash being set, by procedure HSim, to T . In game Gpdmr
PKE,S,A(λ), ciphertext c is created

by encryption of m under coins that are random and independent of Hash, captured in G0 as
T ′[x]. However, B runs A with its own oracle Hash, here T , not T ′, captured in G0 as HSim′′.
We have written HSim and HSim′′ as two, separate, oracles, even though both reply simply via T ,
because they keep track of different things. In the message-sampling phase (flag ms = true) they
store the index of each query, and when A is run (flag ms = false), they store the queries in a set.
Note that in G0, we are not concerned with x′, r′, c′, µ, µ′, α, α′, meaning all these quantities can be
ignored in the context of Equation (8). Game G0 returns true if x ∈ Q′′, meaning if A made query
x = (ek‖m, `) to HSim′′. We have assumed that A always makes hash query (ek‖µ, `) on output
µ, and we have |Q′′| ≤ 1 + q2, yielding Equation (8).

Games G0,G1 differ only in what they return, and the boolean returned by G1 is the one returned
by G0 ANDed with more stuff. So, regardless of what is this stuff, we must have

Pr[G0] ≥ Pr[G1] . (9)

Suppose the winning condition of game G1 is met, so that α = α′ 6= 0. This implies (x,m, r′, c′) =
(x′,m′, r′′, c′′). To explain, we have assumed the hash queries of S are distinct, we have maintained
the coins of S across the runs, and T, T ′ differ only at x, so until x is queried, the executions of
S are the same, so x = x′. This implies r′ = r′′. From the definitions of x, x′ we get m = m′,
and thus we also get c′ = c′′. In game G2 of Figure 8 —the procedures used continue to be those
at the bottom of Figure 7— we rewrite and simplify the code of G1 under the assumption that
(x,m, r′, c′) = (x′,m′, r′′, c′′). Since G2 maintains the winning condition of G1, and we have seen
this implies (x,m, r′, c′) = (x′,m′, r′′, c′′), we have

Pr[G1] = Pr[G2] . (10)

In game G2, consider the computations of µ′ and µ′′. The only difference is that in the first A

17

has oracle HSim′, and in the second, HSim′′. However, the replies from these oracles differ only at
query x, and the winning condition of G2 depends only on x and other quantities determined prior
to the reply to hash query x being obtained by A. This means that the winning condition of game
G3 is equivalent to that of G2. (Game G3 no longer computes µ′′ as in game G2 to ensure HSim′′

is no longer used, and sets µ′′ instead, correctly, to µ′, but this quantity is not used in the winning
condition.) We have

Pr[G2] = Pr[G3] . (11)

Now consider algorithm F of Figure 6, and consider executing game Gdouble
Samp,F of Figure 1. We have

Pr[G3] ≥ Pr[Gdouble
Samp,F] (12)

≥ 1

1 + q2
· Pr[Gsingle

Samp,F]2 , (13)

where Equation 13 is by Lemma 1. Now we observe that

Pr[Gsingle
Samp,F] ≥ Advpdmr

DE,S,A(λ) . (14)

Combining the equations above completes the proof.

PDMR Security of EwH for unpredictable one-message sources. An immediate corollary of Proposi-
tion 2 and Theorem 3 is that $IND(-CPA) security of PKE implies PDMR(-CPA)-security of
EwH[PKE] against S1 ∩ Sup.

Corollary 4 Let PKE be a public-key encryption scheme. Let DE = EwH[PKE] be the associated
deterministic public-key encryption scheme. Let S ∈ S1 be a 1-message source. Let A be a PDMR
adversary for S. The proof specifies PDMR adversary B for S, and predictor P , such that

Advpdmr
DE,S,A(λ) ≤

√
(1 + qHash

S)(1 + qHash
A)

(
Adv$ind

PKE,B(λ) + AdvpredPKE,S,P (λ)
)
.

The resources of B and P are related to those of S and A as follows:

qHash
B = qHash

S + qHash
A , qDec

B = qDec
S + qDec

A , tB ≈ tS + tA ,

and

qHash
P = qHash

A + qHash
Enc , qDec

P = qDec
A , tP ≈ tEnc + tA .

