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Abstract

In a lockable obfuscation scheme [GKW17a, WZ17] a party takes as input a program P , a lock value
α, a message msg and produces an obfuscated program P̃ . The obfuscated program can be evaluated
on an input x to learn the message msg if P (x) = α. The security of such schemes states that if α is
randomly chosen (independent of P and msg), then one cannot distinguish an obfuscation of P from
a “dummy” obfuscation. Existing constructions of lockable obfuscation achieve provable security under
the Learning with Errors assumption. One limitation of these constructions is that they achieve only
statistical correctness and allow for a possible one-sided error where the obfuscated program could output
the msg on some value x where P (x) 6= α.

In this work we motivate the problem of studying perfect correctness in lockable obfuscation for
the case where the party performing the obfuscation might wish to inject a backdoor or hole in the
correctness. We begin by studying the existing constructions and identify two components that are
susceptible to imperfect correctness. The first is in the LWE-based pseudo-random generators (PRGs)
that are non-injective, while the second is in the last level testing procedure of the core constructions.

We address each in turn. First, we build upon previous work to design injective PRGs that are
provably secure from the LWE assumption. Next, we design an alternative last level testing procedure
that has additional structure to prevent correctness errors. We then provide surgical proof of security (to
avoid redundancy) that connects our construction to the construction by Goyal, Koppula, and Waters
(GKW) [GKW17a]. Specifically, we show how for a random value α an obfuscation under our new
construction is indistinguishable from an obfuscation under the existing GKW construction.

1 Introduction

In cryptographic program obfuscation a user wants to take a program P and publish an obfuscated program
P̃ . The obfuscated program should maintain the same functionality of the original while intuitively hiding
anything about the structure of P beyond what can be determined by querying its input/output functionality.

One issue in defining semantics is whether we demand that P̃ always match the functionality exactly
on all inputs or we relax correctness to allow for some deviation with negligible probability. At first blush
such differences in semantics might appear to be very minor. With a negligible correctness error it is
straightforward for the obfsucator to parameterize an obfuscation such that the probability of a correctness
error is some minuscule value such as 2−300 which would be much less than say the probability of dying from
an asteroid strike (1 in 74 million).

The idea that statistical correctness is always good enough, however, rests on the presumption that the
obfuscator itself wants to avoid errors. Consider for example, a party that is tasked with building a program
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that screens images from a video feed and raises an alert if any suspicious activity is detected. The party
could first create a program P to perform this function and then release an obfuscated version P̃ that could
hide features of the proprietary vision recognition algorithm about how the program was built. But what
if the party wants to abuse their role? For instance, they might want to publish a program P̃ that unfairly
flags a certain group or individual. Or perhaps is programmed with a backdoor to let a certain image pass.

In an obfuscation scheme with perfect correctness, it might be possible to audit such behavior. For
example, an auditor could require that the obfuscating party produce their original program P along with
the random coins used in obfuscating it. Then the auditor could check that the original program P meets
certain requirements as well as seeing that P̃ is indeed an obfuscation of P .1 However, for such a process to
work it is imperative that the obfuscation algorithm be perfectly correct. Otherwise, a malicious obfuscator
could potentially start with a perfectly legitimate program P , but purposefully choose coins that would flip
the output of a program at a particular input point.

Another important context where perfect correctness matters is when a primitive serves as a component
or building block in a larger cryptosystem. We present a few examples where a difference in perfect versus
imperfect correctness in a primitive can manifest into fundamentally impacting security when complied into
a larger system.

1. Dwork, Naor and Reingold [DNR04] showed that the classical transformations of IND-CPA to IND-
CCA transformations via NIZKs [NY90, DDN00] may not work when the IND-CPA scheme is not
perfectly correct. They addressed this by amplifying standard imperfect correctness to what they
called almost-all-keys correctness.

2. Bitansky, Khurana, and Paneth [BKP19] constructed zero knowledge arguments with low round com-
plexity. For their work, they required lockable obfuscation with one-sided perfect correctness.2

3. Recently, [AP19, BS20] constructed constant-round post-quantum secure constant-round ZK argu-
ments. These protocols use lockable obfuscation as a means to commit a message with pefect-binding
property. Without both-sided perfect correctness, the commitment scheme and thereby the ZK argu-
ment scheme fails to be secure.

In this paper we study perfect correctness in lockable obfuscation, which is arguably the most pow-
erful form of obfuscation which is provably secure under a standard assumption. Recall that a lockable
obfuscation [GKW17a, WZ17] scheme takes as input a program P , a message msg, a lock value α and

produces an obfuscated program P̃ . The semantics of evaluation are such that on input x the evaluation
of the program outputs msg if and only if P (x) = α. Lockable obfuscation security requires that the ob-
fuscation of any program P with a randomly (and independently of P and msg) chosen value α will be
indistinguishable from a “dummy” obfuscated program that is created without any knowledge of P and
msg other than their sizes. While the power of lockable obfuscation does not reach that of indistinguisha-
bility obfuscation [BGI+01, GGH+13, SW14], it has been shown to be sufficient for many applications
such as obfuscating conjunction and affine testers, upgrading public key encryption, identity-based encryp-
tion [Sha85, BF01, Coc01] and attribute-based encryption [SW05] to their anonymous versions and giving
random oracle uninstantiatability and circular security separation results, and most recently, building effi-
cient traitor tracing systems [BSW06, CVW+18a].

The works of Goyal, Koppula, and Waters [GKW17a] and Wichs and Zirdelis [WZ17] introduced and gave
constructions of lockable obfuscation provably secure under the Learning with Errors [Reg05] assumption. A
limitation of both constructions (inherited from the bit-encryption cycle testers of [GKW17c]) is that they
provide only statistical correctness. In particular, there exists a one-sided error in which it is possible that
there exists an input x such that P (x) 6= α yet the obfuscated program outputs msg on input x.

1The above argument relies on the ability of one being able to test the original program meets a certain template or is
otherwise well-formed. Our work does not address under which circumstances this is possible.

2In this particular example perfect correctness [GKW17a, WZ17] was already present for the side they needed.
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Our Results. With this motivation in mind we seek to create a lockable obfuscation scheme that is
perfectly correct and retains the provable security under the LWE assumption. We begin by examining
the GKW lockable obfuscation for branching programs and identify two points in the construction that are
susceptible to correctness errors. The first is in the use of an LWE-based pseudo random generator that could
be non-injective. The second is in the “last level testing procedure” comprised in the core construction. We
address each one in turn. First, we build over the previous work to design and prove a new PRG construction
that is both injective and probably secure from the LWE assumption. (We also create an injective PRG from
the learning parity with noise (LPN) assumption as an added bonus.) Then we look to surgically modify the
GKW construction to change the last level testing procedure to avoid the correctness pitfall. We accomplish
this by adding more structure to a final level of matrices to avoid false matches, but doing so makes the
new construction incompatible with the existing security proof. Instead of re-deriving the entire proof of
security, we carefully show how an obfuscation under our new construction with a random lock value is
indistinguishable from an obfuscation under the previous construction. Security then follows.

While the focus of this work has been on constructing lockable obfuscation schemes with perfect correct-
ness building upon the schemes of [GKW17a, WZ17], we believe our techniques can also be applied to the
recent obfuscation scheme by Chen, Vaikuntanathan, and Wee [CVW18b].

1.1 Technical Overview

We first present a short overview of the statistically correct lockable obfuscation scheme by Goyal, Koppula
and Waters [GKW17b, Appendix D], (henceforth referred to as the GKW scheme), and discuss the barriers
to achieving perfect correctness. Next, we discuss how to overcome each of these barriers in order to achieve
perfect correctness.

Overview of the GKW scheme. The GKW scheme can be broken down into three parts: (i) constructing
a lockable obfuscation scheme for NC1 circuits and 1-bit messages, (ii) bootstrapping to lockable obfuscation
for poly-depth circuits, and (iii) extending to multi-bit message space. It turns out that steps (ii) and (iii)
preserve the correctness properties of the underlying lockable obfuscation scheme, thus in order to build a
perfectly correct lockable obfuscation scheme for poly-depth circuits and multi-bit messages, we only need to
build a perfectly correct lockable obfuscation scheme for NC1 and 1-bit messages.3 We start by giving a brief
overview of the lockable obfuscation scheme for NC1, and then move to highlight the barriers to achieving
perfect correctness.

One of the key ingredients in the GKW construction is a family of log-depth (statistically injective)
PRGs with polynomial stretch (mapping ` bits to `PRG bits for an appropriately chosen polynomial `PRG).
Consider a log-depth circuit C that takes as input `in-bits and outputs `-bits. To obfuscate circuit C with
lock value α ∈ {0, 1}` and message msg, the GKW scheme first chooses PRG from the family and computes

an “expanded” lock value β = PRG(α). It then takes the circuit Ĉ = PRG(C(·)) that takes as input `in-bits

and outputs `PRG-bits, and generates the permutation branching program representation of Ĉ. Let BP(i)

denote the branching program that computes ith output bit of Ĉ. Since C and PRG are both log-depth
circuits, we know (due to Barrington’s theorem [Bar86]) that BP(i) is of some polynomial length L and width
5.4 The obfuscator continues by sampling 5`PRG matrices, for each level except the last one, using lattice

trapdoor samplers such that all the matrices at any particular level share a common trapdoor. Let B
(i)
j,k

denote the matrix corresponding to level j, state k of the ith branching program BP(i). Next, it chooses

the top level matrices
{

B
(i)
L,1, . . . ,B

(i)
L,5

}
for each i ∈ [`PRG] uniformly at random subject to the following

3Strictly speaking, [GKW17b, Appendix C] shows how to extend the message space for semi-statistically correct lockable
obfuscation schemes. However, the same transformation also works for perfectly correct schemes.

4Recall, a permutation branching program of length L and width w can be represented using w states, 2L permutations
σj,b over states for each level j ≤ L, an input-selector function inp(·) which determines the input read at each level, and an
accepting and rejecting state. The program execution starts at state st = 1 of level 0, and iteratively carried out as st = σi,b(st)
(where b is the input bit read at level i). Depending upon the final state (i.e., at level L), the program either accepts or rejects.
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“sum-constraint”: ∑
i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
=

{
0n×m if msg = 0,
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Looking ahead, sampling the top level matrices in such a way helps to encode the expanded lock value β
such that an evaluator can test for this relation if it has an input x such that C(x) = α.

Next step in the obfuscation procedure is to encode the branching programs using the matrices and

trapdoors sampled above. The idea is to choose a set of `PRG ·L “transition matrices” {C(i,0)
j ,C

(i,1)
j }i,j such

that each matrix C
(i,b)
j is short and can be used to evaluate its corresponding state transition permutation

σ
(i)
j,b. The obfuscation of C is set to be the `PRG base-level matrices {B(i)

0,1}i and `PRG ·L transition matrices

{C(i,0)
j ,C

(i,1)
j }i,j .

Evaluating the obfuscated program on input x ∈ {0, 1}`in is analogous to evaluating the `PRG branching

programs on x. For each i ∈ [`PRG], the evaluation algorithm first computes Mi = B
(i)
0,1 ·

∏L
j=1 C

(i,xinp(j))

j and
then sums them together as M =

∑
i Mi. To compute the final output, it looks at the entries of matrix M,

if all the entries are small (say less than q1/4) it outputs 0, else if they are close to
√
q it outputs 1, otherwise

it outputs ⊥.

To argue correctness, they first show that the matrix M computed by the evaluator is close to Γ·
∑
i B

(i)

L,st(i)

where Γ is some low-norm matrix and st(i) denotes the final state of BP(i).5 It is easy to verify that if
C(x) = α, then Ĉ(x) = β, and therefore

M ≈ Γ ·
∑
i

B
(i)

L,st(i)
=

{
0n×m if msg = 0,
√
q ·
[
Γ ||0n×(m−n)

]
if msg = 1.

As a result, if C(x) = α, then the evaluation is correct. However, it turns out that even when C(x) 6= α
the evaluation algorithm could still output 0/1 (recall that if C(x) 6= α, then the evaluation algorithm must
output ⊥). There are two sources of errors here.

Non-Injective PRGs. First, it is possible that the PRG chosen is not injective. In this event (which
happens with negligible probability if PRG is chosen honestly), there exist two inputs y 6= y′ such that
PRG(y) = PRG(y′). As a result, if there exist two inputs x, x′ ∈ {0, 1}`in such that C(x) = y, C(x′) =
y′, then the obfuscation of C with lock y and message msg, when evaluated on x′, outputs msg instead
of ⊥. Note that this source of error can be eliminated if we use a perfectly injective PRG family instead
of a statistically injective PRG family.

Sum-Constraints. The second source of error is due to the way we encode the lock value in the top-
level matrices. Let x 6= x′ be two distinct inputs, and let α = C(x), α′ = C(x′), β = PRG(α) and
β′ = PRG(α′). Suppose we obfuscate C with lock value α. Recall that the obfuscator samples the top-
level matrices uniformly at random with the only constraint that the top-level matrices corresponding
to the expanded lock value β either sum to 0 (if msg = 0), else they sum to certain medium-ranged
matrix (i.e., entries ≈ √q). Now this corresponds to sampling all but one top-level matrix uniformly at
random (and without any constraint), and that one special matrix such that the constraint is satisfied.
Therefore, it is possible (although with small probability) that summing together the top-level matrices
for string β′ is close to top-level matrix sum for string β. That is,∑

i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
≈

∑
i: β′i=0

B
(i)

L,rej(i)
+

∑
i: β′i=1

B
(i)

L,acc(i)
.

As a result, if we obfuscate C with lock α and message msg, and evaluate this on input x′, then it
could also output msg instead of ⊥. This type of error is trickier to remove as it is crucial for security

5That is, st(i) = acc(i) if Ĉ(x)i = 0 and rej(i) otherwise.
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in the GKW construction that these matrices look completely random if one doesn’t know the lock
value α. To get around this issue, we provide an alternate top-level matrix sampling procedure that
guarantees perfect correctness.

We next present our solutions to remove the above sources of imperfectness. First, we construct a
perfectly injective PRG family that is secure under the LWE assumption. This resolves the first problem.
Thereafter, we discuss our modifications to the GKW construction for resolving the sum-constraint error.
Later we also briefly talk about our perfectly injective PRG family that is secure under the LPN assumption.

Perfectly injective PRG family. We will first show a perfectly injective PRG family based on the LWE
assumption. The construction is a low-depth PRG family with unbounded (polynomial) stretch. The security
of this construction relies on the Learning with Rounding (LWR) assumption, introduced by Banerjee, Peikert
and Rosen. [BPR12], which in turn can be reduced to LWE (with subexponential modulus/error ratio). First,
let us recall the LWR assumption. This assumption is associated with two moduli p, q where p < q. The
modulus q is the modulus of computation, and p is the rounding modulus. Let b·ep denote a mapping from
Zq to Zp which maps integers based on their higher order bits. The LWR assumption states that for a
uniformly random secret vector s ∈ Znq and uniformly random matrix A ∈ Zn×mq , bsT · Aep looks like a
uniformly random vector in Zmp , even when given A. We will work with a ‘binary secrets’ version where the
secret vector s is a binary vector.

