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Abstract

The LSA cryptosystem is an asymmetric encryption algorithm which
is based on both group and number theory that follows Kerckhoffs’s
principle, and relies on a specific case of Gauss’s Generalization of
Wilson’s Theorem. Unlike prime factorization based algorithms, the
eavesdropping cryptanalyst has no indication that he has successfully
decrypted the ciphertext. For this reason, we aim to show that LSA
is not only more secure than existing asymmetric algorithms, but has

the potential to be significantly computationally faster.

1 Introduction

The LSA algorithm is an original algorithm that serves the purpose of shar-
ing secret information between two or more parties. Unlike most modern
asymmetric encryption algorithms, LSA does not rely on the prime factor-
ization problem and instead uses results brought upon by John Wilson and
Carl Friedrich Gauss. That is, LSA’s foundation stands solidly on the proof

of Gauss’s Generalization of Wilson’s Theorem.

It is hoped by the authors of this paper that this algorithm has the
potential to add to humanities cryptographic toolkit and maybe fix some
forthcoming problems along the way. First and foremost, it is a growing
concern that quantum computers will render encryption algorithms based
on the prime factorization problem irrelevant. Algorithms such as RSA

and ELGamal rely on harsh (and yet unproven) time complexities and



the computational in-feasibility of classical computers to guess the correct
prime numbers p and ¢ that make RSA’s modulus n [3]. But in-feasible is
not impossible because computers, classical or quantum, need only check

prime numbers up to the square root of n.

As we will demonstrate, one of the main strengths in LSA is the fact
that there are an infinite number of groups, both cyclic and not. Thus, un-

like RSA, there is no n to find and no p and ¢ to multiply together to find it.

Another strength of LSA is its ability to use smaller numbers than the
ever increasing primes that are needed to keep existing algorithms secure.
This will increase the efficiency of any organization that stores or computes
large amounts of encrypted data by decreasing CPU cycles and reducing

power consumption.

Above all, the strength of LSA resides in its simplicity.

2 Preliminaries

2.1 Groups

Any readers with prior knowledge of group theory (abstract algebra) may

skip this section and start directly from section 2.2.

Since the LSA is operated from within mathematical groups, we will
briefly explain the nature of a group and the properties used in this al-
gorithm: A group is a set equipped with an operation. More specifically,
it is a set of elements for which, when the elements are operated with a
specific operation (in our case modular multiplication or modular addition)

the following properties hold:

- Closure: If two elements are operated upon, the resulting element is

an element of the group.



- Transitivity: If % is an operation and a, b, and ¢ are elements of the

group, then a * (b c) = (axb) *c.

- Identity: All groups have a unique identity element e such that, for all

elements a of the group, a x e = a.

- Inverse: Every element a of the group has a unique inverse. The in-
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verse is an element of the group a™" such that a x a™" = e, where e is the

forementioned identity of the group.

The main group that is used for LSA is the multiplicative group modulo
n. This is the set of all the integers coprime to, and less than, an inte-
ger n, equipped with modular multiplication (we assume that the reader
is familiar with modular arithmetic). By convention, this group can be
referred to symbolically as U(n). For example, for n = 12 we have that
U(12) =< 1,5,7,11 > is a group if operated with multiplication modulo
12. The proof that U(n) is indeed a group [I] is beyond the scope of this

paper, but is widely available for those interested.

The main question pertaining to any group that will be used for LSA
encryption is whether or not the group is cyclic. A group is cyclic when-
ever it can be generated by operating an element with itself. Hence U(n)
is cyclic if U(n) =< a°,a',a?...a®?™~1 > where ¢(n) (known in number
theory as Euler’s Tuotient function) represents the number of integers co-

prime with n, which is also the number of elements of the group U(n).

2.2 Theorem

A reader with prior knowledge of Gauss’s Generalization of Wilson’s The-

orem can skip to section 2.3.

The core of the algorithm is based on a specific case of a mathematical

theorem called Gauss’s generalization of Wilson’s Theorem. The theorem



states that, if U(n) is a group of all the integers relatively prime to n and
less then n, and U(n) is cyclic, then by multiplying all the elements of the
group together modulo n, we generate an element congruent to —1 modulo

n.
So, if U(n) =< a >=< 1,a,a?,a,...,a®™~1 > then
a®-at-a?-a®--adb - a®™7 =1 modn
A proof of the theorem is given in the Appendix of this paper.