5.2 Resampling Indistinguishability

We define what it means for an adversary A to be resampling indistinguishable. At a high level,
the condition is that, the distribution of the vector of messages produced by the adversary is
not detectably changed by replacing one of the components of the vector with a component from
another vector produced by a second run of the adversary using independent coins. This captures
a weak form of independence of the components of the vector. We give accompanying examples
after the precise definition.

Definition. Let DE be a D-PKE scheme. Consider the game Gri
DE,S,D given in Fig. 9, where S is

a n(λ)-source for DE and D is an adversary called the resampling distinguisher. In this game, a
message vector m0 is obtained by running S.msg. Then m1 is created to be the same as m0 except
at one, random, location j. The value it takes at j is the j-th component of a message vector
obtained by running S.msg again, independently and with fresh coins, but on the same inputs
1λ, cc, ek. Finally, D takes input (1λ, cc, ek,mb, j) and attempts to guess the value of b. We let

AdvriDE,S,D(λ) = 2 Pr[Gri
DE,S,D(λ)]− 1 .

18

Game Gri
DE,S,D(λ)

(ek,dk)← DE.Kg(1λ)

cc←$ S.cx(1λ) ; b←$ {0, 1}
j←$ [n(λ)]

m0←$ S.msgHash,Dec(1λ, cc, ek)

m1 ←m0

m1[j]←$ S.msgHash,Dec(1λ, cc, ek)[j]

b′←$DHash,Dec(1λ, cc, ek,mb, j)

Return (b = b′)

Hash(x, 1`)

If not T [x, `] then

T [x, `]←$ {0, 1}`
Return T [x, `]

Dec(c)

Return DE.Dec(1λ,dk, c)

Figure 9: Game defining resampling indistinguishability of source S for DE.

We say that S is resampling-indistinguishable if the function AdvriDE,S,D(·) is negligible for any PT

distinguisher D. We let Sri be the class of resampling-indistinguishable sources.

Examples of message samples in Sri. We give some examples of RI sources. First, if each m[i] is
sampled independently from some distribution depending on i, then S is RI even when these
distribution depends on the public key. More precisely, suppose, for some PT algorithm X and
polynomial n(·), sampler S.msg works as follows:

Adversary S.msgHash(1λ, cc, ek)

For i = 1, . . . , n(λ) do m[i]←$XHash(1λ, cc, ek, i)
Return m

Then, for any choices of X,n, sampler S.msg as above (together with any context sampler) is
RI. Moreover, S is perfectly RI, i.e. AdvriA,D(λ) = 0 for any distinguisher D. Note that the
class of such adversaries, defined by all the choices of PT X and polynomials n, is too large for
the constructions of RSV [30], so our positive results give schemes providing security for classes
of message distributions for which their schemes do not provide security. This example extends
naturally to sources S′ such that the output of S′.msg is indistinguishable from the output of S.msg
(for some choice of X and n(·)). The notion of RI also allows us to capture correlation in m that
cannot be efficiently detected. For example, consider S that does the following. It first generate a
random string r←$ {0, 1}n. Then, it sets m[i] ← Hash(r‖i, 1n) for i ∈ {1, 2}. Note that there is
strong information-theoretic correlation between m[1] and m[2], given the entire function table of
Hash. However, any distinguisher D making q queries to Hash cannot detect this correlation with
advantage more than q/2n. Finally, we note that resampling-indistinguishability is independent of
predictability. In particular, if X always returns a constant message (that is compatible with the
message space of the encryption scheme), then the source constructed before is still RI, but it is
trivially predictable.

Reduction to 1-PDMR security. A useful property of RI adversaries is that their PDMR security
reduces to the PDMR security of the encryption of just one message. This is formalized via the
theorem below, which says that DE is PDMR-(CCA-)secure for Sup ∩ S1, then it is PDMR-(CCA-
)secure for Sup ∩ Sri.

