
A preliminary version of this paper appears in the proceedings of the 26th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT 2020), c© IACR 2020, DOI: 10.1007/978-3-030-64837-
4 8. This is the full version.

Security Reductions for
White-Box Key-Storage in Mobile Payments

Estuardo Alpirez Bock1, Chris Brzuska1, Marc Fischlin2, Christian Janson2,
and Wil Michiels3,4

1 Aalto University, Finland
{estuardo.alpirezbock,chris.brzuska}@aalto.fi

2 Technische Universität Darmstadt, Germany
{marc.fischlin,christian.janson}@cryptoplexity.de

3 Technische Universiteit Eindhoven, Netherlands
4 NXP Semiconductors, Netherlands

wil.michiels@nxp.com

Abstract. The goal of white-box cryptography is to provide security
even when the cryptographic implementation is executed in adversarially
controlled environments. White-box implementations nowadays appear
in commercial products such as mobile payment applications, e.g., those
certified by Mastercard. Interestingly, there, white-box cryptography is
championed as a tool for secure storage of payment tokens, and impor-
tantly, the white-boxed storage functionality is bound to a hardware
functionality to prevent code-lifting attacks.

In this paper, we show that the approach of using hardware-binding and
obfuscation for secure storage is conceptually sound. Following security
specifications by Mastercard and also EMVCo, we first define security for
a white-box key derivation functions (WKDF) that is bound to a hard-
ware functionality. WKDFs with hardware-binding model a secure stor-
age functionality, as the WKDFs in turn can be used to derive encryption
keys for secure storage. We then provide a proof-of-concept construction
of WKDFs based on pseudorandom functions (PRF) and obfuscation.
To show that our use of cryptographic primitives is sound, we perform
a cryptographic analysis and reduce the security of our WKDF to the
cryptographic assumptions of indistinguishability obfuscation and PRF-
security. The hardware-functionality that our WKDF is bound to is a
PRF-like functionality. Obfuscation helps us to hide the secret key used
for the verification, essentially emulating a signature functionality as is
provided by the Android key store.

We rigorously define the required security properties of a hardware-bound
white-box payment application (WPAY) for generating and encrypting
valid payment requests. We construct a WPAY, which uses a WKDF as
a secure building block. We thereby show that a WKDF can be securely
combined with any secure symmetric encryption scheme, including those
based on standard ciphers such as AES.

Keywords: White-box cryptography ·Key derivation function ·Hardware-
binding · Payment application

http://dx.doi.org/10.1007/978-3-030-64837-4_8
http://dx.doi.org/10.1007/978-3-030-64837-4_8

2 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

1 Introduction

Near-field communication (NFC) protocols have opened up new possibilities
for mobile payment applications, such as those offered by Mastercard, Visa,
or Google wallet [Sma14]. Traditionally, the NFC traffic was processed by a se-
cure hardware component in mobile devices, that performed cryptographic op-
erations. In 2015, Android 4.4 introduced Host Card Emulation (HCE), which
allows the application processor of a mobile device to use the NFC communi-
cation, too. In this case, the cryptographic functions of mobile applications are
implemented software-only, increasing flexibility and device coverage of the ap-
plications since no secure hardware element is required. However, implementing
cryptographic functions in software leads to new attack vectors.

White-box cryptography. One of the core cryptographic protection tech-
nologies for HCE (as listed by the Smart Card Alliance Mobile & NFC Coun-
cil [Sma14]) is the use of white-box cryptography. Cryptography in the white-box
attack model was introduced by Chow, Eisen, Johnson, and van Oorschot in
2002 (CEJO [CEJvO03,CEJv03]). In the white-box attack scenario, an adver-
sary has access to the program code and the complete execution environment
of a cryptographic implementation, and the goal of white-box cryptography is
to remain secure despite such strong attack capabilities. Unlike in the Digital
Rights Management scenario considered by CEJO where the user is considered
as an adversary, in an HCE context, the goal of white-box cryptography is pro-
tect an honest user against attacks performed on their device, e.g., by malware
that can observe program code and executions.

Commercial payment applications. Payment applications need to store se-
cret information such as transaction tokens that are decrypted when a transac-
tion is performed. In the absence of a secure element, the tokens are stored in
insecure memory and likewise, the decryption operations are performed by an
insecure CPU. Thus, to protect against adversaries that use their access to the
storage/CPU to extract secret information and perform payment transactions
on their own, over the past years, white-box cryptography has been broadly
adopted by those offering commercial payment applications. The Mastercard se-
curity guidelines for payment applications, e.g., make the use of white-box cryp-
tography mandatory for implementing storage protection in order to achieve an
advanced security level (see Local Database Encryption, Chapter 5 in [Mas17]).
Similarly, EMVCo suggests the use of white-box cryptography in their require-
ments documentation [EMV19] for EMV mobile payment.

For a successful payment, the user’s device needs to be close to an NFC
reader. An attacker on a user’s device can thus only alter a payment a user aims
to make, but cannot make payments independently at readers of their choice,5

unless the attacker gains independence from the user’s device. The attacker could

5 We discuss relay attacks later.

Security Reductions for White-Box Key Storage 3

gain independence by (a) extracting the key, or (b) performing a code-lifting
attack [Wys12]. Thus, white-box cryptography in commercial payment appli-
cations needs to achieve hardware-binding (also see [CdRP14,SdHM15,BBIJ17]
for discussions of usefulness). As a consequence, commercial applications im-
plement white-box cryptography with a hardware anchor, essentially reaching
a middle-ground between software-only and hardware-only security for crypto-
graphic implementations.

In [BABM20] Alpirez Bock, Amadori, Brzuska and Michiels (AABM) discuss
extensively the usefulness of hardware-binding for white-box programs. They ex-
plain that hardware-binding seems to be the right mitigation technique against
code-lifting attacks for white-box programs deployed on real-life applications.
The authors propose to focus on hardware-binding as opposed to other tech-
niques which are popular in the white-box literature, but seem rather theoretical
or unrelated to the security of payment applications. In particular, they define
a security notion for white-box encryption programs with hardware-binding.

Hardware-binding on Android. The Mastercard guidelines (see Chapter 5
in [Mas17]) recommend, to the very least, to use a unique device fingerprint
for device identification. The EMVCo documentation [EMV19] recommends to
use hardware features to bind the operation of software on a particular device.
For instance, Android allows to perform checks on identifiers such as the hard-
ware serial number, the ESN (electronic serial number) or IMEI (international
mobile equipment identity) of the device via its Build and TelephonyManager

classes [And18a,And18c]. This technique helps to mitigate code-lifting attacks as
long as the value remains secret and/or interception of this value between hard-
ware and software can actually be prevented. For an advanced security level,
however, the guidelines suggest the use of the functionalities of the Android Key
Store. The Android Key Store, e.g., implements RSA signatures, and relies on
whatever secure hardware features the Android device provides. Signatures are
a more useful binding functionality than single identifier values, since for each
new input, they provide a different output.

Conceptual validation. In this paper, we show that the wide-spread practical
approach for building secure payment applications based on white-box cryptog-
raphy is conceptually sound. We split our study into two parts:

– a hardware-bound white-box key derivation function (WKDF) which pro-
vides (1) hardware-binding and (2) secure storage;

– a secure payment application that performs (3) symmetric encryption of data
on top of the WKDF.

Note that the Mastercard guidelines merely specify best practices but omit a de-
sign blueprint. Our goal is to explicate how exactly a sound design shall proceed,
and what security properties the underlying primitives should obey.

4 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

Hardware-bound white-box key derivation function (WKDF). Our
WKDF notion builds on top of a standard (black-box) key derivation function
(KDF). We here consider a lightweight notion for the KDF that takes uniformly
random keys and a second, non-random value as input, and returns pseudoran-
dom keys of fixed length. We therefore use the terms KDF and pseudorandom
function (PRF) interchangeably, abstracting away additional KDF features such
as varying output lengths (cf. Krawczyk [Kra10]). We introduce the IND-WKDF
security notion for WKDFs that models the previously discussed white-box at-
tack scenario. I.e., the adversary is given full access to the white-box implemen-
tation of the WKDF as well as limited access to the hardware. If the adversary
uses its hardware access, the adversary is able to evaluate the WKDF, but if
the adversary has no access to the relevant hardware values, e.g., carrying out a
code-lifting attack, then the adversary learns nothing about the WKDF values,
which is modeled by a real-or-random oracle for derived keys.

Existing security notions for white-box cryptography. Outside of pay-
ment applications, Delerablée, Lepoint, Paillier, and Rivain (DLPR [DLPR14])
defined the meanwhile popular notion of incompressibility (more details can
be found [DLPR14,BI15,BIT16,BBK14,FKKM16,BAB+19,KLLM20]). Here, an
adversary shall not be able to compress a cryptographic program without los-
ing part of its functionality. Incompressibility seems unrelated to achieving the
goal of real-or-random key indistinguishability for derived keys, as we aim for
the WKDF in our application. Additionally, DLPR define traceability which is a
security notion intended to trace malicious users (typically in a DRM setting) if
they illegally share their white-box program with others. Traceability is a helpful
to mitigate code-lifting and re-distribution attacks in the case of malicious users,
but not helpful to protect honest users from adversaries copying and misusing
their software.

Finally, DPLR also discuss one-wayness and security against key extraction,
a baseline security property for white-box cryptography, which are both implied
by our IND-WKDF notion for WKDF. Namely, if an adversary can extract the
key, then the adversary can evaluate the KDF on all points itself and thereby
distinguish derived keys from random keys. Similarly, an adversary can use an
inversion algorithm to distinguish real derived keys from random values. Thus,
a IND-WKDF-secure WKDF also resists key extraction and inversion attacks.

Secure payment application. We introduce a secure hardware-bound pay-
ment application scheme (WPAY). Its basic functionality is to encrypt and to
authenticate valid payment requests to a server. We model validity by a predi-
cate that acts as filter function. E.g., the filter could only allow for certain date
ranges or limits the upper bound on the payment, while the server generically
accepts payments of arbitrary amounts and ranges.

Our security notion IND-WPAY gives the adversary the white-box payment
application WPAY. The adversary can query a hardware oracle that provides
them with the necessary hardware values to generate a request using WPAY.

Security Reductions for White-Box Key Storage 5

This models that the adversary can observe (and interfere with) honest user eval-
uations. As soon as the adversary loses access to the hardware, confidentiality
and integrity of the user requests should hold. IND-WPAY models both proper-
ties via an indistinguishability game. Note that IND-WPAY captures code-lifting
attacks. Namely, the adversary has access to WPAY throughout the experiment,
but only limited access to the hardware. IND-WPAY models that in the absence
of the hardware, no valid requests can be generated, even given WPAY.