If U(n) is not cyclic, then

2.3 Key Exchange

Due to the nature of the IACR, we will assume that the reader is familiar

with the concept of key exchanges.

3 THE LSA

Suppose two parties want to secretly exchange information. This informa-
tion should be considered symbolic by nature (e.g. numerically, alphabeti-
cally, etc.). It is customary in the field of cryptography, to assign names to
the sender, receiver, and potential eavesdropper, as such we will we choose

Stella, Ben, and Joe respectively. They perform the following steps:

1. Stella and Ben begin by performing a key exchange that generates a
shared key k € R that is only known to Stella and Ben.



2. Next, k will be used as a reference by both parties to find an n € N

that satisfies the following properties:

I) k<n.

IT) n = p*, n = 2 - p* where p is an odd prime number and ¢ € N.
IIT) For any 8 € Z that satisfies I) and II) it must be the case that
n < .

3. Assuming that the above conditions have been met, it follows that
U(n) is a cyclic group of all of the integers relatively prime to n and

less than n [2]. Since U(n) is cyclic, then
Un) =< a>=<a’,a",a?, ..,a®?™"1 > .

At this point, Stella and Ben independently list the elements of U(n)
in ascending order as U(n) =< €1,€2,€3, ..., €, ..., €4(n) > Where €; <
€; when 7 < j. Note that, since £k is only known to Stella and Ben,
and U(n) is chosen from the shared knowledge of k, then it must be

the case that U(n) is only known to Stella and Ben.

4. Stella chooses an element of the group to represent the plain text of

her message, €p,.

5. To encrypt, Stella multiplies each of the elements up to €, in the
following way: €1 - €5 --- €, mod n = ¢ where ¢ is a component of the

ciphertext.
6. Stella publicly sends ¢ to Ben.

7. Ben receives ¢ and multiplies ¢ with all the elements of the group in de-
scending order and checks if c-€4(,) = —1 mod n, c-€4(n) €p(n)—1 = —1
mod n, all the way to ¢ €4(,) - €g(n)—1 * * - €n+1 Which will necessarily
be congruent to —1 modulo n by Gauss’s Generalization of Wilson’s
Theorem, since all the elements of the group have been multiplied

(and because U(n) is cyclic). At this point Ben knows that the next



element of the group yet to be multiplied, €y, is indeed the plaintext.

1 Since n — 1 is an element of the group and it is indeed the
element congruent to —1 modulo n, then the multiplication of the
elements of the group might generate n — 1 even in some cases where
not all the elements of U(n) have been multiplied.

Thus, before Stella sends the ciphertext ¢ she preforms c - €4(,) mod
N, C* €4(n) * €p(n)—1 Mod 7, all the way to c - €4(n) " €g(n)—1 = * €nt1
mod n and records the number of additional times she generates el-
ements congruent to —1 modulo n, and calls this number Y. Then

she publicly sends the tuple C' = (¢, ), which becomes the ciphertext.

1T When Ben receives C' = (¢, X)) he will start multiplying the
elements in descending order until he finds ¥ + 1 elements congruent

to —1 modulo n, revealing the plaintext.

3.1 Example

Here is an example of the LSA operated within a cyclic group U(n) equipped

with multiplication modulo n.

For enhanced readability, we have chosen a group of small order, thus

making each step more easily visualized.

Consider the case where Stella wants to secretly share the plaintext '7’

with Ben:
1. The key exchange algorithm generates k = 53.

2. Stella and Ben independently follow the LSA algorithm and conclude
that the next useful integer is 54 because it satisfies the following

properties:

I) 53 < 54
IT) 54 =2 - 33,



Hence U(54) is cyclic.

3. Stella and Ben list the elements of the group in ascending order.
U(54) =< 1,5,7,11,13,17,19, 23, 25,29, 31, 35, 37,41,43,47,49,53 >.

4. Since Stella wishes to send '7’, she picks the 7th element of U(54) in

ascending order, which is 19.