Theorem 5 Let DE be any D-PKE scheme. Let S1 be any n(λ)-source and A be a PDMR adversary

19

S2.cx(1λ)

cc←$ S1.cx(1λ) ; j←$ [n]

Return (cc, j)

S2.msgHash,Dec(1λ, cc, ek)

(cc, j)← cc

m← S1.msgHash,Dec(1λ, cc, ek)

Return m[j]

BHash,Dec(1λ, cc, ek, c)

(cc, j)← cc

m←$ S1.msgHash,Dec(1λ, cc, ek)

For i← 1, . . . , n(λ) do

c[i]←$ DE.EncHash(1λ, ek,m[i])

c[j]← c

(m, i)← AHash,DecSim(1λ, cc, ek, c)

If (i = j) then Return m

Else Return ⊥
Algorithm DecSim(x)

If (∃i : x = c[i]) then return ⊥
Return Dec(x)

DHash,Dec(1λ, cc, ek,m, j)

For i← 1, . . . , |m| do c[i]← DE.EncHash(1λ, ek,m[i])

(m, i)←$AHash,DecSim(1λ, cc, ek, c)

Return ¬((m[i] = m) and (j = i))

Algorithm DecSim(x)

If (∃i : x = c[i]) then return ⊥
Return Dec(x)

Figure 10: Source S2 (top left), adversary B (top right), and distinguisher D (bottom) used in
Theorem 5.

for D-PKE scheme DE. Consider the 1-source S2 and PDMR adversary B given in Fig. 10. Then

Advpdmr
DE,S1,A

(λ) ≤ n(λ) ·
(

Advpdmr
DE,S2,B

(λ) + AdvriDE,S1,D(λ)
)
. (15)

Source S2, adversary B, and distinguisher D are efficient as long as S1 and A are. In particular,

qHash
B = qHash

S1
+ n(λ) · qHash

DE.Enc + qHash
A , qDec

B = qDec
S1

+ qDec
A ,

tB ≈ tS + n(λ) · tDE.Enc + tA ,

qHash
D = n(λ) · qHash

DE.Enc + qHash
A , qDec

D = qDec
A ,

tD ≈ n(λ) · tDE.Enc + tA .

Furthermore, S2 is unpredictable if S1 is. Given any predictor P2 for S2, the proof gives predictor
P1 such that

AdvpredDE,S2,P2
(λ) ≤ AdvpredDE,S1,P1

(λ) , (16)

and

qHash
S2

= qHash
S1

, qDec
S2

= qDec
S1

, tS2 ≈ tS1 ,

qHash
P2

= qHash
P1

, qDec
P2

= qDec
P1

, tP2 ≈ tP1 .

The intuition behind the proof of Theorem 5 is straightforward—resampling-indistinguishability
allows a PDMR adversary to simulate the ciphertext vector c in order to run any RI PDMR
adversary. We give the details below.

20

Game G0 G1

ek←$ DE.Kg(1λ) ; cc←$ S1.cx(1λ) ; m←$ S1.msgHash,Dec(1λ, cc, ek)

j←$ [n] ; m[j]←$ S1.msgHash(1λ, cc, ek)[j]

For i← 1, . . . , |m| do c[i]← DE.EncHash(1λ, ek,m[i])
(m, i)←$AHash,Dec(1λ, cc, ek, c) ; Return ((m[i] = m) and (j = i))

Hash(x, 1`)

If not T [x, `] then T [x, `]←$ {0, 1}`
Return T [x, `]

Algorithm Dec(c)

If (∃i : c = c[i]) then return ⊥
Return DE.Dec(1λ, dk, c)

Figure 11: Games G0 and G1 used in the proof of Theorem 5.

Proof of of Theorem 5: Consider game G0 and G1 given in Fig. 11, where G1 contains the
boxed code, while G0 does not. By construction,

Pr[G1] = Pr[Gpdmr
DE,S2,B

(λ)] . (17)

Next, we claim that

Pr[G0] =
1

n(λ)
· Pr[Gpdmr

DE,S1,A
(λ)] . (18)

This is because j is uniformly sampled and is not used any where in G0 besides computing the
return value. Finally, let us consider Gri

S1,D
. We note that by construction of D, it holds for

i ∈ {0, 1} that

Pr[Gi] = Pr[D outputs 0 | b = i] , (19)

where the second probability is taken over game Gri
DE,S1,D

and b is as sampled in the game. Hence,

Pr[G0]− Pr[G1] = AdvriDE,S1,D(λ) . (20)

Combining Equations (17), (18) and (20), we obtain Equation (15). Lastly, let P2 be a predictor
for S2, consider the following predictor P1 for S1:

PHash,Dec
1 (1λ, cc, ek, n, `)

(cc, j)← cc ; m← PHash,Dec
2 (1λ, cc, ek, 1, `[j])

Return (m, j)

It is easy to check that Equation (16) holds.

