
Security of Symmetric Primitives against
Key-Correlated Attacks

Aisling Connolly1,2, Pooya Farshim2,3, and Georg Fuchsbauer2,3

1 Ingenico Group, Paris, France
2 DI/ENS, CNRS, PSL University, Paris, France

3 Inria, Paris, France
{aisling.connolly,pooya.farshim,georg.fuchsbauer}@ens.fr

Abstract. We study the security of symmetric primitives against key-correlated
attacks (KCA), whereby an adversary can arbitrarily correlate keys, messages, and
ciphertexts. Security against KCA is required whenever a primitive should securely
encrypt key-dependent data, even when it is used under related keys. KCA is
a strengthening of the previously considered notions of related-key attack (RKA)
and key-dependent message (KDM) security. This strengthening is strict, as we
show that 2-round Even–Mansour fails to be KCA secure even though it is both
RKA and KDM secure. We provide feasibility results in the ideal-cipher model for
KCAs and show that 3-round Even–Mansour is KCA secure under key offsets in the
random-permutation model. We also give a natural transformation that converts any
authenticated encryption scheme to a KCA-secure one in the random-oracle model.
Conceptually, our results allow for a unified treatment of RKA and KDM security in
idealized models of computation.
Keywords: Key-correlated attack · related-key attack · key-dependent-message attack ·
ideal-cipher model · random-oracle model · authenticated encryption · xkcd.

1 Introduction
Cryptographic algorithms are subject to a multitude of threats. Many of these threats are
accounted for in the theoretical security analysis carried out by cryptographers, but not all.
For example, early on, the seminal paper of Goldwasser and Micali [GM84] pointed out
that guarantees of semantic security may break down if the adversary sees encryptions of
the secret key. Formal analyses of protocols can also become moot [Bih94b, Bih94a] when
the assumption that cryptosystems are run on independently generated keys no longer
holds. A number of works have analyzed the security of cryptosystems in the presence of
key-dependent messages or when different keys are generated in dependent ways (see the
related work section below). We continue this line of work and ask to what extent basic
cryptosystems (such as blockciphers and symmetric encryption) can resist attacks that
exploit correlated inputs.

1.1 Motivation
Our motivation for studying correlated-input security is twofold. We are interested in
settings where a cryptosystem may be run on related keys—either by design or due to
attacks—to securely encrypt messages that depend on the encryption key. Suppose a user
stores a secret key K on its hard drive. An adversary may be able to tamper with this
key, for example flip some of its bits and change it to K ⊕∆ for some bit string ∆. It may
then obtain a full-disk encryption under this key. It is not clear what security assertions
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can be made, as this setting falls outside both the related-key attack (RKA) and the
key-dependent message (KDM) models. Indeed, the RKA model only allows the adversary
to obtain encryptions of the form Enc(φ(K),M), for functions φ mapping keys to keys, but
for key-independent messages, while KDM accounts for key-dependent encryptions of type
Enc(K,ψ(K)), for functions ψ mapping keys to messages, but under untampered keys. In
the described attack, the adversary obtains Enc(K ⊕∆,K ⊕∆). This is not covered by
either of these models since both the key and the message are correlated with the original
key. Other applications of KCAs include efficient garbling of XORs [App16], where KCA
security (called RK-KDM there) with respect to linear functions or the form α ·K ⊕∆ for
a bit α are used.

These settings require a stronger security notion, which is what we introduce here.
The Key-Correlated Attacks (KCAs) model lets the adversary obtain encryptions of key-
dependent messages under related keys. Generally, wherever there is a possibility of both
RKAs and KDM attacks, i.e., key-correlated encryptions of the form Enc(φ(K), ψ(K)),
there is good chance that the actual security needed is KCA security. A typical use case is
when the round functions of a block cipher are keyed via related keys, and the construction
is used to encrypt key-dependent data.

In our model, for generality, simplicity and strength, we symmetrically allow for key-
dependent ciphertexts, that is, the adversary can see Dec(φ(K), ψ(K)). Such settings arise
when the decryption algorithm of a blockcipher is run during encryption, which is for
example the case in the triple DES construction [BR06], the ElmD construction [BDMN16],
or in amplification theorems for blockciphers [MP04, CPS14].

Our second motivation is conceptual in that KCA provides a unified approach to RKA
and KDM security analyses of symmetric primitives. More concretely, our goal is to prove
KCA feasibility theorems and then derive RKA and KDM security as simple corollaries.
This allows for reuse of security proofs and identifies classes of permitted attacks more
generally, while leading to stronger security results.

1.2 Related work
RKA security. Knudsen and Biham [Knu93, Bih94b, Bih94a] initiated the study of
RKAs and Bellare and Kohno [BK03] gave a theoretical treatment. High-profile RKAs
on AES were discovered by Biryukov et al. [BKN09, BK09]. The RKA model was
extended by Albrecht et al. [AFPW11] to account for attacks that depend on an ideal
primitive [Har09, Ber10]. The RKA security of Feistel networks [BF15] and Even–Mansour
ciphers [FP15, CS15] have been studied. Bellare, Cash, and Miller [BCM11] present a
comprehensive treatment of RKA security for various cryptographic primitives.

KDM security. Goldwasser and Micali [GM84] already hinted at the need for KDM
security. The first use of KDM security appears in the work of Camenisch and Lyskan-
skaya [CL01] for anonymous credentials. Black, Rogaway, and Shrimpton [BRS03] formu-
lated KDM security for symmetric encryption and proved its feasibility in the random-oracle
model. Halevi and Krawczyk [HK07] later gave feasibility results in the standard model.
Bellare and Keelveedhi [BK11] studied KDM in the context of authenticated encryp-
tion. Bellare, Cash, and Keelveedhi [BCK11] give a generic construction of a tweakable
blockcipher from a blockcipher which is KDM secure. More recently, Farshim, Khati,
and Vergnaud [FKV17] studied KDM security for the ideal cipher and the iterated Even–
Mansour constructions. In the asymmetric setting the first feasibility result in the standard
model for rich classes of functions was by Boneh et al. [BHHO08]. Camenisch, Chandran
and Shoup [CCS09] gave a KDM-CCA secure public-key encryption scheme.

Correlated inputs. Study of security under correlated inputs goes back to the work of
Ishai et al. [IKNP03] as correlation-robustness in the design of oblivious transfer protocols.
Correlated-input security was made explicit for hash functions by Goyal, O’Neill, and
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Rao [GOR11], who show relations with related-key attacks. The work of Böhl, Davies
and Hofheinz [BDH14] considers related-key attacks in the presence of key-dependent
messages. Their RKA-KDM security could be considered a natural analogue of our model
for public-key encryption. They construct schemes that achieve their notion based on
number-theoretic assumptions such as DDH, LWE, QR, or DCR. Applebaum [App16]
gives an RKA-KDM symmetric encryption scheme based on the LPN assumption.

1.3 Contributions
Building on the above line of works, we formulate a new security model incorporating and
strengthening both the RKA and KDM models. We speak of key-correlated attack (KCA)
in this context, a name that is loosely inspired by the introduction of correlated-input
attacks against hash functions [GOR11] (note that the notion of key-dependent input
attacks has already been used by Halevi and Krawczyk [HK07]). We give appropriate
definitions of security under key-correlated attacks that relate well to the standard RKA and
KDM security notions. Our definition extends that in [App16] for randomized symmetric
encryption under chosen-plaintext attacks to the setting of authenticated encryption with
associated data (AEAD).

We start with comparing our notion to existing ones. After proving that KCA implies
RKA and KDM security, we show that KCA security is strictly stronger than even simulta-
neously having RKA and KDM security. We give a natural separation by demonstrating a
KCA attack on the 2-round Even–Mansour cipher, which was shown to satisfy both RKA
and KDM security in two previous works [FP15, FKV17].

After defining KCA and showing a separation result, we study feasibility of KCAs.
Our starting point is the ideal-cipher model, in which all parties have oracle access to a
keyed random permutation in both directions. We cannot allow arbitrary dependencies of
keys and messages as otherwise “trivial” attacks, which work against any scheme, arise.
To exclude these and thus obtain a meaningful notion, we restrict the classes of allowed
dependencies. We show that if they satisfy appropriate notions of key-unpredictability
and claw-freeness then the ideal cipher satisfies KCA security. Roughly speaking, key-
unpredictability requires that the adversary does not obtain encryptions or decryption
under predictable keys. Claw-freeness, on the other hand, requires that the inputs are
distinct, and so repetition pattern of the outputs cannot be exploited. Analogues of these
notions were previously considered in the RKA and KDM settings.

In our setting we require a third condition, which we call cross-key-claw detectability,
that allows us to deal with claws across encryption and decryption queries. This notion
is sufficiently weak so that in the RKA and KDM setting it automatically follows from
claw-freeness. In the KCA setting, however, it does not necessarily, as it restricts claws
on keys.1 Two results on the RKA and KDM security of the ideal cipher by Bellare and
Kohno [BK03] and Farshim, Khati, Vergnaud [FKV17] respectively, fall out as natural
corollaries of our theorem.

Turning to concrete constructions, we analyze the KCA security of the iterated Even–
Mansour cipher with three rounds in the random-permutation model. We show that with
reuse of keys (which is known to be necessary for RKA security [FP15]) and using different
permutations (which is necessary for KDM security whenever keys are reused [BW99,
FKV17]) we can provably achieve security against key-correlated attacks that concurrently
encrypt messages M or offsets of key of the form K ⊕ ∆2 under other offsets of the
key of the form K ⊕∆1. This strengthens two feasibility results due to Farshim, Khati,
Vergnaud [FKV17] and Farshim and Procter [FP15].

1Claw-freeness can be modified to key-claw-freeness across encryption and decryption so that cross-key-
claw-freeness is automatic. But in this case the reach of our feasibility results do not extend to the KDM
setting since under KDM keys always collide.
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From a technical point of view, the novelty of our KCA proof for 3-round Even–Mansour
is that we keep the outer permutations partially consistent with the replaced forgetful
oracles as well as the permutation oracles. For legal queries we show this can be done
with overwhelming probability, while a detection algorithm will allow us to identify illegal
queries and reject them. This proof thus deviates from previous works in which oracles
are fully decoupled. As a result we also obtain a different (albeit somewhat more complex)
way to prove the RKA security of 3-round Even–Mansour against key offsets by replacing
the outer (rather the inner) permutation [FP15].

We end the paper by showing how to generically transform any AE-secure AEAD scheme
to one which is a KCA-secure in the random-oracle model by hashing the key with nonces.
For this result we only require the set of allowed functions to be unpredictable, as nonces
automatically prevent repetitions due to claws in the functions. In contrast to previous
work by Bellare and Keelveedhi [BK11] on similar transforms for achieving KDM-security,
our scheme is secure with key-dependent nonces and headers. Although key-dependent
headers are briefly discussed in [BK11], security with respect to key-dependent nonces is
not considered at all. Arguably, however, there is a stronger case for the key-dependency
of nonces than of headers: when nonces are randomly chosen they might become correlated
with the key due to, e.g., bad generation of random numbers. For key-dependent headers,
Bellare and Keelveedhi give a negative result, by having the adversary exploit the pattern
of decryption errors (either ⊥ for an illegal query or 0 for failure in authenticity) to recover
the key. In our setting, however, the decryption oracle only returns a single error symbol,
which enables security under key-dependent inputs. If our model were modified to also
have distinct error symbols, an attack similar to that in [BK11] would arise. We note that
in these settings one might be able to obtain non-trivial feasibility results by requiring a
form claw-freeness.2

Our work leaves a number of open questions to be addressed in this area: How many
rounds are needed for other ciphers (such as Feistel networks) in order to achieve provable
KCA security? Do modes of operation (such as CBC) provide KCA security assuming
that their underlying blockciphers are KCA secure? Does KCA help in the cryptanalysis
of concrete blockciphers?

Organization. We start with basic notation and preliminaries in Sec. 2. In Sec. 3, we
define KCA security for blockciphers and study its relation to RKA and KDM security
before showing two separation results in Sec. 4. In Sec. 5 we study KCA in the ideal-cipher
model and in Sec. 6 we prove 3-round Even–Mansour KC-CCA secure for offsets. Sec. 7
contains our generic construction of a KCA-secure authenticated encryption scheme from
any AE-secure one.

2 Preliminaries
Notation. We let {0, 1}n denote the set of bit strings of length n and {0, 1}∗ the set of
all finite-length bit strings. For two bit strings X and Y , X|Y denotes their concatenation
and (X,Y ) denotes a uniquely (and efficiently) decodable encoding of X and Y . The length
of X is denoted by |X|. By x←←S we mean sampling x uniformly from set S, whereas by
y←←A(x) we mean the action of assigning the output of the randomized algorithm A on
input x to y. We denote appending element X (resp., a list L′) to a list L by L : X (resp.,
L : L′).

We adopt the code-based game-playing language of Bellare and Rogaway [BR06],
for which all lists are initialized to empty and all bad flags to false. Following the
concrete security approach, we will primarily content ourselves with defining advantages
and providing concrete reductions, without dwelling too much on the question when a

2Consistently, the attack in [BK11] exploits claws in the key-dependent headers.
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scheme is actually deemed secure or not (e.g., for a sufficiently large class of adversaries,
the advantages are sufficiently small). One can of course easily recast our work in an
asymptotic framework (where for all probabilistic polynomial-time adversaries advantages
should be negligible in the security parameter λ, i.e., in λ−ω(1)).

Blockciphers. Given a non-empty finite set K and a non-empty setM, called the key
space and the message space respectively, we let Block(K,M) denote the set of all functions
E : K ×M→M such that for each K ∈ K the map E(K , ·) is (1) a permutation onM
and (2) length-preserving in the sense that for all M ∈M we have that |E(K ,M )| = |M |.
Such an E uniquely defines its inverse D : K×M→M. A blockcipher for key space K and
message spaceM is a tuple of efficient algorithms BC := (E,D) such that E ∈ Block(K,M)
and D is its inverse. We assume that the keys of a blockcipher are chosen uniformly from the
key space K, which is typically {0, 1}k for some k ∈ N called the key length. Algorithm E
is the deterministic encryption algorithm E : K × M → M. Typically M = {0, 1}n
for some n ∈ N called the block length. Algorithm D is the deterministic decryption
algorithm D : K ×M → M. A blockcipher is correct if for all K ∈ K and M ∈ M
we have D(K ,E(K ,M )) = M and also E(K , ·) is length-preserving (which follows from
decryptability if M = {0, 1}n). A (public) permutation on M is a blockcipher with a
singleton key space K = {ε}. For variable input length blockciphers, we require that for
each n, {0, 1}n is either contained inM, or {0, 1}n ∩M = ∅. We denote a permutation
with P and its inverse with P−.