Let us start by reviewing the PRG construction provided by Banerjee et al. [BPR12]. In their scheme,
the setup algorithm first chooses two moduli p < q and outputs a uniformly random n ×m matrix A with
elements from Zq. The PRG evaluation takes as input an n bit string s and outputs bsT ·Aep, where bxep
essentially outputs the higher order bits of x. Assuming m is sufficiently larger than n and moduli p, q are
appropriately chosen, for a uniformly random matrix A ← Zn×mq , the function bsT ·Aep is injective with
high probability (over the choice of A). In order to achieve perfect injectivity, we sample the public matrix
A in a special way.

In our scheme, the setup algorithm chooses a uniformly random matrix B and a low norm matrix C.
It sets D to be a diagonal matrix with medium-value entries (D is a fixed deterministic matrix). It sets
A = [B | B ·C + D] and outputs it as part of the public parameters, together with the LWR moduli p, q.
To evaluate the PRG on input s ∈ {0, 1}n, one outputs y = bsT ·Aep. Intuitively, the D matrix acts as a
error correcting code, and if s1 6= s2, then there is at least one coordinate such that bsT1 ·Dep and bsT2 ·Dep
are far apart.

Suppose s1 and s2 are two bitstrings such that bsT1 ·Aep = bsT2 ·Aep. Then bsT1 ·Bep = bsT2 ·Bep, and
as a result, bsT1 ·B ·Cep and bsT2 ·B ·Cep have close enough entries as C has small entries. However, this
implies that bsT1 ·Dep and bsT2 ·Dep also have close enough entries, which implies that s1 = s2.

Pseudorandomness follows from the observation that A looks like a uniformly random matrix. Once we
replace [B | B ·C + D] with a uniformly random matrix A, we can use the binary secrets version of LWR
to argue that sT · A is indistinguishable from a uniformly random vector. This is discussed in detail in
Section 3.

Relation to the perfectly binding commitment scheme of [GHKW17] : The perfectly injective PRG family
outlined above builds upon some core ideas from the perfectly binding commitments schemes in [GHKW17].
Below, we will describe the constructions from [GHKW17], and discuss the main differences in our PRG
schemes.

In the LWE based commitment scheme, the sender first chooses a modulus q, matrices B,C,D and E of
dimensions n×n, where B is a uniformly random matrix, entries in C, E are drawn from the low norm noise
distribution, and D is some fixed diagonal matrix with medium-value entries. It sets A = [B ||B ·C+D+E].
Next, it chooses a vector s from the noise distribution, vector w uniformly at random, vector e from
the noise distribution and f from the noise distribution. To commit to a bit b, it sets y = AT · s + e,
z = wT · s + f + b(q/2), and the commitment is (A,w,y, z). The opening simply consists of the randomness
used for constructing the commitment.

The main differences between our PRG construction and their commitment scheme are as follows: (i) we
need to separate out their initial commitment step into PRG setup and evaluation phase, (ii) since the PRG
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evaluation is deterministic, we cannot add noise (unlike in the case of commitments). Therefore, we need
to use Learning with Rounding. Finally, we need to carefully choose the rounding modulus p as we want to
ensure that the rounding operation does not round off the contribution from the special matrix D while still
allowing us to reduce to the LWR assumption.

Sum-constraint on the top-level matrices. We will now discuss how the top-level matrices can be
sampled to ensure perfect correctness. In order to do so, let us first consider the following simplified prob-
lem which captures the essence of the issue. Given a string β ∈ {0, 1}`, we wish to sample 2` matrices
{Mi,b}i∈[`],b∈{0,1} such that they satisfy the following three constraints:

1.
∑
i Mi,βi has ‘small’ entries (say < q1/4).

2. For all β′ 6= β,
∑
i Mi,β′i

has ‘large’ entries (say greater than q1/2).

3. For a uniformly random choice of string β, the set of 2` matrices {Mi,b}i,b ‘look’ like random matrices.

In the GKW construction, the authors use a simple sampler that the sampled matrices satisfy the first
constraint, and by applying the Leftover Hash Lemma (LHL) they also show that the corresponding matrices
satisfy the third constraint. However, to achieve perfect correctness, we need to build a matrix sampler such
that its output always satisfy all the three constraints. To this end, we show that by carefully embedding
LWE samples inside the output matrices we can achieve the second constraint as well. We discuss our
approach in detail below.

We now define a sampler Samp that takes an `-bit string β as input, and outputs 2` matrices satisfying
all the above constraints, assuming the Learning with Errors assumption (in addition to relying on LHL).
The sampler first chooses 2` uniformly random square matrices {Ai,b}i∈[`],b∈{0,1} subject to the constraint
that

∑
i Ai,βi = 0n×n. This can be achieved by simply sampling 2` − 1 uniformly random n × n matrices,

and setting A`,β` = −
∑
i<` Ai,βi . Let D = q3/4

[
In ||0n×(m−2n)

]
be a n× (m−n) matrix with a few ‘large’

entries. The sampler then chooses a low norm n× (m−n) matrix S and low-norm n× (m−n) error matrices
{Ei,b}i∈[`],b∈{0,1}. It sets the 2` output matrices as

Mi,b =

{
[Ai,b ||Ai,b · S + Ei,b] if b = βi

[Ai,b ||Ai,b · S + Ei,b + D] if b = 1− βi

In short, our sampler samples the first n columns of the output matrix in a similar way to GKW scheme,
whereas the remaining (m − n) columns are sampled in a special way such that if we sum up the matrices
corresponding to string β then the last (m− n) columns of the summed matrix have small entries, whereas
summing up matrices corresponding to any other string β′ 6= β, the last (m−n) columns of the summed ma-
trix have distinguishably large entries. Below we briefly argue why our sampler satisfies the three properties
specified initially.

1. (First property): Note that
∑
i Ai,βi = 0n×n, therefore we have that

Mβ =
∑
i

Mi,βi =

[
0n×n ||0n×n · S +

∑
i

Ei,βi

]
=

[
0n×n ||

∑
i

Ei,βi

]
.

Since the error matrices are drawn from a low-norm distribution, the entries of Mβ are ‘small’.

2. (Second property): We need to check that Mβ′ =
∑
i Mi,β′i

has ‘large’ entries for β′ 6= β. Suppose β
and β′ differ at t positions (t > 0). Then

∑
i

Mi,β′i
=

[∑
i

Aβ′ ||Aβ′ · S + Eβ′ + t ·D

]
,
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where Aβ′ =
∑
i Ai,β′i

and Eβ′ =
∑
i Ei,β′i

. If Aβ′ has large entries (greater than q1/2), then we are

done. On the other hand, if Aβ′ has small entries (less than q1/2), then we can argue that Aβ′ ·S+Eβ′

also has entries less than q3/4, and therefore Aβ′ · S + Eβ′ + t ·D has large entries. This implies that
Mβ′ has large entries, and hence the second constraint is also satisfied.

3. (Third property): To argue about the third property, we use the LWE assumption in conjunction with
LHL. First, we can argue that the {Ai,b} matrices look like uniformly random matrices (using the
leftover hash lemma). Next, using the LWE assumption, we can show that {[Ai,b ||Ai,b · S + Ei,b]}i,b
are indistinguishable from 2` uniformly random matrices, and hence the third property is also satisfied.

We can also modify the above sampler slightly such that
∑
i Mi,βi has ‘medium’ entries (that is, entries

within the range [q1/4, q1/2)). The sampler chooses random matrices {Ai,b}i,b subject to the constraint
that

∑
i Ai,βi = q1/4In, and the remaining steps are same as above. Let Sampmed be the sampler for this

‘medium-entries’ variant.
We observe that if we plug in these samplers into the GKW scheme for sampling their top-level matrices,

then that leads to a perfectly correct lockable obfuscation scheme. Specifically, let α be the lock used,
PRG chosen from a perfectly injective PRG family, and β = PRG(α) be the expanded lock value. The
obfuscation scheme chooses matrices {Mi,b}i,b using either Samp or Sampmed depending on the message

msg. That is, if msg = 0, it chooses {Mi,b}i,b ← Samp(β), else it chooses {Mi,b}i,b ← Sampmed(β). It then

sets B
(i)

L,acc(i)
= Mi,1 and B

(i)

L,rej(i)
= Mi,0 for each i ∈ [`PRG]. From the properties of Samp/Sampmed, it

follows that
Mβ =

∑
i

Mi,βi =
∑

i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
,

which has ‘low’ or ‘medium’ norm depending on msg bit. The remaining top level matrices are chosen
uniformly at random. Everything else stays the same as in the GKW scheme.

For completeness, we now check that this scheme indeed satisfies perfect correctness. Consider an ob-
fuscation of circuit C with lock α and message msg. If this obfuscation is evaluated on input x such that
C(x) = α, then the evaluation outputs msg as expected. If C(x) = α′ 6= α, then PRG(C(x)) = β′ 6= β (since
the PRG is injective). This means the top level sum is∑

i: β′i=0

B
(i)

L,rej(i)
+

∑
i: β′i=1

B
(i)

L,acc(i)
=
∑
i

Mi,β′i
,

Using the second property of Samp/Sampmed, we know that this sum has ‘large’ entries, and therefore
the evaluation outputs ⊥. This completes our perfect correctness argument. Now for proving that our
modification still give a secure lockable obfuscation, we do not re-derive a completely new security proof but
instead we show that no PPT attacker can distinguish an obfuscated program generated using our scheme
from the one generated by using the GKW scheme. Now combining this claim with the fact that the GKW
scheme is secure under LWE assumption, we get that our scheme is also secure. Very briefly, the idea behind
indistinguishability of these two schemes is that since the lock α is chosen uniformly at random, then PRG(α)
is computationally indistinguishable from a uniformly random string β, and thus these top level matrices also
look like uniformly random matrices for uniformly random β (using the third property of Samp/Sampmed).
Now to complete argument we show the same hold for GKW scheme as well, thereby completing the proof.
More details on this are provided in the main body.

Perfectly Injective PRGs from the LPN assumption. Finally, we also build a family of perfectly
injective PRGs based on the Learning Parity with Noise assumption. While the focus of this work has
been getting an end-to-end LWE solution for perfectly correct lockable obfuscation, we also build perfectly
injective PRGs based on the LPN assumption, which could be of independent interest. Recently, there has
been a surge of interest towards new constructions of cryptographic primitives based on LPN [YS16, YZ16,
YZW+17, DGHM18, BLSV18, BLVW18], and we feel that our perfectly injective PRGs fit this theme. Our
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LPN solution uses a low-noise variant (β u 1√
n

) of the LPN assumption that has been used in previous public

key encryption schemes [Ale03]. Below we briefly sketch the main ideas behind our PRG construction.
To build perfectly injective PRGs from LPN, we take a similar approach to one taken in the LWE case.

The starting idea is to use the PRG seed (as before) as the secret vector s and compute the PRG evaluation
as BT s) but now, unlike the LWE case, we do not have any rounding equivalent for LPN, that is we do not
know how to avoid generating the error vector e during PRG evaluation. Therefore, to execute the idea we
provide an (efficient) injective sampler for error vectors which takes as input a bit string and outputs an
error vector e of appropriate dimension. (The injectivity property here states that the mapping between bit
strings and the error vectors is injective.) So now in our PRG evaluation the input string is first divided in
two disjoint components where the first component is directly interpreted as the secret vector s and second
component is used to sample the error vector e using our injective sampler.

Although at first it might seem that building an injective sampler might not be hard, however it turns
out there are a couple of subtle issues that we have taken care of while proving security as well as perfect
injectivity. Concretely, for self-composability of our PRG (i.e., building PRGs which take as input bit
strings of fixed length instead having a special domain sampling algorithm), we require that the size of
support of distribution of error vectors e used is a ‘perfect power of two’. As otherwise we can not hope to
build a perfectly injective (error vector) sampler which takes as input a fixed length bit string and outputs
the corresponding error vector. Now we know that the size of support of noise distribution in the LPN
assumption might not be a perfect power of two, thus we might not be able to injectively sample error
vectors from the fixed length bit strings. To resolve this issue, we define an alternate assumption which we
call the ‘restricted-exact-LPN’ assumption and show that (a) it is as hard as standard LPN, (b) sufficient
for our proof to go through, and (c) has an efficiently enumerable noise distribution whose support size is a
perfect power of two (i.e., we can define an efficient injective error sampler for its noise distribution). More
details are provided later in Section 5.

1.2 Related Works on Perfect Correctness

In this section, we discuss some related work and approaches for achieving perfect correctness for lock-
able obfuscation and its applications. First, a recent concurrent and independent work by Asharov et al.
[AEKP19] also addresses the question of perfect correctness for obfuscation. They show how to generi-
cally achieve perfect correctness for any indistinguishability obfuscation scheme, assuming hardness of LWE.
Below, we discuss other related prior works.

Perfect Correctness via Derandomization. Bitansky and Vaikuntanathan [BV17] showed how to
transform any obfuscation scheme (and a large class of cryptosystems) to remove correctness errors us-
ing Nisan-Wigderson (NW) PRGs [NW94]. In their scheme, the obfuscator runs the erroneous obfuscation
algorithm sufficiently many times, and for each execution of the obfuscator, the randomness used is derived
pseudorandomly (by adding the randomness derived from the NW PRGs and the randomness from a stan-
dard cryptographic PRG). As the authors show, such a transformation leads to a perfectly correct scheme
as long as certain circuit lower bound assumptions hold (in particular, they require that the NW-PRGs can
fool certain bounded-size circuits). Our solution, on the other hand, does not rely on additional assumptions
as well as it is as efficient as existing (imperfect) lockable obfuscation constructions [GKW17a, WZ17].

Using a Random Oracle for generating randomness. A heuristic approach to prevent the obfuscator
from using malicious randomness is to generate the random coins using a hash function H applied on the
circuit. Such a heuristic might suffice for some applications such as the public auditing example discussed
previously, but it does not seem to provide provable security in others. Note that our construction with
perfect correctness is proven secure in the standard model, and does not need rely on ROs or a CRS.

Lastly, we want to point out that in earlier works by Bitansky and Vaikuntanathan [BV16], and Ananth,
Jain and Sahai [AJS17], it was shown how to transform any obfuscation scheme that has statistical correctness
on (1/2 + ε) fraction of inputs (for some non-negligible ε) into a scheme that has statistical correctness for
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all inputs. However, this does not achieve perfect correctness. It is an interesting question whether their
approach could be extended to achieve perfect correctness. Similar correctness amplification issues were also
addressed by Ananth et al.[AJN+16].

2 Preliminaries

In this section, we will introduce some notations and preliminaries required for our work.

2.1 Notations

We will be using bold lowercase vectors to denote vectors and bold uppercase vectors for matrices. For any
set S, s← S denotes a uniformly random element drawn from S. Similarly, for any distribution D, x← D
denotes an element drawn from distribution D. The notation mCk refers to the binomial coefficient

(
m
k

)
.

For any modulus p > 2, let Zp denote the set {−bp/2c,−bp/2c+ 1, . . . , bp/2c− 1}, and for any integer x,
x mod p maps x to Zp. For any real number x ∈ R, let bxe denote the integer closest to x. For any vector
v ∈ Zn2 , we use int(v) to denote its integer representation, i.e. int(v) =

∑n
i=1 vi2

i−1 where vi denotes the ith

element of v. Similarly, for bit strings s ∈ {0, 1}n, we use int(s) to denote its integer representation.