Constructions. To instantiate our approach for building a WKDF, we first
need to specify a hardware functionality. One idea could be to rely on a signa-
ture functionality as provided for example by the Android Key Store. I.e., WKDF
would send a request to the hardware, the hardware signs it, and WKDF then
verifies the signature with the public verification key. But we need to (1) hide
the software-related key of our WKDF and (2) make it inseparable from the
verification algorithm that checks hardware values, which are both achieved by
applying indistinguishability obfuscation techniques. This, in turn, forces us to
use puncturable primitives for the security reduction to work. One option could
thus be to use the puncturable signature scheme by Bellare, Stepanovs and Wa-
ters [BSW16] which, notably, itself is based on indistinguishability obfuscation.
To avoid this double form of obfuscation for the construction, one layer for the
puncturable signature scheme and one for the hiding and binding of our KDF
key, we instead use a faster symmetric-key primitive in form of a (puncturable)
PRF (essentially as a message authentication code). This puncturable PRF is
obfuscated once within the hardware-linked KDF construction to ensure the
required security.

Hence, we build a WKDF and prove its IND-WKDF security, following tech-
niques by Sahai and Waters [SW14]. This construction assumes puncturable
PRFs (which are equivalent to one-way functions) and indistinguishability ob-
fuscation. Given and IND-WKDF-secure WKDF we then prove that another layer
of indistinguishability obfuscation can be used to bind the WKDF to an arbi-
trary secure symmetric encryption scheme and a filter function to obtain an
IND-WPAY-secure white-box payment application WPAY.

Discussion and limitations. Note that our constructions are conceptual val-
idations and not practically efficient due to the tremendous inefficiency of indis-
tinguishability obfuscation (see [AHKM14]). In practice, the obfuscation needs
to be implemented by a mix of efficient obfuscation techniques, combined with
practical white-box techniques, e.g. [GPRW18]. Thus, our work does not allow
to immediately bypass the difficulty of building white-box implementations —as
apparent in the past white-box competitions [ECR17,cyb19], where only three
design candidates submitted towards the end of the second competition remained
unbroken— in practice. However, our theoretical feasibility result allows us to
conclude that secure white-box implementations based on strong cryptographic
assumptions —indistinguishability obfuscation is not yet a mature cryptographic
primitive— are indeed possible. Our results not only affirm that building secure

6 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

white-box cryptography is possible, but they also explain how such a secure
white-box implementation can be designed.

As efficiency of indistinguishability obfuscation has not yet reached rea-
sonable levels, let us now discuss security and efficiency of current practical
white-box implementations. E.g., the winner of the first white-box competi-
tion [ECR17] had a binary size of 17MB and needed 0.37 seconds for an en-
cryption which is reasonably close to practical needs. It was broken eventually,
but resisted key extraction attacks for up to 28 days [Riv17]. This temporary
robustness turns out to be useful. Namely, in practice, the goal is to maintain a
complexity gap between the effort of the attacker and the effort of the designer.
As software can be updated in a regular interval, one can achieve a reasonable
practical security level by replace a white-box implementation, in each update,
by a newer generation.

Two considerations are important to be taken into account: (1) The white-
box implementation should not be susceptible to (variants of) automated at-
tacks, since these can be implemented with little effort, see [ABBB+19]. (2)
Reverse-engineering efforts against previous generations of white-box implemen-
tations shall not help the attacker against the new generation of the white-box
implementation. I.e., the designer needs to come up with a paradigm that al-
lows to systematically inject a certain amount of creativity into the system that
needs to be reverse-engineered anew each time. For example, if security requires
bootstrapping security from white-boxing another cryptographic primitive such
as a PRF, then one can use a different PRF each time, harvesting the large cryp-
tographic research of PRF constructions. In our model, we bind each payment
application to a fresh hardware sub key, derived from a main hardware key, and
we allow the adversary to see other derived hardware keys. This models that po-
tentially, earlier construction might have been broken and might have revealed
the derived hardware key in use. An alternative is to directly bind to a signature
functionality so that revealing the verification algorithm does not constitute an
attack vector.

Note that our models do not consider plain relay attacks [Han05,FHMM11]
where the adversary forwards the intended communication without altering it.
These attacks need to be prevented by other means, e.g., via distance-bounding
protocols [ABB+19], or at least mitigated via heuristics such as location cor-
relation between phone and NFC reader [BKTS16]. Note however that we of
course capture attacks where, say, the adversary modifies user requests or tries
to create new requests by himself.

Finally, we remark that in our attack model we consider an adversary who
attacks the application of an honest user. The adversary either tries to break
security by extracting secret information from the application, or by code-lifting
it and running it on a separate device. Our security notions model an adversary
who obtains the white-box program but, if the program is securely implemented,
the adversary can only run the program when using an oracle simulating part
of the hardware of the user. We recall that when considering DRM applications
on the other hand, the white-box definitions model an adversary who gets full

Security Reductions for White-Box Key Storage 7

access to a cryptographic program and to the device running that program (this
being the adversary’s own device) [CEJvO03,CEJv03].

2 Preliminaries and Notation

By a← A(x), we denote the execution of a deterministic algorithm A on input
x and the assignment of the output to a, while a←$A(x) denotes the execution
of a randomized algorithm and the assignment of the output to a. We denote
by := the process of initializing a set, e.g. X := ∅. By x←$X we denote the
process of randomly and uniformly sampling an element x from a given set
X. Slightly abusing notation, we also use x←$X to denote the sampling of x
according to probability distribution X. We then denote the probability that
the event E(x) happens by Prx←$X [E(x)] or sometimes simply Pr[E(x)]. We
write oracles as superscript to the adversary AO. In cases when an adversary is
granted access to a larger number of oracles, we write oracles also as subscript to
the adversary AO1,O2

O3,O4
. PPT denotes probabilistic polynomial-time and poly(n)

is an unspecified polynomial in the security parameter. Note that all algorithms
receive the security parameter 1n in unary notation as input implicitly. We write
it explicitly only occasionally for clarity.

We now review useful definitions, starting with nonce-based encryption, see
Rogaway [Rog04].

Definition 1 (Symmetric Encryption). A nonce-based symmetric encryp-
tion scheme SE consists of a pair of deterministic polynomial-time algorithms
(Enc, Dec) with the syntax c ← Enc(k,m, nc) and m/⊥ ← Dec(k, c, nc). The al-
gorithm Enc takes as input a randomly generated key k of length n, a nonce nc, a
message m, and outputs a ciphertext c. Dec takes as input a randomly generated
key k of length n, a nonce nc, a ciphertext c, and outputs either a message m or
an error symbol ⊥. Moreover, the encryption scheme SE satisfies correctness, if
for all nonces nc ∈ {0, 1}n and for all messages m ∈ {0, 1}∗,

Pr[Dec(kSE, Enc(kSE,m, nc), nc) = m] = 1

where the probability is over sampling k.

Definition 2 and Figure 1 specify the security of an authenticated encryption
scheme [BN00,Rog02]. Here, the adversary is provided with a left-or-right en-
cryption oracle and a decryption oracle where it can submit arbitrary ciphertexts
except for challenge ciphertexts obtained from the encryption oracle. If b = 0,
the decryption oracle is functional. If b = 1, the decryption oracle always returns
⊥ which models ciphertext integrity. In the security game, we use assert as a
shorthand to say that if the assert condition is violated, then the oracle returns
an error symbol ⊥.

Definition 2 (Authenticated Encryption). A nonce-based symmetric en-
cryption scheme SE = (Enc, Dec) is called an authenticated encryption scheme
or AE-secure if all PPT adversaries A have negligible distinguishing advantage
in the game ExpAESE,A(1n), specified in Figure 1.

8 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

ExpAESE,A(1n)

b←$ {0, 1}
kSE ←$ {0, 1}n

b′ ←$AOENC,ODEC(1n)

return (b′ = b)

OENC(m0,m1)

assert |m0| = |m1|
nc←$ {0, 1}n

c← Enc(kSE,mb, nc)

C := C ∪ {c}
return (nc, c)

ODEC(nc, c)

assert c /∈ C
if b = 1 then

return ⊥
else

return m← Dec(kSE, c, nc)

Fig. 1. The ExpAESE,A(1n) security game.

Note that we demand the authenticated encryption scheme to be determinis-
tic because we will later execute the algorithm in an untrusted environment and
cannot count on strong randomness. This, in turn, implies that we cannot allow
the adversary to re-use any of the previous queries (m,nc), or else it would be
easy to determine b from two queries (m0,m1, nc) and (m0,m

′
1, nc).

We provide a formal definition of a key derivation function that produces
pseudorandom keys. Note that our definition corresponds to a PRF, i.e., it is
highly simplified compared to the framework of Krawczyk [Kra10]. In our def-
inition a key derivation function takes as input a key kkdf, a context string e
as well as the security parameter 1n. In comparison to Krawczyk’s definition,
we simplify the presentation and omit the details of the smoothing step turning
raw key material into random strings, the salting, and the length parameter,
assuming that the key kkdf is already appropriate and the length of the returned
key is equal to |kkdf|.

Definition 3 (Key Derivation Function). A KDFscheme consists of a ran-
domized key generation algorithm Kgen and a key derivation function KDF that
is a deterministic algorithm that takes as input a key kkdf←$ Kgen(1n) and a

context string e. The KDF returns a key k̂ of length |kkdf|.

Definition 4 (IND-KDF-security). A key derivation function KDF is said
to be IND-KDF-secure if all PPT adversaries A have negligible distinguishing
advantage in game ExpIND-KDF

KDF,A (1n), specified in Figure 2.

Next we present the definition of a length-doubling pseudorandom generator.

Definition 5 (Pseudorandom Generator). A deterministic, polynomial-time
computable function PRG : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator if:

– Length-expansion: For all x ∈ {0, 1}∗, |PRG(x)| = 2 |x|.
– Pseudorandomness: For all PPT A, AdvPRG,A(n) :=∣∣Prx←$ {0,1}n [A(PRG(x)) = 1]− Prz ←$ {0,1}2n [A(z) = 1]

∣∣
is negligible in n.

Security Reductions for White-Box Key Storage 9

We define pseudorandom functions with identical input, output and key length.

Definition 6 (Pseudorandom Function). A deterministic, polynomial-time
computable function PRF, such that PRF : {0, 1}n × {0, 1}n → {0, 1}n for all
n ∈ N, is a pseudorandom function if for all PPT A, AdvA,PRF(n) :=∣∣∣Prk ←$ {0,1}n

[
APRF(k,·)(1n) = 1

]
− PrF ←$ {G:{0,1}n→{0,1}n}

[
AF (·)(1n) = 1

]∣∣∣
is negligible in n.

Puncturable PRFs (PPRF) were introduced by Boneh and Waters [BW13].
PPRFs have a punctured key which allows to evaluate the PPRF on all inputs,
except for one where the function still looks random.

Definition 7 (PPRF). A puncturable pseudorandom function scheme PPRF
consists of a triple (PPRF, Punct, Eval), which are defined as follows:

• PPRF(k, x) : This is a standard PRF evaluation algorithm. As before, this de-
terministic polynomial-time algorithm takes as input a key k and input x,
both of length n and returns a value y of length n.

• Punct(k, z) : This PPT algorithm takes as input a key k ∈ {0, 1}n and an
input value z ∈ {0, 1}n. It outputs a punctured key kz ←$ Punct(k, z).