Ideal ciphers. The ideal cipher for key space K and message spaceM is the uniform
distribution over Block(K,M). The ideal-cipher model (ICM) for given key and message
spaces K,M is a model of computation where all parties, honest or otherwise, have oracle
access to a uniformly random element in Block(K,M) and its inverse. The ideal-cipher
model when restricted to K = {ε} gives rise to the random-permutation model (RPM).
We abbreviate Block({0, 1}k, {0, 1}n) by Block(k, n) and Block({ε}, {0, 1}n) by Perm(n).

3 The Model
3.1 Concept and definitions
Correlation-derivation function (CDF). A correlation-derivation function (CDF)
is a circuit of the form

ξ : K −→ K×M .

A set of such functions is called a CDF set. Throughout the paper we denote CDF sets by
Ξ and require that membership of a CDF set can be efficiently decided. We will define
key-correlated security primitives relative to two CDF sets Ξe and Ξd that describe allowed
encryption and decryption queries, respectively.

KCA-secure blockciphers. Let BC be a blockcipher with key space K = {0, 1}k and
message (and ciphertext) spaceM = {0, 1}n. Let Ξe and Ξd be CDF sets for the input
space K ×M. The KC-CCA advantage of an adversary A against BC is defined by

Advkc-cca
BC (Ξe, Ξd, A) := 2 · Pr

[
KC-CCAΞe,Ξd,A

BC
]
− 1 , (1)

where game KC-CCAΞe,Ξd,A
BC is given in Fig. 1. In this game, the adversary’s goal is to

decide whether (case b = 1) its oracles are using the blockcipher BC = (E,D) or (case
b = 0, the ideal case) a random permutation iE and its inverse iD. Lists ML and CL
prevent the adversary from trivially winning the game. Otherwise the adversary could, for
instance, recover the challenge key K∗ by querying an encryption (or decryption) of K∗
and subsequently ask for decryption (or encryption) of the oracle’s reply.
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Game KC-CCAΞe,Ξd,A
BC :

b←←{0, 1}
(iE, iD)←←Block(K,M)
K∗←←K
b′←←AKCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
C ← E(K ,M )
if b = 0: C ← iE(K ,M )
CL← CL : (K ,C )
return C

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
M ← D(K ,M )
if b = 0: M ← iD(K ,M )
ML← ML : (K ,M )
return M

Figure 1: Game defining the (Ξe,Ξd)-KC-CCA security of a blockcipher BC = (E,D) with
key space K and message spaceM. We require that ξe ∈ Ξe and ξd ∈ Ξd for all queries.

We note that for two sets Ξe1 ⊆ Ξe2 and Ξd1 ⊆ Ξd2 security against (Ξe2,Ξd2)-KC-CCA
implies security against (Ξe1,Ξd1)-KC-CCA. Whenever Ξd = ∅ we obtain a chosen-plaintext
attack model.

Note. Analogues of KCA security can be formulated for hash functions and pseudorandom
generators, which become equivalent to correlated-input security for hash functions [GOR11]
and RKA security for PRGs [BCM11].

3.2 Examples
As examples of KC functions, suppose that related keys, described by functions from some
set Φ, are used within the specification of an encryption scheme (an example are the
3GPP protocols [IK04]). Suppose further that the scheme is used to encrypt messages that
depend on the key in ways represented by functions from a set Ψ. The overall effect is that
an adversary has access to ciphertexts corresponding to key-dependent messages under
related keys. In other words, the adversary can see key-correlated ciphertexts for functions:

ξ : K 7→ (φ(K), ψ(K)) with φ ∈ Φ and ψ ∈ Ψ , and
ξ : K 7→ (φ(K),M) with φ ∈ Φ and M ∈M .

Alternatively, suppose an adversary has access to encryptions under related keys
with respect to Φ through, say, injection of faults that change bits of a hardware-stored
encryption key [BDL97, BS97].3 If the scheme is used to encrypt key-dependent messages
with respect to Ψ, the adversary would be able to launch a KCA for the functions:

ξ : K 7→
(
φ(K), ψ(φ(K))

)
with φ ∈ Φ and ψ ∈ Ψ , and

ξ : K 7→ (φ(K),M) with φ ∈ Φ and M ∈M .

The KCA model thus captures, among other things, a variety of joint RKA and KDM
attacks on a blockcipher.

3.3 Relation with RKA and KDM
Let id denote the identity function on a key space K and let Γ denote the set of all constant
functions K 7→ M for M ∈M. We identify a pair of functions (φ, ψ), with ranges K and
M respectively, with the correlation-derivation function K 7→ (φ(K ), ψ(K )).

CPA/CCA-only sets. We call a pair (Ξe,Ξd) CCA-only if Ξe = Ξd = {id} × Γ. (The
adversary can only make regular encryption and decryption queries.) We call (Ξe,Ξd)
CPA-only if Ξe = {id} × Γ and Ξd = ∅.

3KCA security does not imply security against fault attacks in general.
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RKA/KDM-only sets. We call a pair (Ξe,Ξd) RKA-only if Ξe = Ξd = Φ× Γ for an
RKA set Φ of functions mapping keys to keys. We call (Ξe,Ξd) KDM-only if Ξe = {id}×Ψ
and Ξd = {id} × Γ (i.e., no key-dependent ciphertexts allowed [FKV17]) for a KDM set Ψ
of functions mapping keys to messages. (The CPA versions are defined analogously by
demanding that Ξd = ∅.) We assume that any KDM set Ψ contains Γ, as it is natural to
always allow for chosen plaintexts.

We show that our definition of KC security extends the standard RKA and KDM
definitions for blockciphers, which we recall in Appendix A. In particular, for KDM-only
sets we have that KCA and KDM security are equivalent and similarly for RKA-only
sets KCA and RKA security are equivalent. For two of the four implications, we assume
claw-freeness of the correlation-derivation functions. This requires that it is hard to find
two different functions that have the same output given a random input and is defined
formally in Sec. 5 (p. 10). Claw-freeness is required because the KCA game returns ⊥
whenever claws are detected whereas the RKA game does not. The proof of the following
proposition can be found in Appendix A.

Proposition 1. Let BC be a blockcipher. Let Ξe and Ξd be two CDF sets.

RKA: Suppose (Ξe,Ξd) are RKA-only with Ξe = Ξd = Φ× Γ. If BC is (Ξe,Ξd)-KC-CCA-
secure then it is Φ-RK-CCA secure. If BC is Φ-RK-CCA-secure and Ξe = Ξd is
claw-free then BC is (Ξe,Ξd)-KC-CCA-secure.

In particular, let n be the block length, A be an adversary and q the maximum number
of its queries. Then there exists an adversary B such that

Advrk-cca
BC (Φ,A) ≤ Advkc-cca

BC (Ξe, Ξd, B) + q2/2n .

Moreover, there exist adversaries B and Bcf such that

Advkc-cca
BC (Ξe, Ξd, A) ≤ q2 ·

(
Advcf

Φ (Bcf) + 1/2n
)

+ Advrk-cca
BC (Φ,B) .

KDM: Suppose (Ξe,Ξd) are KDM-only with Ξe = {id} × Ψ and Ξd = {id} × Γ. If
BC is Ψ-KDM-CCA secure then it is (Ξe,Ξd)-KC-CCA-secure. If BC is (Ξe,Ξd)-
KC-CCA-secure and Ξe is claw-free then BC is Ψ-KDM-CCA-secure.

In particular, for every adversary A there exists an adversary B such that

Advkc-cca
BC (Ξe, Ξd, A) = Advkdm-cca

BC (Ψ,B) ,

and there exist adversaries B and Bcf such that

Advkdm-cca
BC (Ψ,A) ≤ q2 ·Advcf

Ψ(Bcf) + Advkc-cca
BC (Ξe, Ξd, B) ,

where q is the maximum number of queries adversary A makes.
Analogous implications hold in the CPA setting.

4 Key-Correlated Attacks
In this section we show that even if a blockcipher simultaneously achieves security against
RK and KDM attacks, it may still fail to achieve security against concurrent RK/KDM
attacks, and hence also fail to achieve KCA security. We provide two separations, one
artificial and one natural, to demonstrate this.
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E′(K ,M ):
C ∗ ← E(min(K ,K ), 0n)
if M = K: return C ∗
if M = D(K , C∗): return E(K ,K )
return E(K ,M )

D′(K ,C ):
C ∗ ← E(min(K ,K ), 0n)
if C = C ∗: return K
if C = E(K ,K ): return D(K ,C ∗)
return D(K ,C )

Figure 2: Blockcipher (E′,D′) that is both KDM and RKA secure but not KCA secure.
Note that min(K ,K ) = min(K ,K ), thus E′(K,K) = E′(K ,K ).

M

K1

P1

K2

P2

K3 Kr

Pr

Kr+1

C

Figure 3: The r-round iterated Even–Mansour cipher.

4.1 A generic separation result
Let K =M = {0, 1}n and define the following sets of functions:

Φ⊕ :=
{

K 7→ K ⊕M : M ∈M
}

Ψ⊕ :=
{

K 7→ α ·K ⊕M : M ∈M, α ∈ {0, 1}
}

(2)
Ξ⊕ :=

{
K 7→ (K ⊕M1, α ·K ⊕M2) : M1,M2 ∈M, α ∈ {0, 1}

}
.

Given a Φ⊕-RKA secure and Ψ⊕-KDM secure blockcipher (E,D), consider the modified
cipher (E′,D′) shown in Fig. 2, where min is the lexicographic minimum and K := K ⊕ 1k.
Note that (E′,D′) is again a blockcipher, i.e., a permutation for each value of the key (we
simply swapped E(K,K) and C∗ in the image space).

To see that (E′,D′) is not (Ξ⊕, ∅)-KC-CCA secure, consider an adversary that queries
K 7→ (K ,K ) and K 7→ (K ,K ) = (K ⊕ 1n,K ⊕ 1n) to its KCEnc oracle. For the modified
cipher both queries yield the same result:

E′(K ,K ) = E
(
min(K ,K ), 0n

)
= E

(
min(K ,K ), 0n

)
= E′(K ,K ) ,

while for the ideal cipher this would only happen with probability 1/2n. On the other
hand, the modified cipher (E′,D′) remains both RKA and KDM secure as it essentially
behaves like (E,D) when no joint RKA and KDM attacks as above can be mounted. We
kept this discussion informal as our second separating example below is more natural and
practically relevant.

4.2 Attack on 2-round Even–Mansour
The r-round Even–Mansour cipher [EM97, DR01, BKL+12] is defined by r permutations
P1, . . . ,Pr, has key space K = {0, 1}(r+1)n, domain M = {0, 1}n and encryption and
decryption algorithms (cf. Fig. 3)

E
(
(K1, . . . ,Kr+1),M

)
:= Pr

(
. . .P2(P1(M ⊕K1)⊕K2) . . .

)
⊕Kr+1 ,

D
(
(K1, . . . ,Kr+1),C

)
:= P−1

(
. . .P−r−1(P−r (C ⊕Kr+1)⊕Kr) . . .

)
⊕K1 .

The EM ciphers can also be considered in configurations where (some of the) keys and/or
(some of the) permutations are reused in different rounds. We denote the EM cipher where
Pi and Ki+1 are used in round i by EMP1,...,Pr [K1,K2, . . . ,Kr+1].
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Game KC-CCAΞe,Ξd,A
Block(k,n):

b←←{0, 1}
(iE, iD)←←Block(k, n)
(iE′, iD′)←←Block(k, n)
K∗←←{0, 1}k
b′←←AiE,iD,KCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
C ← iE(K ,M )
if b = 0: C ← iE′(K ,M )
CL← CL : (K ,C )
return C

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
M ← iD(K ,C )
if b = 0: M ← iD′(K ,C )
ML← ML : (K ,M )
return M

Figure 4: Game defining (Ξe,Ξd)-KC-CCA security of the ideal cipher with key length k
and block length n. We require that ξe ∈ Ξe and ξd ∈ Ξd for all queries ξe, ξd.

Recall the function sets Φ⊕, Ψ⊕, and Ξ⊕ from (2). The 2-round Even–Mansour cipher
with key reuse and independent permutations E(K ,M ) := EMP1,P2 [K ,K ,K ] was shown to
be Φ⊕-RK-CPA secure in [FP15] and Ψ⊕-KDM-CCA secure in [FKV17]. We now show
that this construction fails to be (Ξ⊕, ∅)-KC-CCA secure. Consider the KDM encryption

E(K ,K ) = P2(P1(0n)⊕K )⊕K . (3)

Now let ∆∗ := P1(0n)⊕ P1(1n) and consider the key-correlated encryption

C1 := E(K ⊕∆∗,K ⊕∆∗ ⊕ 1n) = P2(P1(1n)⊕K ⊕∆∗)⊕K ⊕∆∗

= P2(P1(0n)⊕K)⊕K ⊕∆∗
(3)= E(K ,K )⊕∆∗ .

Thus the two key-correlated ciphertexts C1 and E(K ,K ) differ by a known value ∆∗. For
the ideal cipher this event only occurs with probability 1/2n since ∆∗ 6= 0n and the two
ciphertexts would be randomly and independently distributed among 2n values. An attacker
thus merely needs to make two queries K 7→ (K,K) and K 7→ (K ⊕∆∗,K ⊕∆∗⊕ 1n) and
check whether the answers differ by ∆∗. The advantage of this attacker is 1− 1/2n.

5 KCA Security of the Ideal Cipher
In this section we study the feasibility of achieving security against key-correlated attacks
in the ideal-cipher model. In this setting the adversary has oracle access to the ideal cipher
in both the forward and backward direction.

KCA security of the ideal cipher. We begin by extending the standard notion of
CCA security to the KCA setting, where key-dependent messages may be enciphered under
related keys. Consider game KC-CCAΞe,Ξd,A

Block(k,n) shown in Fig. 4. The KC-CCA advantage
of an adversary A against the ideal cipher with key length k and block length n is defined
by

Advkc-cca
Block(k,n)(Ξe,Ξd,A) := 2 · Pr

[
KC-CCAΞe,Ξd,A

Block(k,n)
]
− 1 .

We now prove a feasibility theorem for the ideal cipher that generalizes and extends
those of both Bellare and Kohno [BK03] and of Farshim et al. [FKV17]. We define four
conditions on CDF sets, which exclude trivial attacks.

Unpredictability. The unpredictability advantage of an adversary A against a CDF
set Ξ is defined as

Advup
Ξ (A) := Pr

[
ξ(K ) = (K0,M0) : (ξ, (K0,M0))←←A; K←←K

]
,
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where we require that ξ ∈ Ξ. Informally, we say Ξ is unpredictable if the above advantage
is “small” for every “reasonable” A.