Min-Entropy and Randomness Extraction. The min-entropy of a random variable X is defined as

H∞(X)
def
= − log2(maxx Pr[X = x]). Let SD(X,Y ) denote the statistical distance between two random

variables X and Y . Below we state the Leftover Hash Lemma (LHL) from [HILL99, DRS04, DORS08].

Theorem 2.1. Let H = {h : X → Y }h∈H be a universal hash family, then for any random variable W
taking values in X, the following holds

SD ((h, h(W )) , (h, UY )) ≤ 1

2

√
2−H∞(W ) · |Y | .

We will use the following corollary, which follows from the Leftover Hash Lemma.

Corollary 2.1. Let ` > m · n log2 q + ω(log n) and q a prime. Let R be an k × m matrix chosen as per
distribution R, where k = k(n) is polynomial in n and H∞ (R) = `. Let A and B be matrices chosen
uniformly in Zn×kq and Zn×mq , respectively. Then the statistical distance between the following distributions
is negligible in n.

{(A,A ·R)} ≈s {(A,B)}

Lattices. An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive integers n,m, q
and a matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice {x ∈ Zm : A · x = 0 mod q}. For u ∈ Znq , we
let Λu

q (A) denote the coset {x ∈ Zm : A · x = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distribution Dσ with parameter
σ is defined by the probability distribution function ρσ(x) = exp(−π ‖x‖2 /σ2). For any set L ⊂ Rm, define
ρσ(L) =

∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ is defined by the

probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.
The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the parameter σ of a discrete Gaus-

sian distribution is small, then any vector drawn from this distribution will be short (with high probability).

Lemma 2.1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×mq be a matrix of dimensions

n×m, σ = Ω̃(n) and L = Λ⊥q (A). Then

Pr[‖x‖ >
√
m · σ : x← DL,σ] ≤ negl(n).
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Truncated Discrete Gaussians. The truncated discrete Gaussian distribution over Zm with parameter
σ, denoted by D̃Zm,σ, is same as the discrete Gaussian distribution Dσ except it outputs 0 vector whenever the

`∞ norm exceeds
√
m·σ. Note that, by definition, D̃Zm,σ is

√
m·σ-bounded. Also, note that D̃Zm,σ ≈s DZm,σ.

2.2 Learning with Errors Assumption

The Learning with Errors (LWE) problem was introduced by Regev [Reg05]. The LWE problem has four
parameters: the dimension of the lattice n, the number of samples m, the modulus q and the error distribution
χ = χ(n).

Let n, m and q be positive integers and χ a noise distribution over Zq. The Learning with Errors assump-
tion (n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the following distributions are computationally
indistinguishable:{

(A, sT ·A + eT ) :
A← Zn×mq ,
s← Znq , e← χm

}
≈c
{

(A,uT ) :
A← Zn×mq ,
u← Zmq

}
Under a quantum reduction, Regev [Reg05] showed that for certain noise distributions, LWE is as hard

as worst case lattice problems such as the decisional approximate shortest vector problem (GapSVP) and
approximate shortest independent vectors problem (SIVP). Later works [Pei09, BLP+13] showed classical
reductions from LWE to GapSVPγ .

These works show that for B-bounded discretized Gaussian error distributions χ, solving (n,m, q, χ)-LWE
is as hard as approximating GapSVPγ and SIVPγ to a factor of Õ(n · q/B). Given the current state of art in

lattice algorithms, GapSVPγ and SIVPγ are believed to be hard for γ = Õ(2n
ε

) (for fixed ε ∈ (0, 1/2)), and
therefore (n,m, q, χ)-LWE is believed to be hard for B-bounded discretized Gaussian error distributions χ
with B = 2−n

ε · q · poly(n).

LWE with Short Secrets. In this work, we will be using a variant of the LWE problem called LWE with
Short Secrets. In this variant, introduced by Applebaum et al. [ACPS09], the secret vector is also chosen
from the noise distribution χ. They showed that this variant is as hard as LWE for sufficiently large number
of samples m.

Assumption 1 (LWE with Short Secrets). Let n, m, k and q be positive integers and χ a noise distribution
on Z. The LWE with Short Secrets assumption (n,m, k, q, χ)-LWE-ss, parameterized by n,m, k, q, χ, states
that the following distributions are computationally indistinguishable 6:{

(A,A · S + E) :
A← Zm×nq ,
S← χn×k,E← χm×k

}
≈c
{

(A,U) :
A← Zm×nq ,
U← Zm×kq

}
.

2.3 The Learning with Rounding (LWR) Assumption

Let 2 ≤ p ≤ q be two moduli. For any integer x in Zq, let bxep denote b(p/q) · xe. This notion can
analogously be extended to vectors; that is, for any vector y ∈ Znq , let w = byep denote the vector in Znp
where wj = byjep for all j ∈ {1, 2, . . . , n}.

Assumption 2 (LWR). The Learning with Rounding assumption with moduli q, p and dimension n states
that the following distributions are computationally indistinguishable:{(

A, bsT ·Aep
)

: A← Zn×mq , s← Znq
}
≈c
{

(A,u) : A← Zn×mq ,u← Zmp
}

The LWR assumption was first introduced by Banerjee, Peikert and Rosen [BPR12] (BPR). They showed
that for certain settings of the moduli p, q, the LWR problem is as hard as LWE with subexponential modulus.

6Applebaum et al. showed that {(A, sT · A + e) : A ← Zn×mq , s ← χn, e ← χm} ≈c {(A,u) : A ← Zn×mq ,u ← Zmq },
assuming LWE is hard. However, by a simple hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.

10



Theorem 2.2 ([BPR12]). Let 2 ≤ p ≤ q be two moduli and n the dimension such that q/p is superpolynomial
in n. Then, assuming the LWE problem is hard for modulus q, dimension n and discrete Gaussian error
distribution with parameter σ = poly(n), the LWR problem is hard for moduli p, q and dimension n.

We would like to point out that later works [AKPW13, BGM+16] gave tighter reductions which enabled
a larger range of parameters, specifically they allowed a polynomial modulus and modulus-to-error ratio.
However the choice of modulus q must linearly scale with the number of samples m. In our PRG construction,
the number of samples is known at setup time, therefore we could also use a polynomial modulus in our PRG
construction. For simplicity of exposition, we only consider parameters provided by the BPR reduction.

In this work, we will be considering an LWR variant where the secret vector is a uniformly random binary
vector. Using the BPR reduction, we can show that this problem is as hard as LWE with secret vector drawn
from uniform distribution on binary vectors. Finally, using the reductions from [BLP+13, MP12], we can
show that the binary-LWE problem is as hard as standard LWE (on lower dimension).

Assumption 3 (Binary LWR). The Binary Learning with Rounding assumption with moduli q, p and
dimension n states that the following distributions are computationally indistinguishable:{(

A, bsT ·Aep
)

: A← Zn×mq , s← Zn2
}
≈c
{

(A,u) : A← Zn×mq ,u← Zmp
}

Theorem 2.3 ([BPR12, BLP+13, MP12]). Let 2 ≤ p ≤ q be two moduli and n the dimension such that
q/p is superpolynomial in n. Then, assuming the LWE problem is hard for modulus q, dimension n/ log q
and discrete Gaussian error distribution with parameter σ = poly(n), the Binary LWR problem is hard for
moduli p, q and dimension n.

As mentioned before, we can also choose parameters such that q and p are polynomials by relying
on [AKPW13, BGM+16].

2.4 The Learning Parity with Noise (LPN) Assumption

The learning parity with noise is the binary (Z2) equivalent of the LWE problem. The search version of this
problem requires one to solve a set of random linear equations perturbed by noise, and a decision version
can be defined as in LWE. This problem is parameterized by the dimension n, the number of samples m
and the error distribution. Each component of the error vector is chosen independently from the Bernoulli
distribution with parameter p for 0 < p < 1/2. Clearly, if p = 1/2, then the LPN distribution is identical to
the uniform distribution. If p = O(1/n), then an adversary can distinguish between the LPN distribution
and the uniform distribution, given sufficiently many samples. Intuitively, the decision problem gets easier
as p decreases.

Assumption 4 (Learning Parity with Noise). Let n, m be positive integers and p be a real number such that
p < 1/2. The (Decision) Learning Parity with Noise assumption LPNn,m,p, parameterized by the dimension
of secret vector n, number of samples m and the error probability p, states that the following distributions
are computationally indistinguishable:{

(A,AT s + e) :
A← Zn×m2 ,
s← Zn2 , e← Bermp

}
≈c
{

(A,u) :
A← Zn×m2 ,
u← Zm2

}
Knapsack-LPN. In this work, we will be using a variant of LPN called Knapsack-LPN. For certain range
of parameters, this variant can be shown to be equivalent to LPN [MM11].

Assumption 5 (Knapsack Learning Parity with Noise). Let n, m be positive integers and p be a real
number such that p < 1/2. The Knapsack Learning Parity with Noise assumption KLPNn,m,p, parameterized
by integers n, m and p, states that the following distributions are computationally indistinguishable:{

(A,AE) :
A← Zn×m2 ,
E← Berm×mp

}
≈c
{

(A,B) :
A← Zn×m2 ,
B← Zn×m2

}
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Clearly, if n > m, then the KLPN problem is easy. However, if m > 2n, then the KLPN problem is as
hard as the LPN problem. In particular, there exists a reduction from LPNn,m,p to KLPNm−n,m,p as shown
by [MM11].

Exact-LPN. Jain et al. [JKPT12] defined another variant of LPN which they called exact-LPN (or xLPN).
The xLPNn,m,p problem is defined exactly like the LPNn,m,p problem, except the error vector is drawn
uniformly from the distribution of vectors with hamming weight exactly bmpe (i.e., not just in expectation).

Formally, the decision version of xLPNn,m,p can be stated as follows where χ
(e)
m,p = {v ∈ Zm2 : HW(v) = bmpe}

(i.e., the set of length m vectors with hamming weight bmpe).

Assumption 6 (Exact Learning Parity with Noise). Let n, m be positive integers and p be a real number
such that p < 1/2. The (Decision) Exact Learning Parity with Noise assumption LPNn,m,p, parameterized by
the dimension of secret vector n, number of samples m and the error probability p, states that the following
distributions are computationally indistinguishable:{

(A,AT s + e) :
A← Zn×m2 ,

s← Zn2 , e← χ
(e)
m,p

}
≈c
{

(A,u) :
A← Zn×m2 ,
u← Zm2

}
[JKPT12] pointed out that the “sample-preserving reduction” from search to decision version of LPN of

[AIK09, Lemma 4.4] holds for xLPN as well. Additionally, they pointed out that the search xLPN and search
LPN are equivalent. Combining the above two facts, we know that the decision xLPN assumption holds iff
decision LPN assumption holds.

Restricted-xLPN. In this work, we define a new version of the LPN problem which is based on the xLPN
problem. We call it restricted-exact LPN (or rxLPN). This is defined exactly like the xLPN problem, except
the size of the set of error vectors is a power of two.

More formally, let S denote the set χ
(e)
m,p and t = |S|. Also, let ` = blog2 tc. We use χ

(re)
m,p to denote

the subset of χ
(e)
m,p of size 2` consisting of lexically smallest elements. In other words, χ

(re)
m,p denotes the

smallest 2` sized subset of χ
(e)
m,p as per the natural lexicographic ordering over integer sets. Concretely,

χ
(re)
m,p =

{
S ⊆ χ(e)

m,p : |S| = 2` and ∀ v ∈ χ(e)
m,p, int(v) > max

w∈χ(re)
m,p

int(w) ∨ v ∈ χ(re)
m,p

}
.

Assumption 7 (Restricted Exact Learning Parity with Noise). Let n, m be positive integers and p be a
real number such that p < 1/2. The (Decision) Restricted Exact Learning Parity with Noise assumption
rxLPNn,m,p, parameterized by the dimension of secret vector n, number of samplesm and the error probability
p, states that the following distributions are computationally indistinguishable:{

(A,AT s + e) :
A← Zn×m2 ,

s← Zn2 , e← χ
(re)
m,p

}
≈c
{

(A,u) :
A← Zn×m2 ,
u← Zm2

}
Equating rxLPN and LPN. Now we show that rxLPN is as hard as standard LPN. We start by making
two important observations. First, we note that the “sample-preserving reduction” from search to decision
version of LPN of [AIK09, Lemma 4.4] also holds for rxLPN. The sample-preserving reduction provided
in Lemma 4.4 of [AIK09] simply uses the fact that by Goldreich-Levin hardcore bit theorem [GL89], given
(A,AT s+e) and a random n-bit vector r, an efficient adversary cannot compute 〈s, r〉 with probability greater
than 1

2 + negl(n). To argue that decision-LPN is hard, they assume towards contradiction that suppose an
efficient distinguisher exists. Next, they use the distinguisher to construct a hardcore-bit predictor for the
underlying code (i.e., (A,AT s + e)). To complete the argument they show that if the distinguisher has
non-negligible advantage, then the predictor will predict the hardcore-bit with probability greater than 1

2 by
a non-negligible amount. It turns out that the reduction provided in [AIK09] is independent of the choice of
underlying error distribution. Therefore, using the same analysis, we get that search and decision variants
of rxLPN are equivalent (up to a polynomial loss in the adversary’s advantage).
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Second, we note that the search-rxLPN and search-xLPN are equivalent. This is because we know that

|χ(re)
m,p| ≥ |χ(e)

m,p|/2. Therefore, if there exists an efficient adversary A that outputs the secret vector s
(with non-negligible probability δ) given an instance of search-rxLPN problem, then we know that the same
adversary A must output the secret vector s (with probability at least δ/2) given an instance of search-xLPN
problem; as with probability at least 1

2 , a random search-xLPN instance will also be a search-rxLPN instance.
Thus, combining the above two facts, we get that decision-rxLPN and search-xLPN are equivalent.

Now recall that Jain et al. [JKPT12] pointed out that search-xLPN and search-LPN are equivalent, and
since we already know that search and decision variants of LPN are equivalent, therefore combining all the
above facts, we get that the decision-rxLPN and decision-LPN assumption are also equivalent. Thus, we get
that rxLPN is as hard as standard LPN.7 In the sequel, we will directly assume that decision-rxLPN is hard.

2.5 Injective Pseudorandom Generators with Setup

We will be considering PRGs with an additional setup algorithm that outputs public parameters. The setup
algorithm will be important for achieving injectivity in our constructions. While this is weaker than the
usual notion of PRGs (without setup), it turns out that for many of the applications that require injectivity
of PRG, the setup phase is not an issue.

Setup(1λ) : The setup algorithm takes as input the security parameter λ and outputs public parameters pp,
domain D and co-domain R of the PRG. Let params denote (pp,D,R).

PRG(params, s ∈ D) : The PRG evaluation algorithm takes as input the public parameters and the PRG
seed s ∈ D, and outputs y ∈ R.