5.3 Security of EwH against Sup ∩ S ri

Combining Theorem 5 and Corollary 4, we obtain the following theorem, which says that if PKE is
$IND(-CPA) secure, then DE = EwH[PKE] is PDMR(-CPA)-secure against Sri ∩ Sup.

Theorem 6 Let PKE be a public-key encryption scheme. Let DE = EwH[PKE] be the associated
deterministic public-key encryption scheme. Let S be a n(λ)-source for DE. Let A be a PDMR

21

adversary for S. $IND adversary B for PKE, predictor P , and distinguisher D can be constructed
such that

Advpdmr
DE,A(λ) ≤ n(λ) · AdvriS,D(λ)

+ n(λ)

√(
qHash
S + 1

) (
qHash
S + qHash

A + n(λ) + 1
) (

Adv$ind
PKE,B(λ) + AdvpredS,P (λ)

)
.

Furthermore, D, B and P are efficient as long as S and A are. In particular,

qHash
B = 2 · qHash

S + qHash
A + n(λ) + 1, qDec

B = 2 · qDec
S + qDec

A

tB = 2 · tS + n(λ) · tPKE.Enc + tA ,

qHash
D = n(λ) + qHash

A , qDec
D = qDec

A , tD ≈ n(λ) · tDE.Enc + tA ,

and

qHash
P = qHash

S + qHash
A + n(λ) + 1, qDec

P = qDec
S + qDec

A ,

tP ≈ tS + n(λ) · tPKE.Enc + tA .

The proof of Theorem 6 is straight forward given Theorem 5 and Corollary 4 and we only sketch
it here. We first apply Theorem 5 to source S and adversary A to obtain a 1-source S′, adversary
A′ and distinguisher D. Then, we can apply Corollary 4 to S′ and A′ to obtain adversary B and
predictor P .

6 Impossibility Results

In this section, we explore what goes wrong when messages can have correlation. The known
attacks showing IND-style security is unachievable [2, 5] only distinguish between encryptions of
unpredictable messages. Here we give attacks showing that public-key-dependent messages can in
fact be recovered in full by the adversary —that is, PDMR security is violated— as long as two
or more closely related messages are encrypted. In particular, we show that no D-PKE scheme
is secure against Sup (in particular Sup ∩ S2). We start with a basic attack on schemes that can
encrypt messages of any length, and then extend this to schemes that can only encrypt messages
of a fixed length.

Basic attack. The basic PDMR attack works when the D-PKE scheme allows the encryption of
messages of arbitrary length, meaning DE.IL(·) = N. The idea is simple. Since the message-choosing
adversary A1 has the public key, it can encrypt. It sets the second message to the encryption of
a first, random message. The first challenge ciphertext is thus the second message. This requires
that the scheme be able to encrypt messages of varying length because the ciphertext will not
(usually) have the same length as the plaintext. For the attack to be valid, we must also show
that the adversary is unpredictable. The following theorem formalizes this intuition. Here µ(·)
is a parameter representing the message length. The adversary is statistically unpredictable for
µ(·) = ω(log(·)), ruling out even weak PDMR security. The D-PKE scheme is arbitrary subject to
being able to encrypt messages of arbitrary length.

Theorem 7 Let DE be a D-PKE scheme with DE.IL(λ) = N for all λ. Then, DE is not PDMR-
secure against Sup message samplers. In particular, let µ: N→ N be any function, and S,A be the
source and adversary given on the left in Fig. 12. Then, we claim that S ∈ S2 ∩Sup; in particular,
for predictors P and all λ,

AdvpredDE,S,P (λ) ≤ 2−µ(λ) . (21)

22

S.cxHash(1λ)

Return ε

S.msgHash(1λ, ε, pp)

m[1]←$ {0, 1}µ(λ)
m[2]← DE.EncHash(1λ, pp,m[1])

Return m

AHash(1λ, ε, pp, c)

Return (c[1], 2)

S.cxHash(1λ)

hk←$ {0, 1}H.kl
Return hk

S.msgHash(1λ,hk, pp)

m[1]←$ {0, 1}µ(λ)
c← DE.EncHash(1λ, pp,m[1])

m[2]← H.Ev(1λ,hk, c)

Return m

AHash(1λ,hk, pp, c)

Return (H.Ev(1λ,hk, c[1]), 2)

Figure 12: Left: Source S and PDMR adversary A used in Theorem 7. Right: Source S and
PDMR adversary A used in Theorem 8.