• Eval(kz, x) : This deterministic polynomial-time algorithm takes as input a
punctured key kz and some input x ∈ {0, 1}n and returns ⊥ if x = z, and a
value y ∈ {0, 1}n otherwise.

A puncturable PRF is said to be correct, if for all security parameter n, all k ∈
{0, 1}n, every value z ∈ {0, 1}n and all x ∈ {0, 1}n, x 6= z, it holds that

Pr[Eval(Punct(k, z), x) = PPRF(k, x)] = 1.

ExpIND-KDF
KDF,A (1n)

b←$ {0, 1}
Q := ∅
kkdf ←$ Kgen(1n)

b′ ←$AOKDF(1n)

if b′ = b

return 1

else

return 0

OKDF(e)

if e /∈ Q
Q := Q∪ {e}
if b = 1

k̂ ← KDF(kkdf, e)

else

k̂←$ {0, 1}n

return k̂

else

return ⊥

Fig. 2. ExpIND-KDF
KDF,A (1n) security game

ExpIND-PPRF
PPRF,A (1n)

b←$ {0, 1}
k←$ {0, 1}n

(z, state)←$A(1n)

kz ←$ Punct(k, z)

if b = 1 then

y ← PPRF(k, z)

else y←$ {0, 1}n

b′ ←$A(kz, y, state)

return (b′ = b)

Fig. 3. IND-PPRF security game

10 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

PPRF security requires that the PPRF value on k and z is indistinguishable
from random, even when given the punctured key kz. Note that for our purposes,
we only rely on security for random inputs rather than adversarially chosen ones,
i.e., we use a less powerful assumption which makes our result stronger.

Definition 8 (IND-PPRF-security). A PPRF scheme is said to be IND-PPRF-
secure if all probabilistic polynomial-time adversaries A have negligible distin-
guishing advantage in the IND-PPRF game defined in Figure 3.

An indistinguishability obfuscator (iO) ensures that the obfuscation of any
two functionally equivalent programs (i.e. circuits) are computationally indis-
tinguishable. In the following definition, a distinguisher D is an adversary that
aims at identifying which of the two programs has been obfuscated.

Definition 9 (Admissible Circuit Sampler). Let p be a polynomial. A PPT
algorithm S is called a p-admissible circuit sampler if

1− Pr(C0,C1)←$S(1n) [∀x ∈ {0, 1}n C0(x) = C1(x)]

is negligible in n and for all n ∈ N and all pairs (C0,C1) in the range of A(1n),
it holds that the size of C0 and the size of C1 is upper bounded by p(n).

Definition 10 (Indistinguishability Obfuscator). A PPT algorithm iO,
parameterized by a polynomial p, is called an indistinguishability obfuscator if
for any p-admissible circuit sampler S the following conditions are satisfied:

Correctness. For all circuits C and for all inputs x to the circuit,

Pr[C′(x) = C(x) : C′←$ iO(C)] = 1,

where the probability is over the randomness of iO.
Security. For all p-admissible S and any PPT distinguisher D, the following

distinguishing advantage is negligible:∣∣Pr(C0C1)←$S [D(iO(C0)) = 1]− Pr(C0C1)←$S [D(iO(C1)) = 1]
∣∣ ≤ negl(n) ,

where the probabilities are over the randomness of the algorithms.

When obfuscating cryptographic algorithms with keys it is often convenient
to use the notation C[k](x) to denote the circuit with fixed encoded key(s) k and
variable input x.

3 Hardware-Bound White-box Key Derivation Function

In this section, we first introduce our notion of a hardware module and explain
how we instantiate it in our setting. Then, we provide the syntax and security
notion for a hardware-bound key derivation function, present our construction
and provide a security reduction to indistinguishability obfuscation and PPRFs.

Security Reductions for White-Box Key Storage 11

3.1 Hardware Module

HW : kHWm

kHWs ← SubKgenHW(kHWm, label)

σ ← RespHW(kHWm, label , x)

label

kHWs

x, label

σ

Fig. 4. Functionalities of the hardware module
performed in the hardware. The Check operation
is performed by the software program correspond-
ing to the label .

A schematic overview over the
hardware module functionalities
executed on the secure hardware
is given in Figure 4. Namely,
a hardware module comes with
a key generation algorithm that
generates the hardware main
key kHWm.
This key generation algorithm is
run at the manufacturer of the
hardware and thus not depicted
in Figure 4. The secure hard-
ware allows to export a sub-key
via querying the secure hard-
ware with a label . The hardware then runs the sub-key generation algorithm
SubKgenHW on kHWm and label and returns the resulting sub-key kHWs. In addition,
the secure hardware can be queried with a pair (x, label). The hardware, then,
uses the algorithm RespHW to generate a PRF/MAC value σ for x under kHWm. In
order to avoid storing kHWs for all values label , the hardware re-derives kHWs anew
each time RespHW is called. The PRF/MAC value can be checked outside of the
secure hardware by running CheckSW on kHWs and the pair (x, σ).

Remarks. In this paper, we assume that the hardware module is secure and,
as the only part of the device, not subject to white-box attacks. Even more,
we assume that the hardware looks like a secure black-box to the white-box
adversary and is not subject to side-channel attacks.

With regard to the white-box program, it is important that the verification
key kHWs is not stored in plain since, otherwise, one might derive PRF/MAC val-
ues using kHWs rather than querying the hardware. Thus, the CheckSW functional-
ity will need to be white-boxed (and will later be bound to another functionality
such as our white-box KDF), essentially making it asymmetric. Note that the
syntax and correctness of our hardware module also allows to be directly im-
plemented by a (standard, asymmetric) signature scheme such as provided by
the Android Keystore [And18b]. In that case, the verification key does not need
additional protection. We chose to implement the hardware with a symmet-
ric primitive for efficiency and simplicity of the proof. Note that regardless of
whether one uses MACs or signature schemes as a hardware functionality, the
verification functionality needs to be cryptographically bound to a software pro-
gram to be useful; else the software program can be code-lifted and run without
performing the verification check.

Regardless of efficiency, both approaches, using signature schemes directly
or making MAC verification asymmetric, are sound approaches. Importantly,
in both cases, the soundness of the approach relies on domain separation, i.e.,
signatures/MAC for one label should not be mixed up with signatures/MACs for

12 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

a different label . Finally, recall that fixed device identifiers (that do not depend
on the input x) tend to provide very weak hardware-binding guarantees only,
since once intercepted, they can be emulated for a code-lifted software program.
We now give the syntax for our hardware-module.

Definition 11 (Hardware Module HWM). A hardware module HWM con-
sists of four algorithms (KgenHW, SubKgenHW, RespHW, CheckSW), where KgenHW is a
PPT algorithm, and the algorithms SubKgenHW, RespHW and CheckSW are deter-
ministic algorithms with the following syntax:

kHWm←$ KgenHW(1
n) kHWs ← SubKgenHW(kHWm, label)

σ ← RespHW(kHWm, label , x) b← CheckSW(kHWs, x, σ),

Correctness requires that for all security parameters n ∈ N,

Pr[CheckSW(SubKgenHW(kHWm, label), x, RespHW(kHWm, label , x)) = 1] = 1,

where the probability is over the sampling of kHWm←$ KgenHW(1
n).

We do not define or prove security of the hardware module as a standalone
primitive, since we will later prove security of our white-box KDF directly
based on the puncturable PRFs used in the hardware module construction. Note
that a standalone security definition for a hardware module could not capture
MACs/PRFs and signature security simultaneously. In our hardware module
construction below, key generation samples a random key, sub-key generation
applies a PRF to it to derive a sub-key, and RespHW and CheckSW essentially im-
plement a PRF-based MAC. Note that the additional PRG evaluation in CheckSW
is merely used to enable the proof technique by Sahai and Waters [SW14].

Construction 1. Let PRG be a pseudorandom generator, PRF be a pseudorandom
function and PPRF be a puncturable pseudorandom function. We construct a
hardware module HWM as follows:

KgenHW(1
n)

1 : kHWm ←$ {0, 1}n

2 : return kHWm

SubKgenHW(kHWm, label)

1 : kHWs ← PRF(kHWm, label)

2 : return kHWs

RespHW(kHWm, label , x)

1 : σ ← PPRF(PRF(kHWm, label), x)

2 : return σ

CheckSW(kHWs, x, σ)

1 : if PRG(σ) = PRG(PPRF(kHWs, x))

2 : return 1 else return 0

Hardware-bound White-box Key Derivation Function. We now define
and construct a hardware-bound white-box key derivation function WKDF. We
here build on the previously introduced hardware module and a traditional KDF.
In the compiling phase, a compiler Comp takes as input the KDF key kkdf and
the sub-key kHWs for CheckSW. The compiler generates a program WKDF which

Security Reductions for White-Box Key Storage 13

takes as input a pair (e, σ) and, intuitively, first checks whether σ is valid for e
under kHWs and, if so, evaluates the KDF on kkdf and e. The role of the compiler,
conceptually, is to return a program where the KDF operation is bound to the
verification operation, i.e., the two functionalities cannot be separated from each
other and the (outcome of the) verification cannot be manipulated.

Definition 12 (WKDF). A white-box key derivation scheme with hardware
binding WKDF consists of a hardware module HWM, a key derivation func-
tion KDF, and a PPT compiling algorithm Comp:

WKDF←$ Comp(kkdf, kHWs).

For all genuine kHWm, for all kkdf, for all label , for all e, for all kHWs =
SubKgenHW(kHWm, label) and σ = RespHW(kHWm, label , e), we have

Pr[KDF(kkdf, e) = WKDF(e, σ)] = 1

where the probability is taken over compiling WKDF←$ Comp(kkdf, kHWs).

Security Model. We now define security for a WKDF via the IND-WKDF
security game, illustrated in Figure 5. We want to capture the pseudorandomness
of keys derived from the WKDF, i.e., an adversary should not be able to distinguish
between a key produced from the WKDF and an equally long key sampled at
random. As a white-box adversary, the game provides the adversary with the
capability of inspecting the WKDF itself (i.e. its circuit or implementation code).
Recall that additionally, we want to capture the notion of hardware-binding:
if the adversary tries to run the WKDF without having access to its designated
hardware, the WKDF should not be executable anymore.

We model this by giving the adversary hardware access via a OResp oracle,
which the adversary queries by providing a context value e and which the ad-
versary can query a polynomial number of times. With the reply σ from the
hardware component, the adversary is able to run WKDF on the context value
e used for querying OResp. Additionally, we grant the adversary access to an
oracle OSubKgen. This oracle produces hardware sub-keys which might be used
to generate new hardware-bound white-box key derivation functions. To avoid
trivial attacks, the adversary is not allowed to request a sub-key under the same
label that was used to generate the initial WKDF. To capture the pseudorandom-
ness of derived keys, the adversary has access to a real-or-random oracle OKDF.
The oracle OKDF first samples a new context value e and then, depending on
a random bit b, it either returns the output of the KDF (under key kkdf) or
a random string of equal length. To avoid trivial attacks, the adversary is not
allowed to query the OResp oracle with the same context value that was sampled
by the challenger. Finally, A outputs a bit b′ and wins if b′ = b.