Perfect Injectivity. A pseudorandom generator with setup (Setup,PRG) is said to have perfect injectivity
if for all (pp,D,R)← Setup(1λ), for all s1 6= s2 ∈ D, PRG(params, s1) 6= PRG(params, s2).

Pseudorandomness. A pseudorandom generator with setup (Setup,PRG) is said to be secure if for any
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

A(params, tb) = b :
params← Setup(1λ)

s← D, t0 ← R, b← {0, 1}
t1 = PRG(params, s)

 ≤ 1

2
+ negl(λ).

2.6 Lockable Obfuscation

In this section, we recall the notion of lockable obfuscation defined by Goyal et al. [GKW17a]. Let n,m, d
be polynomials, and Cn,m,d(λ) be the class of depth d(λ) circuits with n(λ) bit input and m(λ) bit output.
Let M be the message space. A lockable obfuscator for Cn,m,d consists of algorithms Obf and Eval with the
following syntax.

• Obf(1λ, P,msg, α)→ P̃ . The obfuscation algorithm is a randomized algorithm that takes as input the
security parameter λ, a program P ∈ Cn,m,d, message msg ∈ M and ‘lock string’ α ∈ {0, 1}m(λ). It

outputs a program P̃ .

• Eval(P̃ , x)→ y ∈ M∪ {⊥}. The evaluator is a deterministic algorithm that takes as input a program

P̃ and a string x ∈ {0, 1}n(λ). It outputs y ∈M∪ {⊥}.
7At first sight it might seem that we might be able to attack these restricted notions of LPN by using results such as [AG11],

since the corresponding noise distributions are very well structured. However, Arora-Ge [AG11] attack does not apply here, as
for their attack to work the noise vector should be sampled from a special distribution where the vector is divided into blocks
of suitable size, and in each block, there are a bounded number of 1s. And if each block has p bits with at most w 1s, then
they show how to extract the secret in time O(pw). In the exact-LPN and restricted-exact LPN assumptions, the blocks have
size polynomial in the security parameter, and the number of 1s is O(

√
n). Thus, the attack does not work.
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Correctness For correctness, we require that if P (x) = α, then the obfuscated program P̃ ← Obf(1λ, P,msg, α),

evaluated on input x, outputs msg, and if P (x) 6= α, then P̃ outputs ⊥ on input x. Formally,

Definition 2.1 (Perfect Correctness). Let n,m, d be polynomials. A lockable obfuscation scheme for Cn,m,d
and message space M is said to be perfectly correct if it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages msg ∈ M, if
P (x) 6= α, then

Eval(Obf(1λ, P,msg, α), x) = ⊥ .

Remark 2.1 (Weaker notions of correctness). We would like to point out that GKW additionally defined two
weaker notions of correctness - statistical and semi-statistical correctness. They say that lockable obfuscation
satisfies statistical correctness if for any triple (P,msg, α), the probability that there exists an x s.t. P (x) 6= α
and the obfuscated program outputs msg on input x is negligible in security parameter. The notion of semi-
statistical correctness is even weaker where each obfuscated program could potentially always output message
msg for some input x s.t. P (x) 6= α, but if one fixes the input x before obfuscation, then the probability of
the obfuscated program outputting msg on input x is negligible.

Security We now present the simulation based security definition for Lockable Obfuscation.

Definition 2.2. Let n,m, d be polynomials. A lockable obfuscation scheme (Obf,Eval) for Cn,m,d and
message space M is said to be secure if there exists a PPT simulator Sim such that for all PPT adversaries
A = (A0,A1), there exists a negligible function negl(·) such that the following function is bounded by negl(·):∣∣∣∣∣∣∣∣Pr

A1(P̃b, st) = b :

(P ∈ Cn,m,d,msg ∈M, st)← A0(1λ)
b← {0, 1}, α← {0, 1}m(λ)

P̃0 ← Obf(1λ, P,msg, α)

P̃1 ← Sim(1λ, 1|P |, 1|msg|)

− 1

2

∣∣∣∣∣∣∣∣
3 Perfectly Injective PRGs from LWR

In this construction, we will present a construction based on the Learning With Rounding (LWR) assumption.
For any two moduli 2 ≤ p < q and integer x in Zq, let bxep denote b(p/q)·xe. At a high level, the construction
works as follows: the setup algorithm chooses a uniformly random matrix A ∈ Zn×2mq , where m is much

greater than n. The PRG evaluation outputs bxT ·Aep, where p = 2`out . Note that this already gives us a
PRG with statistical injectivity. However, to achieve perfect injectivity, we need to ensure that the matrix
A is full rank, and that injectivity is preserved even after rounding. In order to achieve this, we need to
make some modifications to the setup algorithm.

The new setup algorithm chooses a uniformly random matrix B, a random matrix R with ±1 entries.
Let D be a fixed full rank matrix with ‘medium sized’ entries. It then outputs A = [B | BR + D]. The
PRG evaluation is same as described above.

We will now describe the algorithms formally.

Setup(1λ) The setup algorithm first sets the parameters n,m, q, `out, ρ in terms of the security parameter.
These parameters must satisfy the following constraints.

• n = poly(λ)

• q ≤ 2n
ε
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• m > 2n log q

• p = 2`out

• n < m · `out
• (q/p)m < ρ < q

One particular setting of parameters which satisfies the constraints above is as follows: set n = poly(λ),
q = 2n

ε

, p =
√
q, m = n2 and ρ = q/4.

Next, it chooses a matrix B ← Zn×mq , matrix R ← {+1,−1}m×m. Let D = ρ · [In | 0n×(m−n)] and
A = [B | B ·R + D]. The setup algorithm outputs A as the public parameters. It sets the domain
D = {0, 1}n and co-domain R = {0, 1}m·`out .

PRG(A, s): The PRG evaluation algorithm takes as input the matrix A and the seed s ∈ {0, 1}n. It
computes y = sT ·A. Finally, it outputs byep ∈ Zmp as a bit string of length 2m · `out.

Depth of PRG Evaluation Circuit and PRG Stretch. First, note that the the PRG evaluation circuit
only needs to perform a single matrix-vector multiplication followed by discarding the dlog2 q/pe least signif-
icant bits of each element. Clearly such a circuit can be implemented in TC0, the class of constant-depth,
poly-sized circuits with unbounded fan-in and threshold gates (which is a subset of NC1). Additionally, the
stretch provided by the above PRG could be arbitrarily set during setup. Thus, the above construction gives
a PRG that provides a polynomial stretch with a TC0 evaluation circuit.

Next, we prove the following theorem where we first show that our PRG construction satisfies perfect
injectivity property, and later argue the pseudorandomness property for the same.

Theorem 3.1. If the LWR assumption with parameters n,m, p and q (Assumption 3) holds, then the above
construction is a perfectly injective PRG.

3.1 Perfect Injectiveness

Let A = [B | B ·R + D] be the matrix output by the setup algorithm, and let s, s′ ∈ {0, 1}n be two strings.
Let sT ·A = [z1 | z2] where z1, z2 ∈ Zmq , and let yj = bzjep for j ∈ {1, 2}. Similarly, s′T ·A = [z′1 | z′2] and
y′j = bz′jep for j ∈ {1, 2}.

Suppose y1 = y′1 and y2 = y′2. We will show that s = s′. Let w = bsT ·B ·Rep and w′ = bs′T ·B ·Rep.

Lemma 3.1. If y1 = y′1, then for every index j ∈ {1, 2, . . . ,m},
∣∣∣(w −w′)j mod p

∣∣∣ ≤ m.

Proof. Since y1 = y′1, for every index j ∈ {1, 2, . . . ,m},
∣∣∣(z1 − z′1)j mod q

∣∣∣ ≤ (q/p). As a result, for

any r ∈ {+1,−1}m,
∣∣(zT1 · r− z′T1 · r

)
mod q

∣∣ ≤ (q/p) · m. Extending this argument, for any matrix

R ∈ {+1,−1}m×m and any index j ∈ {1, 2, . . . ,m},
∣∣∣(zT1 ·R− z′T1 ·R

)
j

mod q
∣∣∣ ≤ (q/p) ·m. Therefore,

∣∣∣(w −w)
′
j mod p

∣∣∣ =
∣∣∣b(zT1 ·R)jep − b(z′T1 ·R)jep mod p

∣∣∣
=

∣∣∣∣bpq (zT1 ·R)je − bpq (z′T1 ·R)je mod p

∣∣∣∣ ≤ m

Since, for all j, | (w −w′)j mod p| ≤ m and y2 = y′2,
∣∣∣(bsT ·Dep − bs′T ·Dep)j mod p

∣∣∣ ≤ m, and

therefore
∣∣bρ · sjep − bρ · s′jep mod p

∣∣ ≤ m. Since (q/p) ·m < ρ < q and s, s′ are bit vectors, it follows that∣∣bρ · sjep − bρ · s′jep mod p
∣∣ ≤ m if and only if s = s′.
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3.2 Pseudorandomness

In order to prove pseudorandomness, we will define a sequence of hybrid experiments. First, we will switch
the matrix A output by the setup algorithm to a uniformly random matrix. This step is information
theoretic (due to Leftover Hash Lemma). Then, we can use the LWR assumption to argue that bsT ·Bep is
indistinguishable from a uniformly random vector in Z2m

p .

Hybrid H0 This corresponds to the real experiment.

1. The challenger chooses a uniformly random matrix B ← Zn×mq , a uniformly random matrix R ←
{+1,−1}m×m and D = ρ ·

[
In | 0n×(m−n)

]
. It sets A = [B | B ·R + D] and sends it to the adversary.

2. Next, the challenger chooses a uniformly random bit-string s ← {0, 1}n and sets y0 = bsT ·Aep. It
also chooses y1 ← Zmp and bit b← {0, 1}. The challenger sends yb to A.

3. The adversary sends a bit b′ and wins if b = b′.

Hybrid H1 In this experiment, the challenger chooses the matrix A uniformly at random from Zn×2mq .

1. The challenger chooses a uniformly random matrix A← Zn×2mq and sends it to the adversary.

2. Next, the challenger chooses a uniformly random bit-string s ← {0, 1}n and sets y0 = bsT ·Aep. It
also chooses y1 ← Zmp and bit b← {0, 1}. The challenger sends yb to A.

3. The adversary sends a bit b′ and wins if b = b′.

Hybrid H2 In this experiment, the challenger sets the output string to a uniformly random string.

1. The challenger chooses a uniformly random matrix A← Zn×2mq and sends it to the adversary.

2. Next, the challenger chooses a uniformly random bit-string y← {0, 1}m·`out and outputs y.

3. The adversary sends a bit b′ and wins if b = b′.

Analysis Let AdvAi denote the advantage of adversary A in Hybrid Hi.

Lemma 3.2. For any adversary A, |AdvA0 − AdvA1 | ≤ negl(λ).

Proof. Note that R ← {+1,−1}m×m and H∞(R) = m2 (min-entropy of R). As m2 = n · m · log2 q +
ω(log n), it follows from Leftover Hash Lemma (Corollary 2.1) that the following distributions are statistically
indistinguishable:

{(B,B ·R) : B← Zn×mq ,R← {+1,−1}m×m} ≈s {(B,U) : B← Zn×mq ,U← Zn×mq }

As a result, given any matrix D, the matrix A = [B | B ·R + D] is statistically indistinguishable from a
uniformly random matrix from Zn×2mq .

Lemma 3.3. Assuming the Binary Learning with Rounding assumption with moduli q, p and dimension n,
for any PPT adversary A, |AdvA1 − AdvA2 | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |AdvA1 − AdvA2 | = ε. Then there exists a PPT
reduction algorithm B that can break the Binary LWR assumption with advantage ε.

The reduction algorithm receives A ∈ Zn×2mq ,y ∈ Zmp from the LWR challenger, which it forwards to
the PRG adversary. The adversary outputs a bit b′, which the reduction algorithm forwards to the LWR
challenger. Clearly, if A wins with advantage ε in the PRG game, then B breaks the LWR assumption with
advantage ε.

Finally, note that any adversary has 0 advantage in the hybrid H2. From the above lemmas, it follows
that under the LWR assumption, the PRG construction is secure.
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4 Lockable Obfuscation with Perfect Correctness

4.1 Construction

In this section, we present our perfectly correct lockable obfuscation scheme. We note that the construction
is similar to the statistically correct lockable obfuscation scheme described in Goyal et al. [GKW17a]. A
part of the description has been taken verbatim from [GKW17a]. For any polynomials `in, `out, d such that
`out = ω(log λ), we construct a lockable obfuscation scheme O = (Obf,Eval) for the circuit class C`in,`out,d.
The message space for our construction will be {0, 1}, although one can trivially extend it to {0, 1}`(λ) for
any polynomial ` [GKW17a].

The tools required for our construction are as follows:

- A compact leveled homomorphic bit encryption scheme (LHE.Setup, LHE.Enc, LHE.Eval, LHE.Dec) with
decryption circuit of depth dDec(λ) and ciphertexts of length `ct(λ).

- A perfectly injective pseudorandom generator scheme (PRG.Setup,PRG.Eval), where PRG.Eval has
depth dPRG(λ), input length `out(λ) and output length `PRG(λ).

For notational convenience, let `in = `in(λ), `out = `out(λ), `PRG = `PRG(λ), dDec = dDec(λ), dPRG = dPRG(λ)
and d = d(λ).

Fix any ε < 1/2. Let χ be a B-bounded discrete Gaussian distribution with parameter σ such that
B =

√
m · σ. Let n,m, `, σ, q be parameters with the following constraints:

- n = poly(λ) and q ≤ 2n
ε

(for LWE security)

- m ≥ c̃ · n · log q for some universal constant c̃ (for SamplePre)

- σ = ω(
√
n · log q · logm) (for Preimage Well Distributedness)

- `PRG = n ·m · log q + ω(log n) (for applying Leftover Hash Lemma)

- `PRG · (L+ 1) · (m2 · σ)L+1 < q1/8 (where L = `out · `ct · 4dDec+dPRG) (for correctness of scheme)

It is important that L = λc for some constant c and `PRG ·(L+1) ·(m2 ·σ)L+1 < q1/8. This crucially relies
on the fact that the LHE scheme is compact (so that `ct and `PRG are bounded by a polynomial independent
of the size of the circuits supported by the scheme, and that the LHE decryption and PRG computation can
be performed by a log depth circuit (i.e, have poly length branching programs). The constant c depends on
the LHE scheme and PRG.

One possible setting of parameters is as follows: n = λ4c/ε, m = n1+2ε, q = 2n
ε

, σ = n and `PRG = n3ε+3.
We will now describe the obfuscation and evaluation algorithms.

• Obf(1λ, P,msg, α): The obfuscation algorithm takes as input a program P ∈ C`in,`out,d, message msg ∈
{0, 1} and α ∈ {0, 1}`out . The obfuscator proceeds as follows:

1. First, it chooses the LHE key pair as (lhe.sk, lhe.ek)← LHE.Setup(1λ, 1d log d).8

2. Next, it encrypts the program P . It sets ct← LHE.Enc(lhe.sk, P ).9

3. It runs pp← PRG.Setup(1λ), and assigns β = PRG.Eval(pp, α).

4. Next, consider the following circuit Q which takes as input `out · `ct bits of input and outputs
`PRG bits. Q takes as input `out LHE ciphertexts {cti}i≤`out , has LHE secret key lhe.sk hardwired
and computes the following — (1) it decrypts each input ciphertext cti (in parallel) to get string
x of length `out bits, (2) it applies the PRG on x and outputs PRG.Eval(pp, x). Concretely,
Q(ct1, . . . , ct`out

) = PRG.Eval
(
pp, LHE.Dec(lhe.sk, ct1) || · · · || LHE.Dec(lhe.sk, ct`out)

)
.