But for all λ,

Advpdmr
DE,S,A(λ) = 1 . (22)

Proof of of Theorem 7: We first prove Equation (22). Adversary A wins game Gpdmr
DE,A(λ) as

long as m[2], as computed by A1, equals c[1], as computed by the game. Both are computed inde-
pendently as DE.EncHash(1λ, pp,m[1]), so they will always be equal, since DE.Enc is deterministic.

We move on to prove Equation (21). Let P be any predictor, and consider game Gpred
DE,S,P (λ). For

i = 1, 2 let Ei be the event that in game Gpred
DE,S,P (λ), predictor P outputs a guess of the form

(m′, i), for some string m′. The following inequalities, which complete the proof, are justified after
they are stated:

AdvpredDE,S,P (λ) =
2∑
i=1

Pr[Gpred
DE,S,P (λ) |Ei] · Pr[Ei]

≤ 2−µ(λ) · Pr[E1] + 2−µ(λ) · Pr[E2] (23)

≤ 2−µ(λ) . (24)

Since the first message m[1] is randomly chosen from {0, 1}µ(λ), the probability that m′ = m[1]
when P returns (m′, 1) is at most 2−µ(λ). The second message m[2] is the deterministic encryption of
the first message, m[1]. Since the function DE.Enc(1λ, ek, ·) is injective, and there are 2µ(λ) possible
values for m[1], there will also be 2µ(λ) possible values for m[2]. So again, the probability that
m′ = m[2] when P returns (m′, 2) is at most 2−µ(λ). This justifies Equation (23). Equation (24)
holds simply because Pr[E1] + Pr[E2] ≤ 1.

General attack. The basic attack assumed the D-PKE scheme could encrypt messages of varying
length. Many D-PKE schemes —and even definitions— in the literature restrict the space of allowed
messages to ones of a single length. We now extend the basic attack to one that works in this case,
showing that no D-PKE scheme is (even weakly) PDMR-secure for the encryption of two or more
messages, even if these are of the same length.

Function families. A family of functions (or function family) F specifies a deterministic PT evaluation

23

algorithm F.Ev such that F.Ev(1λ, ·, ·): {0, 1}F.kl(λ) × {0, 1}F.il(λ) → {0, 1}F.ol(λ) for all λ ∈ N, where
F.kl, F.il and F.ol are the key, input and ouput length functions, respectively. Many security
attributes may be defined and considered for such families.

Universal hash functions. As a tool we need a family of universal hash functions, so we start by
recalling the definition. Let H be a family of functions. For λ ∈ N, a key hk ∈ {0, 1}H.kl(λ) and
inputs x1, x2 ∈ {0, 1}H.il(λ) we define the collision probabilities

cpH(λ, x1, x2) = Pr[H.Ev(1λ,hk, x1) = H.Ev(1λ,hk, x2)]

cpH(λ) = max cpH(λ, x1, x2) ,

where the probability is over hk←$ {0, 1}H.kl(λ) and the max is over all distinct x1, x2 ∈ {0, 1}H.il(λ).
We say that H is universal if cpH(λ) = 2−H.ol(λ) for all λ ∈ N.

Theorem 8 Let DE be a D-PKE scheme. Let µ: N→ N be any function such that µ(λ) ∈ DE.IL(λ)
for all λ ∈ N. We claim that DE is not PDMR-secure for Sup message samplers. More precisely,
let H be a universal family of functions with H.il(λ) = DE.cl(λ, µ(λ)) and H.ol(λ) = µ(λ) for all
λ ∈ N. Let S,A be the source and PDMR adversary for DE shown on the right in Fig. 12. Then
S ∈ S2 ∩ Sup; in particular, for all predictors P and all λ,

AdvpredDE,S,P (λ) ≤
√

2 · 2−µ(λ)/2 . (25)

But for all λ,

Advpdmr
DE,S,A(λ) = 1 . (26)

The adversary picks m[1] as before and hashes its encryption down to get m[2]. Note that both
these strings have the same length µ(λ), so the attack works even if there is just one allowed message
length. The key hk for the hash function is shared using the common coins, so is available to both
the message source and the adversary. The adversary continues to have PDMR advantage one.
The more difficult task is to establish its unpredictability. The theorem shows that the prediction
advantage has degraded (increased) relative to Theorem 7, being about the square root of what
it was before, but this is still exponentially vanishing with µ(·). The proof of this bound uses
techniques from the proof of the Leftover Hash Lemma [24].