Definition 13 (IND-WKDF). We say that a hardware-bound white-box key
derivation scheme WKDF is IND-WKDF-secure if all PPT adversaries A have a
negligible distinguishing advantage in game ExpIND-WKDF

WKDF,A (1n), see Figure 5.

14 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

ExpIND-WKDF
WKDF,A (1n)

b←$ {0, 1}
Q := ∅
label ←$A(1n)

kkdf ←$ Kgen(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

WKDF←$ Comp(kkdf, kHWs)

b′ ←$AOResp,OKDF
OSubKgenHW

(WKDF)

return b′

OKDF()

e←$ {0, 1}n

Q := Q∪ {e}
if b = 0

k̂ ← KDF(kkdf, e)

else

k̂←$ {0, 1}n

return (e, k̂)

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
σ ← RespHW(kHWm, label , e)

return σ

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

Fig. 5. The ExpIND-WKDF
WKDF,A (1n) security game.

Note that one could also provide the adversary with a recompilation ora-
cle [DLPR14] so that the adversary can request several (independent) copies of
the WKDF based on the same key. We refrain from including this feature into
our model, but note that our construction can be shown to achieve also this
stronger notion, as indistinguishability obfuscation makes recompilation adver-
sarially simulatable.

3.2 Construction of a WKDF

We now construct a WKDF, based on a traditional KDF and the previously
introduced hardware module HWM. As discussed before, the compiler Comp, on
input the KDF key kkdf and the hardware sub-key kHWs binds the hardware
CheckSW procedure to the KDF evaluation. Concretely, the compiler constructs a
circuit C[kkdf, kHWs] and obfuscates it using indistinguishability obfuscation. The
circuit C[kkdf, kHWs], on input (e, σ) first checks whether CheckSW(kHWs, e, σ) equals
1. If yes, it returns the output of KDF(kkdf, e). Else, it returns the all-zero string.
The reason that the construction is secure, is, intuitively, that the obfuscation
of C[kkdf, kHWs] achieves the desired binding property. We now first give the KDF
construction and then the WKDF construction directly below.

Construction 2. Let PPRF be a puncturable pseudorandom function scheme,
then we construct our KDF as follows:

Security Reductions for White-Box Key Storage 15

Kgenkdf(1
n)

1 : kkdf ←$ {0, 1}n

2 : return kkdf

KDF(kkdf, e)

1 : k̂ ← PPRF(kkdf, e)

2 : return k̂

Construction 3. Let iO be an indistinguishability obfuscator. Based on the
hardware module HWM given in Construction 1 and the key derivation scheme
KDF given in Construction 2, we construct WKDF by defining the following
compiler Comp:

C[kkdf, kHWs](e, σ)

1 : v ← CheckSW(kHWs, e, σ)

2 : if v = ⊥ return 0n

3 : else

4 : k̂ ← KDF(kkdf, e)

5 : return k̂

Comp(kkdf, kHWs)

1 : WKDF←$ iO(C[kkdf, kHWs])

2 : return WKDF

Theorem 1. Let PRG be a pseudorandom generator, let PRF be a pseudorandom
function, let PPRF be a puncturable PRF, and iO be an indistinguishability ob-
fuscator for appropriate p-admissible samplers. Then Construction 3 is a secure
white-box KDF scheme WKDF.

Proof. Let A be a PPT adversary. Let ExpIND-WKDF
A,b denote the IND-WKDF game

with a value b ∈ {0, 1} hardcoded. We show that

ExpIND-WKDF
A,0 (1n) ≈ ExpIND-WKDF

A,1 (1n).

Overview: The proof is a hybrid argument over the number of queries q that
A makes to the OKDF oracle which either evaluates a puncturable PRF and
returns its output or a random string of the same length. Our hybrid games
maintain a counter j that increases by 1 whenever the adversary queries the
OKDF oracle. The i-th hybrid game Gamei1 returns a random string whenever
the counter j > i, otherwise it returns the evaluation of the PPRF. In other
words, whenever we move to the next hybrid, the oracle returns an additional
random string such that we sequentially replace PPRF values by random strings
of appropriate size. After at most polynomial steps we have replaced all OKDF
outputs by random values and obtain ExpIND-WKDF

A,1 (1n).

Detailed proof: Let q(n) be a polynomial which is a strict upper bound on
the number of queries that A makes to oracle OKDF. We define a sequence

of adversary-dependent hybrid games Game01 to Game
q(n)
1 such that

ExpIND-WKDF
A,0 ≈ Game01 (1)

ExpIND-WKDF
A,1 ≈ Game

q(n)
1 . (2)

16 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

C1[kkdf, kHWs](e, σ)

if PRG(σ) = PRG(PPRF(kHWs, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C3[kkdf, z, kz, y](e, σ)

if e = z and PRG(σ) = y

or if PRG(σ) = PRG(Eval(kz, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C5[kzkdf, z, kz, y](e, σ)

if e = z and PRG(σ) = y

return 0n

if PRG(σ) = PRG(Eval(kz, e))

k̂ ← Eval(kzkdf, e)

return k̂

else return 0n

C2[kkdf, z, kz, τ](e, σ)

if e = z and PRG(σ) = PRG(τ)

or if PRG(σ) = PRG(Eval(kz, e))

k̂ ← PPRF(kkdf, e)

return k̂

else return 0n

C4[kzkdf, z, kz, y, k](e, σ)

if e = z and PRG(σ) = y

return k

if PRG(σ) = PRG(Eval(kz, e))

k̂ ← Eval(kzkdf, e)

return k̂

else return 0n

Fig. 6. Definition of Circuits

Using 18 game hops we show that for 0 ≤ i ≤ q(n)− 1:

Gamei1 ≈ Gamei18 (3)

Gamei18 ≈ Gamei+1
1 . (4)

Indistinguishability of Game01 and Game
q(n)
1 then follows by a standard hybrid

argument, guessing the hybrid index at random. We define the games and specify
the game-hops below and the required circuit definitions are depicted in Figure 6.
Equation 4 follows by inspection of the definitions of Gamei18 and Gamei+1

1 . We
now turn to showing Equation 3 which is the technical heart of the theorem.

Security Reductions for White-Box Key Storage 17

Gamei1(1n)

Gamei18(1n)

1 : z←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$A(1n)

4 : kkdf ←$ {0, 1}n

5 :

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ PRF(kHWm, label)

9 :

10 :

11 : C← C1[kkdf, kHWs]

12 : WKDF←$ iO(C, 1n)

13 : b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q∪ {e}
3 : y ← PPRF(kHWs, e, 1

n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e←$ {0, 1}n

5 : Q := Q∪ {e}
6 : if j > i

7 : k̂ ← PPRF(kkdf, e)

8 : else k̂←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label ′)

1 : assert label ′ 6= label

2 : k′HWs ← PRF(kHWm, label
′)

3 : return k′HWs

Gamei2(1n)

Gamei17(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

C← C1[kkdf, kHWs]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← PPRF(kHWs, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

Gamei3(1n)

Gamei16(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

τ ← PPRF(kHWs, z)

C← C2[kkdf, z, kz, τ]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← Eval(kz, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

PRF security

PRF security iO security

iO security PPRF sec.

18 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

Gamei4(1n)

Gamei15(1n)

1 : z←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$A(1n)

4 : kkdf ←$ {0, 1}n

5 :

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ {0, 1}n

9 : kz ←$ Punct(kHWs, z)

10 : τ ←$ {0, 1}n

11 : C← C2[kkdf, z, kz, τ]

12 : WKDF←$ iO(C, 1n)

13 : b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q∪ {e}
3 : y ← Eval(kz, e, 1

n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e←$ {0, 1}n

5 : Q := Q∪ {e}
6 : if j > i

7 : k̂ ← PPRF(kkdf, e)

8 : else k̂←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label ′)

1 : assert label ′ 6= label

2 : k′HWs ← PRF(kHWm, label
′)

3 : return k′HWs

Gamei5(1n)

Gamei14(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

τ ←$ {0, 1}n; y ← PRG(τ)

C← C3[kkdf, z, kz, y]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← Eval(kz, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

Gamei6(1n)

Gamei13(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

k ← PPRF(kkdf, z)

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y←$ {0, 1}2n

C← C3[kkdf, z, kz, y]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← Eval(kz, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← PPRF(kkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

iO sec.

iO sec.

PRG sec.

PRG sec.

iO sec.

Security Reductions for White-Box Key Storage 19

Gamei7(1n)

Gamei12(1n)

1 : z←$ {0, 1}n, Q := {z}
2 : j ← 0

3 : label ←$A(1n)

4 : kkdf ←$ {0, 1}n

5 : kzkdf ←$ Punct(kkdf, z)

6 : k ← PPRF(kkdf, z)

7 : kHWm ←$ {0, 1}n

8 : kHWs ←$ {0, 1}n

9 : kz ←$ Punct(kHWs, z)

10 : y←$ {0, 1}2n

11 : C← C4[kzkdf, z, kz, y, k]

12 : WKDF←$ iO(C, 1n)

13 : b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

14 : return b′

OResp(e)

1 : assert e /∈ Q
2 : Q := Q∪ {e}
3 : y ← Eval(kz, e, 1

n)

4 : return y

OKDF()

1 : j ← j + 1

2 : if i = j k′ ←$ {0, 1}n

3 : return (z, k) (z, k′)

4 : else e←$ {0, 1}n

5 : Q := Q∪ {e}
6 : if j > i

7 : k̂ ← Eval(kzkdf, e)

8 : else k̂←$ {0, 1}n

9 : return (e, k̂)

OSubKgenHW(label ′)

1 : assert label ′ 6= label

2 : k′HWs ← PRF(kHWm, label
′)

3 : return k′HWs

Gamei8(1n)

Gamei11(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

kzkdf ←$ Punct(kkdf, z)

k ← {0, 1}n

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y←$ {0, 1}2n

C← C4[kzkdf, z, kz, y, k]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← Eval(kz, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← Eval(kzkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

Gamei9(1n)

Gamei10(1n)

z←$ {0, 1}n, Q := {z}
j ← 0

label ←$A(1n)

kkdf ←$ {0, 1}n

kzkdf ←$ Punct(kkdf, z)

k←$ {0, 1}n

kHWm ←$ {0, 1}n

kHWs ←$ {0, 1}n

kz ←$ Punct(kHWs, z)

y←$ {0, 1}2n

C← C5[kzkdf, z, kz, y]

WKDF←$ iO(C, 1n)

b′ ←$ARespHW,OKDF
OSubKgen (WKDF)

return b′

OResp(e)

assert e /∈ Q
Q := Q∪ {e}
y ← Eval(kz, e, 1

n)

return y

OKDF()

j ← j + 1

if i = j k′ ←$ {0, 1}n

return (z, k) (z, k′)

else e←$ {0, 1}n

Q := Q∪ {e}
if j > i

k̂ ← Eval(kzkdf, e)

else k̂←$ {0, 1}n

return (e, k̂)

OSubKgenHW(label ′)

assert label ′ 6= label

k′HWs ← PRF(kHWm, label
′)

return k′HWs

PPRF security

PPRF security

iO/stat. gap

iO/stat. gap

perfect

20 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

We now reduce each game-hop to the underlying assumption. We omit boiler-
plate code for simulations and focus instead on describing the conceptual ar-
gument that underlies the reduction. We discuss the game-hops in the forward
direction. The reductions for the backward direction proceed analogously.