8We set the LHE depth bound to be d log d, where the extra log factor is to account for the constant blowup involved in
using a universal circuit. In particular, we can set the LHE depth bound to be c · d where c is some fixed constant depending
on the universal circuit.

9Note that LHE scheme supports bit encryption. Therefore, to encrypt P , a multi-bit message, the FHE.Enc algorithm will
be run independently on each bit of P . However, for notational convenience throughout this section we overload the notation
and use FHE.Enc and FHE.Dec algorithms to encrypt and decrypt multi-bit messages respectively.
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For i ≤ `PRG, we use BP(i) to denote the fixed-input selector permutation branching program
that outputs the ith bit of output of circuit Q. Note that Q has depth dtot = dDec + dPRG. By
Corollary B.1, we know that each branching program BP(i) has length L = `out · `ct · 4dtot and
width 5.

5. Finally, the obfuscator creates matrix components which enable the evaluator to compute msg if
it has an input strings (ciphertexts) ct1, . . . , ct`out such that Q(ct1, . . . , ct`out) = β. Concretely,
it runs the (randomized) routine Comp-Gen (defined in Figure 1). This routine takes as input

the circuit Q in the form of `PRG branching programs {BP(i)}i, string β and message msg. Let({
B

(i)
0,1

}
i
,
{

C
(i,0)
j ,C

(i,1)
j

}
i,j

)
← Comp-Gen({BP(i)}i, β,msg).

6. The final obfuscated program consists of the LHE evaluation key ek = lhe.ek, LHE ciphertexts ct,

together with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
.

• Eval(P̃ , x): The evaluation algorithm takes as input P̃ =

(
ek, ct,

{
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
and

input x ∈ {0, 1}`in . It performs the following steps.

1. The evaluator first constructs a universal circuit Ux(·) with x hardwired as input. This universal
circuit takes a circuit C as input and outputs Ux(C) = C(x). Using the universal circuit of Cook
and Hoover [CH85], it follows that Ux(·) has depth O(d).

2. Next, it performs homomorphic evaluation on ct using circuit Ux(·). It computes c̃t = LHE.Eval(ek,
Ux(·), ct). Note that `ct · `out denotes the length of c̃t (as a bitstring), and let c̃ti denote the ith

bit of c̃t.

3. The evaluator then obliviously evaluates the `PRG branching programs on input c̃t using the
matrix components. It calls the component evaluation algorithm Comp-Eval (defined in Figure

2). Let y = Comp-Eval

(
c̃t,

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

))
. The evaluator outputs y.

4.2 Correctness

We will prove that the lockable obfuscation scheme described above satisfies the perfect correctness property
(see 2.1). To prove this, we need to prove that if P (x) = α, then the evaluation algorithm always outputs
the message, and if P (x) 6= α, then it always outputs ⊥.

First, we will prove the following lemma about the Comp-Gen and Comp-Eval routines. For any z ∈
{0, 1}`in(λ), let BP(z) = BP(1)(z) ||BP(2)(z) || . . . ||BP(`PRG)(z). Intuitively, this lemma states that for all

fixed input branching programs {BP(i)}i, strings β, input z, and messages msg, if BP(z) = β, then the
component evaluator outputs msg.

Lemma 4.1. For any set of branching programs {BP(i)}i≤`PRG , string β ∈ {0, 1}`PRG , message msg ∈ {0, 1}
and input z,

1. if BP(z) = β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = msg.

2. if BP(z) 6= β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = ⊥ .

Proof. Recall that the component generation algorithm chooses matrices B
(i)
j for each i ≤ `PRG, j ≤ L,

S
(0)
j ,S

(1)
j for each j ≤ L and E

(i,0)
j ,E

(i,1)
j for each i ≤ `PRG, j ≤ L. Note that the S

(b)
j and E

(i,b)
j matrices

have l∞ norm bounded by σ·m3/2 since they are chosen from truncated Gaussian distribution with parameter
σ.

We start by introducing some notations for this proof.

• st
(i)
j : the state of BP(i) after j steps when evaluated on z
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Comp-Gen

Input: {BP(i)}i, β ∈ {0, 1}`PRG , msg ∈ {0, 1}
Output: Components

({
B

(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

(a) Let BP(i) =

({
σ
(i)
j,b : [5]→ [5]

}
j∈[L],b∈{0,1}

, acc(i) ∈ [5], rej(i) ∈ [5]

)
for all i ≤ `PRG.

(b) First, it chooses a matrix for each state of each branching program. Recall, there are `PRG branching programs,
and each branching program has L levels, and each level has 5 states. For each i ≤ `PRG, j ∈ [0, L−1], it chooses

a matrix of dimensions 5n×m along with its trapdoors (independently) as (B
(i)
j , T

(i)
j )← TrapGen(15n, 1m, q).

The matrix B
(i)
j can be parsed as follows

B
(i)
j =


B

(i)
j,1

...

B
(i)
j,5


where matrices B

(i)
j,k ∈ Zn×mq for k ≤ 5. The matrix B

(i)
j,k corresponds to state k at level j of branching program

BP(i).

(c) Let D = q3/4 ·
[
In ||0n×(m−2·n)]. For the top level, it first chooses the matrices A

(i)
L,k (of dimension n × n)

for each i ≤ `PRG, k ≤ 5, uniformly at random, subject to the following constraint:∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= 0n×n if msg = 0.

∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= q1/4 · In if msg = 1.

It then samples a matrix S← χn×(m−n), and matrices E
(i)

L,rej(i)
← χn×(m−n),E

(i)

L,acc(i)
← χn×(m−n) for each

i ≤ `PRG. It then chooses matrices F
(i)
L,k as follows

F
(i)

L,acc(i)
= A

(i)

L,acc(i)
· S + E

(i)

L,acc(i)
+ (1− βi) ·D, F

(i)

L,rej(i)
= A

(i)

L,rej(i)
· S + E

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)

q if k /∈ {acc(i), rej(i)}

The top level matrices B
(i)
L,k for each i ≤ `PRG, k ≤ 5 are given by B

(i)
L,k =

[
A

(i)
L,k ||F

(i)
L,k

]
.

(d) Next, it generates the components for each level. For each level level ∈ [1, L], do the following:

i. Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG. If either S

(0)
level or S

(1)
level

has determinant zero, then set it to be In.

ii. For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the permu-

tation σ
(i)
level,b(·). More formally, for i ≤ `PRG, set

D
(i,b)
level =


B

(i)

level,σ
(i)
level,b

(1)

...

B
(i)

level,σ
(i)
level,b

(5)

 .

iii. Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

iv. Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level )

(e) Output
({

B
(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

Figure 1: Routine Comp-Gen

• Sj = S
(zinp(j))

j , E
(i)
j = E

(i,zinp(j))

j , C
(i)
j = C

(i,zinp(j))

j for all j ≤ L

• Γj∗ =
∏j∗

j=1 Sj for all j∗ ≤ L
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Comp-Eval

Input: Input string z, Components
({

B
(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

Output: y ∈ {0, 1,⊥}.

(a) For each i ∈ [1, `PRG], do the following

i. Set M(i) = B
(i)
0,1.

ii. For j = 1 to L, do the following

- If zinp(j) = 0, set M(i) = M(i) ·C(i,0)
j . Else, set M(i) = M(i) ·C(i,1)

j .

(b) Compute M =
∑
iM

(i) and do the following

- If ‖M‖∞ ≤ q
1/8, output 0.

- Otherwise, if ‖M‖∞ ≤ q
1/2, output 1.

- Else output ⊥.

Figure 2: Routine Comp-Eval

• ∆
(i)
j∗ = B

(i)
0,1 ·

(∏j∗

j=1 C
(i)
j

)
, ∆̃

(i)

j∗ = Γj∗ ·B(i)

j∗,st
(i)

j∗
, Err

(i)
j∗ = ∆

(i)
j∗ − ∆̃

(i)

j∗ for all j∗ ≤ L

• For any string x ∈ {0, 1}`PRG ,Ax =
∑
i:xi=0 A

(i)

L,rej(i)
+
∑
i:xi=1 A

(i)

L,acc(i)

• Similarly, let Bx =
∑
i:xi=0 B

(i)

L,rej(i)
+
∑
i:xi=1 B

(i)

L,acc(i)
& Fx =

∑
i:xi=0 F

(i)

L,rej(i)
+
∑
i:xi=1 F

(i)

L,acc(i)

& Ex =
∑
i:xi=0 E

(i)

L,rej(i)
+
∑
i:xi=1 E

(i)

L,acc(i)
.

Observe that the Comp-Eval algorithm computes matrix M =
∑`PRG

i=1 ∆
(i)
L . First, we show that for all

i ≤ `PRG, j∗ ≤ L, Err
(i)
j∗ is small and bounded. This would help us in arguing that matrices M =

∑`PRG

i=1 ∆
(i)
L

and M̃ =
∑`PRG

i=1 ∆̃
(i)

L are very close to each other. We then prove the below bounds on M by proving the

corresponding bounds on M̃ in each of the cases.

‖M‖∞


< q1/8 when BP(z) = β and msg = 0

∈ (q1/8, q1/2) when BP(z) = β and msg = 1

> q1/2 when BP(z) 6= β

First, we show that Err
(i)
j∗ is bounded with the help of the following claim.

Claim 4.1. ([GKW17a, Claim 4.1]) ∀ i ∈ {1, . . . , `PRG} , j∗ ∈ {1, . . . , L} ,
∥∥∥Err

(i)
j∗

∥∥∥
∞
≤ j∗ ·

(
m2 · σ

)j∗
.

The remaining proof of the lemma will have two parts, (1) when BP(z) = β and (2) when BP(z) 6=
β. Recall that the Comp-Eval algorithm computes matrix M =

∑`PRG

i=1 ∆
(i)
L . Let M̃ =

∑`PRG

i=1 ∆̃
(i)

L and

Err =
∑`PRG

i=1 Err
(i)
L . Also, we parse these matrices as M =

[
M(1) ||M(2)

]
, M̃ =

[
M̃

(1)
|| M̃

(2)
]

and Err =[
Err(1) ||Err(2)

]
, where M(1), M̃

(1)
and Err(1) are n× n (square) matrices.

First, note that M = M̃ + Err. Using Claim 4.1, we can write that

‖Err‖∞ =

∥∥∥∥∥
`PRG∑
i=1

(
∆

(i)
L − ∆̃

(i)

L

)∥∥∥∥∥
∞

≤
`PRG∑
i=1

∥∥∥∥∆(i)
L − ∆̃

(i)

L

∥∥∥∥
∞
≤ `PRG · L ·

(
m2 · σ

)L
= Bd. (1)

Next, consider the following scenarios.
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Part 1: BP(z) = β. First, recall that the top level matrices always satisfy the following constraints during
honest obfuscation:

`PRG∑
i=1

B
(i)

L,st
(i)
L

= Bβ = [Aβ ||Aβ · S + Eβ ] =

{[
0n×n ||Eβ

]
if msg = 0[

q1/4 · In || q1/4 · S + Eβ

]
if msg = 1

Note that

M̃ =

`PRG∑
i=1

∆̃
(i)

L =

`PRG∑
i=1

ΓL ·B(i)

L,st
(i)
L

= ΓL ·
`PRG∑
i=1

B
(i)

L,st
(i)
L

=

{[
0n×n ||ΓL ·Eβ

]
if msg = 0

ΓL ·
[
q1/4 · In || q1/4 · S + Eβ

]
if msg = 1.

Next, we consider the following two cases dependending upon the message being obfuscated — (1) msg = 0,
(2) msg = 1.

Case 1 (msg = 0). In this case, we bound the the l∞ norm of the output matrix M (computed during

evaluation) by q1/8. We do this by bounding the norm of M̃ and using the error bound in Equation 1. Recall

that when msg = 0, M̃ =
[
0n×n ||ΓL ·Eβ

]
. First, we bound the norms of ΓL and Eβ as follows.

‖Eβ‖∞ =

∥∥∥∥∥∥
∑
i:βi=0

E
(i)

L,rej(i)
+
∑
i:βi=1

E
(i)

L,acc(i)

∥∥∥∥∥∥
∞

≤
∑
i:βi=0

∥∥∥E(i)

L,rej(i)

∥∥∥
∞

+
∑
i:βi=1

∥∥∥E(i)

L,acc(i)

∥∥∥
∞
≤ `PRG · σ ·m3/2 < `PRG · σ ·m2.

(2)

The last inequality follows from the fact that the matrices E
(i)

L,acc(i)
,E

(i)

L,rej(i)
are sampled from truncated

gaussian distribution. We can also write that,

‖ΓL‖∞ =

∥∥∥∥∥∥
L∏
j=1

Sj

∥∥∥∥∥∥
∞

≤
L∏
j=1

‖Sj‖∞ ≤ (σ · n ·
√
m)L < (σ ·m2)L. (3)

This implies,∥∥∥M̃∥∥∥
∞

= ‖ΓL ·Eβ‖∞ ≤ ‖ΓL‖∞ · ‖Eβ‖∞ < (σ ·m2)L · `PRG · σ ·m2 = `PRG · (σ ·m2)L+1.

Now we bound the l∞ norm of M. Recall that, ‖Err‖∞ ≤ `PRG · L · (σ ·m2)L. Therefore,

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≤
∥∥∥M̃∥∥∥

∞
+ ‖Err‖∞ < `PRG · L · (σ ·m2)L+1 + `PRG · L · (σ ·m2)L

< `PRG · (L+ 1) · (σ ·m2)L+1 < q1/8.

The last inequality follows from the constraints described in the construction. Thus, matrix M (computed
during evaluation) always satisfies the condition that ‖M‖∞ < q1/8 if msg = 0.

Case 2 (msg = 1). In this case, we prove that the l∞ norm of the output matrix M (computed during

evaluation) lies in (q1/8, q1/2). We do this by first computing upper and lower bounds on
∥∥∥M̃∥∥∥

∞
and using

the bound on Err from Equation 1. Recall that when msg = 1, M̃ =
[
q1/4 · ΓL || q1/4 · ΓL · S + ΓL ·Eβ

]
. To

prove a bound on
∥∥∥M̃∥∥∥

∞
, we first prove bounds on individual components of M̃ : ΓL,S,Eβ .

By Equation 3, we have ‖ΓL‖∞ < (σ ·m2)L. Note that during obfuscation we sample secret matrices

S
(b)
level (for each level and bit b) such that they are short and always invertible. Therefore, matrix ΓL (which
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is product of L secret matrices) is also invertible. Thus, we can write that ‖ΓL‖∞ ≥ 1. The lower bound
of 1 follows from the fact that ΓL is non-singular (and integral) matrix. By Equation 2, we know that
‖Eβ‖∞ < `PRG · σ · m2. Also, ‖S‖∞ ≤ σ · n ·

√
m < σ · m2 as S is sampled from truncated gaussian

distribution.