We also define a multi-shot version of this game where A outputs a list L1 of candidates
for ξ and a list L2 of predicted values (K0,M0). Adversary A wins if some ξ in L1 evaluates
to some (K0,M0) in L2 when run on a random key K . Denoting the advantage in this game
by Advm-up

Ξ (A), a simple guessing argument shows that for any A there exists B with

Advm-up
Ξ (A) ≤ `1 · `2 ·Advup

Ξ (B) ,

where `1 and `2 are upper bounds on the sizes of L1 and L2 respectively.4

Key-unpredictability. The key-unpredictability advantage of an adversary A against
a CDF set Ξ is defined as

Advkup
Ξ (A) := Pr

[
ξ|1(K ) = K0 : (ξ,K0)←←A; K←←K

]
,

where we require that ξ ∈ Ξ. Here ξ|1(K ) denotes the projection to the first coordinate of
ξ(K ). Informally we say Ξ is key-unpredictable if the above advantage is “small” for every
“reasonable” A.

We also define a multi-shot version of this game where A outputs a list L1 of candidates
ξ and a list L2 of predicted values K0. Adversary A wins if for a random key K , for some
ξ in L1 we have ξ|1(K ) = K0 for some K0 in L2. If we denote the advantage in this game
by Advm-kup

Ξ (A), again we have that there exists a single-shot B such that

Advm-kup
Ξ (A) ≤ `1 · `2 ·Advkup

Ξ (B) ,

where `1 and `2 are upper bounds on the sizes of L1 and L2 respectively. Note that
key-unpredictability implies unpredictability. The converse does not hold as ξ : K 7→ (0,K )
is unpredictable but not key-unpredictable.

Claw-freeness. This requires that it is hard to find two distinct functions that output
the same on a random input. Formally, the claw-free advantage of an adversary A against
a CDF set Ξ is defined as

Advcf
Ξ (A) := Pr

[
ξ 6= ξ′ ∧ ξ(K ) = ξ′(K ) : (ξ, ξ′)←←A; K←←K

]
,

where we require that ξ, ξ′ ∈ Ξ. We say Ξ is claw-free if the above advantage is “small” for
every “reasonable” A. Once again, a multi-shot version of the game with lists of candidates
L1 and L2 for ξ and ξ′ can be defined, and as before there exists B with

Advm-cf
Ξ (A) ≤ `1 · `2 ·Advcf

Ξ (B) .

Cross-key-claw-detectability. We introduce a new notion and call a pair of CDF
sets (Ξe,Ξd) cross-key-claw-detectable (xkcd)5 if there is an efficient detection algorithm
Det such that for any A the advantage below is small.

Advxkcd
Ξe,Ξd,Det(A) :=

Pr
[ Det(ξe,C , ξd,M , 1) 6=

[
(ξe|1(K ),C ) = ξd(K )

]
∨

Det(ξe,C , ξd,M , 2) 6=
[
(ξd|1(K ),M ) = ξe(K )

] :
(ξe,C , ξd,M )←←A;
K←←K

]
.

We require that ξe ∈ Ξe and ξd ∈ Ξd. Roughly speaking, xkcd provides a way to
treat legality of queries across encryption and decryption queries in the KCA game. For

4Single-shot adversary B runs any given multi-shot A to obtain two lists, picks one entry at random
from each list and outputs the pair. Then the success probability of B is at least 1/(`1`2) times that of A.

5Please do not confuse this notion with the (popular :) web-comic xkcd.com.

https://xkcd.com/541
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example, in an illegal decryption query the output of an earlier encryption query (stored
by the game in list CL, cf. Fig. 1) is sent to the decryption oracle through a CDF function
whose key component matches that used in encryption. Det allows us to decide when such
cases occur and deal with them appropriately in the security analysis.

A generalization of this notion considers lists L1 for pairs (ξe,C ) and L2 for (ξd,M )
and A wins if Det fails for any given tuple (ξe,C , ξd,M ) in the product of the lists. Again,
a guessing argument shows that for every A there exists B with

Advm-xkcd
Ξe,Ξd,Det(A) ≤ `1 · `2 ·Advxkcd

Ξe,Ξd,Det(B) .

Remark. We can modify claw-freeness to claw-freeness of keys over the union Ξe ∪ Ξd.
This would immediately imply xkcd, as Det can always return “No”. But in this case the
reach of our feasibility result below will not extend to the KDM setting, since under KDM
a single key is used in encryption and decryption and hence they always collide.

We will now state and prove our first feasibility result, which identifies a set of sufficient
conditions on the pair (Ξe,Ξd) so that the ideal cipher is KCA secure with respect to it.

Theorem 1 (KCA security of the ideal cipher). Fix a key length k and block length n and
let Ξe and Ξd be two sets of CDFs with signature ξ : {0, 1}k → {0, 1}k × {0, 1}n. Then for
any (Ξe,Ξd)-KC-CCA adversary A against the ideal cipher making at most q direct ideal
cipher queries, qe encryption and qd decryption queries, and for any detection algorithm
Det, there are (multi-shot) adversaries B1, . . . ,B5 such that

Advkc-cca
Block(k,n)(Ξe,Ξd,A) ≤ Advm-kup

Ξe (B1)+Advm-kup
Ξd (B2)+Advm-cf

Ξe (B3)+Advm-cf
Ξd (B4)

+ Advm-xkcd
Ξe,Ξd,Det(B5) +

(
qqe + qqd + q2

e + q2
d + qeqd

)
/2n .

Algorithm B1 outputs two lists of sizes at most `1 ≤ qe and `2 ≤ q; B2 outputs lists of sizes
at most `1 ≤ qd and `2 ≤ q; B3’s lists are of sizes at most `1, `2 ≤ qe; B4’s lists are of sizes
at most `1, `2 ≤ qd, and B5’s lists of sizes at most `1 ≤ qe and `2 ≤ qd.

Proof. The idea of the proof is that we will gradually modify KC-CCA of Fig. 4 so that
KCEnc and KCDec oracles run with two independent and forgetful random oracles,
denoted by $+ and $− respectively, and further the validity checks are performed by the
detection algorithm Det. These modifications ensure that we arrive at a game which does
not depend on the explicit key-correlated keys, messages, or ciphertexts.

Pictorially, in this intermediate game with forgetful oracles the adversary can make
queries that correspond to 1 (corresponding to iE), 2 (corresponding to iD), 3 and 4:

1−→ iE± 2←− 3−→ $+ −→ ←− $− 4←−

We now describe the transitional steps; the details can be found in Figs. 5 and 6.

Game0 : This is the KC-CCA game with respect to b = 1 and where the four oracles
lazily sample the ideal cipher. The same ideal cipher is used in iE and iD as those
used in KCEnc and KCDec oracles. Consistency is ensured via shared lists T+,
T−, Im+, and Im− used in lazy sampling.

Game1 : This game differs from Game0 in that different lists are used in iE and iD and in
KCEnc and KCDec. The game still ensures consistency across the lists and hence
there are no functional changes. This game also sets a flag Badkup preparing us to
decouple the two lists. More precisely, whenever a call to iE or iD needs to use the
lists of KCEnc and KCDec, or vice versa, Badkup is set. This game also sets a bad
flag Badcol1 whenever it samples a ciphertext (resp. plaintext) that was sampled
before and hence appears on Im+

1 or Im+
2 (resp. Im−1 or Im−2 ).
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Game2 : This game omits the code after Badkup or Badcol1 is set. Thus Game1 and Game2
are identical until Badkup or Badcol1 is set. We defer the analysis of this event to a
later game. As a result the two ideal ciphers used in iE and iD and KCEnc and
KCDec are decoupled.

Game3 : This game checks for repeat queries to the ideal cipher used within the KCEnc
and KCDec oracles. (Note that the queries to these oracles are assumed, without loss
of generality, to be distinct.) The game sets a flag Badcf when this takes place. This
game also sets a bad flag Badcol2 whenever it samples a ciphertext (resp. plaintext)
that was sampled before in a previous KCEnc or KCDec query (resp., also in a
previous KCEnc and KCDec query). By dropping the code after Badcf and Badcol2 ,
we transition to a game where the ideal cipher within KCEnc and KCDec act as
forgetful random oracles.

Game4 : This game uses the detection algorithm Det to check whether or not queries to
KCEnc or those to KCDec are valid. More explicitly:

(1) For each decryption query ξd, oracle KCDec runs Det(ξe,C , ξd, 0n, 1) for all
previous queries ξe to KCEnc, which were answered with C . (Intuitively, Det
checks whether ξd(K ) = (ξe|1(K ),C ); the input 0n is arbitrary.)

(2) Analogously, for each query ξe, oracle KCEnc runs Det(ξe, 0n, ξd,M , 2) for
all previous queries ξd to KCDec which resulted in output M . If Det (which
intuitively checks if ξe(K) = (ξd|1(K),M )) returns “Yes” for any of these,
KCEnc returns ⊥, else it answers randomly.

Note that this game introduces no functional changes since it still computes the
validity of a query using the lists. However it sets a bad flag Badxkcd when the validity
check determined by Det is different from the (true) value of validity determined
using the lists ML and CL. This then prepares us to drop the explicit check using
the lists and only use Det in the next game.

Game5 : This game drops the code after Badxkcd, and so is identical to Game4 unless
Badxkcd has been set.

Note that in Game5 the iE and iD oracles implement an ideal cipher whereas the KCEnc
and KCDec oracles implement two forgetful random oracles, except that sometimes they
might return ⊥ if the Det says that a query is invalid. To signify these, in what follows we
refer to KCEnc by $ and KCDec by $−. We also use iE+ for iE and iE− for iD.

Note also that the above games are all identical unless one of the bad flags is set. Thus
we analyze the probability of setting any of the bad flags in the final game Game5, where
the behavior of the oracles are independent of the secret key K∗.

We start by analyzing the probability of setting Badkup and Badcol1 . Flag Badkup can
be set under iE if a query (K ,M ) to iE appears on T+

2 . Since only KCEnc and KCDec
write to T+

2 , this would be the case if (a) (K ,M ) = ξe(K∗) for some query ξe to KCEnc
or (b) (K ,M ) = (ξd|1(K∗),M ′) for M ′ a randomly chosen output of KCDec.

In case (a) we can build an adversary that wins the multi-shot unpredictability of Ξe
by simulating the oracles as in Game5 (without the need for K∗, as all dependencies on
K∗ are eliminated by Game5) and outputting two lists L1 and L2 consisting of all tuples
(K ,M ) that were submitted to iE and ξe that were submitted to KCEnc. These lists are
of sizes q and qe respectively.

In case (b), however, we build an adversary that wins the multi-shot key unpredictability
of Ξd (note the exponent d). The four oracles are simulated as in Game5 (once again
without the need for K∗), but now the adversary outputs two lists L1 and L2 consisting
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GameΞe,Ξd,A
0 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

GameΞe,Ξd,A
1 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

GameΞe,Ξd,A
2 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

Proc. iE(K ,M ):
if T+[K ,M ]: return T+[K ,M ]
else C←←{0, 1}n \ Im+[K ]
T+[K ,M ] := C
T−[K ,C ] := M
Im+[K ]← Im+[K ] : C
Im−[K ]← Im−[K ] : M
return C

Proc. iE(K ,M ):
if T+

1 [K ,M ]: return T+
1 [K ,M ]

if T+
2 [K ,M ]: Badkup ← >

return T+
2 [K ,M ]

else C←←{0, 1}n \ Im+
1 [K ]

if C ∈ Im+
2 [K ]: Badcol1 ← >

C←←{0, 1}n \ Im+
1 [K ] ∪ Im+

2 [K ]
T+

1 [K ,M ] := C
T−1 [K ,C ] := M
Im+

1 [K ]← Im+
1 [K ] : C

Im−1 [K ]← Im−1 [K ] : M
return C

Proc. iE(K ,M ):
if T+

1 [K ,M ]: return T+
1 [K ,M ]

if T+
2 [K ,M ]: Badkup ← >
// return T+

2 [K ,M ]
C←←{0, 1}n \ Im+

1 [K ]
if C ∈ Im+

2 [K ]: Badcol1 ← >
// C←←{0, 1}n \ Im+

1 [K ] ∪ Im+
2 [K ]

T+
1 [K ,M ] := C

T−1 [K ,C ] := M
Im+

1 [K ]← Im+
1 [K ] : C

Im−1 [K ]← Im−1 [K ] : M
return C

Proc. iD(K ,C ):
if T−[K ,C ]: return T−[K ,C ]
else M←←{0, 1}n \ Im−[K ]
T−[K ,C ] := M
T+[K ,M ] := C
Im−[K ]← Im−[K ] : M
Im+[K ]← Im+[K ] : C
return M

Proc. iD(K ,C ):
if T−1 [K ,C ]: return T−1 [K ,C ]
if T−2 [K ,C ] 6=⊥: Badkup ← >
return T−2 [K ,C ]

else M←←{0, 1}n \ Im−1 [K ]
if M ∈ Im−2 [K ]: Badcol1 ← >

M←←{0, 1}n \ Im−1 [K ] ∪ Im−2 [K ]
T−1 [K ,C ] := M
T+

1 [K ,M ] := C
Im−1 [K ]← Im−1 [K ] : M
Im+

1 [K ]← Im+
1 [K ] : C

return M

Proc. iD(K ,C ):
if T−1 [K ,C ]: return T−1 [K ,C ]
if T−2 [K ,C ] 6=⊥: Badkup ← >

// return T−2 [K ,C ]
M←←{0, 1}n \ Im−1 [K ]
if M ∈ Im−2 [K ]: Badcol1 ← >

// M←←{0, 1}n \ Im−1 [K ] ∪ Im−2 [K ]
T−1 [K ,C ] := M
T+

1 [K ,M ] := C
Im−1 [K ]← Im−1 [K ] : M
Im+

1 [K ]← Im+
1 [K ] : C

return M

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
if T+[K ,M ]: return T+[K ,M ]
else C←←{0, 1}n \ Im+[K ]
T+[K ,M ] := C
T−[K ,C ] := M
Im+[K ]← Im+[K ] : C
Im−[K ]← Im−[K ] : M
CL← CL : (K ,C )
return C

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
if T+

2 [K ,M ]: return T+
2 [K ,M ]

if T+
1 [K ,M ]: Badkup ← >

return T+
1 [K ,M ]

else C←←{0, 1}n \ Im+
2 [K ]

if C ∈ Im+
1 [K ]: Badcol1 ← >

C←←{0, 1}n \ Im+
2 [K ] ∪ Im+

1 [K ]
T+

2 [K ,M ] := C
T−2 [K ,C ] := M
Im+

2 [K ]← Im+
2 [K ] : C

Im−2 [K ]← Im−2 [K ] : M
CL← CL : (K ,C )
return C

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
if T+

2 [K ,M ]: return T+
2 [K ,M ]

if T+
1 [K ,M ]: Badkup ← >
// return T+

1 [K ,M ]
C←←{0, 1}n \ Im+

2 [K ]
if C ∈ Im+

1 [K ]: Badcol1 ← >
// C←←{0, 1}n \ Im+

2 [K ] ∪ Im+
1 [K ]