Game1 to Game2. This game hop reduces to the PRF security of the PRF keyed
with kHWm. We here rely on the fact that OSubKgenHW(label ′) does not allow to
query PRF(kHWm, ·) on label .

Game2 to Game3. This game hop reduces to iO security and relies on the correct-
ness of the PPRF. The correctness of the PPRF implies that the first two lines
of C1 and C2 are equivalent, which allows to apply iO security. Note that the
oracle OResp cannot be queried on z since z is added to Q in the very beginning
of the game. Therefore, it suffices to use the punctured key kz in OResp.

Game3 to Game4. This game hop reduces to the IND-PPRF security of PPRF
keyed with kHWs and punctured at z. For the reduction, it is important to note
that throughout the game, only punctured versions kz of kHWs are used, except
for calculating τ .

Game4 to Game5. This game hop replaces C2[kkdf, z, kz, τ] by C3[kkdf, z, kz, y]
and relies on iO security. Instead of hardcoding τ into C2 and computing y as
PRG(τ) within circuit C2, the value y = PRG(τ) is directly hardcoded into circuit
C3. As the two circuits are functionally equivalent, the game hop reduces to iO
security.

Game5 to Game6. This game hop replaces y = PRG(τ) by a randomly sampled
value y. This game hop reduces to PRG security, since the variable τ that is
sampled in Gamei5(1n) is not used anywhere else in the game(s).

Game6 to Game7. This game hop reduces to iO security with an additional
negligible statistical loss. In detail, the uniformity of the sampling of z from
{0, 1}n ensures that, with overwhelming probability, the oracle OKDF does not
return (e, ∗) for a different than the ith query of A to the OKDF oracle, i.e.,
the change to OKDF yields a negligible statistical difference between Gamei6(1n)
and Gamei7(1n). The more important change is the use of kzkdf in C4. Due to
the correctness of the puncturable PRF, the circuits C3 and C4 are functionally
equivalent and thus, this game hop can be reduced to iO security.

Game7 to Game8. This game hop reduces to the IND-PPRF security of PPRF,
keyed with kkdf and punctured at z. For the reduction, it is important to note
that throughout the game, only the punctured version kzkdf of kkdf is used, except
for calculating k.

Security Reductions for White-Box Key Storage 21

Game8 to Game9. Note that with overwhelming probability, y is not in the image
of the PRG, since the image of the PRG is of size 2n only, whereas y is sampled
from a set of size 22n. Therefore, y is most likely outside the image of the PRG. If
it is, then the circuits C4 and C5 are functionally equivalent as the if condition
in the first line of C4 cannot be satisfied by any input. Thus, this game hop
reduces to iO security.

Game9 to Game10. Importantly, C5 does not depend on k anymore and thus,
it is perfectly indistinguishable for the adversary whether the OKDF uses k or
an independently drawn value k′ that OKDF samples in the moment of the ith
query.

Game10 to Game18. These game hops are analogous in the backward direction.
Note that k is not used in OKDF anymore in the game hops from Game 10 to
Game 18.

Connecting the hybrids. We now show that Equation 4 holds, which we recall is

Gamei18 ≈ Gamei+1
1

On a high-level, Gamei18 and Gamei+1
1 are identical since they both sample the

first i+ 1 keys in the OKDF oracle at random and compute the remaining keys
using the PPRF. Note that Gamei18 and Gamei+1

1 are only identical up to a negligi-
ble statistical difference since the pre-sampled value z is consumed at query i to
the OKDF oracle in Gamei18 and only in query i+ 1 in Gamei+1

1 . However, as z is
sampled uniformly at random from {0, 1}n, z remains statistically hidden from
the adversary until it is returned as an output from the OKDF oracle. Thus, it
is infeasible to determine when the pre-sampled value z was returned. We omit
a detailed code-comparison, since it is quite simple.

Connecting the hybrids to the original game. Finally, we show Equation 1 and
Equation 2. We start with the former which we recall is

ExpIND-WKDF
A,0 ≈ Game01.

On a high-level, ExpIND-WKDF
A,0 and Game01 are identical since they both compute

all keys in the OKDF oracle using the PPRF. Moreover, due to the correctness of
the hardware module, it is functionally equivalent to use PPRF(kHWs, e, 1

n) and
PPRF(PRF(kHWm, e, 1

n)) in oracle OResp. However, there is a negligible statistical
difference between ExpIND-WKDF

A,0 and Game01, since Game01 pre-samples a uniformly

random value z from {0, 1}n, while ExpIND-WKDF
A,0 does not. However, as z is

sampled uniformly at random, it remains statistically hidden from the adversary
until it is returned as an output from the OKDF oracle. We omit a detailed code-
comparison, since it is quite simple. The reasoning for Equation 2 is analogous,
which concludes the proof of Theorem 1.

22 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

4 Secure Payment Application

In this section we build a secure payment scheme, assuming an IND-WKDF-
secure WKDF, as constructed in the previous section. As mentioned before, the
main idea of the construction of the payment application is to bind a symmetric
encryption scheme (that is only known to provide black-box security) on top of
the WKDF via a layer of indistinguishability obfuscation and thereby bootstrap
the security of the WKDF to the security of the symmetric encryption scheme
and the entire payment application.

We start with describing the process flow of an abstract payment application,
illustrated in Figure 7. Note that this abstract payment application might also be
implementable differently than assuming a WKDF. A payment application relies
on a hardware module (see Definition 11), which we recall has a main hardware
key kHWm, allows to derive sub-keys kHWs ← SubKgen(kHWm, label) from the main
hardware key and allows to obtain MAC/PRF values σ ← RespHW(kHWm, label , x)
that can be verified outside of the hardware via the algorithm CheckSW(kHWs, x, σ)
that returns 0 or 1.

Server

kpay ←$ Kgenpay

WPAY←$ CompApp(kpay, kHWs, P)

(idtk , tk)←$ GenToken

ServerTokens[idtk]← tk

(idtk , etk)←$ EnTok(kpay, (idtk , tk))

Tokens[idtk]← etk

tk ← ServerTokens[idtk]

⊥ 6= m← Process(idtk , req , tk)

{kHWs}pkS

WPAY,Tokens
idtk , label σ

idtk , req

User

HW

kHWs ← SubKgenHW(kHWm, label)

σ ← EvalHW(kHWm, label , idtk)

(idtk , req)← WPAY(idtk , etk , σ,m)

WPAY

Fig. 7. Diagram of our payment scheme. The hardware calculates the value σ via the
EvalHW function on input idtk , the label and the master key. WPAY executes the CheckSW
function on input σ and on the sub-key and idtk .

As the payment application is bound to a hardware module, the user starts by
deriving a hardware sub-key kHWs ← SubKgen(kHWm, label) in their hardware and
transmit it securely to the server. In Figure 7, we hint at this secure transmission
of kHWs via an encryption under the server’s public-key pkS . In our model, we
later refrain from modeling this off-band transmission of kHWs and simply assume
that it is implemented securely.

Security Reductions for White-Box Key Storage 23

The server then draws a symmetric key kpay for the user and binds it to the
user’s hardware sub-key kHWs via the compilation algorithm CompApp:

WPAY←$ CompApp(kpay, kHWs, P).

The predicate function P restricts the set of valid messages that can be encrypted
via WPAY. An example for useful restrictions are limits on the amount of the
payment or hardcoding of the user’s payment data. Note that potentially, P can
also contain cryptographic functionalities (which we do not model).

As we consider a tokenized payment scheme, in addition to WPAY the server
also generates several tokens, encrypts them under kpay and stores the encrypted
tokens in an array Tokens that is indexed by token identifiers. It then transmits
WPAY to the user, together with the array Tokens, see Figure 7.

Now, the user can use WPAY to generate requests to the server. To do so, WPAY
takes as input a message m as well as a pair of a token identifier idtk and its
corresponding encrypted token etk . Conceptually, the goal of WPAY is to return a
request req to the server that contains an encryption of m under the unencrypted
token contained in etk . To facilitate verification on the server’s side, the user’s
WPAY will also return the token identifier idtk :

(idtk , req)← WPAY(idtk , etk , σ,m)

Importantly, in addition to the aforementioned inputs, WPAY also takes as
input σ, which is a hardware value obtained from making an RespHW query to the
hardware for (label , idtk). To ensure the hardware-binding, conceptually, WPAY
needs to evaluate the algorithm CheckSW(kHWs, idtk , σ) internally and only perform
the desired operations based on this check succeeding. Intuitively, the CheckSW
operation also needs to be bound to all further operations of WPAY.

Finally, upon receiving (idtk , req), the server retrieves the token tk corre-
sponding to idtk and processes the request req via the algorithm Process. If the
request is accepted, Process returns the message m that the client encrypted.
Else, Process returns an error symbol ⊥.

Note that we require the server to know the secret key kpay to encrypt the
tokens under kpay before sending it to the user. The advantage of this design
is that the values of the tokens are not exposed before being stored. Note that
we consider the server to be a trusted and secure party which is a necessary
assumption: As the server is in charge of generating the tokens, the server knows
the token values anyway. Thus, the server additionally knowing the value of
the secret key kkdf of the user does not compromise the security of the mobile
payment application from the perspective of the user.

Definition 14 (Hardware-Bound White-Box Payment Scheme).
A hardware-bound white-box payment scheme WPAY is parameterized with a
message length parameter `(n) and consists of a hardware module HWM and the
following algorithms:

– kpay←$ Kgenpay(1
n) : This randomized algorithm takes as input the security

parameter and outputs the secret payment key kpay;

24 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

– (idtk , tk)←$ GenToken(1n) : This randomized algorithm takes as input the
security parameter and returns a token tk and a token identifier idtk , where
we assume that identifiers are unique with overwhelming probability;

– (idtk , etk)←$ EnTok(kpay, (idtk , tk)) : This randomized algorithm takes as in-
put a token tk together with its corresponding identifier idtk and outputs an
encrypted token etk, together with its corresponding token identifier idtk ;

– WPAY←$ CompApp(kpay, kHWs, P) : This randomized algorithm takes as input a
payment key kpay, a hardware-binding key kHWs and a message filtering predi-
cate P : {0, 1}`(n) → {0, 1}. It outputs a white-box payment application WPAY

with syntax (idtk , req) ← WPAY(idtk , etk , σ,m), where σ denotes a hardware
value σ, m ∈ {0, 1}`(n) denotes a payment message, and req constitutes a
payment request;

– m ← Process(idtk , req , tk) : This deterministic algorithm takes as input
a token identifier idtk , a token value tk and a a request req. It outputs a
message m or ⊥.