We finally prove bounds on
∥∥∥M̃∥∥∥

∞
. We know that M̃

(1)
= q1/4 · ΓL and M̃

(2)
= q1/4 · ΓL · S + ΓL ·Eβ .

∥∥∥M̃∥∥∥
∞
≥
∥∥∥∥M̃(1)

∥∥∥∥
∞

= q1/4 · ‖ΓL‖∞ ≥ q
1/4

∥∥∥∥M̃(1)
∥∥∥∥
∞
≤ q1/4 · ‖ΓL‖∞ < q1/4 · (σ ·m2)L

∥∥∥∥M̃(2)
∥∥∥∥
∞
≤ q1/4 · ‖ΓL‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Eβ‖∞ < q1/4 · (σ ·m2)L+1 + `PRG · (σ ·m2)L+1

< q1/4 · (`PRG + 1) · (σ ·m2)L+1

This implies,∥∥∥M̃∥∥∥
∞
≤
∥∥∥∥M̃(1)

∥∥∥∥
∞

+

∥∥∥∥M̃(2)
∥∥∥∥
∞
< q1/4 · (σ ·m2)L + q1/4 · (`PRG + 1) · (σ ·m2)L+1

< q1/4 · (`PRG + 2) · (σ ·m2)L+1 < q1/4 · q1/8 < q3/8

The last inequality follows from the constraints described in the construction. Next, we show that matrix
M(1) has large entries. In other words, matrix M has high l∞ norm. Concretely,

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≤
∥∥∥M̃∥∥∥

∞
+ ‖Err‖∞ = q3/8 + Bd < q3/8 + q1/8 < q1/2.

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≥
∥∥∥M̃∥∥∥

∞
− ‖Err‖∞ ≥

∥∥∥∥M̃(1)
∥∥∥∥
∞
− ‖Err‖∞ ≥ q

1/4 − Bd > q1/4 − q1/8 > q1/8.

Therefore, if msg = 1, ‖M‖∞ ∈ (q1/8, q1/2) and the evaluation always outputs 1.

Part 2: BP(z) 6= β. In this case, we prove that the l∞ norm of output matrix M is at least q1/2. Let
x = BP(z) and δx be the edit distance between x and β, which is clearly greater than 0 if x 6= β. By

construction, M̃ = ΓL · [Ax ||Ax · S + Ex + δx ·D] and M = M̃ + Err. We now split this case into two

subcases: 1)
∥∥∥M(1)

∥∥∥
∞
> q1/2 and 2)

∥∥∥M(1)
∥∥∥
∞
≤ q1/2.

Case 1.
∥∥∥M(1)

∥∥∥
∞
> q1/2. In this case, ‖M‖∞ > q1/2 and the evaluator always outputs ⊥.

Case 2.
∥∥∥M(1)

∥∥∥
∞
≤ q1/2. In this case, we prove that M(2) has high l∞ norm. Recall that ‖S‖∞ ≤

σ · n ·
√
m < σ ·m2 as S is sampled from truncated gaussian distribution and ‖Ex‖∞ ≤ `PRG · σ ·m2 by an

analysis similar to Equation 2. Also, ‖ΓL‖∞ < (σ ·m2)L by Equation 3. We now prove an upper bound on
norm of ΓL · [Ax · S + Ex].

‖ΓL ·Ax‖∞ ≤
∥∥∥M(1)

∥∥∥
∞

+
∥∥∥Err(1)∥∥∥

∞
≤ q1/2 + Bd

‖ΓL ·Ax · S + ΓL ·Ex‖∞ ≤ ‖ΓL ·Ax‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Ex‖∞
≤ (q1/2 + Bd) · σ ·m2 + `PRG · (σ ·m2)L+1

≤ q1/2 · σ ·m2 + `PRG · L · (σ ·m2)L+1 + `PRG · (σ ·m2)L+1

< q1/2 · σ ·m2 + `PRG · (L+ 1) · (σ ·m2)L+1 < q1/2 · q1/8 + q1/8 < 1/2 · q3/4

(4)
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The last 2 inequalities follow from the constraints described in the construction. As ΓL·D =
[
q3/4 · ΓL ||0n×(m−2·n)

]
,

we know that ‖ΓL ·D‖∞ = q3/4 · ‖ΓL‖∞, which lies in [q3/4, q3/4 · (σ ·m2)L] as discussed earlier. This along

with Equation 4 implies the following upper bound on

∥∥∥∥M̃(2)
∥∥∥∥
∞

.

∥∥∥∥M̃(2)
∥∥∥∥
∞

= ‖ΓL · [Ax · S + Ex + δx ·D]‖∞

≤ ‖ΓL ·Ax · S + ΓL ·Ex‖∞ + δx · ‖ΓL ·D‖∞
< 1/2 · q3/4 + `PRG · ‖ΓL ·D‖∞ ≤ 1/2 · q3/4 + q3/4 · `PRG · (σ ·m2)L < q3/4 · q1/8 = q7/8

The last inequality follows from the constraints described in the construction. We can also prove the following

lower bound on

∥∥∥∥M̃(2)
∥∥∥∥
∞

.

∥∥∥∥M̃(2)
∥∥∥∥
∞

= ‖ΓL · [Ax · S + Ex + δx ·D]‖∞

≥ −‖ΓL ·Ax · S + ΓL ·Ex‖∞ + ‖ΓL ·D‖∞ > −1/2 · q3/4 + q3/4 = 1/2 · q3/4

Now, we prove upper and lower bounds on M(2) = M̃
(2)

+ Err(2).

q1/2 < 1/2 · q3/4 − q1/8 < 1/2 · q3/4 − Bd ≤
∥∥∥M(2)

∥∥∥
∞
≤ q7/8 + Bd < q7/8 + q1/8 < q/2

This implies,
∥∥∥M(2)

∥∥∥
∞
> q1/2 in this case. Therefore, ‖M‖∞ > q1/2 and the evaluator always outputs

⊥.

Using the above lemma, we can now argue the correctness of our scheme. First, we need to show
correctness for the case when P (x) = α.

Claim 4.2. For any security parameter λ ∈ N, any input x ∈ {0, 1}`in , any program P ∈ C`in,`out,d and any
message msg ∈ {0, 1}, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

Proof. First, the obfuscator encrypts the program P using an LHE secret key lhe.sk, and sets ct← LHE.Enc(lhe.sk, P ).
The evaluator evaluates the LHE ciphertext on universal circuit Ux(·), which results in an evaluated cipher-
text c̃t. Now, by the correctness of the LHE scheme, decryption of c̃t using lhe.sk outputs α. Therefore,
PRG.Eval(pp, LHE.Dec(lhe.sk, c̃t)) = β, where pp ← PRG.Setup(1λ).10 Then, using Lemma 4.1, we can
argue that Comp-Eval outputs msg, and thus Eval outputs msg.

Claim 4.3. For all security parameters λ, inputs x ∈ {0, 1}`in , programs P ∈ C`in,`out,d, α ∈ {0, 1}`out such
that P (x) 6= α and msg ∈ {0, 1},

Eval(Obf(1λ, P,msg, α), x) = ⊥

Proof. Fix any security parameter λ, program P , α, x such that P (x) 6= α and message msg. The evaluator
evaluates the LHE ciphertext on universal circuit Ux(·), which results in an evaluated ciphertext c̃t. Now, by
the correctness of the LHE scheme, decryption of c̃t using lhe.sk does not output α. Therefore, by the perfect
injectivity of PRG scheme, for all pp ← PRG.Setup(1λ), we have PRG.Eval(pp, LHE.Dec(lhe.sk, c̃t)) 6= β.
Then, using Lemma 4.1, we can argue that Comp-Eval outputs ⊥, and thus Eval outputs ⊥.

10As before, we are overloading the notation and using LHE.Dec to decrypt multiple ciphertexts.
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4.3 Security

In this subsection, we prove the security of the above construction. Concretely, we prove the following
theorem.

Theorem 4.1. Assuming that LHE is a secure leveled homomorphic encryption scheme, and PRG is a secure
perfectly injective pseudorandom generator, lattice trapdoors are secure and (n, 2n·`PRG,m−n, q, χ)-LWE-ss,
(n, 5m · `PRG, n, q, χ)-LWE-ss assumptions hold, the lockable obfuscation construction described in Section
4.1 is secure as per Definition 2.2.

Proof. We prove the above theorem by proving that our construction is computationally indistinguishable
from the construction provided in [GKW17a, Appendix D] that uses perfectly injective PRGs. Note that
Goyal et al. [GKW17a] construct a simulator Sim(1λ, 1|P |, 1|α|) and prove that their construction is com-
putationally indstinguishable from the simulator. By a standard hybrid argument, this implies that our
construction is computationally indstinguishable from the simulator. Formally, we prove the following the-
orem.

Theorem 4.2. Assuming that PRG is a secure perfectly injective pseudorandom generator and (n, 2n ·
`PRG,m−n, q, χ)-LWE-ss assumption holds, the lockable obfuscation construction described in Section 4.1 is
computationally indistinguishable11 from [GKW17a, Appendix D] construction that uses perfectly injective
PRGs.

We prove the theorem using the following sequence of hybrids. The first hybrid corresponds to the
security game in which the challenger uses our lockable obfuscation scheme (Section 4.1) for obfuscating the
challenge program. The last hybrid corresponds to the security game in which the challenger uses lockable
obfuscation scheme provided in [GKW17a]. We mark the changes between adjacent hybrids in red color.
We note that some portions of the proof are similar to those used in [GKW17a].

Game 0. This game correponds to the challenger using our lockable obfuscation scheme for obfuscating the
challenge program.

1. The adversary sends a program P and message msg to the challenger.
2. The challenger first chooses the LWE parameters n, m, q, σ, χ and `PRG. Recall L denotes the length

of the branching programs.
3. The challenger then chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct← LHE.Enc(sk, P ).
4. Next, it chooses a uniformly random string α ← {0, 1}`out , runs pp ← PRG.Setup(1λ) and sets β =

PRG.Eval(pp, α).
5. Next, consider the following program Q. It takes as input an LHE ciphertext ct, has sk hardwired and

does the following: it decrypts the input ciphertext ct to get string x and outputs PRG.Eval(pp, x).

For i ≤ `PRG(λ), let BP(i) denote the branching program that outputs the ith bit of PRG.Eval(pp, x).

6. For i = 1 to `PRG and j = 0 to L− 1, it chooses (B
(i)
j , T

(i)
j )← TrapGen(15n, 1m, q).

7. Let D = q3/4 ·
[
In ||0n×(m−2·n)

]
.

(a) For the top level, it first chooses the matrices A
(i)
L,k (of dimension n×n) for each i ≤ `PRG, k ≤ 5,

uniformly at random, subject to the following constraints:∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= 0n×n if msg = 0.

∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= q1/4 · In if msg = 1.

11Consider a game in which the adversary sends a program P and message msg to the challenger, which either obfuscates
(P,msg) using [GKW17a] construction or our construction and sends back the obfuscated program. No PPT adversary can
distinguish the two scenarios with non-negligible advantage.
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(b) It then samples a matrix S← χn×(m−n), and matrices E
(i)

L,rej(i)
← χn×(m−n),E

(i)

L,acc(i)
← χn×(m−n)

for each i ≤ `PRG. Next, it chooses matrices F
(i)
L,k as follows

F
(i)

L,acc(i)
= A

(i)

L,acc(i)
· S + E

(i)

L,acc(i)
+ (1− βi) ·D

F
(i)

L,rej(i)
= A

(i)

L,rej(i)
· S + E

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)q if k /∈ {acc(i), rej(i)}

(c) The top level matrices B
(i)
L,k for each i ≤ `PRG, k ≤ 5 are set to B

(i)
L,k =

[
A

(i)
L,k ||F

(i)
L,k

]
.

8. Next, it generates the components for each level. For each i ∈ [1, `PRG] and each level level ∈ [1, L], do
the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤ `PRG. If either S

(0)
level or

S
(1)
level has determinant zero, then set it to be In.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks of B

(i)
level according to the

permutation σ
(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level )

9. The challenger sends the final obfuscated program which consists of the LHE evaluation key ek, LHE

encryption ct, together with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
to the adversary.

10. The adversary outputs a bit b′.

Game 1: In this hybrid, the string β is chosen uniformly at random.

4. Next, it chooses a uniformly random string β ← {0, 1}`PRG .

Game 2: In this hybrid, the matrices A
(i)
L,k are chosen uniformly at random without any constraints.

7. (a) For the top level, it first chooses the matrices A
(i)
L,k (of dimension n×n) for each i ≤ `PRG, k ≤ 5,

uniformly at random without any constraints.

Game 3: In this hybrid, all the matrices F
(i)
L,k are chosen uniformly at random.

7. (b) It then samples matrices R
(i)

L,rej(i)
← Zn×(m−n)q ,R

(i)

L,acc(i)
← Zn×(m−n)q for each i ≤ `PRG. Next, it

chooses matrices F
(i)
L,k as follows.

F
(i)

L,acc(i)
= R

(i)

L,acc(i)
+ (1− βi) ·D

F
(i)

L,rej(i)
= R

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)q if k /∈ {acc(i), rej(i)}

Game 4: In this hybrid, all the top level matrices B
(i)
L,k are chosen uniformly at random.

7. For the top level, for each i ≤ `PRG and k ≤ 5, it chooses the matrices B
(i)
L,k uniformly at random from

Zn×mq .
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Game 5: In this hybrid, the top level matrices B
(i)
L,k are chosen according to GKW17 construction.

7. For the top level, for each i ≤ `PRG and k ≤ 5, it chooses the matrices B
(i)
L,k uniformly at random from

Zn×mq subject to the following constraints.

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0 if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Game 6: This hybrid corresponds to challenger using GKW17 lockable obfuscation scheme for obfuscating
the challenge program.

4. Next, it chooses a uniformly random string α ← {0, 1}`out , runs pp ← PRG.Setup(1λ) and sets β =
PRG.Eval(pp, α).

We now establish that Game 0 is indistinguishable from Game 6 using the following sequence of claims. For
any adversary A, let pAi denote the probability that the adversary outputs 1 in Game i.

Lemma 4.2. Assuming the security of PRG, for any PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, we have |pA0 − pA1 | ≤ negl(λ).

Proof. Suppose there exists a PPT adverary A and a non-negligible function δ(·) such that |pA0 −pA1 | > δ(λ)
for all λ ∈ N. We build a PPT algorithm B that uses A and breaks PRG security.

The PRG challenger C first samples PRG public parameters pp ← PRG.Setup(1λ) and a uniformly
random bit b ← {0, 1}. If b = 0, it samples x ← {0, 1}`out and evaluates y = PRG.Eval(pp, x). Otherwise,
it samples y ← {0, 1}`PRG . C sends public parameters pp and challenge y to B. B then receives a program
P and a message msg from adversary A. B obfuscates the program P and message msg using β = y, and
sends the obfuscated program to A. The adversary outputs a bit b′, which B outptus as its guess to PRG
challenger.

Note that B simulates Game 0 to A if b = 0, and simulates Game 1 to A if b = 1. Therefore, the advantage
of B in PRG security game is non-negligible.