T+
2 [K ,M ] := C

T−2 [K ,C ] := M
Im+

2 [K ]← Im+
2 [K ] : C

Im−2 [K ]← Im−2 [K ] : M
CL← CL : (K ,C )
return C

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
if T−[K ,C ]: return T−[K ,C ]
else M←←{0, 1}n \ Im−[K ]
T−[K ,C ] := M
T+[K ,M ] := C
Im−[K ]← Im−[K ] : M
Im+[K ]← Im+[K ] : C
ML← ML : (K ,M )
return M

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
if T−2 [K ,C ]: return T−2 [K ,C ]
if T−1 [K ,C ]: Badkup ← >
return T−1 [K ,C ]

else M←←{0, 1}n \ Im−2 [K ]
if M ∈ Im−1 [K ]: Badcol1 ← >

M←←{0, 1}n \ Im−2 [K ] ∪ Im−1 [K ]
T−2 [K ,C ] := M
T+

2 [K ,M ] := C
Im−2 [K ]← Im−2 [K ] : M
Im+

2 [K ]← Im+
2 [K ] : C

ML← ML : (K ,M )
return M

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
if T−2 [K ,C ]: return T−2 [K ,C ]
if T−1 [K ,C ]: Badkup ← >

// return T−1 [K ,C ]
M←←{0, 1}n \ Im−2 [K ]
if M ∈ Im−1 [K ]: Badcol1 ← >

// M←←{0, 1}n \ Im−2 [K ] ∪ Im−1 [K ]
T−2 [K ,C ] := M
T+

2 [K ,M ] := C
Im−2 [K ]← Im−2 [K ] : M
Im+

2 [K ]← Im+
2 [K ] : C

ML← ML : (K ,M )
return M

Figure 5: Game0, Game1, and Game2.
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GameΞe,Ξd,A
3 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

Proc. iE(K ,M ):
Unmodified
Proc. iD(K ,C ):
Unmodified

GameΞe,Ξd,A
4 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

Proc. iE(K ,M ):
Unmodified
Proc. iD(K ,C ):
Unmodified

GameΞe,Ξd,A
5 :

b← 1; K∗←←{0, 1}k
(iE, iD)←←Block(k, n)
b′←←AiE,iD,KCEnc,KCDec

return (b′ = 1)

Proc. iE(K ,M ):
Unmodified
Proc. iD(K ,C ):
Unmodified

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
if T+

2 [K ,M ]: Badcf ← >

// return T+
2 [K ,M ]

if T+
1 [K ,M ]: Badkup ← >

// return T+
1 [K ,M ]

C←←{0, 1}n

if C ∈ Im+
2 [K ]: Badcol2 ← >

// C←←{0, 1}n \ Im+
2 [K ]

if C ∈ Im+
1 [K ]: Badcol1 ← >

// C←←{0, 1}n\ Im+
2 [K ]∪ Im+

1 [K ]
T+

2 [K ,M ] := C
T−2 [K ,C ] := M
Im+

2 [K ]← Im+
2 [K ] : C

Im−2 [K ]← Im−2 [K ] : M
CL← CL : (K ,C )
return C

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
chk← ⊥
for (ξd,M) ∈ DL:

chk← chk ∨ Det(ξe, 0n, ξd,M , 2)
if chk 6= ((K ,M ) ∈ ML):

Badxkcd ← >
chk← ((K ,M ) ∈ ML)

if chk: return ⊥
if T+

2 [K ,M ]: Badcf ← >
// return T+

2 [K ,M ]
if T+

1 [K ,M ]: Badkup ← >
// return T+

1 [K ,M ]
C←←{0, 1}n
if C ∈ Im+

2 [K ]: Badcol2 ← >
// C←←{0, 1}n \ Im+

2 [K ]
if C ∈ Im+

1 [K ]: Badcol1 ← >
// C←←{0, 1}n\ Im+

2 [K ]∪ Im+
1 [K ]

T+
2 [K ,M ] := C

T−2 [K ,C ] := M
Im+

2 [K ]← Im+
2 [K ] : C

Im−2 [K ]← Im−2 [K ] : M
CL← CL : (K ,C )
EL← EL : (ξe,C )
return C

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
chk← ⊥
for (ξd,M) ∈ DL:

chk← chk ∨ Det(ξe, 0n, ξd,M , 2)
if chk 6= ((K ,M ) ∈ ML):

Badxkcd ← >
// chk← ((K ,M ) ∈ ML)

if chk: return ⊥
if T+

2 [K ,M ]: Badcf ← >
// return T+

2 [K ,M ]
if T+

1 [K ,M ]: Badkup ← >
// return T+

1 [K ,M ]
C←←{0, 1}n
if C ∈ Im+

2 [K ]: Badcol2 ← >
// C←←{0, 1}n \ Im+

2 [K ]
if C ∈ Im+

1 [K ]: Badcol1 ← >
// C←←{0, 1}n\ Im+

2 [K ]∪ Im+
1 [K ]

T+
2 [K ,M ] := C

T−2 [K ,C ] := M
Im+

2 [K ]← Im+
2 [K ] : C

Im−2 [K ]← Im−2 [K ] : M
CL← CL : (K ,C )
EL← EL : (ξe,C )
return C

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
if T−2 [K ,C ]: Badcf ← >

// return T−2 [K ,C ]
if T−1 [K ,C ]: Badkup ← >
// return T−1 [K ,C ]

M←←{0, 1}n

if M ∈ Im−2 [K ]: Badcol2 ← >

// M←←{0, 1}n \ Im−2 [K ]
if M ∈ Im−1 [K ]: Badcol1 ← >

// M←←{0, 1}n\Im−2 [K ]∪Im−1 [K ]
T−2 [K ,C ] := M
T+

2 [K ,M ] := C
Im−2 [K ]← Im−2 [K ] : M
Im+

2 [K ]← Im+
2 [K ] : C

ML← ML : (K ,M )
return M

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
chk← ⊥
for (ξe,C ) ∈ EL:

chk← chk ∨ Det(ξe,C , ξd, 0n, 1)
if chk 6= ((K ,C ) ∈ CL):

Badxkcd ← >
chk← ((K ,C ) ∈ CL)

if chk: return ⊥
if T−2 [K ,C ]: Badcf ← >
// return T−2 [K ,C ]

if T−1 [K ,C ]: Badkup ← >
// return T−1 [K ,C ]

M←←{0, 1}n
if M ∈ Im−2 [K ]: Badcol2 ← >
// M←←{0, 1}n \ Im−2 [K ]

if M ∈ Im−1 [K ]: Badcol1 ← >
// M←←{0, 1}n\Im−2 [K ]∪Im−1 [K ]

T−2 [K ,C ] := M
T+

2 [K ,M ] := C
Im−2 [K ]← Im−2 [K ] : M
Im+

2 [K ]← Im+
2 [K ] : C

ML← ML : (K ,M )
DL← DL : (ξd,M )
return M

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
chk← ⊥
for (ξe,C ) ∈ EL:

chk← chk ∨ Det(ξe,C , ξd, 0n, 1)
if chk 6= ((K ,C ) ∈ CL):

Badxkcd ← >
// chk← ((K ,C ) ∈ CL)

if chk: return ⊥
if T−2 [K ,C ]: Badcf ← >
// return T−2 [K ,C ]

if T−1 [K ,C ]: Badkup ← >
// return T−1 [K ,C ]

M←←{0, 1}n
if M ∈ Im−2 [K ]: Badcol2 ← >
// M←←{0, 1}n \ Im−2 [K ]

if M ∈ Im−1 [K ]: Badcol1 ← >
// M←←{0, 1}n\Im−2 [K ]∪Im−1 [K ]

T−2 [K ,C ] := M
T+

2 [K ,M ] := C
Im−2 [K ]← Im−2 [K ] : M
Im+

2 [K ]← Im+
2 [K ] : C

ML← ML : (K ,M )
DL← DL : (ξd,M )
return M

Figure 6: Game3, Game4, and Game5.
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of all keys K for tuples (K ,M ) submitted to iE and ξe that were submitted to KCDec.
These lists are of sizes q and qd respectively.

We now look at the probability of setting Badcol1 . A straightforward analysis shows
that this probability is upper bounded by q(qe + qd)/2n.

The probability of setting Badkup under iD is analyzed similarly to cases (a) and
(b) above via reductions to the multi-shot unpredictability of Ξd and the multi-shot key
unpredictability of Ξe. The probability of setting Badcol1 under iD is at most q(qe+qd)/2n.6

Next we consider the probability of setting Badcf or Badcol2 . Flag Badcf can be set
under KCEnc as a result of a query ξe0 if either (a) a previous distinct query ξe1 to
KCEnc resulted in ξe0(K∗) = ξe1(K∗), or (b), a previous query ξd1 to KCDec resulted in
ξe0(K∗) = (ξd1 |1(K∗),M ), where M is a random value chosen by KCDec in a previous
query.

In case (a) by collecting the list of ξe queried to KCEnc we can break the multi-shot
claw-freeness of Ξe (simulating the oracles as in Game5). For case (b) to take place it must
be that Det classified the query as valid. However, this leads to setting Badxkcd since M
was returned from the KCDec oracle and hence (ξd1 |1(K∗),M ) appears on ML but Det
did not detect this. We analyze the probability of setting Badxkcd below. The probability
of setting Badcol2 in KCEnc can be upper bounded by qe(qe + qd)/2n.

The probability of setting Badcf under KCDec is analyzed as above by a reduction to
the multi-shot claw-freeness of Ξd (or setting Badxkcd). The probability of setting Badcol2
in KCDec is upper bounded by qd(qe + qd)/2n.

Finally we consider the probability of setting Badxkcd. Flag Badxkcd is set exactly when
ξe(K∗) appears on ML as a result of a query ξd to KCDec with response M and Det says
it does not, or that it does not and Det says it does. We can bound the probability of
setting Badxkcd under KCEnc by a reduction to the multi-shot xkcd property by collecting
all queries ξe made to KCEnc and all query-answer pairs (ξd,M ) made to and received
form KCDec in two lists and outputting them lists in the multi-shot xkcd game. The
probability of setting of Badxkcd under KCDec is analyzed analogously.

The theorem now follows by putting the bounds established above together.

The above theorem shows that key-unpredictability, claw-freeness, and xkcd are suffi-
cient for achieving KCA security in the ideal-cipher model. This raises the question whether
or not they are also necessary. Key-unpredictability is. Any adversary that can predict
the key output of ξe can be used to win the KC game as follows: (1) ask for an encryption
under ξe(K∗) to get a ciphertext C ; (2) predict ξe|1(K∗) as K ; (3) compute iD(K ,C ) to
get M ; (4) compute iE(K ,M ) to get C ′; (5) return b′ := 1 if C = C ′ and b′ := 0 otherwise.
It is easily seen that this attack returns b′ = 1 with the same probability of predicting keys
when b = 1. On the other hand, it only succeeds with negligible probability when b′ = 0
as the encryption oracle and the challenge oracle use independent ideal ciphers. We deal
with such attacks in case (b) of ($+, iE±) in the proof.

Claw-freeness, on the other hand, is not necessary. Consider a CDF set consisting of
exactly two functions that collide with probability 1/2, e.g., K 7→ K and K 7→ min(K ,K ).
Then a security proof for the ideal cipher can be easily given: guess with probability 1/2 if
min(K ,K ) = K . Next depending on the guess simulate the key-correlated oracles either
using the same set of ideal cipher oracles or independent ones. However, one can also
exhibit CDF sets that are not claw-free and do lead to a KCA on the ideal cipher. Indeed,
any set of k + 1 functions that has claws with the identity function depending on whether
or not Ki, the i-th bit of the key, is 1 can be used to recover the key one bit at a time. In
practice this translates to recovering the key by observing the repetition patterns in the
outputs.

6The above cases take care of collisions between wires (1/2, 3), (1/2, 4) in the picture above.
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Finally, there is also a pair of CDF sets which are not xkcd and can be used to attack
the ideal cipher. Let ξe(K) := (K , 0n) and ξd[i,C ](K) := (K ⊕ (Ki)n =: K ′,C ), that is,
K ′ = K if Ki = 1 and K ′ = K otherwise. Let C be the answer to KCEnc(ξe). Now
for i = 1, . . . , k, by checking whether KCDec(ξd[i,C ]) returns ⊥ or not, one can again
recover the key one bit at a time. In practice this translates to observing the equality
pattern of the decrypted ciphertexts with 0n.
Theorem 1 and Proposition 1 can be used to recover known feasibility results for RKA
and KDM security of the ideal cipher as follows.

RKA security. An RKA-only CDF set Ξ associated to a set Φ is key-unpredictable iff
Φ is unpredictable in the sense of [BK03]. Indeed, a predictor for a related-key derivation
function φ can be converted to a key-predictor for ξ : K 7→ (φ(K),M ) for any fixed M .
Conversely, a key-predictor for (φ(K),M ) in particular predicts φ(K). Similarly, Ξ is
claw-free iff Φ is claw-free in the sense of [BK03]. A claw in Φ can be immediately converted
to a claw in Ξ (by adding any message M ). Conversely, a claw ((φ1(K ),M1), (φ2(K ),M2))
is necessarily also a claw between φ1 and φ2. For the (funny) xkcd property, Det given
((φ1,M1),C , (φ2,C2),M , i) needs to check if (1) φ1(K ) = φ2(K ) and (2) if C = C2 when
i = 1 or if M = M1 when i = 2. By claw-freeness, (1) would only occur if φ1 = φ2; the
second condition on the other hand is trivial to check. Thus, claw-freeness implies xkcd.

KDM security. A KDM-only Ξ associated to a KDM set Ψ is always key-unpredictable
with single-shot advantage 1/2n. This is because KDM-only functions leave the random
key unmodified, which remains information-theoretically hidden from the adversary in
the key-unpredictability game. Moreover, and similarly to the RKA case, the set Ξ is
claw-free iff Ψ is. Once again, this is because KDM-only CDFs do not modify the key
component and hence any claw must be on the message part. For the xckd property,
given ((id, ψ1),C , (id,C2),M , i), algorithm Det needs to check (1) if id(K ) = id(K ), which
always holds; and (2) if C2 = C when i = 1 or if ψ1(K) = M when i = 2. The first
of these is trivially checkable. For the second, two cases could occur: either ψ1(K) is a
constant function mapping to M1, in which case Det can easily check if M1 = M ; or ψ1 is
non-constant. However, since Ψ contains all constant functions, ψ1 and M can be used
to break claw-freeness. Hence in this case Det rejects. So similarly to the RKA setting,
claw-freeness implies xckd.