5. Stella performs 1-5-7-11-13-17-19 = 1,616,615 mod 54 =17 =c.

1 Stella multiplies ¢ by each element in descending order to find the

value of ¥ in the following way:

17 -
37
-47=1,457 mod 54 = —1 — (First X)
53 -
-41 =451 mod 54 =19

31

11
19
1
35
5

37 -

53 =901 mod 54 = 37
49 =1,813 mod 54 = 31

43 =2,279 mod 54 =11

-37T=703 modbd=1
-35 =35 mod 54 =35
-31=1,085 mod 54 =5
-29 =145 mod 54 =37

25=925 mod b4 =7

Since ¢ = 17 and ¥ = 1 (because Stella generated only one additional

element congruent to —1 mod n), then Stella publicly sends C' =

(17,1) to Ben.

6. Tt Ben receives C and starts to multiply ¢ by the elements of the group

in descending order until he finds ¥ 4 1 (in this case 1 + 1) elements



congruent to —1 modulo 54 as follows:

17-53 =901 mod 54 =37
37-49=1,813 mod 54 =31
31-47=1,457 mod 54 = —1 — (First X)
53-43 =2,279 mod 54 =11

11-41 =451 mod 54 =19
19-37=703 mod b4=1

1-35=35 mod 54 = 35
35-31=1,085 modb4=5

5-29 =145 mod 54 = 37
37-256=925 mod 54 =7

7-23=161 modhd=-1—= (X +1)

Since Ben found the second element that is congruent to —1 modulo
54, he knows that all of the elements of the group have been mul-
tiplied. This tells him that the next number in the sequence is the
chosen number (19). Since 19 is the Tth group element, Ben has the
plaintext ’7’.

4 Use of Multiplicative Non-Cyclic Groups

Gauss’s Generalization of Wilson’s Theorem, for non-cyclic groups, states
that if we multiply all the elements of U(n), when U(n) is not cyclic, we

generate an element congruent to 1 modulo n (proof omitted).

This fact can be used in an analogous way as was used in cyclic groups.
In fact, it will be sufficient for Stella and Ben to generate a non-cyclic U(n)
simply by choosing n such that n # p' and n # 2 - p* where p is an odd
prime number and ¢ € N. Then, Stella and Ben perform the steps of the
algorithm exactly the same with the exception of substituting 1 in the place

of —1 modulo n.



5 Description for Use of Additive Groups

First, note that the group of all the integers less then n, equipped with

addition modulo n is indeed a group [2].

The LSA can also be performed using additive groups in the following

way:

Let the key k be used to generate n € N where Z,, is the group of the
positive integers less than n including 0, closed under addition modulo n.
Then, Stella picks an element of the group, say [, that she wishes to encrypt
and sends c = 0+1+4+2+...+1 mod n to Ben where c represents the cipher

text that is sent in the open.

Ben then decrypts the message by performing the same steps as Stella,
meaning that he performs 0+1+2+...+h until he finds that 0+14-2+...h = ¢
mod n. Here, he sees that h = [ and the plaintext is decrypted. As in the
multiplicative method, since Z,, is a group, it is possible that the addition
of the elements of the group will generate more than one element congruent
to ¢ modulo n. And, as before, all of these elements will be listed as ¥ and

communicated in a tuple such as C = (¢, ¥), where C will be public.

5.1 Example Using Additive Groups

Assume that from the shared key we generate the integer 5, thus Stella and
Ben list the elements of Z5 in ascending order, namely < 0,1,2,3,4 >.
Assume that Stella wants to send Ben the integer 3; then she performs
0+1+2+3=6=1 mod 5, thus she find that ¢ = 1. Next, she will check
that

0+1=1=1 mod5 — (This is one X)
0+142=3=3 mod?5.



At this point, she found the value of ¥ and she sends C = (1,1) to Ben.
From here, Ben performs the same steps until he finds the second element

congruent to 1 modulo 5 in the following way:

0+1=1=1 mod5— (one?X)
04+14+2=3=3 modbH
0+14+24+3=6=1 mod5.

Thus, Ben knows that ¢ = 3, which decrypts the ciphertext.

6 Description for Use of Multiplicative Groups
without the use of the Gauss’s Generaliza-

tion of Wilson’s Theorem

Finally, the LSA can be used in multiplicative groups U(n) without mak-
ing use of Gauss’s Generalization of Wilson’s Theorem. To show this, let
the shared key k be used to generate an integer n such that U(n) =<
€1, €2, €3, ..., €4(n) > and note that, as before, this is the group of all the

integers less then n and coprime to n, where €; < €; when i < j.

Next, Stella picks an element of the group, say e, according to her

needs, and sends the ciphertext ¢ to Ben, such that €; -€2---€;, mod n = c.