Lemma 4.3. For any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, we have
|pA1 − pA2 | ≤ negl(λ).

Proof. This step is information theoretic, and uses the Leftover Hash Lemma (Corollary 2.1). Note that

the difference between the two games is the way the matrices A
(i)
L,k are sampled. For each i ≤ `PRG, let

st(i) = acc(i) if βi = 1 and st(i) = rej(i) if βi = 0. In both games, the matrices A
(i)
L,k, for all (i, k) such that

(i, k) 6= (`PRG, st
(`PRG)), are chosen unformly at random. In Game 2, the matrix A

(`PRG)

L,st(`PRG) is also chosen

uniformly at random. In Game 1, the matrix A
(`PRG)

L,st(`PRG) is chosen as

A
(`PRG)

L,st(`PRG) =

{
−(
∑
i<`PRG:βi=0 A

(i)

L,rej(i)
+
∑
i<`PRG:βi=1 A

(i)

L,acc(i)
) if msg = 0

q1/4 · In − (
∑
i<`PRG:βi=0 A

(i)

L,rej(i)
+
∑
i<`PRG:βi=1 A

(i)

L,acc(i)
) if msg = 1

.

This can also be written as
A

(`PRG)

L,st(`PRG) = q1/4 ·msg · In −H ·R,

where H =
[
A

(1)

L,rej(1)
||A(1)

L,acc(1)
||A(2)

L,rej(2)
|| · · · ||A(`PRG−1)

L,acc(`PRG−1)

]
and R = u ⊗ In ∈ Z2n(`PRG−1)×n

q . Here

u = (u1, . . . , u2·`PRG−2)T ∈ {0, 1}2`PRG−2 where u2i = βi and u2i−1 = 1 − βi for all i ≤ `PRG − 1. That is,
matrix R consists of 2`PRG−2 submatrices where if βi = 1, then its 2ith submatrix is identity and (2i−1)th

submatrix is zero, otherwise it is the opposite. Let R denote the distribution of matrix R as described
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above with β drawn uniformly from {0, 1}`PRG . Note that H∞(R) = `PRG − 1 (min-entropy of R), and
`PRG > n2 · log2 q + ω(log n). Therefore, it follows (from Corollary 2.1) that{(

H,A
(`PRG)

L,st(`PRG) = q1/4 ·msg · In −H ·R
)

: H← Zn×2n(`PRG−1)
q ,R← R

}
≈s{(

H,A
(`PRG)

L,st(`PRG)

)
: H← Zn×2n(`PRG−1)

q ,A
(`PRG)

L,st(`PRG) ← Zn×nq

}
Thus, |pA1 − pA2 | is negligible in the security parameter for all adversaries A.

Lemma 4.4. Assuming (n, 2n · `PRG, q, χ) − LWE-ss is secure, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, we have |pA2 − pA3 | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A and a non-negligible function δ(·) such that |pA2 −pA3 | > δ(λ)
for all λ ∈ N. We build a PPT adversary B that uses A and breaks LWE with short secrets assumption.
The algorithm B proceeds as follows.

LWE-ss challenger C first samples a matrix H ← Z2n·`PRG×n
q and a bit b ← {0, 1}. If b = 0, it

samples S ← χn×(m−n), E ← χ2n·`PRG×(m−n) and sets G = H · S + E. Otherwise, it samples G ←
Z2n·`PRG×(m−n)
q . C finally sends the LWE-ss challenge matrices (H,G) to B. B partitions H into 2 · `PRG

submatrices (H(1),H(2), . . . ,H(2`PRG)) each of dimension n × n. Next, it partitions G into 2 · `PRG sub-

matrices (G(1),G(2), . . . ,G(2`PRG)) each of dimension n × (m − n). B then receives challenge program P
and challenge message msg from the adversary A. Next, it chooses LHE keys, computes the ciphertext and

samples matrices
{

B
(i)
j

}
i≤`PRG,j<L

as in the two games. Now, it needs to choose the top level matrices{
B

(i)
L,k

}
i
. It chooses the matrices as follows.

B
(i)

L,rej(i)
=
[
H(2i) ||G(2i) + βi ·D

]
B

(i)

L,acc(i)
=
[
H(2i−1) ||G(2i−1) + (1− βi) ·D

]
B

(i)
L,k ← Zn×mq if k /∈ {acc(i), rej(i)}

where D = q3/4 ·
[
In ||0n×(m−2·n)

]
. B then samples the matrices

{
C

(i,0)
j ,C

(i,1)
j

}
j<L

as in the two games.

Finally, B sends the obfuscated program which consists of the LHE evaluation key, LHE ciphertext, together

with the components

({
B

(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
to the adversary. A outputs a bit b′, which B outputs

as its guess in LWE-ss game.
Note that B simulates Game 2 to A if b = 0, and simulates Game 3 to A if b = 1. Therefore, the advantage

of B in LWE-ss security game is non-negligible.

Lemma 4.5. For any adversary A, pA3 = pA4 .

Proof. There is only a syntactic change between Games 3 and 4. The distribution of matrices generated by
the challenger in Game 3 and Game 4 are identical.

Lemma 4.6. For any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, we have
|pA4 − pA5 | ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of in [GKW17a, Claim 4.6].

Lemma 4.7. Assuming the security of PRG, for any PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, we have |pA5 − pA6 | ≤ negl(λ).
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Proof. This proof is similar to proof of Claim 4.2.

By combining the above lemmas, our construction is computationally indistinguishable from [GKW17a,
Appendix D] construction that uses perfectly injective PRGs. We note that Goyal et al. prove the following
theorem.

Theorem 4.3. [GKW17a] (Appendix D, Parapharased): Assuming that LHE is a secure leveled homomor-
phic encryption scheme, PRG is a secure perfectly injective pseudorandom generator, lattice trapdoors are
secure and (n, 5m · `PRG, n, q, χ)-LWE-ss assumptions hold, the lockable obfuscation construction described
in [GKW17a, Appendix D] is secure as per Definition 2.2.

Combining theorems 4.2 and 4.3, we obtain theorem 4.1.

5 Perfectly Injective PRGs from LPN

In this section, we give our construction of (perfectly) injective PRGs (with Setup) from the Learning Parity
with Noise assumption.12

Overview. Let the input length of PRG be n+`. We parse input x ∈ {0, 1}n+` as x = y || z, where |y| = n
and |z| = `. Now, string y is parsed as s, and z will be used to sample the error vector e. Note that for
injectivity argument to go through, it is important that the mapping between input y, z and vectors s, e is
also injective. Now both y and s are already of length n, thus we only need to make sure that our error vector
sampling procedure is injective. Before describing our sampling procedure, we would like to point out that,
in the PRG security game, the PRG seed is sampled uniformly at random, thus the distribution over error
vectors will be a uniform distribution as well. This suggests that for basing pseudorandomness security we
can’t rely on the standard LPN assumption as the noise distribution is not Bernoulli, but uniform. However,
we could instead rely on the exact-LPN assumption (or xLPN) which is polynomially related to standard
LPN assumption, and in which the noise distribution is uniform as the error vectors are sampled such that
they have fixed hamming weight.

Next, we observe that the size of support of noise distribution in the the xLPN assumption need not be a
perfect power of two, thus we might not be able to injectively sample error vectors from the fixed length binary
string z. To resolve this issue, we simply truncate the noise distribution to contain only lexically smallest
error vectors such that the size of truncated set is equal to the nearest power of two. However, with this
modification we need to rely on an alternate assumption which we call the restricted-exact-LPN assumption
(or rxLPN). It turns out that the sample-preserving reduction of [AIK09] also holds for rxLPN. This suggests
that rxLPN and LPN assumptions are (polynomially) equivalent, therefore we could still reduce the security
to the LPN assumption. Now to injectively map vectors with a fixed hamming weight to bitstrings, we
employ a simple combinatorial trick to give a total ordering over vectors with efficient recursive sampling
procedure. First, note that a total ordering over vectors can be trivially defined by denoting each vector with
its corresponding integer representation. Now, our sampling procedure works as follows — let x ∈ {0, 1}`
and we want to sample vector v ∈ Zm2 such that HW(v) = k. The sampling algorithm first checks whether
int(x) > m−1Ck (where int(x) is the integer corresponding to string x). If the check succeeds, then it sets
the first position in v to be 1, else it sets it 0, and continues. Also, if the check succeeds, then it updates
x = x−m−1Ck. In other words, each vector v ∈ Zm2 with HW(v) = k is uniquely ranked from 0 to mCk − 1,
and the sample algorithm outputs vector v with rank int(x). For example, 0m−k1k has rank 0 and 1k0m−k

has rank mCk − 1. The sampling procedure has been formally described later in Algorithm 1.
Finally, to sample matrix B as a generator matrix of some good but random code, we employ ideas

similar to that used in our LWE solution. To sample B in this special way, we simply choose a uniformly

12Our PRG construction bears some resemblance to the IND-CCA secure encryption schemes provided by Döttling et
al. [DMQN12] and Kiltz et al. [KMP14], but requires new ideas. We point that if we try to build PRGs using the tech-
niques from [DMQN12, KMP14], then that only gives ‘statistically injective’ PRGs, whereas in this paper our goal is to get
perfectly injective PRGs.
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random matrix A, a matrix C with low hamming weight rows and set B = [A | AC + G], where G is
the generator matrix of an error correcting code. Here the role of G is similar to the role of D in the
previous solution, that is to map any non-zero vector to a high hamming weight vector. A crucial point
here is that the rows of C must have low hamming weight. This is because if AT s has low hamming weight,
then so does CTAT s, and later this will be crucial in arguing that B is a generator matrix of a good code.
Finally, for pseudorandomness of our construction, we want that B should look like a random matrix to
any computationally bounded adversary. To this end, we use the Knapsack LPN assumption which was also
shown to be (polynomially) equivalent to LPN assumption [MM11].13 This is discussed in detail in Section 5.

Before formally describing our construction, we define a (bijective) sampling procedure Sample that takes

as input a length ` bit string s and outputs a (unique) vector v ∈ χ(re)
k,τ , where |χ(re)

k,τ | = 2`. In other words,
we describe a poly-time procedure to injectively sample noise vectors as per rxLPN noise distribution. A
similar lexicographic ordering was first considered by Fischer and Stern [FS96].

Algorithm 1 Procedure for Injectively Sampling Error Vectors

function Sample(s ∈ {0, 1}`) → v ∈ χ(re)
k,τ

Set index = int(s) and n = bkτe
for all i ∈ {1 . . . k} do

if index > k−iCn−1 then
Set vk−i+1 = 1, index = index− k−iCn−1, n = n− 1

else if index < k−iCn−1 then
Set vk−i+1 = 0

else
Set vj = 1 for all j ≤ n, and vj = 0 for all n < j ≤ k − i+ 1
return (v1, . . . , vk)T

end if
end for
return (v1, . . . , vk)T

end function

We will now describe our construction. Let β = 1/(c1
√
n) and χ = Berβ where c1 is some constant.

Let {Gn ∈ Zn×k2 }n∈N be a family of generator matrices for error correcting codes where the distance of the
code14 generated by Gn is at least c4 · n where c4 > 2. Let m = c2n, k = c3n where c2, c3 are any constants

such that c1 > 2 · (c2 + c3). Let |χ(re)
m+k,β | = 2`.

An important point to note here is that the Bernoulli parameter needs to be O(1/
√
n). This is necessary

for proving perfect injectivity. Recall, in the LWE perfect injectivity proof, we argue that since AT s has low
norm, CTAT s also has low norm. For the analogous argument to work here, the error distribution must be
O(1/

√
n). For instance, if the error distribution has hamming weight fraction at most 1/10

√
n and each row

of C has hamming weight fraction at most 1/10
√
n, then we can argue that CTAT s has hamming weight

fraction at most 1/100. If the noise rate was constant, then we cannot get an upper bound on the hamming
weight fraction of CTAT s. Below we describe our construction in detail.

Setup(1n) : The setup algorithm chooses random matrices A← Zn×m2 and C← χm×k. If there exists some
row ci of matrix C such that HW(ci) > 2kβ, it sets B = [A | G]. Otherwise, it sets B = [A | AC + G].

Finally, it outputs B as the PRG parameters.

PRG(B, x ∈ {0, 1}n+`) : Let x = y || z, where |y| = n and |z| = `. The PRG evaluation algorithm samples
the error vector e ∈ Zm+k

2 as e = Sample(z). It interprets bit string y as a vector s ∈ Zn2 . Finally, it
outputs v = BT s + e.

13The Knapsack LPN assumption states that for a uniformly random matrix A and a matrix E such that each entry is 1
with probability p and A has fewer rows than columns, then (A,AE) look like uniformly random matrices.

14Distance of a code is the minimum hamming weight of all non-zero codewords.
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Depth of PRG Evaluation Circuit and PRG Stretch. First, note that the the PRG evaluation circuit
needs to first sample the error vector e given the input vector x, and then it performs a single matrix-
vector multiplication. Here the sampling algorithm can easily be implemented by an NC115, and a matrix-
vector multiplication can be done in can be implemented in TC0. Thus, the overall PRG evaluation can
be easily performed by a NC1 circuit. Next, note that the input length in the above construction is
n + ` and the output length is m + k = (c2 + c3)n. We know that ` = blog2

m+kCb(m+k)βec. Since

log2
m+kCb(m+k)βe < b(m+ k)βe · log2 (2e/β), we have that ` = O(

√
n · log2 n) and thus n+ ` < 2n. Thus,

the stretch provided by the above construction is (c2 + c3)/2 = O(1). Thus, the above construction gives a
PRG that provides a constant stretch with an NC1 evaluation circuit. One could increase the stretch to an
arbitrary polynomial amount by self-composition, but that would increase the depth of the evaluation circuit.

Next, we prove the following theorem where we first show that our PRG construction satisfies perfect
injectivity property, and later argue the pseudorandomness property for the same.

Theorem 5.1. If Knapsack Learning Parity with Noise assumption KLPNn,m,β (Assumption 5) and Re-
stricted Exact Learning Parity with Noise assumption rxLPNn,m,β (Assumption 7) hold, then the above
construction is a perfectly injective PRG.

5.1 Perfect Injectivity

First, we will argue perfect injectivity of the above PRG. For any input length n, constants c1, c2, c3, c4 such
that c1 > 2 · (c2 +c3) and c4 > 3, any random matrix A← Zn×m2 , any error correcting code generator matrix
Gn with distance > c4 · n, and any matrix C← χm×k, consider the following two cases.

Case 1: HW(ci) > 2kβ for some row ci of C. The setup algorithm sets matrix B = [A | G]. Suppose there
exists inputs x1, x2 ∈ {0, 1}n+` such that PRG(B, x1) = PRG(B, x2) and x1 6= x2.