Proof of of Theorem 8: We first prove Equation (26). Adversary A wins game Gpdmr
DE,S,A(λ) as

long as m[2] from S equals H.Ev(1λ,hk, c[1]), as computed by the game. Both are calculated as
H.Ev(1λ,hk,DE.EncHash(1λ, pp,m[1])), so they will always be equal, since DE.Enc is deterministic.

Now we prove Equation (25). Let P be any predictor, and consider game Gpred
DE,S,P (λ). For i = 1, 2

let Ei be the event that in game Gpred
DE,S,P (λ), predictor P outputs a guess of the form (m′, i), for

some string m′. We claim that

Pr[Gpred
A,P (λ) |E1] ≤ 2−µ(λ) (27)

Pr[Gpred
A,P (λ) |E2] ≤

√
2 · 2−µ(λ)/2 . (28)

Given the above, we can complete the proof via

AdvpredDE,S,P (λ) =

2∑
i=1

Pr[Gpred
DE,S,P (λ) |Ei] · Pr[Ei]

≤ 2−µ(λ) · Pr[E1] +
√

2 · 2−µ(λ)/2 · Pr[E2]

≤
√

2 · 2−µ(λ)/2

24

Equation (27) is true for the same reason as in Theorem 7, namely that, since the first message
m[1] is randomly chosen from {0, 1}µ(λ), the probability that m′ = m[1] when P returns (m′, 1) is
at most 2−µ(λ). The main issue is Equation (28), which we now prove.

Let (ek,dk) ∈ [DE.Kg(1λ)] and hk ∈ {0, 1}H.kl(λ). Define Xek,hk : {0, 1}µ(λ) → {0, 1}µ(λ) by

Xek,hk(m) = H.Ev(1λ,hk,DE.Enc(1λ, ek,m)) .

Regard this as a random variable over the random choice of m←$ {0, 1}µ(λ). Now consider the
guessing and collision probabilities of this random variable,

gp(Xek,hk) = max
h∈{0,1}H.ol(λ)

Pr[Xek,hk = h]

cp(Xek,hk) =
∑

h∈{0,1}H.ol(λ)
Pr[Xek,hk = h]2 .

Further define GPek ,CPek : {0, 1}H.kl(λ) → [0, 1] by

GPek(hk) = gp(Xek,hk) and CPek(hk) = cp(Xek,hk) ,

and regard them as random variables over the random choice of hk←$ {0, 1}H.kl(λ). Below we will
show that

E [GPek] ≤
√

2 · 2−µ(λ)/2 (29)

for every (ek, dk) ∈ [DE.Kg(1λ)]. Now, hk is an input to P , so

Pr[Gpred
A,P (λ) |E2] ≤ max

(ek,dk)∈[DE.Kg(1λ)]
E [GPek]

≤
√

2 · 2−µ(λ)/2

where the second equation is by Equation (29). This proves Equation (28).

Fixing (ek,dk) ∈ [DE.Kg(1λ)], we now prove Equation (29). It is clear (and a standard relation
between guessing and collision probabilities of a random variable) that for all hk we have

gp(Xek,hk)2 ≤ cp(Xek,hk) .

Thus

GPek ≤
√

CPek .

By Jensen’s inequality and concavity of the square-root function,

E [GPek] ≤ E
[√

CPek

]
≤
√
E [CPek] .

Now with the expectation over hk←$ {0, 1}H.kl(λ) and the probability over m1,m2←$ {0, 1}µ(λ), we
have

E [CPek] = E [Pr[Xek,hk(m1) = Xek,hk(m2)]] ≤ 2−µ(λ) + cpH(λ) .