From here, Ben decrypts the message by performing the same steps as
Stella. This means that he begins multiplying €; - €3 - €3 - -- until finds the

element ¢;,. He will know when he finds it because €1 - €5 ---¢, mod n = c.
As in the additive method, since U(n) is a group, it is possible that

the multiplication of the elements of the group will generate more than one

element congruent to ¢ modulo n, hence all of these elements will be listed

10



as ¥ and communicated in a tuple such as C' = (¢, %), where C' will be

public.

6.1 Example

Beginning with the key exchange algorithm, we generate the integer n =
18. Stella and Ben list the elements of U(18) in ascending order, namely
< 1,5,7,11,13,17 >. Assume that Stella wants to send Ben the integer 13.
Then, she performs 1-5-7-11-13 = 5005 =1 mod 18, finding that ¢ = 1.
Next, she checks

1=1 mod 18 — (this is one %)
1-5=5 mod 18
1-5-7=17 mod 18
1-5-7-11=7 mod 18

to find the value of ¥ and she sends C' = (1, 1) to Ben.

Ben then performs the same steps until he finds the second element

congruent to 1 modulo 18, in the following way:

1=1 mod 18 — (one )
1-5=5 mod 18
1-5.-7=17 mod 18
1-5-7-11=7 mod 18
1:5-7-11-13=1 mod 18 — (3 + 1)

At the conclusion, Ben finds that the plaintext is 13.

11



7 The choice of the elements

In this section we will show one way to map a given group U(n) to a set of
meaningful symbols P that one might wish to encrypt. We will accomplish
this via a surjective function ¢ : P + U(n). The function ¢ must be sur-
jective for each member of the codomain to have a corresponding element
in the domain P that maps into it. This is required in order to make sure

that each plaintext character is paired with a member of the group.

Ezample: Assume P is the set of symbols {e, f,g}. Then, in U(9), ¢

maps the elements as follows:

1—=e
2> f
4—gq
5—e
T f
8—g

Consider the case where Stella is operating with multiplication modulo
9, and she wants to send the symbol f. She can send this with either 1 -2
mod 9=2,0or1-2-4-5-7 mod 9 =1. So she can send [ as either ¢ = 1

or ¢ = 2 as the first component of C.

8 Enhancing Security (Using LSA as a ’one-
time-pad’)

We begin this section by revisiting the issue of using a one-time, pre-shared
key, for each character of the message. The authors of this paper believe
that this step will ensure that any kind of frequency analysis will fail the

cryptanalyist attempt to learn the group used to encrypt. This, in-turn,

12



allows for the use of groups as small as the order of the character set that

the sender wishes to encrypt.

Here we remind the reader that a one-time-pad is a method of en-
cryption that uses a one-time, pre-shared key, that cannot be cracked other
than to use the technique known in the field of cryptography as a ”"lucky

guess”.

Since the key exchange process might be a computationally heavy task,
we suggest a modification to the LSA algorithm to generate variable length
keys. Further research on this method called Lucente Stabile Atkins Leclerc
Key Exchange Algorithm (LSAL), will soon be available for review. Here
we will show that one iteration of the LSAL can be used to produce sets
of keys of remarkable order. For instance, by choosing a single, arbitrary
element, from a group of approximately 10,000 elements, LSAL can inde-
pendently produce a key set with an approximate order of 20,000 keys of
variable length. Note that different key sets, of similar order, can be gen-

erated by each element of the group.

The Lucente Stabile Atkins Algorithm can be implemented in several
ways, that have varying degrees of security, that each come with different
levels of computational complexity. The use of which will be determined

by the needs of the sender/receiver.

Obviously, additional steps can be done to protect the information
shared; for example, since the integer X is sent publicly, Stella may wish to
hide its value. However, considering the nature of the audience, we will not
suggest any security precautions, unless, to best of our knowledge, they are

a novelty.

The following steps imply the use of mathematical groups, so we will

present them:

1. In order to avoid revealing the size of the group that could be guessed

13



by the public sharing of X, the following procedure can be performed:
Let © be the total number of elements congruent to —1 modulo n
that are generated by multiplying all the elements of the group in
descending order. Then, Stella can send (c, k2 4 3) to Ben.

Since Ben knows all the elements of the group he can easily derive €2
by multiplying all the elements of the group one by one and checking
their congruence modulo n each iteration, thus he can find ¥ by per-
forming £ 4+ ¥ =3 mod k€.