Let xi = yi || zi and ei = Sample(zi) for i = 1, 2. Since x1 6= x2, therefore either y1 6= y2 or z1 6= z2.
We will first consider the case that y1 6= y2. Let δe = e1 − e2 and δs = s1 − s2. Since y1 6= y2, therefore
their corresponding secret vectors s1 and s2 will also be distinct, i.e. δs 6= 0. We know that PRG(B, xi) =

[A | G]
T

si + ei. Since PRG(B, x1) = PRG(B, x2), we can write that [A | G]
T
δs = δe. By construction,

we know that hamming weights of error vectors is exactly b(m+k)βe. Thus, HW(δe) ≤ 2 · b(m+k)βe. Also,
we know that HW(BT δs) ≥ HW(GT δs) ≥ c4 ·n. Since 2 · b(m+ k)βe ≤ 2 · (c2 + c3)

√
n/c1 < c4 ·n, therefore

this results in a contradiction. Thus, δs = 0.
Now δs = 0 but z1 6= z2. In this case, we can claim that δe 6= 0 as this follows from the construction

of our sampling algorithm. Since PRG(B, x1) = PRG(B, x2), we can write that [A | G]
T
δs = δe. Since

δs = 0 but δe 6= 0, this results in a contradiction. Hence, we can conclude that in this case, our construction
satisfies perfect injectivity.

Case 2: HW(ci) ≤ 2kβ for all rows ci of C. The setup algorithm sets matrix B = [A | AC + G]. Suppose
there exists inputs x1, x2 ∈ {0, 1}n+` such that PRG(B, x1) = PRG(B, x2) and x1 6= x2.

As before, it will be that either y1 6= y2 or z1 6= z2, where xi = yi || zi for i = 1, 2. Again we first
consider that y1 6= y2. Let ei = Sample(zi), δe = e1 − e2 and δs = s1 − s2. Since y1 6= y2, we have that

δs 6= 0. We know that PRG(B, xi) = [A | AC + G]
T

si + ei. Since PRG(B, x1) = PRG(B, x2), we can

write that [A | AC + G]
T
δs = δe. By construction, we know that hamming weights of error vectors is

exactly b(m+ k)βe. Thus, HW(δe) ≤ 2 · b(m+ k)βe. Therefore, HW([A | AC + G]
T
δs) ≤ 2 · b(m+ k)βe.

This implies, in particular, HW(AT δs) ≤ 2 · b(m + k)βe < n. Also, since each row of C has hamming
weight at most 2kβ, we have that HW((AC)T δs) ≤ 4kβb(m + k)βe ≤ 4 · c3(c2 + c3)n/c21 < n. As a result,

HW([A | AC]
T
δs) < 2n. But since δs 6= 0, we have HW(GT δs) ≥ c4 ·n. Thus, using triangle inequality, we

have that HW(BT δs) > c4 · n− 2n > n. This brings us to a contradiction since HW(δe) < n. Thus, δs = 0.

15We believe that one could also do sampling more efficiently by a TC0 circuit. However, we leave exact analysis for future
work.
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Now we have that δs = 0. If z1 6= z2 (i.e., δe 6= 0), then by the same argument as used in Case 1, we can
conclude that PRG(B, x1) = PRG(B, x2) implies x1 = x2. Hence, we can conclude that our construction
satisfies perfect injectivity. This concludes our proof.

5.2 Pseudorandomness

At a high level, the pseudorandomness proof proceeds as follows. First, we will first switch B to a uniformly
random matrix during setup phase. This will follow from Knapsack LPN (KLPN) with low noise assumption.
Next, we will simply switch the PRG output v to a uniformly random bit vector. For this step, we will
use our restricted-exact LPN (rxLPN) with low noise assumption.16 We will now argue this formally via a
sequence of hybrids.

• Hybrid 0: This corresponds to the real world in which the challenger honestly generates matrix B
during setup, chooses a uniformly random bit string x ∈ {0, 1}n+`, and computes v0 = PRG(B, x). It
chooses a random bit b and vector v1 ← Zm+k

2 . It sends (B,vb) to the adversary.

• Hybrid 1: This hybrid is identical to the previous one, except that the challenger does not check if
rows of matrix C have low hamming weight, instead it always sets B as [A | AC + G].

It chooses random matrices A ← Zn×m2 , C ← χm×k, and sets B = [A | AC + G]. Next, it chooses

secret vector s← Zn2 , error vector e← χ
(re)
m+k,β , and sets v0 = BT s + e. It chooses a random bit b and

vector v1 ← Zm+k
2 . Finally, it sends (B,vb) to the adversary.

• Hybrid 2: In this hybrid, the challenger simply chooses B uniformly at random.

It chooses random matrices B ← Zn×(m+k)
2 , secret vector s ← Zn2 , error vector e ← χ

(re)
m+k,β , and sets

v0 = BT s + e. It chooses a random bit b and vector v1 ← Zm+k
2 . Finally, it sends (B,vb) to the

adversary.

• Hybrid 3: In this hybrid, the challenger chooses v0 uniformly at random as well.

It chooses random matrices B ← Zn×(m+k)
2 and vector v ← Zm+k

2 . Finally, it sends (B,v) to the
adversary.

Let AdvAi denote the advantage of adversary A in Hybrid i. We will now show that for all i ∈ {0, 1, 2},
AdvAi − AdvAi+1 is negligible in n.

Lemma 5.1. For any adversary A, AdvA0 − AdvA1 ≤ negl(n).

Proof. The only difference between Hybrid 0 and Hybrid 1 is in the way the challenger sets B if some row
of C has hamming weight greater than 2kβ. Since each entry of matrix C is sampled from a Bernoulli
distribution with parameter β = 1/(c1

√
n) (for some constant c1), using Chernoff bounds, we can argue that

Pr[∃ i ≤ m such that HW(ci) > 2kβ] ≤ negl(n).

Lemma 5.2. Assuming the Knapsack Learning Parity with Noise assumption holds for β = 1/(c1
√
n), then

for any PPT adversary A, AdvA1 − AdvA2 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA1 − AdvA2 = ε. We will construct a reduction
algorithm B that breaks the knapsack LPN assumption with advantage ε. The reduction algorithm B receives
matrices X ∈ Zn×m2 , Y ∈ Zn×k2 where Y is either a uniformly random matrix, or Y = XZ for some matrix

Z← Berm×kβ .17 It sets A = X, B = [A | Y + G], and chooses s← Zn2 , e← χ
(re)
m+k,β , and sets v0 = BT s + e.

16Recall that rxLPN is equivalent to standard LPN assumption.
17Note that the standard Knapsack-LPN states that matrices Y,Z will be square matrices. However, here we consider non-

square matrices as well. We would like to point out this non-square version is implied from Knapsack-LPN by a standard hybrid
argument.
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It chooses a random bit b and vector v1 ← Zm+k
2 . Finally, it sends (B,vb) to the adversary. Finally, if the

adversary guesses bit b correctly, then B guesses that Y = XZ, otherwise it guesses Y is a uniformly random
matrix.

The algorithm B thus breaks the Knapsack LPN assumption with advantage ε.

Lemma 5.3. Assuming the Restricted-Exact LPN assumption holds for β = 1/(c1
√
n), then for any PPT

adversary A, AdvA2 − AdvA3 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA2 − AdvA3 = ε. We will construct a reduction
algorithm B that breaks the rxLPN assumption with advantage ε. The reduction algorithm B receives matrices

B ∈ Zn×(m+k)
2 , and a vector v ∈ Z(m+k)

2 , where v is either a uniformly random vector, or v = AT s + e for

some vectors s, e sampled as s← Zn2 , e← χ
(re)
m+k,β . B sends (B,v) to the adversary. Finally, B forwards the

adversary’s guess as its own guess.
The algorithm B thus breaks the Restricted-Exact LPN assumption with advantage ε.

Finally, note that any adversary has 0 advantage in the hybrid 3. From the above lemmas, it follows that
under the LPN with low noise assumption, the PRG construction is secure.
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A Lattices with Trapdoors

Lattices with trapdoors are lattices that are statistically indistinguishable from randomly chosen lattices,
but have certain ‘trapdoors’ that allow efficient solutions to hard lattice problems.

Definition A.1 ([Ajt99, GPV08]). A trapdoor lattice sampler consists of algorithms TrapGen and SamplePre
with the following syntax and properties:
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• TrapGen(1n, 1m, q)→ (A, TA): The lattice generation algorithm is a randomized algorithm that takes
as input the matrix dimensions n,m, modulus q, and outputs a matrix A ∈ Zn×mq together with a
trapdoor TA.

• SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a matrix A, trapdoor TA, a
vector u ∈ Znq and a parameter σ ∈ R (which determines the length of the output vectors). It outputs
a vector s ∈ Zmq .

These algorithms must satisfy the following properties:

1. Correct Presampling: For all vectors u, parameters σ, (A, TA) ← TrapGen(1n, 1m, q), and s ←
SamplePre(A, TA,u, σ), A · s = u and ‖s‖∞ ≤

√
m · σ.

2. Well Distributedness of Matrix: The following distributions are statistically indistinguishable:

{A : (A, TA)← TrapGen(1n, 1m, q)} ≈s {A : A← Zn×mq }.

3. Well Distributedness of Preimage: For all (A, TA) ← TrapGen(1n, 1m, q), if σ = ω(
√
n · log q · logm),

then the following distributions are statistically indistinguishable:

{s : u← Znq , s← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

These properties are satisfied by the gadget-based trapdoor lattice sampler of [MP12] for parameters m
such that m = Ω(n · log q).

B Branching Programs

Branching programs are a model of computation used to capture space-bounded computations [BDFP86,
Bar86]. In this work, we will be using a restricted notion called permutation branching programs.

Definition B.1 (Permutation Branching Program). A permutation branching program of length L, width
w and input space {0, 1}n consists of a sequence of 2L permutations σi,b : [w]→ [w] for 1 ≤ i ≤ L, b ∈ {0, 1},
an input selection function inp : [L] → [n], an accepting state acc ∈ [w] and a rejection state rej ∈ [w].
The starting state st0 is set to be 1 without loss of generality. The branching program evaluation on input
x ∈ {0, 1}n proceeds as follows:

• For i = 1 to L,

– Let pos = inp(i) and b = xpos. Compute sti = σi,b(sti−1).

• If stL = acc, output 1. If stL = rej, output 0, else output ⊥.

In a remarkable result, Barrington [Bar86] showed that any circuit of depth d can be simulated by a
permutation branching program of width 5 and length 4d.

Theorem B.1 ([Bar86]). For any boolean circuit C with input space {0, 1}n and depth d, there exists a
permutation branching program BP of width 5 and length 4d such that for all inputs x ∈ {0, 1}n, C(x) =
BP(x).

This permutation property will be useful for proving security of our main construction in 4.1. We will also
require that the permutation branching program has a fixed input-selector function inp. In our construction,
we will have multiple branching programs, and all of them must read the same input bit at any level i ≤ L.

Definition B.2. A permutation branching program with input space {0, 1}n is said to have a fixed input-
selector inp(·) if for all i ≤ L, inp(i) = i mod n.
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Any permutation branching program of length L and input space {0, 1}n can be easily transformed to
a fixed input-selector branching program of length n · L. In this work, we only require that all branching
programs share the same input selector function inp(·). The input selector which satisfies inp(i) = i mod n
is just one possibility, and we stick with it for simplicity. We will use the following corollary, which follows
from Theorem B.1.

Corollary B.1. For any boolean circuit C with input space {0, 1}n and depth d, there exists a fixed-input
selector permutation branching program BP of width 5 and length n · 4d such that for all inputs x ∈ {0, 1}n,
C(x) = BP(x).

C Homomorphic Encryption

Homomorphic encryption [RAD78, Gen09] is a powerful extension of public key encryption that allows one
to evaluate functions on ciphertexts. Homomorphic encryption schemes can be classified as either leveled or
fully homomorphic encryption schemes. A leveled homomorphic encryption (LHE) scheme allows bounded
depth computation over the ciphertexts. The setup algorithm takes as input a ‘level bound’ ` together
with the security parameter, and outputs a public-secret key pair. Given an ciphertext ct corresponding
to message m, one can use the evaluation algorithm to evaluate a bounded depth circuit C on ct, and the
resulting ciphertext ct′, when decrypted using the secret key, outputs C(m) if the depth of C is less than `.
Fully homomorphic encryption, on the other hand, allows for arbitrary computation on the ciphertext.

C.1 Leveled Homomorphic Encryption

A secret key leveled homomorphic encryption schemeHE with message space {0, 1} consists of four algorithms
Setup,Enc,Dec,Eval with the following syntax:

1. Setup(1λ, 1`)→ (sk, ek) The setup algorithm takes as input the security parameter λ, bound on circuit
depth ` and outputs a secret key sk and evaluation key ek.

2. Enc(sk,m ∈ {0, 1}) → ct The encryption algorithm takes as input a secret key sk, message m ∈ {0, 1}
and outputs a ciphertext ct.

3. Eval(ek, C ∈ C`, ct)→ ct′ The evaluation algorithm takes as input an evaluation key ek, a circuit C ∈ C`,
a ciphertext ct and outputs a ciphertext ct′.

4. Dec(sk, ct)→ x The decryption algorithm takes as input a secret key sk and ciphertext ct and outputs
x ∈ {0, 1} ∪ {⊥}.

We will now define some properties of leveled homomorphic encryption schemes. Let HE be any homo-
morphic encryption scheme with message space {0, 1}. First, we have the correctness property, which states
that the decryption of a homomorphic evaluation on a ciphertext must be equal to the evaluation on the
underlying message.

Definition C.1 (Correctness). The scheme HE is said to be (perfectly) correct if for all security parameter
λ, circuit-depth bound `, (sk, ek)← Setup(1λ, 1`), circuit C ∈ C` and message m ∈ {0, 1},

Dec(sk,Eval(ek, C,Enc(sk,m))) = C(m).

Next, we have the compactness property which requires that the size of the output of an evaluation on
a ciphertext must not depend upon the evaluation circuit. In particular, we require that there exists one
decryption circuit such that this circuit can decrypt any bounded-depth evaluations on ciphertexts.

Definition C.2 (Compactness). A homomorphic encryption scheme HE is said to be compact if for all λ,
` there is a decryption circuit CDec

λ,` such that for all (sk, ek) ← Setup(1λ, 1`), m ∈ {0, 1}, C ∈ C`, CDec
λ,` (sk,

Eval(ek, C, Enc(sk,m))) = C(m).
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Finally, we require that the depth of the decryption circuit is bounded by a logarithmic function in the
security parameter λ.

Definition C.3. A compact homomorphic encryption schemeHE is said to have log-depth decryption circuit
if for all λ, `, depth(CDec

λ,` ) = O(log λ).

For security, we require that the underlying scheme is IND-CPA secure.

Definition C.4 (Security). A homomorphic encryption scheme HE = (Setup,Enc,Dec) is IND-CPA secure
if for every stateful PPT adversary A, there exists a negligible functions negl(·), such that the following
function of λ is bounded by negl(·)∣∣∣∣Pr

[
A(ct) = b :

(pk, sk)← Setup(1λ); b← {0, 1}
(m0,m1)← A(pk); ct← Enc(pk,mb)

]
− 1

2

∣∣∣∣
Starting with the work of Gentry [Gen09], there has been a long line of interesting works seeking to

improve the efficiency/security of homomorphic encryption schemes. Today, we have LHE schemes [BV11,
BGV12, GSW13] with log-depth decryption circuits that can be proven secure under the Learning with
Errors assumption.
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