KCA security. We now show that the reach of the above feasibility result for the ideal
cipher extends beyond RKA and KDM security. Suppose k = n and recall the set

Ξ⊕ :=
{

K 7→ (K ⊕∆1, α ·K ⊕∆2) : ∆1,∆2 ∈M, α ∈ {0, 1}
}
. (4)

This set captures related keys that are computed as offsets, key-independent messages
when α = 0, and key-dependent messages which are offsets of the key when α = 1. We
identify functions in this set with tuples (∆1,∆2, α).

This set is key-unpredictable with single-shot advantage at most 1/2n, since xor-ing
with ∆1 acts as a permutation and K remains information-theoretically hidden. It is
also claw-free with single-shot advantage at most 1/2n: If the offsets ∆1 and ∆′1 for two
functions ξ, ξ′ are different, there are no claws. If they are the same, and α = α′, then a
claw also implies ∆2 = ∆′2, making the two functions identical. So α 6= α′ is necessary for
claws, in which case the functions collide on a random key with probability 1/2n.

The set is also xkcd with single-shot advantage 2/2n with respect to the following
detector (recall that Det(ξe,C , ξd,M , 1) should check whether (ξe|1(K ),C ) = ξd(K )):

Det⊕
(
(∆e

1,∆e
2, α

e),C , (∆d
1,∆d

2, α
d),M , i

)
:

if i = 1 : if ∆e
1 = ∆d

1 ∧ αd = 0 ∧ ∆d
2 = C then return “Yes”

if i = 2 : if ∆e
1 = ∆d

1 ∧ αe = 0 ∧ ∆e
2 = M then return “Yes”

else return “No” (5)
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Consider case i = 1 when Det⊕ is trying to decide if (K⊕∆e
1,C ) = (K⊕∆d

1, α
d ·K⊕∆d

2). If
Det⊕ returns “Yes”, then both the key components and the ciphertext components collide;
the answer is thus correct. Suppose it returns “No”. If ∆e

1 6= ∆d
1, the key components do

not collide and the answer is correct. Suppose ∆e
1 = ∆d

1: if αd = 1, the probability that
αd · K ⊕∆d

2 = C is 1/2n since ⊕ acts a permutation and K is random; if αd = 0, then
Det⊕ checks if ∆d

2 = C and hence its answer is correct. Case i = 2 is dealt with similarly
and we obtain overall single-shot advantage of at most 2/2n.

Theorem 1 thus implies that the ideal cipher is (Ξ⊕,Ξ⊕)-KC-CCA secure.

6 KCA Security of 3-Round Even–Mansour
In this section we show that in contrast to the two-round case the three-round Even–
Mansour cipher with reuse of keys and independent permutations EMP1,P2,P3 [K,K,K,K ],
defined in Sec. 4.2, is (Ξ⊕,Ξ⊕)-KC-CCA secure, with Ξ⊕ as defined in (4). We note
that, for Φ⊕,Ψ⊕ as in (2), this construction is known to be both Φ⊕-RK-CCA and Ψ⊕-
KDM-CCA secure [FP15, FKV17]. We build on these works to show KC-CCA security in
the theorem.

Theorem 2 (KCA security of 3-round EM). EMP1,P2,P3 [K,K,K,K ] is (Ξ⊕,Ξ⊕)-KC-CCA
secure in the random-permutation model for Pi. More precisely, for any adversary A
against the (Ξ⊕,Ξ⊕)-KC-CCA security of EMP1,P2,P3 [K,K,K,K ] we have

Advkc-cca
EMP1,P2,P3 [K,K,K,K ](Ξ

⊕,Ξ⊕,A) ≤ 2 ·
(
qqe + qqd + q2

e + q2
d + qeqd

)
/(2n − q) ,

where q is the maximum number of queries of A to P±i (over all i = 1, 2, 3) and qe and qd
are the maximum number of encryption and decryption queries of A, respectively.

Proof. To analyze the KC-CCA security of Even–Mansour, our strategy will be similar
to that in Theorem 1 and those in [FP15, FKV17]. As in these proofs, we replace the
last-round permutation P+

3 in KCEnc queries with a forgetful random oracle and also
replace the first-round permutation P−1 in KCDec with another forgetful random oracle.
After these replacements the outputs of KCEnc and KCDec will be fully randomized
and independent of the inputs; the game is thus independent of the challenge bit b.

When simulating KCEnc and KCDec with forgetful oracles, we still need to ensure
that illegal queries are answered correctly with ⊥. As in the proof of Theorem 1, we
do this using a detector. In particular, we use Det⊕ defined in (5), which on input
((∆1,∆2, α),C , (∆′1,∆′2, α′),M , 1) returns “Yes” iff ∆1 = ∆′1 and α′ = 0 and ∆′2 = C
(and “No” otherwise); and on input ((∆1,∆2, α),C , (∆′1,∆′2, α′),M , 2) returns “Yes” iff
∆1 = ∆′1 and α = 0 and ∆2 = M .

(1) For each decryption query ξd, oracle KCDec runs Det⊕(ξe,C , ξd, 0n, 1) for all
previous queries ξe to KCEnc, which were answered with C . If Det says “Yes” for
any of these, KCDec⊕ returns ⊥, else it outputs a random value from the domain.

(2) For each encryption query ξe, oracle KCEnc runs Det⊕(ξe, 0n, ξd,M , 2) for all
previous queries ξd to KCDec, which were answered with M . If Det⊕ says “Yes” for
any of these, KCEnc returns ⊥, else it answers with a random value.

These replacements, however, raise the question how P+
1 in KCEnc and P−3 in KCDec

are treated (since their respective counterparts in KCDec and KCEnc were replaced).
Previous works simply leave these oracles unchanged. Our proof diverges in this aspect,
because the key-dependency of both keys and messages gives rise to queries that cannot be
guaranteed to be disjoint from the forgetful oracle, or discarded as trivial/illegal as in the
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KDM setting [FKV17], or not result in inconsistency due to the middle permutation P2
being replaced in the RKA setting [FP15].

For the KCA setting we will replace P−3 in KCDec (and analogously for P+
1 in KCEnc)

as follows. When Det⊕ says “No” on a query ξd = (∆d
1,∆d

2, α
d), the game checks if each

previous query ξe = (∆e
1,∆e

2, α
e) to KCEnc with output value C satisfies

C ⊕∆e
1 = ∆d

2 ⊕∆d
1 .

If so, oracle P̃−3 outputs the input U to $+ that was used to compute C . If multiple values
are found, P̃−3 returns ⊥. If the latter is not the case, P̃−3 is sampled as an independent
permutation and consistent with P3. Permutation P±3 , when directly queried, is also
sampled consistently with P̃−3 on all those entries that are not kept consistent with $+.
More precisely, oracles $+, P±3 and P̃−3 write to independent lists L1, L2 and L3. Oracle
$+ checks consistency with none of the lists, oracle P±3 checks consistency with L2 and L3
and oracle P̃−3 checks consistency with L1, L2 and L3.

Oracle P+
1 in KCEnc is replaced with P̃+

1 similarly by checking if M ⊕∆d
1 = ∆e

2 ⊕∆e
1

and outputting the input U to $− that was used to compute M .
As a result of the above replacements, the following inconsistencies could arise:

(a) Identical queries to a permutation oracle are answered differently due to a replacement.

(b) Different queries to a permutation oracle and its replacement are answered identically
(and hence do not respect permutativity).

(c) Multiple candidates for U are found when sampling P̃−3 or P̃+
1 .

We now bound the probabilities of these events.

Multiple candidates This event will happen due to: (1) a collision in the outputs of $+,
which happens with probability 1/2n for each pair of queries to KCEnc; or (2) a
collision in the output of $+ and an output entry in P±3 . This event is equivalent to
a collision in the outputs of $+ and P±3 , which pertains to case (b) and is analyzed
next.

($+, P±
3 ) A direct P±3 call in either direction collides with a point queried to P+

3 due to a
query ξe = (∆1,∆2, α) to KCEnc. Suppose the direct query results in V = P+

3 (U)
or U = P−3 (V ). There are now two cases. (a) The inputs collide, i.e.,

P2
(
P1(∆1 ⊕∆2 ⊕ (1− α) ·K∗)⊕∆1 ⊕K∗

)
⊕∆1 ⊕K∗ = U . (6)

If Y := P1(∆1 ⊕∆2 ⊕ (1− α) ·K∗)⊕∆1 ⊕K∗ was queried to P2 then the adversary
can compute K∗ = P2(Y )⊕∆1 ⊕ U , which is only possible with probability 1/2n,
since the key remains information-theoretically hidden. If it was not queried, the
probability that (6) holds is also 1/(2n − q), since P2 is a random permutation, where
outputs are chosen in a set of size at least 2n − q.
The other case is that (b) the outputs collide. If the $+ query comes after the direct
query, the probability of this event is 1/2n. Now suppose the $+ query comes first
and outputs C ; thus due to the collision we have that C = V ⊕K∗ ⊕∆1. But in
this case the adversary can compute K∗ = V ⊕∆1, which happens with probability
at most 1/2n (as the key remains information theoretically hidden).

($−, P±
1 ) A direct P±1 call in either direction collides with a point queried to $− due to a
query ξd to KCDec. This event is analyzed analogously to case ($+,P±3 ) above.

($+, $+) The are two cases: (a) two inputs collide or (b) two outputs collide. In case (a)
two distinct calls ξe = (∆1,∆2, α) and (ξe)′ = (∆′1,∆′2, α′) to the KCEnc oracle
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result in querying $+ on the same input. For this event to occur we must have that

P2
( =:Y︷ ︸︸ ︷

P1(∆1 ⊕∆2 ⊕ (1− α) ·K∗︸ ︷︷ ︸
=:X

)⊕∆1 ⊕K∗
)
⊕∆1

= P2
(

P1(
=:X′︷ ︸︸ ︷

∆′1 ⊕∆′2 ⊕ (1− α′) ·K∗)⊕∆′1 ⊕K∗︸ ︷︷ ︸
=:Y ′

)
⊕∆′1 . (7)

If Y = Y ′ then P1(X) ⊕∆1 = P1(X ′) ⊕∆′1 and from (7) we get ∆1 = ∆′1. Since
P1 is a permutation, this implies that X = X ′. If further α = α′ then we would
also have ∆2 = ∆′2, which means ξe = (ξe)′, contradicting distinctness of queries.
Thus α 6= α′ and hence ∆2 ⊕∆′2 = K∗ (since X = X ′), which only happens with
probability 1/2n as it leads to guessing the key.
Assume now that Y 6= Y ′.

• If the adversary does not query P2 on either Y or Y ′ then P2(Y ) or P2(Y ′) would
be distributed randomly and independently of the adversary’s view. Hence the
probability that the above equality holds would be at most 1/(2n − q) for each
pair of queries.
• Suppose both Y and Y ′ are queried to P2. Then P1 must have been queried

on both X or X ′, since otherwise the probability of computing Y or Y ′ would
be at most 1/(2n − q). If both X and X ′ are queried to P1 and α = 0 or
α′ = 0, then for each query the probability of querying X (or X ′) to P1 is
1/2n, because K∗ is information-theoretically hidden. The remaining case is
α = α′ = 1. Since the adversary knows Y (it was queried to P2), it can compute
K∗ = Y ⊕ P1(∆1 ⊕ ∆2) ⊕ ∆1. Again, since K∗ is information-theoretically
hidden, this can only happen with probability 1/2n.

In case (b) outputs of $+ collide with probability 1/2n for each pair of queries.

($−, $−) Two distinct ξd, (ξd)′ ∈ Ξd to KCDec result in querying $− on the same point.
This event is analyzed analogously to case ($+, $+) above.

($+, P̃−
3 ) Calls ξe = (∆e

1,∆e
2, α

e) to KCEnc and ξd = (∆d
1,∆d

2, α
d) to KCDec result in

(a) querying P̃−3 on an input matching an output of $+; or in (b) querying P̃−3 on an
input whose output matches an input of $+. Let C be the reply to query ξe. Then
the value chosen by $+ is C ⊕K∗ ⊕∆e

1. Thus case (a) would happen if

C ⊕K∗ ⊕∆e
1 = αd ·K∗ ⊕∆d

2 ⊕K∗ ⊕∆d
1 .

If αd = 1, then
C ⊕K∗ ⊕∆e

1 = ∆d
2 ⊕∆d

1 ,

which leads to guessing K∗ and happens with probability at most 1/2n. On the
other hand, if αd = 0, we would have that

C ⊕∆e
1 = ∆d

2 ⊕∆d
1 .

But for such queries either P̃−3 is sampled to be consistent with $+ (or it is not called
at all when Det⊕ returns “Yes”).
Let us now look at case (b), which would happen if

P2
( =:Y︷ ︸︸ ︷

P1(∆e
1 ⊕∆e

2 ⊕ (1− αe) ·K∗︸ ︷︷ ︸
=:X

)⊕∆e
1 ⊕K∗

)
⊕∆e

1 ⊕K∗

= P̃−3
(
∆d

1 ⊕∆d
2 ⊕ (1− αd) ·K∗

)
. (8)
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If ∆d
1 ⊕ ∆d

2 ⊕ (1 − αd) · K∗ was directly queried to P−3 , an inconsistency of type
($+,P±3 ) arises, which we dealt with above. On the other hand, it could be that this
value was never queried to P−3 .
If the KCEnc query comes before KCDec and the inputs are distinct—colliding
inputs was case (a) above—P̃−3 chooses a random value, which collides with the input
to $+ with probability at most 1/(2n − q).
Suppose now that the KCEnc query comes after KCDec. Suppose the input to
KCEnc is ξe = (∆e

1,∆e
2, α

e). The value computed as input to $+ is independent of
the output of P̃−3 unless P+

1 is kept consistent with $− (since otherwise P1 and P2
are independent of P̃−3 ). If independent, collisions happen with probability at most
1/(2n − q). Otherwise, dependency implies that M ⊕∆d

1 = ∆e
1 ⊕∆e

2 where M is the
output of KCDec. This query will be marked as illegal unless ∆d

1 6= ∆e
1. In this

case the adversary has found a collision of the form

P2(Y ′ ⊕K∗ ⊕∆e
1)⊕K∗ ⊕∆e

1 = U ,

where Y ′ = P−2 (U ⊕K∗ ⊕∆d
1)⊕K∗ ⊕∆d

1 is the value input to $− and output by P+
1

due to the consistency check in KCEnc. Rearranging and applying P−2 to the above
equality yields Y ′ ⊕K∗ ⊕∆e

1 = P−2 (U ⊕K∗ ⊕∆e
1). Substituting the expression for

Y ′ we get that P−2 (U ⊕ K∗ ⊕∆d
1) ⊕∆d

1 ⊕∆e
1 = P−2 (U ⊕ K∗ ⊕∆e

1). Since P−2 is a
permutation, this would happen iff ∆d

1 = ∆e
1, which is an illegal query.