This procedure allows the sender to publish a larger integer that sub-
stitutes X, even when working within a group of small order. More-
over, this step gets its strength due to the fact that n is hard to

retrieve from k.

. If n = k, any successful attack on n would result in the discovery of

k, which in turn could be used to reveal X.

. It is recommended that, when choosing a group U(n), n not be prime
or else the product of the group elements may be a factorial, and thus
easily recognizable by a cryptanalyst. This can be easily ensured by
setting £ > 1.

. Recall that for any integer k, k + 1 is coprime to k. In our case, for
any non-prime n, by the definition U(n), if k is an element of U(n),
then k + 1 is not. Now, observe the ciphertext C = (¢, ). Note that
¢, which is an element of U(n) can reveal some clue about the nature
of n. In fact, if ¢ is even, and c is coprime to n, then n must be odd.
Similarly if ¢ is odd, then n is more likely to be even [I].

To avoid revealing such information it is enough for Stella to send
C = (c+1,%), where ¢+ 1 is not an element of U(n).

When Ben receives the ciphertext, he will discover that the ¢ + 1 is
not in the list of its elements, hence he will simply need to subtract

1 to reveal c.
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9 Conclusions

We hope to have left the reader with the understanding that the LSA al-
gorithm can be used with different combinations of cyclic and non-cyclic
groups. This means that this algorithm can be used in either symmetric or
asymmetric modes of encryption. It is also of great benefit to the users of
this algorithm that we can design systems of varying computational com-
plexity and security by using different groups, encrypting X, and various
other methods that make a group discovery by the cryptanalyst meaning-
less. In fact, we believe that exchanging keys between each character gives

the LSA algorithm an equivalent time complexity to that of a one-time-pad.
In closing, the authors of this paper sincerely hope that if this bit of

mathematics is found to be a useful tool, then humanity will use it to find

ways to improve our standing in nature.
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10 Appendix

10.1 Gauss’s Generalization of Wilson’s Theorem

The following is a proof of a specific case of Gauss’s Generalization of Wil-
son’s Theorem [2].

Proposition: If a group U(n) is cyclic [2], then all of the elements of
the group, multiplied together, will result in an element that is congruent
to —1 modulo n, where U(n) is the set of all the integers less then n, that

are relatively prime to n, and equipped with multiplication modulo n.

Theorem 10.1 Let U(n) =< a > be a cyclic group of all of the integers
relatively prime to n and less then n. Assume that U(n) is generated by the

element a, then a-a®-a®---a®™~1 = —1 (modn).

Proof: Let U(n) =< a > be a cyclic group of integers coprime to n and
less then n, so that U(n) =< a >=< 1,a,a?,a%,...,a®™~1 > and that
ged(a?,n) =1 for all j € N.

First observe that n — 1 = —1 (modn) and that (n —1)? =n(n —2)+1 =
1 (modn). It follows that n — 1 is its own inverse. Also, since the inverse is

unique, then n — 1 has no other inverse than itself.

Moreover, n — 1 is the only non-identity element of the group whose in-
verse is itself. In fact, let b be an arbitrary element of U(n), such that
b? = 1 (mod n), it follows that 6> —1 = 0 (mod n). This means that n|(b—1)
orn|(b+1). Now,if b£1,and b# (n—1),then 3 <b+1<mn—1, and
1 <b—1<n-—3. Note that no integer in the group between 1 and n — 1

is divisible by n, hence b does not exist.
Now, since U(n) is a group, each element of U(n) has a unique and distinct

inverse that can be found within the elements of the group, except for n—1.

Thus (a*)(a’)~! = 1 (modn), where a* and (a*)~! are distinct elements, for

16



all i # 0, except for an integer [ for which n — 1 = a’.

So consider

1.a.a2.a3...al...a¢(n)7l

We know that each element multiplied with its own unique and distinct

inverse generates an element that is congruent to 1 modulo n, except for

al.

So we have that

1.a.a2...al...a¢(n)71 = 1 .aa71 .a2 (a2)_1...al...a¢(n)71 (a¢(n)71>_1
= —1 (modn).

17



11 Prototype Source Code

Python prototype implementation written by

Colby Leclerc
colby@colby.io
(978) 708-1050

<https://github.com/ColbylLeclerc/lsa>

(Patent pending)
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