This is by considering two cases. The first is that m1 = m2, which happens with probability 2−µ(λ).
The second is that m1 6= m2, in which case the inputs to H.Ev(1λ,hk, ·) are different due to the
injectivity of DE.Enc(1λ, ek, ·), and we can exploit the universality of H. Now by assumption of
universality of H, cpH(λ) = 2−µ(λ), so putting everything together we have Equation (29).

25

Acknowledgments

We thank reviewers from Asiacrypt 2019 and Crypto 2019 for their detailed and extensive com-
ments.

References

[1] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete logarithm
assumption and a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM
CCS 2008, pages 449–458. ACM Press, Oct. 2008. 3, 5

[2] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Heidelberg, Aug.
2007. 3, 4, 5, 11, 14, 22

[3] M. Bellare, W. Dai, and L. Li. The local forking lemma and its application to deterministic encryption.
Cryptology ePrint Archive, Report 2019/1017, 2019. https://eprint.iacr.org/2019/1017. 6

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45.
Springer, Heidelberg, Aug. 1998. 6

[5] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equiva-
lences and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 360–378. Springer, Heidelberg, Aug. 2008. 3, 10, 22

[6] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic and hedged public-
key encryption in the standard model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 627–656. Springer, Heidelberg, Apr. 2015. 3, 6

[7] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, Oct. / Nov. 2006. 3, 5, 8, 10

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93, pages
62–73. ACM Press, Nov. 1993. 6

[9] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, Heidelberg, May 1995. 5, 15

[10] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006. 6

[11] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A standardized back door. Cryptology ePrint
Archive, Report 2015/767, 2015. http://eprint.iacr.org/2015/767. 3

[12] D. Bleichenbacher. On the security of the KMOV public key cryptosystem. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 235–248. Springer, Heidelberg, Aug. 1997. 5

[13] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 335–359. Springer, Heidelberg, Aug. 2008. 3, 5, 6

[14] Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-
input setting. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 543–560. Springer,
Heidelberg, Aug. 2011. 3, 6

[15] D. R. L. Brown. A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology ePrint Archive,
Report 2005/189, 2005. http://eprint.iacr.org/2005/189. 3

26

https://eprint.iacr.org/2019/1017
http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2005/189

[16] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer,
Heidelberg, Aug. 1998. 6

[17] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 5

[18] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In
M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, Aug.
1999. 5, 15

[19] B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New constructions
and a connection to computational entropy. Journal of Cryptology, 28(3):671–717, July 2015. 3, 6

[20] S. Garg, R. Gay, and M. Hajiabadi. New techniques for efficient trapdoor functions and applications.
In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 33–63.
Springer, Heidelberg, May 2019. 3, 6

[21] R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption without pairings. In
M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 1–27.
Springer, Heidelberg, May 2016. 5

[22] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984. 6

[23] D. Hofheinz and E. Kiltz. Practical chosen ciphertext secure encryption from factoring. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 313–332. Springer, Heidelberg, Apr. 2009. 5

[24] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th FOCS, pages 248–253. IEEE
Computer Society Press, Oct. / Nov. 1989. 6, 24

[25] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer, Heidelberg, Aug. 2004. 5

[26] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM
Journal on Computing, 17(2):412–426, Apr. 1988. Special issue on cryptography. 6

[27] I. Mironov, O. Pandey, O. Reingold, and G. Segev. Incremental deterministic public-key encryption. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 628–644.
Springer, Heidelberg, Apr. 2012. 3, 6

[28] K. Ouafi and S. Vaudenay. Smashing SQUASH-0. In A. Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 300–312. Springer, Heidelberg, Apr. 2009. 3

[29] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of
Cryptology, 13(3):361–396, June 2000. 3, 5

[30] A. Raghunathan, G. Segev, and S. P. Vadhan. Deterministic public-key encryption for adaptively chosen
plaintext distributions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 93–110. Springer, Heidelberg, May 2013. 3, 4, 6, 19

[31] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: results
from the 2008 debian openssl vulnerability. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement, pages 15–27. ACM, 2009. 3

27

	Introduction
	Preliminaries
	The Local Forking Lemma
	Public-Key-Dependent Message-Recovery security
	Possibility Results
	Security of EwH for a single message
	Resampling Indistinguishability
	Security of EwH against SupSri

	Impossibility Results