($−, P̃+
1 ) A call ξd to KCDec and a call ξe to KCEnc result in querying $− and P̃+

1 on
the same point. This event is analyzed analogously to case ($+, P̃−3 ) above.

(P̃−
3 , P±

3 ) A call ξd to KCDec and a direct query to P±3 are such that either the inputs or
the outputs collide. If the KCDec query comes after the direct query, since oracle
P̃−3 is sampled to be consistent with P3, no inconsistency arises. If P3 comes after
KCDec then an inconsistency arises only with an entry on P̃−3 that is also on $+.
But in this case an inconsistency of the form ($+,P±3 ) has been found.

(P̃+
1 , P±

1 ) A call ξe to KCEnc and a direct query to P±1 collide. This case is treated
analogously to (P̃−3 ,P

±
3 ).

KCEnc inconsistently rejects If Det⊕ does not output an incorrect answer, ⊥ is the
correct answer. On the other hand, as shown at the end of previous section, Det⊕
with i = 1 outputs an incorrect answer with probability at most 1/2n per inputs
checked.

KCDec inconsistently rejects Similarly to the above, this event occurs with probability
at most 1/2n per inputs checked.

The theorem follows by putting the above bounds together.

Remark. A potential strengthening of the above theorem would be to consider a wider
class of KCA attacks for which the ideal cipher is known to be secure. One possibility
would be the class of key-unpredictable, claw-free, and xkcd-secure CDF sets as shown in
Theorem 1. Although feasibility of this level of security claim for iterated Even–Mansour
ciphers would follow from known indifferentiability [LS13, DSST17], this would require a
larger number of rounds and also comes at the cost of lower levels of security. It remains
an interesting open question to find the minimal number of rounds needed in the Even–
Mansour ciphers that yields (Ξe,Ξd)-KC-CCA security with respect to any pair (Ξe,Ξd)
for which the ideal cipher is also (Ξe,Ξd)-KC-CCA secure.

Remark. We note that our model does not consider the possibility of preprocessing
attacks, and establishing security bounds based on the size of non-uniform advice and the
number of on-line queries remains an interesting line of research for future work.
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7 Authenticated Encryption
We have seen that it is possible to achieve KCA-secure blockciphers. Given this, we now
turn our attention to higher-level primitives and investigate the possibility of constructing
KCA-secure primitives which rely on blockciphers. A natural first step is to explore
symmetric encryption. Specifically, we consider the notion of authenticated encryption
with associated data (AEAD).

AE syntax. An AEAD scheme is a 3-tuple of algorithms SE = (Gen,Enc,Dec), where
(1) Gen is the randomized key generation algorithm that returns a bit string K from a finite
key-space K (which is typically {0, 1}k for some k ∈ N). (2) Enc : K ×M×N ×H → C
is the deterministic encryption algorithm which takes as input a key K , a message M
from message space M, a nonce N from nonce space N , and possibly some associated
header data H from header-space H and returns a ciphertext C from some ciphertext-space
C. We write this as C ← Enc(K ,M ,N ,H ). (3) The deterministic decryption algorithm
Dec : K× C ×N ×H →M∪{⊥} takes a key K , a ciphertext C , a nonce N , and possibly
some associated header data H and returns either a plaintext M or the failure symbol
⊥6∈ M. Correctness requires that Dec(K ,Enc(K ,M ,N ,H ),N ,H ) = M for all values of
the inputs above.

AE security. We define the AE-security of SE = (Gen,Enc,Dec) by considering the
game described on the left in Fig. 7. The AE advantage of an adversary A against an
AEAD scheme is defined by

Advae
SE(A) := 2 · Pr

[
AEASE

]
− 1 .

We require that A is nonce-respecting in that it does not repeat nonces in its encryption
queries (but it may repeat them in decryption or across encryption and decryption queries).

KC-AE security. Let SE be an AEAD scheme as defined above. Let Ξe and Ξd be CDF
sets with signatures ξe : K −→ K×M×N ×H and ξd : K −→ K×N ×H respectively.
As is in the blockcipher case, Ξe is used to generate correlated keys and key-correlated
messages. In addition to this, for authenticated encryption, we allow all inputs to the
encryption algorithm to be key-correlated. Unlike the blockcipher case however, we restrict
the use of Ξd to generate correlated keys, nonces, and headers as it seems unnatural to
derive a key-correlated ciphertext for decryption. If ξe ∈ Ξe and ξd ∈ Ξd we note that
the syntactical difference to SE when considering KC-AE security is that the encryption
oracle in the scheme only takes ξe as input, while the decryption oracle takes (ξd,C ) as
described in the KC-AEΞe,Ξd,A

SE game on the right in Fig. 7. The KC-AE advantage of an
adversary A against AEAD is defined by

Advkc-ae
SE (Ξe,Ξd,A) := 2 · Pr

[
KC-AEΞe,Ξd,A

SE

]
− 1 .

We require that nonces are not repeated in KCEnc queries.
Security against key-correlated attacks is a strengthening of the standard notion of

AE-security for a symmetric encryption scheme. As the syntax shows, the input to SE
consists of K ,M ,N , and H . A natural question may arise as to which inputs we allow to
be key-correlated. Although we would like to provide guarantees against any correlated
inputs, there are two immediate issues with header security. It can (sometimes) be the
case that headers are not private, and if they are heavily key-correlated, an adversary
could trivially retrieve the key. For this reason, we require that header data is private.
But a more subtle point, as shown in [BK11], is that even with private headers, it is
possible for an adversary to perform a full key-recovery attack by taking advantage of
the pattern of errors returned while list-checking during the decryption process which
may be key-dependent. This attack does not apply in our setting, as we return only one
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Game KC-AEΞe,Ξd,A
SE :

b←←{0, 1};
K∗←←K
b′←←AKCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc(K ,M ,N ,H )
if T [K ,M ,N ,H ] = undef:
T [K ,M ,N ,H ]←←{0, 1}|C1|

C0 ← T [K ,M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(ξd,C ,N ,H )
M0 ←⊥
return Mb

Figure 7: the game defining the KC-AE security of SE with key-correlated inputs and
private headers and nonces (which are not revealed to the adversary). The adversary is
required not to repeat nonces in its KCEnc queries.

error symbol (⊥) for both illegal queries and a failed decryption process, and as such, an
adversary cannot use this to gain advantage.7

When headers or nonces are public—formally this means revealing the header H or N
under the KCEnc and KCDec oracles—we can achieve security by requiring that headers
or nonces are key-uncorrelated in the sense that their values can be computed from the
description of input CDFs without the need for K∗. Looking ahead, this requirement
would allow a proof strategy similar to one below in the private setting to be also applied
in the public setting, with the difference that the values of headers and nonces would now
be computed from the descriptions of the input CDFs.

The HwN Transform. We introduce the Hash-with-Nonce (HwN) transform with the
goal of achieving KCA-security for symmetric encryption. Working in the random-oracle
model, HwN converts a conventional AE-secure AEAD scheme SE to a new one, SE =
HwN[SE,Gen] = (Gen,Enc,Dec), which we will prove to be KC-AE secure. Gen is its
key-generation algorithm, its key length is k and nonce length is n. Its encryption and
decryption algorithms are defined as follows, where H : K ×N −→ K is a random oracle.

Enc(K ,M ,N ,H ):
C ← Enc(H(K |N ),M ,N ,H )
return C

Dec(K ,C ,N ,H ):
M ← Dec(H(K |N ),C ,N ,H )
return M

To show that SE is (Ξe,Ξd)-KC-AE secure it will be convenient to reduce to a multi-user
variant of the AE game. Multi-user authenticated encryption (MUAE) allows an adversary
to choose the number of keys to target, analogous to the number of users in the scheme.
In addition to taking a message, nonce, and header, the encryption oracle takes an index
i (indicating user number), and returns encryptions under a key Ki, or a random string
of the same length. Decryption always returns the error symbol, except in the case the
real algorithms are being used where the message M is returned by decrypting C under
Ki. The adversary cannot ask user i to decrypt a ciphertext that it previously obtained
from this user. In a scheme with n users, it follows via a simple hybrid argument (see
Appendix B) that any AE-secure AEAD scheme is also MUAE secure.

The convenience in using MUAE lies in the fact that we can leverage the programma-
bility of random oracles to implicitly map the hash values H(ξei |1(K∗)|Ni) of the i-th query
ξei to KCEnc, to a new randomly and independently chosen key in the MUAE game. This
also decouples the key used in encryption (i.e., H(ξei |1(K∗)|Ni)) from the key-correlated
messages ξei |2(K∗), key-correlated nonces ξei |3(K∗), and key-correlated headers ξei |4(K∗).

7Even if we define a model with different symbols to denote different types of decryption failures, we may
be still able to obtain header security, but possibly requiring the key-claw-freeness of correlation-derivation
functions.
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GameΞe,Ξd,A
0 :

b← 1; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

GameΞe,Ξd,A
1 :

b← 1; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

GameΞe,Ξd,A
2 :

b← 1; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc(H(K |N ),M ,N ,H )
if T [H(K |N ),M ,N ,H ] = undef:
T [H(K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [H(K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc( H′ (K |N ),M ,N ,H )
if T [ H′ (K |N ),M ,N ,H ] = undef:
T [ H′ (K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [ H′ (K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc(H′(K |N ),M ,N ,H )
if T [H′(K |N ),M ,N ,H ] = undef:
T [H′(K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [H′(K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(H(K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec( H′ (K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(H′(K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. H(K |N ):
if (K |N ,Kh) ∈ L: return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H(K |N ): // Public RO
if (K |N ,Kh) ∈ L: return Kh

if (K |N ,Kh) ∈ L′: Bad← >
return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H(K |N ): // Public RO
if (K |N ,Kh) ∈ L: return Kh

if (K |N ,Kh) ∈ L′: Bad← >
// return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H′(K |N ): // Private RO
if (K |N ,Kh) ∈ L′: return Kh

if (K |N ,Kh) ∈ L: Bad← >
return Kh

else Kh←←K
L′ ← L′ : (K |N ,Kh)
return Kh

Proc. H′(K |N ): // Private RO
if (K |N ,Kh) ∈ L′: return Kh

if (K |N ,Kh) ∈ L: Bad← >
// return Kh

else Kh←←K
L′ ← L′ : (K |N ,Kh)
return Kh

Figure 8: Game0 shows the KC-AE game with respect to SE and challenge bit 1. Game1
separates the lists for H and H′. There are no functional changes. Game2 then fully
decouples H and H′.

Overall, our reduction proceeds by choosing a K∗, computing the key-correlated message,
nonce, and header, faithfully using this key, and implicitly setting H(ξei |1(K∗)|N) to keys
Ki in the MUAE game. For this analysis, we need that the keys Ki remain hidden from
the adversary’s point of view, which we argue is the case as long the queried functions are
key-unpredictable. We first give a definition formalizing the unpredictability of correlated
keys before formally stating and proving the security guarantees of SE

Theorem 3 (KCA security of HwN). Let SE be an AE-secure AEAD scheme. Let Ξe
and Ξd be two CDF sets. Then for any (Ξe,Ξd)-KC-AE adversary A against the scheme
SE obtained by applying the HwN transform to SE that makes q random oracle queries, qe
encryption queries and qd decryption queries, there are adversaries B, C1 and C2 such that

Advkc-ae
SE (Ξe,Ξd,A) ≤ 2 ·Advmu-ae

SE (B) + 2 ·Advm-kup
Ξe (C1) + 2 ·Advm-kup

Ξd (C2) ,

where adversary B makes at most qe + qd queries to Init, at most qe queries to encryption,
and at most qd queries to decryption, adversary C1 outputs two lists of sizes at most qe
and q, and adversary C2 outputs two lists of sizes at most qd and q.

Proof. The proof proceeds via a sequence of games as shown in Figs. 8 and 9. The three
games in Fig. 8 run according to the KC-AE game with the HwN transform applied, and
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with b = 1. When b = 1, all oracle queries to KCEnc return encryptions of key-derived
inputs under related keys. Queries to KCDec return the plaintext, or the error symbol
⊥ if the ciphertext is deemed illegitimate. The three games in Fig. 9 run according to
the KC-AE game with the HwN transform applied, and with b = 0. In this scenario, all
oracle queries to KCEnc return random ciphertexts, and KCDec always returns the error
symbol ⊥. All games, adversaries, and transitions are outlined below.

Game0 describes the KC-AE game with respect to the transformed scheme and b = 1.

Game1 is identical to Game0 with one conceptual change: it proceeds by separating the
book-keeping list for H into cases when H is accessed within KCEnc and KCDec
and when directly accessed by the adversary. More precisely, in Game1, records of
adversary A’s queries to the random oracle H will be recorded in a list L, whereas
the oracle queries from KCEnc and KCDec will be recorded in a list L′ by oracle
denoted H′. A bad flag, Bad, is set if H′ is queried on a key/nonce pair that has
already been queried by A to H. In this game, H and H′ jointly implement H in
Game0 and event Bad prepares us to fully decouple H and H′ later:

Pr[GameA0 ] = Pr[GameA1 ] .

Game2 is identical to Game1 up to the point that Bad is set. If this event occurs within H′,
records are no longer returned. By the fundamental lemma of game playing [BR06],
we bound the difference between Game2 and Game1 as

Pr[GameA1 ]− Pr[GameA2 ] ≤ Pr[GameA2 sets Bad] .

Event Bad corresponds to a non-empty intersection between the two lists L and L′.
Below, we will bound Pr[Bad] in Game1 by showing that (1) this probability is close
to the probability of setting Bad in Game2 down to the MUAE security of SE; and
(2) the probability of setting Bad in Game2 is small down to the key unpredictability
of Ξe and Ξd.

Game3 switches the challenge bit to b = 0. We show below that any adversarial advantage
in distinguishing Game2 and Game3 can be converted, via an adversary B1, against
the MUAE game:

Pr[GameA2 ]− Pr[GameA3 ] = Advmu-ae
SE (B1) .

Game4 reverses the change in Game2 and merges random oracles H and H′. We have that

Pr[GameA3 ]− Pr[GameA4 ] ≤ Pr[GameA3 sets Bad] ,

where we choose Game3 to analyze the probability of Bad. Below we construct
adversaries to show that this probability is bounded above by the key-unpredictability
advantages against Ξe and Ξd.

Game5 is identical to Game4 except for a reversal of the conceptual change seen between
Game0 and Game1. The random oracles are completely re-coupled, and all queries
by A, KCEnc and KCDec are written to a single list L. There are no procedural
changes in this game:

Pr[GameA4 ] = Pr[GameA5 ] .