Moreover, we require that the following correctness property holds: For all keys
kpay, for all main hardware keys kHWm, for all pairs of tokens and token identifier
(idtk , tk), for all predicates P , for all messages m ∈ {0, 1}`(n) such that P (m) =
1, for σ = RespHW(kHWm, label , idtk), it holds that

Pr[Process(WPAY(idtk , etk , σ,m), tk) = m] = 1,

where the probability is taken over compiling WPAY←$ CompApp(kpay, kHWs, P) and
encrypting the token (idtk , etk)←$ EnTok(kpay, (idtk , tk)).

4.1 Security of White-Box Payment Applications

We now specify security of a white-box payment application scheme WPAY.
Correctness of WPAY ensures that when having access to the hardware, the
application WPAY is useful to generate payment requests. In turn, hardware-
binding security ensures that when not having access to the hardware, then the
application becomes useless. In other words, in absence of the hardware, the
adversary cannot generate new requests and does not learn anything about the
content of the requests sent to the server. Thus, the desired security properties
in the absence of the hardware are the following:

(1) Integrity of the requests transmitted from user to server.
(2) Confidentiality of the messages contained in the requests transmitted from

user to server.

We capture both properties via the IND-WPAY security game, depicted in
Figure 8. IND-WPAY starts with a setup phase where the relevant keys are sam-
pled, first for the hardware (line 3 and 4) and then for the payment application
(line 5). Then, WPAY is compiled (line 6). Note that we allow the adversary to
choose the filter function P , modeling that security should hold for all possible
filter functions. We also allow the adversary to choose the hardware label . In

Security Reductions for White-Box Key Storage 25

ExpIND-WPAY
WPAY,A (1n)

1 : b←$ {0, 1}
2 : (label , P)←$A(1n)

3 : kHWm ←$ KgenHW(1
n)

4 : kHWs ← SubKgenHW(kHWm, label)

5 : kpay ←$ Kgenpay(1
n)

6 : WPAY←$ CompApp(kpay, kHWs, P)

7 : b∗ ←$AOResp,OSubKgen,OGetTok
OProcess,OTransaction (WPAY)

8 : return (b∗ = b)

OResp()

1 : (idtk , tk)←$ GenToken(1n)

2 : σ ← RespHW(kHWm, label , idtk)

3 : RespUsed[idtk]← 1

4 : (idtk , etk)←$ EnTok(kpay, (idtk , tk))

5 : return (idtk , etk , σ)

OSubKgen(label ′)

1 : assert label ′ 6= label

2 : k′HWs ← SubKgenHW(kHWm, label
′)

3 : return k′HWs

OGetTok()

1 : (idtk , tk)←$ GenToken(1n)

2 : ServerTokens[idtk]← tk

3 : (idtk , etk)←$ EnTok(kpay, (idtk , tk))

4 : return (idtk , etk)

OTransaction(m0,m1)

1 : assert |m0| = |m1| = `(n)

2 : assert P (m0) = 1 ∧ P (m1) = 1

3 : (idtk , tk)←$ GenToken(1n)

4 : ServerTokens[idtk]← tk

5 : (idtk , etk)←$ EnTok(kpay, (idtk , tk))

6 : σ ← RespHW(kHWm, label , idtk)

7 : (idtk , req)← WPAY(idtk , etk , σ,mb)

8 : C := C ∪ {req}
9 : return (idtk , etk , req)

OProcess(idtk , req)

1 : assert RespUsed[idtk] = 0

2 : assert req /∈ C
3 : tk ← ServerTokens[idtk]

4 : m← Process(idtk , req , tk)

5 : ServerTokens[idtk]← ⊥
6 : if b = 0 return m

7 : else return ⊥

Fig. 8. ExpIND-WPAY
WPAY,A (1n) game capturing integrity and confidentiality.

26 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

practice, neither P nor label are adversarially chosen, but giving this ability to
the adversary in the setup phase only makes our model stronger. Note that we
consider our adversary as stateful, i.e., the adversary in the setup phase (line
2) shares state with the adversary that accesses oracles (line 7) in order to find
out the secret bit b. As the adversary is a white-box adversary, it receives the
compiled WPAY as input (line 7). We now turn to the explanation of the oracles.

Oracles OResp and OSubKgen model the adversary’s hardware access. Upon
querying OResp, a pair of token and its respective identifier are sampled at
random. The value of the token identifier is used for generating the hardware
value σ, and the oracle returns all three values. The adversary is thus able to
run their own WPAY to generate a request message for that specific token, token
id and hardware value.

OSubKgen lets the adversary observe hardware sub-key values. Such values
could be values used by different applications or values from older versions of
a payment application. To avoid trivial attacks, the adversary is not allowed to
obtain the sub-key kHWs that was used for compiling the white-box application
WPAY (line 6 in the main ExpIND-WPAY

WPAY,A procedure).

Oracle OGetTok models generation and encryption of the tokens on the
server’s side and storing them in a list. We recall that a white-box adversary
might be able to access the encrypted tokens stored on a user’s phone and thus,
OGetTok returns the encrypted token and its identifier to the adversary.

We now turn to the two remaining oracles that encode the desired security
properties of confidentiality and integrity. We start with the transaction oracle
OTransaction, which encodes the confidentiality property. On a conceptual level,
OTransaction plays a similar role as the left-or-right encryption oracle in the
security game for authenticated encryption (cf. Definition 2): It encrypts either
the left or the right message, depending on whether the secret bit b is 0 or 1. Upon
submitting the two messages to the OTransaction oracle, the oracle randomly
samples a pair of a token and its respective identifier and the token value is
encrypted via the EnTok algorithm. The oracle then generates the necessary
hardware value σ based on the sampled token identifier, and then generates a
request message based on the token identifier, the encrypted token, the value σ
and one of the two messages submitted by the adversary. The oracle then saves
the generated request on a list C and returns the token identifier, the encrypted
token and the request message.

Note that the adversary is not able to use their own app to generate the same
request message received by the transaction oracle. Namely, while the adversary
is able to choose which message to encrypt with their own app, the token used for
encrypting the message is chosen at random and only with negligible probability
will both request messages look the same.

The process oracle OProcess encodes the integrity of the request messages
similarly to the decryption oracle in authenticated encryption. The adversary can
submit arbitrary values as long as those were not obtained from OTransaction
(check if they are in the set C) or if they were not generated using an idtk

generated by the OResp oracle for generating the hardware value σ. The server

Security Reductions for White-Box Key Storage 27

retrieves (line 3) the token tk corresponding to idtk from the token list, decrypts
(line 4) the request req with idtk and tk using the Process algorithm and deletes
tk from the token list. Authenticity is modeled by only returning the message
to the adversary if b = 0 and returning an error if b = 1. Thereby, the adversary
is able to learn the secret bit b whenever the adversary is able to forge a fresh
request.

Remark. Note that many useful properties are implied by our security definition.
For instance, IND-WPAY security implies that the token values remain secret,
unless the adversary queries the hardware on idtk .

Definition 15 (IND-WPAY Security). A hardware-bound white-box pay-
ment application scheme WPAY is said to be IND-WPAY-secure if all PPT adver-
saries A have negligible distinguishing advantage in the game ExpIND-WPAY

WPAY,A (1n)
as specified in Figure 8.

4.2 Construction of White-box Payment Scheme

We now construct a white-box payment scheme WPAY, which is IND-WPAY-
secure (see Figure 8), assuming the IND-WKDF-security of a white-box key
derivation function WKDF (see Figure 5). We first give an overview of the al-
gorithms of our construction. First, Kgenpay randomly samples a payment key
kpay and the GenToken algorithm randomly samples a token tk and its respective
identifier idtk . EnTok encrypts a token tk in the following way: For each token
with the identifier idtk , it generates a key k̂ ← KDF(kpay, idtk), and uses an au-

thenticated encryption scheme to encrypt the token using k̂. That is, each token
is encrypted using a different key. Note that each key is generated based on the
same key kpay, but based on a different context value idtk since each token has
a unique identifier.

The compilation algorithm CompApp of the payment scheme takes as input
a payment key kpay, a sub-key value kHWs as well as a message filtering pred-
icate P . It uses the compilation algorithm Comp of the WKDF and runs it on
(kpay, kHWs) to obtain a hardware-bound white-box program WKDF. It then runs
indistinguishability obfuscation on a circuit C[WKDF, P] and returns the output
of the obfuscation as WPAY. The circuit C[WKDF, P] and WPAY provide the same
functionality, but in WPAY, due to the layer of obfuscation, one should not be able
to separate the different operations from each other (see the discussion below).
C[WKDF, P] takes as input a pair (idtk , etk) of an encrypted token and its token
identifier as well as a hardware value σ and a message m. It first runs WKDF on
(idtk , σ) to obtain an output k̂, and recall that the security of WKDF ensures that

k̂ is only a KDF (and not an error value) if σ is the correct hardware value that
yields CheckSW(kHWs, idtk , σ) = 1. Thus, the hardware-binding of WPAY is directly

inherited from the hardware-binding of WKDF. Now, C[WKDF, P] uses k̂ to decrypt
the etk (line 5), checks whether P (m) = 1 (line 6) and, if so, encrypts the mes-
sage m using the token tk as key (line 7-8) and returns the resulting ciphertext
as a request message req along with the token identifier (line 10). Note that

28 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

Kgenpay(1
n)

1 : kkdf ←$ Kgen(1n)

2 : kpay ← kkdf

3 : return kpay

CompApp(kpay, kHWs, P)

1 : WKDF←$ Comp(kpay, kHWs)

2 : WPAY←$ iO(C[WKDF, P])

3 : return WPAY

Process(idtk , req , tk)

1 : nc← idtk

2 : c2 ← req

3 : m′ ← Dec2(tk , c2, nc)

4 : return m′

GenToken(1n)

1 : tk ←$ {0, 1}n

2 : idtk ←$ {0, 1}n

3 : return (idtk , tk)

EnTok(kpay, (idtk , tk))

1 : nc← idtk

2 : e← idtk

3 : k̂ ← KDF(kpay, e)

4 : c1 ← Enc1(k̂, tk , nc)

5 : etk ← c1

6 : return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

1 : e← idtk

2 : nc← idtk

3 : c1 ← etk

4 : k̂ ← WKDF(e, σ)

5 : tk ← Dec1(k̂, c1, nc)

6 : if |m| = `(n) and P (m) = 1

7 : c2 ← Enc2(tk ,m, nc)

8 : req ← c2

9 : else req ← ⊥
10 : return (idtk , req)

Fig. 9. Construction of a WPAY scheme

in the construction, we need to avoid the use of randomness, since we cannot
rely on the randomness being honestly generated. Thus, we use a nonce-based
encryption scheme, and the nonce nc used for encryption of the token is not
only retrieved (line 2) for decryption of the token (line 5), but also re-used for
encrypting the request (line 7). Note that the nonce in etk is not malleable since
we encrypt the tokens with an authenticated encryption scheme which provides
ciphertext integrity.