The reductions. We now give the details of the bounds for the three transitional
changes above.
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GameΞe,Ξd,A
3 :

b← 0 ; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

GameΞe,Ξd,A
4 :

b← 0; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

GameΞe,Ξd,A
5 :

b← 0; K∗←←K
b′←←AKCEnc,KCDec,H

return (b′ = 1)

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc(H′(K |N ),M ,N ,H )
if T [H′(K |N ),M ,N ,H ] = undef:
T [H′(K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [H′(K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc(H′(K |N ),M ,N ,H )
if T [H′(K |N ),M ,N ,H ] = undef:
T [H′(K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [H′(K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
C1 ← Enc( H (K |N ),M ,N ,H )
if T [ H (K |N ),M ,N ,H ] = undef:
T [ H (K |N ),M ,N ,H ]←←{0, 1}|C1|

C0 ← T [ H (K |N ),M ,N ,H ]
CL← CL : (K ,Cb,N ,H )
return Cb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(H′(K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(H′(K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if (K ,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec( H (K |N ),C ,N ,H )
M0 ←⊥
return Mb

Proc. H(K |N ): // Public RO
if (K |N ,Kh) ∈ L: return Kh

if (K |N ,Kh) ∈ L′: Bad← >
// return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H(K |N ): // Public RO
if (K |N ,Kh) ∈ L: return Kh

if (K |N ,Kh) ∈ L′: Bad← >
return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H(K |N ):
if (K |N ,Kh) ∈ L: return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

Proc. H′(K |N ): // Private RO
if (K |N ,Kh) ∈ L′: return Kh

if (K |N ,Kh) ∈ L: Bad← >
// return Kh

else Kh←←K
L′ ← L′ : (K |N ,Kh)
return Kh

Proc. H′(K |N ): // Private RO
if (K |N ,Kh) ∈ L′: return Kh

if (K |N ,Kh) ∈ L: Bad← >
return Kh

else Kh←←K
L′ ← L′ : (K |N ,Kh)
return Kh

Figure 9: Game3 changes the challenge bit to 0. Game4 merges H and H′. Game5 is
functionally identical to Game4 with merged H and H′. Game5 is the KC-AE game with
respect to SE and challenge bit 0.

Adversary B1 plays the MUAE game and is built based on an adversary A that attempts
to distinguish Game2 and Game3 as follows. Adversary B1 initializes q keys and
chooses a K∗. It then simulates the encryption and decryption oracles by explicitly
computing the actual key, and also message when answering encryption, used using
K∗. In doing so, B1 implicitly programs H(ξei (K∗),Ni) to Ki, one of the q keys
initialized by B1’s challenger. Since nonces are not reused, and each Ki is chosen
randomly, this will constitute a perfect simulation of the random oracle H′. When
b = 0, this is a perfect simulation of Game4 environment for A by B1. However when
b = 1, although simulation encryption is good, care must be taken in decryption as
decryption of (K ,C ,N ,H ) is not allowed in the KC-AE game if (K ,C ,N ,H ) was
added to list CL. Adversary B1 thus keeps track of these values and answers with
⊥ when such a query arises. Note that B1 once again uses its knowledge K∗ and
further that this modification does not affect the simulation when b = 0. Adversary
B1 continues in this way and returns the bit that A outputs. Hence,

Advmu-ae
SE (B1) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] = Pr[GameA2 ]− Pr[GameA3 ] .

Adversaries Ci for i = 1, 2 are used to show that the probability of Bad is small by the
key-unpredictability of the queried functions. Adversaries Ci for i = 1, 2 run A in
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Adversary BInit,Enc,Dec
1 :

i← 0; K∗←←K
Call B1.Init qe + qd times
b′←←AKCEnc,KCDec,H

return b′

Adversary Ci:
K∗←←K
b′←←AKCEnc,KCDec,H

return (Li, L′)

Adversary BInit,Enc,Dec
2 :

i← 0; K∗←←K
Call B2.Init q times
b′←←AKCEnc,KCDec,H

for (ξ) ∈ L1 ∧ (K ,N ) ∈ L′
if ξ|1(K∗) = K ∧ ξ|3(K∗) = N :
return 1

return 0

KCEnc(ξe):
(K ,M ,N ,H )← ξe(K∗)
if T [K ,N ] = undef:
i← i+ 1; T [K ,N ]← i

C←B1.Enc(T [K ,N ],M ,N ,H )
CL← CL : (K ,C ,N ,H )
return C

KCEnc(ξe):
L1 ← L1 : ξe
C←←{0, 1}|M|+τ
return C

KCEnc(ξe):
L1 ← L1 : (ξe)
(K ,M ,N ,H )← ξe(K∗)
if T [K ,N ] = undef:
i← i+ 1; T [K ,N ]← i

C ← B2.Enc(T [K ,N ],M ,N ,H )
CL← CL : (K ,C ,N ,H )
return C

KCDec(ξd,C ):
(K ,N ,H )← ξd(K∗)
if T [K ,N ] = undef:
i← i+ 1; T [K ,N ]← i

if (K ,C ,N ,H ) ∈ CL: return ⊥
M←B1.Dec(T [K ,N ],C ,N ,H )
return M

KCDec(ξd,C ):
L2 ← L2 : ξd
return ⊥

KCDec(ξd,C ):
L1 ← L1 : (ξd)
(K ,N ,H )← ξd(K∗)
if T [K ,N ] = undef:
i← i+ 1; T [K ,N ]← i

M ← B2.Dec(T [K ,N ],C ,N ,H )
if (K ,C ,N ,H ) ∈ CL: return ⊥
return M

H(K |N ):
if (K |N ,Kh) ∈ L: return Kh

else Kh←←K
L← L : (K |N ,Kh)
return Kh

H(K |N ):
if (K |N ,Kh) ∈ L:
return Kh

else Kh←←K
L← L : (K |N ,Kh)
L′ ← L′ : K
return Kh

H(K |N ):
if (K |N ,Kh) ∈ L: return Kh

else Kh←←K
L← L : (K |N ,Kh)
L′ ← L′ : (K ,N )
return Kh

Figure 10: On the left is the description of adversary B1 simulating the challenger of A
in the KC-AE game whilst interacting in the MUAE environment. In the middle is the
description of adversaries Ci simulating the oracle requests by A in the KC-AE game when
b = 0 and whilst running in the key unpredictability environment. On the right is the code
for an adversary B2 simulating A in the KC-AE game whilst interacting in the MUAE
environment.

Game3 by simply simulating its encryption and decryption oracles with $ and ⊥
respectively. They also lazily sample the random oracles H for A. Adversary C1 keeps
track of all queried functions to KCEnc and adversary C2 keeps track of all queried
functions to KCDec. Both adversaries also keep track of all queries to H. When A
terminates, Ci simply outputs the list of all queried functions that it keeps track of
and H queries its two lists of guesses in the multi-shot key-unpredictability game.
(See Fig. 10 (middle) for the details.) Whenever flag Bad is triggered, either C1 or C2
wins the key-unpredictability game against Ξe or Ξd respectively:

Pr[GameA3 sets Bad] ≤ Advm-kup
Ξe (C1) + Advm-kup

Ξd (C2) .

Adversary B2 is used to bound the difference between the probabilities of setting Bad in
games Game3 and Game4. This is done via another reduction to the MUAE game
which attempts to decide the challenge bit by observing if Bad is set. Algorithm B2



Aisling Connolly, Pooya Farshim, and Georg Fuchsbauer 27

runs A similarly to algorithm B1. It however keeps track of the queried functions
to KCEnc and KCDec as well as H. It uses its knowledge of K∗ to verify if Bad
has occurred. When the MUAE challenge bit of B2 is 1, algorithm B2 runs A in an
environment identical to that of Game2; hence the probability of B2 outputting 0 is
exactly that of Bad in Game2. Similarly, the probability of B2 outputting 1 is exactly
that of Bad occurring in Game3. Hence

Advmu-ae
SE (B2) = Pr[GameA2 sets Bad]− Pr[GameA3 sets Bad] .

The theorem follows by putting the bounds established above together, and noting that

Advkc-ae
SE (Ξe,Ξd,A) = Pr[GameA0 ]− Pr[GameA5 ] .

In the theorem statement, we choose B to be B1 or B2 having the bigger advantage.

Remark. The above theorem can be extended to a misuse-resilient and key-correlated
setting, whereby nonces may be repeated at encryption for a construction similar to HwN
that also hashes the header information. A similar proof strategy can be used to analyse
its KC-MRAE security at the expense of introducing three extra conditions: (1) the base
scheme is MRAE secure; (2) the sets Ξe and Ξd are claw-free; and (3) (Ξe,Ξd) is xkcd so
that illegal decryption queries can be detected.
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Game RK-CCAΦ,A
BC :

b←←{0, 1}; K∗←←K
(iE, iD)←←Block(K,M)
b′←←ARKEnc,RKDec

return (b′ = b)

Proc. RKEnc(φ,M ):
K ← φ(K∗)
C ← E(K ,M )
if b = 0: C ← iE(K ,M )
return C

Proc. RKDec(φ,C ):
K ← φ(K∗)
M ← D(K ,C )
if b = 0: M ← iD(K ,C )
return M

Game KDM-CCAΨ,A
BC :

b←←{0, 1}; K∗←←K
(iE, iD)←←Block(K,M)
b′←←AKDMEnc,Dec

return (b′ = b)

Proc. KDMEnc(ψ):
M ← ψ(K∗)
C ← E(K∗,M )
if b = 0: C ← iE(K∗,M )
CL← CL : C ; return C

Proc. Dec(C ):
if C ∈ CL: return ⊥
M ← D(K∗,C )
if b = 0: M ← iD(K∗,C )
return M

Figure 11: (Top) Game defining the Φ-RK-CCA security of a blockcipher BC = (E,D). We
require that φ ∈ Φ for all queries φ. (Bottom) Game defining the Ψ-KDM-CCA security
of a blockcipher BC = (E,D) with key space K and message spaceM. We require that
ψ ∈ Ψ for all queries ψ.

Game KC-CCAΞe,Ξd,A
BC :

b←←{0, 1}; K∗←←K
(iE, iD)←←Block(K,M)
b′←←AKCEnc,KCDec

return (b′ = b)

Proc. KCEnc(ξe):
(K ,M )← ξe(K∗)
if (K ,M ) ∈ ML: return ⊥
C ← E(K ,M )
if b = 0: C ← iE(K ,M )
CL← CL : (K ,C )
return C

Proc. KCDec(ξd):
(K ,C )← ξd(K∗)
if (K ,C ) ∈ CL: return ⊥
M ← D(K ,M )
if b = 0: M ← iD(K ,M )
ML← ML : (K ,M )
return M

Figure 12: Game for (Ξe,Ξd)-KC-CCA security of a blockcipher BC = (E,D) from Sec. 3.

A Relation between KCA, RKA, and KDM

RKA and KDM security. Fig. 11 gives the definitions of RKA security [BK03]
and KDM security [FKV17] for blockciphers. The advantage functions are defined in
the standard way (as for KCA, Equation (1) in Sec. 3). The CPA versions are obtained
naturally by disallowing decryption queries.

We now prove that for RKA-only (resp. KDM-only) claw-free sets KCA and RKA
(resp. KDM) security are equivalent. For convenience we restate Fig. 1 as Fig. 12 and
Proposition 1 from Section 3.3 as Propositions 2 and 3 below.

A.1 KC(RK-only) ⇔ RK
Proposition 2. Let BC be a blockcipher. Let Ξe and Ξd be two RKA-only CDF sets with
Ξe = Ξd = Φ× Γ. Then for every adversary B there exists an adversary A such that

Advrk-cca
BC (Φ,B) ≤ Advkc-cca

BC (Ξe, Ξd, A) + q2/2n ,

where n is the block length and q is the maximum number of queries B makes. Moreover,
for every adversary A there exist adversaries B and Bcf such that

Advkc-cca
BC (Ξe, Ξd, A) ≤ q2 · (Advcf

Φ (Bcf) + 1/2n) + Advrk-cca
BC (Φ,B) ,

where q is the maximum number of queries adversary A makes.

Recall that (Ξe,Ξd) is RKA-only if Ξe = Ξd = Φ× Γ for an RKA set Φ of functions
mapping keys to keys (where Γ is the set of constant functions overM). The difference
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between games RK and KC is that in the former there are no lists ML and CL, thus all
queries are allowed. When showing KC⇒RK, the reduction must therefore answer all
queries, while its KC challenger might reply with ⊥. The reduction will therefore keep
local lists CL′ and ML′, which simulate the challenger’s blacklists.

The KC challenger, when queried KCEnc(ξe = (φe,M)) stores pairs (K = φe(K∗), C =
E(K,M)) in its list CL. The reduction does not know the values K and will store
pairs (C,M) in a list CL′. In the KC game, queries KCDec(ξd = (φd,C )) with
(φd(K∗), C) ∈ CL are answered with ⊥, whereas in the RK game, RKDec(φd,C ) al-
ways returns D(φd(K∗),C ). To answer such queries, the reduction looks for an entry
(C,M ′) for some M ′ in its list CL′. If (1) there is only one such entry, it returns M ′, which
perfectly simulates RKDec: if (C,M ′) ∈ CL′ and KCDec(ξd = (φd,C )) returned ⊥ then
(φe(K∗),C ) ∈ CL and if there is only one entry with C, we must have φd(K∗) = φe(K∗).
If (2) there are several entries (C,M0), (C,M1) ∈ CL′, the reduction aborts the simulation
and returns 1 (that is, it guesses that it is interacting with the actual blockcipher). As we
show in the lemma below, we can bound the probability of this type of collision in CL′
in case the reduction is interacting with an ideal cipher, and therefore the probability of
aborting and returning a wrong guess. The list ML and queries to the KCEnc oracle are
dealt with analogously.

Lemma 1. Consider game KC-CCAΞe,Ξd,A
BC with b fixed to 0. Then the probability that

there are two entries (K0, C), (K1, C) ∈ CL with iD(K0, C) 6= iD(K1, C) is at most q2/2n,
where q is the number of queries made by A. The same holds for the probability of two
entries (K0,M), (K1,M) ∈ ML with iE(K0,M) 6= iE(K1,M).

Proof. Let us consider CL (the case ML is completely analogous). In order for a pair (K,C)
to be added to CL, the adversary must make a query KCEnc(ξe = (φe,M)) such that
K = φe(K∗) and C = iE(K,M).

Since (iE, iD) is ideal, the probability that after q queries the adversary findsK0,K1,M0 6=
M1 such that iE(K0,M0) = iE(K1,M1) =: C, without having queried both iD(K0, C) and
iD(K1, C) before, is at most q2/2n. On the other hand, when the adversary queries both
KCDec(φ0, C) and KCDec(φ1, C) with φi(K∗) = Ki, then (K0,M0) and (K1,M1), with
Mi := iD(Ki, C), are both added to ML. But then any call to KCEnc(ξe = (φ′i,Mi))
with φ′(K∗) = Ki will be answered with ⊥, meaning that (Ki, C) will not be added to CL.
So the only way for the event to happen is that the adversary guesses K0,K1,M0 6= M1
which map to the same C.