Recall that WPAY returns not only req but also the token identifier idtk of the
token that was used to encrypt m. This is because the use of tk authenticates the
user towards the server which, on its side, retrieves the token tk corresponding
to idtk , and runs the Process algorithm on (req , tk) which decrypts req with tk
and returns the result.

Construction 4. Based on two authenticated encryption schemes (Enc1, Dec1),
(Enc2, Dec2) and the WKDF in Construction 3, we construct a white-box pay-
ment scheme with hardware-binding WPAY = (Kgenpay, GenToken, EnTok, CompApp,
Process) as detailed in Figure 9.

On the use of iO. As mentioned above, the compiler of the payment applica-
tion in our construction applies indistinguishability obfuscation to the circuit
describing the application (see line 2 of CompApp in Figure 9). We obfuscate WPAY

with the following purposes. First we may wish to ensure the confidentiality of
internal variables, such as the outputs of the WKDF and the raw value of the to-
kens. Second, by obfuscating the program we can also ensure that no operation
can be separated from the rest, achieving thus a form of application binding. We
note however that in the security proof provided for the theorem below, we do
not prove any of these properties. Namely our IND-WPAY security model does

Security Reductions for White-Box Key Storage 29

not capture any form of application binding for the WPAY and only captures con-
fidentiality for tokens and other internal variables for the cases that an adversary
does not have access to the determined hardware.

Thus, our construction directly derives its security from the WKDF and could
also be proven secure even without using any form of obfuscation. However we
choose to obfuscate WPAY still, given that in practice, one would usually apply
one layer of obfuscation to the application in order to increase its robustness. We
note however that our model could be extended in order to capture some type
of application binding property, which could then be achieved by using iO on
our construction, as long as the relevant primitives used within the applications
are puncturable. For instance, one could challenge the adversary with providing
the output k̂ of the WKDF for a given context value e. Here, we could puncture
the WKDF (which is itself constructed from puncturable PRFs) and also puncture
the decryption algorithm as follows. For one ciphertext c∗, hardcode its corre-
sponding token value tk∗ and output tk∗ every time c∗ is provided as input. For
all other ciphertexts, perform a normal decryption. Note that hardcoding the
corresponding token value of a given ciphertext is possible, since the tokens are
generated and encrypted in advance (see the GenToken and EnTok processes).
Given both, the puncturable WKDF and the puncturable decryption program, we
can effectively apply indistinguishability obfuscation and ensure that an adver-
sary cannot separate the WKDF from the decryption and cannot extract any value
k̂.

Theorem 2. Let (Enc1, Dec1) and (Enc2, Dec2) be two AE-secure symmetric
encryption schemes, let WKDF be a IND-WKDF-secure white-box key deriva-
tion scheme, and let iO be an indistinguishability obfuscator for appropriate p-
admissible samplers. Then the white-box payment scheme WPAY in Construc-
tion 4 is IND-WPAY-secure.

Proof. We first give an overview of the proof of Theorem 2. Let A be a PPT ad-
versary. Let ExpIND-WPAY

A,0 (1n) denote the IND-WPAY game with b = 0 hardcoded

and let ExpIND-WPAY
A,1 (1n) denote the IND-WPAY game with b = 1 hardcoded. We

need to show that A has negligible distinguishing advantage, i.e., that the prob-
ability that A returns 1 in ExpIND-WPAY

A,0 (1n) differs from the probability that A
returns 1 in ExpIND-WPAY

A,1 (1n) at most by a negligible amount.
For the following proof overview, observe that in the IND-WPAY game, only

the OProcess oracle and the OTransaction oracle depend on the bit b. Namely,
OTransaction encrypts mb, and OProcess implements ideal authentication if b = 1
by simply rejecting all adversarially generated requests.

On a high-level, the security proof proceeds as follows. (1) We replace all
keys generated by the WKDF with random keys in OTransaction and OGetTok
and reduce this game hop to the security of the WKDF. (2) In the OTransaction
and OGetTok oracles, instead of encrypting the tokens tk with SE1, we encrypt
0|tk |. To do so, we make a hybrid argument over the number of queries that the
adversary makes to OTransaction and OGetTok and for each such query make
a reduction to the AE security of SE1. (Note that IND-CPA security would

30 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

suffice here, since the game provides no decryption oracle for SE1). (3) In the
OTransaction oracle, instead of encrypting m0, we now encrypt m1. At the same
time, in the OProcess oracle, we do not perform encryptions anymore but rather
answer all adversarial queries by ⊥. This proof again proceeds via a hybrid
argument over the number of queries to OTransaction and OGetTok, since one
token value is generated in each of these calls and we need to reduce to the
security to each of them. (4) We now de-idealize SE1 again and encrypt the real
token values. (5) We de-idealize the WKDF.

We now provide formal descriptions of the game hops implementing step
(1), (2) and (3). Step (4) is analogous to step (2), and step (5) is analogous
to step (1). Below, Game1 is ExpIND-WPAY

WPAY,A (1n) with bit b hardcoded to b = 0.
Note that due to the length of the game, the description is split over two pages.
Also recall that we measure the probability that the adversary returns 0, i.e.,
instead of returning (b = b∗), the game only returns b∗. This is possible by a
standard transformation on advantage terms with a loss of a factor of 2. Game2 is
ExpIND-WPAY

WPAY,A (1n) with Construction 4 inlined and OTransaction uses the code of
C[WKDF, P] directly rather than using the corresponding obfuscated version. This
replacement is justified, as the indistinguishability obfuscator preserves perfect
functional equivalence between the obfuscated and the unobfuscated program.
From Game2 to Game3, in the OResp, we use WKDF instead of KDF which is justified
by the correctness of WKDF. Moreover, in the OTransaction oracle, we do not
recalculate k̂, as the correctness of WKDF ensures that WKDF and KDF compute
the same key.

Game3 to Game4. We need to reduce this game hop to the IND-WKDF-security of
the WKDF. The reduction receives (P) from the adversary A and passes on label
to the IND-KDF game. It then receives WKDF from the IND-WKDF game and
computes WPAY←$ iO(C[WKDF, P]) and returns WPAY to A and then simulates
its oracles and returns the same bit as A. To simulate the OGetTok and the
OTransaction oracle, the reduction uses its OKDF() oracle. As all oracles sample
the input to the key derivation function uniformly at random, the simulation is
sound. Moreover, the reduction uses the OResp oracle of the IND-WKDF game
to simulate the OResp oracle of the IND-WPAY game. Note that the assert
condition is, with statistically overwhelming probability not violated, because
the inputs are chosen at random by the reduction to simulate the OResp oracle
of the IND-WPAY game. The reduction knows the token values and, thus, can
simulate OProcess perfectly. Finally, the reduction uses OSubKgen to simulate
OSubKgen by simply forwarding queries.

Game4 to Game5. We need to reduce this game hop to the AE-security of SE1.
We carry out a hybrid argument over the number of queries to OTransaction and
OGetTok. Note that this is possible, because these oracles use uniformly random
values to key SE1 and these values are not used at other points in the system.

Security Reductions for White-Box Key Storage 31

Game1(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgenpay(1
n)

WPAY←$ CompApp(kpay, kHWs, P)

b∗ ←$AOResp,OSubKgen,OGetTok
OProcess,OTransaction (WPAY)

return b∗

OResp()

(idtk , tk)←$ GenToken(1n)

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

(idtk , etk)←$ EnTok(kpay, (idtk , tk))

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

(idtk , tk)←$ GenToken(1n)

ServerTokens[idtk]← tk

(idtk , etk)←$ EnTok(kpay, (idtk , tk))

return (idtk , etk)

Game2(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgen(1n)

WKDF←$ Comp(kpay, kHWs)

WPAY←$ iO(C[WKDF, P](·, ·, ·, ·))
b∗ ←$AOResp,OSubKgen,OGetTok

OProcess,OTransaction (WPAY)

return b∗

OResp()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

k̂ ← KDF(kpay, idtk)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← KDF(kpay, idtk)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

e← idtk , nc← idtk , c1 ← etk

k̂ ← WKDF(e, σ)

tk ← Dec1(k̂, c1, nc)

if |m| = `(n) and P (m) = 1

c2 ← Enc2(tk ,m, nc)

req ← c2

else req ← ⊥
return (idtk , req)

Game3(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgen(1n)

WKDF←$ Comp(kpay, kHWs)

WPAY←$ iO(C[WKDF, P](·, ·, ·, ·))
b∗ ←$AOResp,OSubKgen,OGetTok

OProcess,OTransaction (WPAY)

return b∗

OResp()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

k̂ ← WKDF(idtk , σ)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← KDF(kpay, idtk)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

e← idtk , nc← idtk , c1 ← etk

k̂ ← WKDF(e, σ)

tk ← Dec1(k̂, c1, nc)

if |m| = `(n) and P (m) = 1

c2 ← Enc2(tk ,m, nc)

req ← c2

else req ← ⊥
return (idtk , req)

inlining/iO correctness WKDF correctness IND-WKDF security

32 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

(idtk , tk)←$ GenToken(1n)

ServerTokens[idtk]← tk

(idtk , etk)←$ EnTok(kpay, (idtk , tk))

σ ← RespHW(kHWm, label , idtk)

(idtk , req)← WPAY(idtk , etk , σ,m0)

C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← Process(idtk , req , tk)

ServerTokens[idtk]← ⊥
return m

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← KDF(kpay, idtk)

etk ← Enc1(k̂, tk , idtk)

σ ← RespHW(kHWm, label , idtk)

k̂ ← WKDF(idtk , σ)

tk ← Dec1(k̂, etk , idtk)

if |m| = `(n) and P (m) = 1

req ← Enc2(tk ,m0, nc)

else req ← ⊥
C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← Dec2(tk , req , idtk)

ServerTokens[idtk]← ⊥
return m

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← KDF(kpay, idtk)

etk ← Enc1(k̂, tk , idtk)

tk ← Dec1(k̂, etk , idtk)

if |m| = `(n) and P (m) = 1

req ← Enc2(tk ,m0, nc)

else req ← ⊥
C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← Dec2(tk , req , idtk)

ServerTokens[idtk]← ⊥
return m

Security Reductions for White-Box Key Storage 33

Game4(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgen(1n)

WKDF←$ Comp(kpay, kHWs)

WPAY←$ iO(C[WKDF, P](·, ·, ·, ·))
b∗ ←$AOResp,OSubKgen,OGetTok

OProcess,OTransaction (WPAY)

return b∗

OResp()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

k̂ ← WKDF(idtk , σ)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

e← idtk , nc← idtk , c1 ← etk

k̂ ← WKDF(e, σ)

tk ← Dec1(k̂, c1, nc)

if |m| = `(n) and P (m) = 1

c2 ← Enc2(tk ,m, nc)

req ← c2

else req ← ⊥
return (idtk , req)

Game5(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgen(1n)

WKDF←$ Comp(kpay, kHWs)

WPAY←$ iO(C[WKDF, P](·, ·, ·, ·))
b∗ ←$AOResp,OSubKgen,OGetTok

OProcess,OTransaction (WPAY)

return b∗

OResp()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

k̂ ← WKDF(idtk , σ)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, 0|tk|, idtk)

return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

e← idtk , nc← idtk , c1 ← etk

k̂ ← WKDF(e, σ)

tk ← Dec1(k̂, c1, nc)

if |m| = `(n) and P (m) = 1

c2 ← Enc2(tk ,m, nc)

req ← c2

else req ← ⊥
return (idtk , req)

Game6(1n)

(label , P)←$A(1n)

kHWm ←$ KgenHW(1
n)

kHWs ← SubKgenHW(kHWm, label)

kpay ←$ Kgen(1n)

WKDF←$ Comp(kpay, kHWs)

WPAY←$ iO(C[WKDF, P](·, ·, ·, ·))
b∗ ←$AOResp,OSubKgen,OGetTok

OProcess,OTransaction (WPAY)

return b∗

OResp()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

σ ← RespHW(kHWm, label , idtk)

RespUsed[idtk]← 1

k̂ ← WKDF(idtk , σ)

etk ← Enc1(k̂, tk , idtk)

return (idtk , etk , σ)

OSubKgen(label ′)

assert label ′ 6= label

k′HWs ← SubKgenHW(kHWm, label
′)

return k′HWs

OGetTok()

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, 0|tk|, idtk)

return (idtk , etk)

C[WKDF, P](idtk , etk , σ,m)

e← idtk , nc← idtk , c1 ← etk

k̂ ← WKDF(e, σ)

tk ← Dec1(k̂, c1, nc)

if |m| = `(n) and P (m) = 1

c2 ← Enc2(tk ,m, nc)

req ← c2

else req ← ⊥
return (idtk , req)

AE security of SE1 AE security of SE2

34 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, tk , idtk)

tk ← Dec1(k̂, etk , idtk)

if |m| = `(n) and P (m) = 1

req ← Enc2(tk ,m0, nc)

else req ← ⊥
C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← Dec2(tk , req , idtk)

ServerTokens[idtk]← ⊥
return m

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, 0|tk|, idtk)

tk ← Dec1(k̂, etk , idtk)

if |m| = `(n) and P (m) = 1

req ← Enc2(tk ,m0, nc)

else req ← ⊥
C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← Dec2(tk , req , idtk)

ServerTokens[idtk]← ⊥
return m

OTransaction(m0,m1)

assert |m0| = |m1| = `(n)

assert P (m0) = 1 ∧ P (m1) = 1

tk ←$ {0, 1}n, idtk ←$ {0, 1}n

ServerTokens[idtk]← tk

k̂ ← {0, 1}λ

etk ← Enc1(k̂, 0|tk|, idtk)

tk ← Dec1(k̂, etk , idtk)

if |m| = `(n) and P (m) = 1

req ← Enc2(tk ,m1, nc)

else req ← ⊥
C := C ∪ {req}
return (idtk , etk , req)

OProcess(idtk , req)

assert RespUsed[idtk] = 0

assert req /∈ C
tk ← ServerTokens[idtk]

m← ⊥
ServerTokens[idtk]← ⊥
return m

Game5 to Game6. We need to reduce this game hop to the AE-security of SE2.
We carry out a hybrid argument over the number of queries to OTransaction and
OGetTok. Note that this is possible, because these oracles use uniformly random
values to key SE2 and these values are only used in OTransaction, OGetTok and
OProcess. Second, note that the nonces used for each encryption are randomly
generated token identifiers idtk . Therefore, the restriction given in line 4 of the
Transaction oracle in the IND-WPAY-game corresponds to the second line of
the encryption oracle in the AE game. This means that an adversary in the
IND-WPAY has the same restrictions for encrypting a message as an adversary
in the AE game. Additionally, the process oracle only accepts request messages
that were generated via the Transaction oracle. This restriction aligns with the
restriction of the decryption oracle in the AE game.

Acknowledgments

Marc Fischlin has been [co-]funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 251805230/GRK 2050. Christian Janson
has been [co-]funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119
– 236615297.

Security Reductions for White-Box Key Storage 35

References

ABB+19. Gildas Avoine, Muhammed Ali Bingöl, Ioana Boureanu, Srdjan Capkun,
Gerhard P. Hancke, Süleyman Kardas, Chong Hee Kim, Cédric Lauradoux,
Benjamin Martin, Jorge Munilla, Alberto Peinado, Kasper Bonne Ras-
mussen, Dave Singelée, Aslan Tchamkerten, Rolando Trujillo-Rasua, and
Serge Vaudenay. Security of distance-bounding: A survey. ACM Comput.
Surv., 51(5):94:1–94:33, 2019.

ABBB+19. Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain, Wil
Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and
Alexander Treff. White-box cryptography: Don’t forget about grey-box
attacks. Journal of Cryptology, Feb 2019.

AHKM14. Daniel Apon, Yan Huang, Jonathan Katz, and Alex J. Malozemoff. Imple-
menting cryptographic program obfuscation. Cryptology ePrint Archive,
Report 2014/779, 2014. http://eprint.iacr.org/2014/779.

And18a. Android Developers. Build. Class Documentation, Last retrieved: October
2018. https://developer.android.com/reference/android/os/Build.

And18b. Android Developers. Keystore. Class Documentation, Last retrieved: Octo-
ber 2018. https://developer.android.com/reference/java/security/

KeyStore.
And18c. Android Developers. Telephony manager. Class Documentation, Last

retrieved: October 2018. https://developer.android.com/reference/

android/telephony/TelephonyManager.
BAB+19. Estuardo Alpirez Bock, Alessandro Amadori, Joppe W. Bos, Chris

Brzuska, and Wil Michiels. Doubly half-injective PRGs for incompress-
ible white-box cryptography. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 189–209. Springer, Heidelberg, March 2019.

BABM20. Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil
Michiels. On the security goals of white-box cryptography. IACR
TCHES, 2020(2):327–357, 2020. https://tches.iacr.org/index.php/

TCHES/article/view/8554.
BBIJ17. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerre-

gaard Jepsen. Analysis of software countermeasures for whitebox encryp-
tion. IACR Trans. Symm. Cryptol., 2017(1):307–328, 2017.

BBK14. Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Crypto-
graphic schemes based on the ASASA structure: Black-box, white-box, and
public-key (extended abstract). In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 63–84. Springer,
Heidelberg, December 2014.

BI15. Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 1058–1069. ACM Press, October 2015.

BIT16. Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 126–158. Springer, Heidelberg, December
2016.

BKTS16. Thomas Bocek, Christian Killer, Christos Tsiaras, and Burkhard Stiller.
An nfc relay attack with off-the-shelf hardware and software. In Rémi
Badonnel, Robert Koch, Aiko Pras, Martin Drašar, and Burkhard Stiller,

http://eprint.iacr.org/2014/779
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://tches.iacr.org/index.php/TCHES/article/view/8554
https://tches.iacr.org/index.php/TCHES/article/view/8554

36 E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels

editors, Management and Security in the Age of Hyperconnectivity, pages
71–83, Cham, 2016. Springer International Publishing.

BN00. Mihir Bellare and Chanathip Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic composition paradigm.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 531–545. Springer, Heidelberg, December 2000.

BSW16. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on
differing-inputs obfuscation. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 792–
821. Springer, Heidelberg, May 2016.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

CdRP14. Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of secure key
storage solutions on android. In Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices, SPSM ’14,
pages 11–20. ACM, 2014.

CEJv03. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg
and Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages
250–270. Springer, Heidelberg, August 2003.

CEJvO03. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Joan Feigen-
baum, editor, Security and Privacy in Digital Rights Management, ACM
CCS-9 Workshop, DRM 2002, volume 2696 of LNCS, pages 1–15. Springer,
2003.

cyb19. cybercrypt. Ches 2019 capture the flag challenge - the whibox contest -
edition 2, 2019. https://www.cyber-crypt.com/whibox-contest/.

DLPR14. Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja
Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282
of LNCS, pages 247–264. Springer, Heidelberg, August 2014.

ECR17. ECRYPT. Ches 2017 capture the flag challenge - the whibox contest, 2017.
https://whibox.cr.yp.to/.

EMV19. EMVCo. Emv mobile payment: Software-based mobile pay-
ment security requirements, 2019. https://www.emvco.com/wp-

content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_

Security_Requirements.pdf.
FHMM11. Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markan-

tonakis. Practical relay attack on contactless transactions by using NFC
mobile phones. Cryptology ePrint Archive, Report 2011/618, 2011. http:
//eprint.iacr.org/2011/618.

FKKM16. Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 159–188. Springer, Heidelberg, December 2016.

GPRW18. Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How
to reveal the secrets of an obscure white-box implementation. Cryptology
ePrint Archive, Report 2018/098, 2018. https://eprint.iacr.org/2018/
098.

https://www.cyber-crypt.com/whibox-contest/
https://whibox.cr.yp.to/
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
http://eprint.iacr.org/2011/618
http://eprint.iacr.org/2011/618
https://eprint.iacr.org/2018/098
https://eprint.iacr.org/2018/098

Security Reductions for White-Box Key Storage 37

Han05. Gerhard Hancke. A practical relay attack on iso 14443 proximity cards.
Technical report, 2005.

KLLM20. Jihoon Kwon, ByeongHak Lee, Jooyoung Lee, and Dukjae Moon. FPL:
White-box secure block cipher using parallel table look-ups. In Stanislaw
Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 106–128.
Springer, Heidelberg, February 2020.

Kra10. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer, Heidelberg, August 2010.

Mas17. Mastercard. Mastercard mobile payment sdk, 2017. https://developer.

mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/

mastercard-mobile-payment-sdk-security-guide-v2.0.pdf.
Riv17. Matthieu Rivain. White-box cryptography. Presentation CARDIS 2017,

2017. http://www.matthieurivain.com/files/slides-cardis17.pdf.
Rog02. Phillip Rogaway. Authenticated-encryption with associated-data. In Vi-

jayalakshmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press,
November 2002.

Rog04. Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy
and Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 348–359.
Springer, Heidelberg, February 2004.

SdHM15. Eloi Sanfelix, Job de Haas, and Cristofaro Mune. Unboxing the white-box:
Practical attacks against obfuscated ciphers. Presentation at BlackHat
Europe 2015, 2015. https://www.blackhat.com/eu-15/briefings.html.

Sma14. Smart Card Alliance Mobile and NFC Council. Host card emulation
101. white paper, 2014. http://www.smartcardalliance.org/downloads/
HCE-101-WP-FINAL-081114-clean.pdf.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

Wys12. Brecht Wyseur. White-box cryptography: Hiding keys in software. 2012.
http://www.whiteboxcrypto.com/research.php.

https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
http://www.matthieurivain.com/files/slides-cardis17.pdf
https://www.blackhat.com/eu-15/briefings.html
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
http://www.whiteboxcrypto.com/research.php

	Security Reductions for White-Box Key-Storage in Mobile Payments