KC ⇒ RK. We now prove the first statement of Proposition 2. Consider an adversary
B against RK; we construct a reduction A against KC, which maintains local lists CL′ and
ML′, allowing it to simulate B’s oracles even when its own oracles return ⊥.

Whenever adversary B queries RKEnc on (φ,M), reduction A queries its own oracle
KCEnc on ξe : K 7→ (φ(K),M). If its answer is ⊥ then there must be an entry (M,C ′) in
ML′. If there is more than one such entry, A stops and returns 1; otherwise it returns C ′.
If A’s KCEnc oracle returned a value C 6= ⊥, B returns C and adds (C,M) to its local
list CL′.

Analogously, if B queries RKDec on (φ,C), reduction A queries its own oracle KCDec
on ξd : K 7→ (φ(K), C). If its answer is ⊥ then there must be an entry (C,M ′) in CL′. If
there is more than one such entry, A stops and returns 1; otherwise it returns M ′. If A’s
KCDec oracle returned a value M 6= ⊥, B returns M and adds (M,C) to its list ML′.

If A has not stopped the simulation, it forwards B’s output b′.
First note that to any entry (K,C) ∈ CL of A’s challenger corresponds an entry

(C,D(K,M)) in A’s local list CL′ (and similarly for ML and ML′). From Lemma 1 we thus
have that in case b = 0, the probability that there are two entires (C,M0), (C,M1) with
M0 6= M1 in CL′ is at most q2/2n =: ε. Thus, the probability that A stops the simulation
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in case b = 0 is bounded by ε. In case b = 1, if A stops the simulation, it outputs the
correct bit. More formally, let Ei denote the event that A stops the simulation when its
challenger’s bit b = i and let KCi denote game KC-CCAΞe,Ξd,A

BC with bit b fixed to i and
similarly for RKi. Then we have:

Advrk-cca
BC (Φ,B) + 1 = Pr[RK0|E0] Pr[E0] + Pr[RK0|¬E0] Pr[¬E0]

+ Pr[RK1|E1] Pr[E1] + Pr[RK1|¬E1] Pr[¬E1]
= Pr[RK0|E0] Pr[E0] + Pr[KC0|¬E0] Pr[¬E0]

+ Pr[RK1|E1] Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
≤ 1 · ε+ Pr[KC0|¬E0] Pr[¬E0] + 1 · Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
= ε+ Pr[KC0|E0] Pr[E0] + Pr[KC0|¬E0] Pr[¬E0]

+ Pr[KC1|E1] Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
= ε+ Advkc-cca

BC (Ξe, Ξd, A) + 1 ,

where for the second equality we used that games RK and KC have the same output
conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by Lemma 1; and the second to last
equality follows from B’s behavior in case of E happening, thus Pr[KC0|E0] = 0 and
Pr[KC1|E1] = 1. This concludes this direction of the proof.

The above simulation strategy for does not work for the converse implication RK
⇒ KC, as best illustrated by the following example: Consider a blockcipher for which
there exist K 6= K ′ ∈ K and M ∈ M with E(K,M) = E(K ′,M) = C; now consider a
KC adversary A that queries KCEnc(φ,M) with φ(K∗) = K; thus (K,C) ∈ CL. Later
A queries KCDec(φ′, C) and KCDec(φ′′, C) where φ′(K∗) = K ′ and φ′′(K∗) = K.
Reduction B can forward these queries to its RK oracle and will get M in both cases. But
KCDec(φ′, C) should be answered with M (since (K ′, C) /∈ CL), whereas KCDec(φ′, C)
should be answered with ⊥. Thus, storing (C,M) in a local list CL′ doesn’t help, since
both queries would make B look at this entry, but should result in different actions.

The reduction can thus not perfectly simulate the KC experiment; although this
situation is very unlikely to occur for the ideal cipher, the reduction cannot abort and return
1 (as in the above proof), since the event that the adversary found a tuple (K,K ′,M,C)
that would be hard to find for the ideal cipher is not detectable by the reduction (in
contrast to the proof for KC ⇒ RK).

The proof will now rely on claw-freeness of the set Φ. If it was perfectly claw-free, then
the reduction could perfectly simulate entries (K,C) ∈ CL by entries (φ,C) ∈ CL′ with
φ(K∗) = K. But if claw-freeness is only computational then the adversary could find φ, φ′
with φ(K∗) = φ′(K∗) for the key K∗ chosen by the game, but which would not be a claw
for a random key and thus cannot be output as a solution in the claw-freeness game.

However, we can show that until the adversary finds a claw, the ideal game can be
simulated without having chosen any key K∗ at all. If the adversary thus finds a claw,
it must be one for a random key with non-negligible probability as well. We start with
proving this last observation in the following lemma.

Lemma 2. Consider game RK-CCAΦ,B
BC with b fixed to 0 and define event E as follows:

the adversary B makes two RKEnc queries (φ,M ) and (φ′,M ), with φ 6= φ′, both answered
by the same C; or it makes two RKDec queries (φ,C ), (φ′,C ), with φ 6= φ′, both answered
by the same M ; or it makes two queries RKEnc(φ,M ), answered by C and RKDec(φ′,C ),
answered by M , with φ 6= φ′.

Then there exists an adversary Acf such that Pr[E] ≤ q2 · (Advcf
Φ (Acf) + 1/2n) =: ε2,

where q is the number of oracle queries B makes in game RK-CCA.

Proof. The crucial observation is that game RK-CCAΦ,B
BC when b is fixed to 0 can be

simulated without knowing choosing K∗ up to the event E happening, that is, the point
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where the adversary produces the first claw. Let (φi)qi=1 denote the list of all functions
queried to RKEnc or RKDec. We construct an adversary Acf against claw-freeness as
follows: it first guesses i0, i1 ∈ [1, q] and then simulates the game for B until the i1-th
query as follows:
Acf keeps a list L with entries of the form (φ,M,C). Whenever B queries RKEnc(φ,M),

it checks whether there is some entry (φ,M,C ′) ∈ L and if so, returns C ′. Else it samples
C ←M, adds (φ,M,C) to L and returns C. Whenever B queries RKDec(φ,C), it checks
whether there is some entry (φ,M ′, C) ∈ L and if so, returns M ′. Else it samples M ←M,
adds (φ,M,C) to L and returns M . When B makes its i1-the query, Acf stops and returns
(φi0 , φi1).

Assume event E occurred and Acf guessed correctly that the i1-th query was the first
query after which E occurred and the i0-th query was the one it collided with. Consider
Acf’s challenger, which chooses K∗ ← K and checks whether φi0(K∗) = φi1(K∗). If so,
then Acf won the claw-freeness game. Else the probability that Acf would have answered
the i1-th query so that E still occurred is 1/2n.

RK ⇒ KC. This direction relies on the claw-freeness of the set Φ. Let A be a KC
adversary; we construct a reduction B against RK that maintains two local lists ML′ and
CL′ and aborts whenever event E, defined in Lemma 2, occurs.

WheneverA queries KCEnc for ξe : K 7→ (φ(K),M), reduction B queries RKEnc(φ,M)
to receive C. It first checks whether there has been a “colliding” RKEnc query: if there
is an entry (φ′, C,M) in its list CL′ with φ′ 6= φ then B aborts and returns 1.

To answer the query KCEnc(φ,M), an actual KC challenger would check whether
(φ(K∗),M) ∈ ML. Instead, B checks its local list ML′: if (φ,M,C) ∈ ML′, it returns ⊥; if
there is an entry (φ′ 6= φ,M,C) then B aborts the simulation and returns 1; if there is no
entry (·,M,C) ∈ ML′, it adds (φ,C,M) to its local list CL′ and returns C.

KCDec queries for ξd : K 7→ (φ(K), C) are dealt with analogously: B first queries
RKDec(φ,C) to receive M . If there is an entry (φ′,M,C) in ML′ with φ′ 6= φ then B
aborts and returns 1. To answer KCDec(φ,C), an actual KC challenger would now check
whether (φ(K∗), C) ∈ CL. Instead, B checks its local list CL′: if (φ,C,M) ∈ CL′ it returns
⊥; if there is an entry (φ′ 6= φ,C,M) then B aborts the simulation and returns 1; if there
is no entry (·, C,M) ∈ CL′, it adds (φ,M,C) to its local list ML′ and returns M .

We show that the simulation is perfect if B does not abort; consider a query KCDec(φ,C):
(1) If (φ,C,M) ∈ CL′ then there must have been a query KCEnc(φ,M) with C =
E(φ(K∗),M); thus a KC challenger would have added (φ(K∗), C) to CL and the above
KCDec query would have been answered by ⊥. (2) If there is no entry (·, C,M) ∈ CL′ then
(φ(K∗), C) cannot be in CL, since whenever it is added to CL, an entry (·, C,D(φ(K∗), C)
would have been added to CL′. Perfect simulation of KCEnc queries is argued completely
analogously.

On the other hand, we have that B aborts precisely when E, as defined in Lemma 2,
occurs. With ε as defined in the latter, we thus have

Advkc-cca
BC (Ξe, Ξd, A) + 1 = Pr[KC0|E0] Pr[E0] + Pr[KC0|¬E0] Pr[¬E0]

+ Pr[KC1|E1] Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
= Pr[KC0|E0] Pr[E0] + Pr[RK0|¬E0] Pr[¬E0]

+ Pr[KC1|E1] Pr[E1] + Pr[RK1|¬E1] Pr[¬E1]
≤ 1 · ε+ Pr[RK0|¬E0] Pr[¬E0] + 1 · Pr[E1] + Pr[RK1|¬E1] Pr[¬E1]
= ε+ Pr[RK0|E0] Pr[E0] + Pr[RK0|¬E0] Pr[¬E0]

+ Pr[RK1|E1] Pr[E1] + Pr[RK1|¬E1] Pr[¬E1]
= ε+ Advrk-cca

BC (Φ,B) + 1 ,
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where for the second equality we used that games RK and KC have the same output
conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by Lemma 2; and the second to last
equality follows from B’s behavior in case of E happening, thus Pr[RK0|E0] = 0 and
Pr[RK1|E1] = 1. This concludes this direction of the proof.

A.2 KC(KDM-only) ⇔ KDM
Proposition 3. Let BC be a blockcipher. Let Ξe and Ξd be two KDM-only CDF sets with
Ξe = {id} ×Ψ and Ξd = {id} × Γ. Then for every adversary A there exists an adversary
B such that

Advkc-cca
BC (Ξe, Ξd, A) = Advkdm-cca

BC (Ψ,B) ,

and for every adversary B there exist adversaries A and Acf such that

Advkdm-cca
BC (Ψ,B) ≤ q2 ·Advcf

Ψ(Acf) + Advkc-cca
BC (Ξe, Ξd, A) ,

where q is the maximum number of queries adversary B makes.

We show that our definition is equivalent to the KDM definition from [FKV17] for
claw-free sets Ψ. Recall that (Ξe,Ξd) is KDM-only if Ξe = {id} ×Ψ and Ξd = {id} × Γ,
where Ψ is a KDM set of functions mapping keys to messages and Γ is the set of constant
functions K 7→M for all M ∈M; we assume Γ ⊆ Ψ.

We first observe that games KC and KDM are similar in that every entry C in CL in
game KDM corresponds to (K∗,C ) in CL in KC. The crucial difference is that in KDM
there is no list ML, thus all KDMEnc queries are allowed, whereas KC disallows queries
in ML. KDM implying KC can be shown because the reduction can perfectly simulate the
list ML.

The converse (KC ⇒ KDM) is trickier to show and it relies on claw-freeness of the set
Ψ. To illustrate this, consider the following attack against KDM, which does not work
against KC: for two random C0, C1 ∈ M, the adversary queries Dec(C0) and Dec(C1)
to receive M0 and M1. It then queries KDMEnc(ψM0,M1) with ψ : K∗ 7→ MK∗1

, where
K∗1 is the first bit of K∗. When receiving Ci as a reply, the adversary learned that i is
the first bit of K∗ and it can use the same strategy to learn all other bits of K∗. Note
that in the KC game, the two decryption queries add (K∗,M0) and (K∗,M1) to ML and
consequently KCEnc(ξe := id× ψM0,M1) is answered with ⊥.

KDM ⇒ KC. To show that KDM implies KC, consider a KC adversary A and let
us construct a reduction B against KDM. B basically simulates the KC oracles for A
by forwarding A’s queries to its own KDM oracles. To simulate game KC correctly,
B maintains its own list ML′. Whenever A queries KCDec(ξd) for ξ2 ∈ Ξd, we have
ξ2 : K 7→ (K,C) for some C ∈ M. Reduction B queries C to Dec to obtain M , which
it returns to A; B also appends (M,C) to its list ML′ (whereas an actual KC challenger
would have appended (K∗,M) to its list ML).

Whenever A queries KCEnc(ξ1) with ξ1 : K 7→ (K,ψ(K)) for some ψ ∈ Ψ, the
reduction queries KDMEnc(ψ) to obtain C. If for some M ′ there is an entry (M ′, C) ∈
ML′: B returns ⊥; otherwise, it returns C.

To see that this correctly simulates the list ML that B’s challenger maintains, observe
that (K∗,M) is in the latter iff (M,E(K∗,M)) is in B’s local list ML′ and since E(K∗, ·)
is a permutation, each C uniquely determines the corresponding M , thus B’s simulation is
perfect. We thus have Advkc-cca

BC (Ξe, Ξd, A) = Advkdm-cca
BC (Ψ,B).

KC ⇒ KDM. In this direction, we assume an adversary B against KDM and construct
A against KC. This time, A will not be able to perfectly simulate the game; however, A
can detect when it is not able to. In this case A aborts and returns b′ = 1 (it guesses
that it is talking to the real blockcipher). As for in the proof for KC ⇒ RK, we show



36 Security of Symmetric Primitives against Key-Correlated Attacks

that if b = 0 (the ideal case), the probability of A aborting is bounded—in contrast to the
previous proof, we bound it by the advantage of breaking claw-freeness.

We start by defining the following event E in game KDM-CCAΨ,B
BC : let (Mi)i denote

the messages returned by the Dec oracle and let (ψj)j denote the queries made to the
KDMEnc oracle; let K∗ denote the challenge key. We say E occurs if we either have
(1) ψj0(K∗) = ψj1(K∗) for some j0 6= j1; or (2) ψj(K∗) = Mi for some j, i. We show the
following:
Lemma 3. Consider game KDM-CCAΨ,B

BC with b fixed to 0 and let E be the event defined
above. Then there exists an adversary Acf such that Pr[E] ≤ q2 ·Advcf

Ψ(Acf), where q is
the number of oracle queries B makes in game KDM-CCA.
Proof. First note that there exists some first query j1 that makes E occur, and some query
j0 < j1, which will be the query with which the j1-th query “collides”. Acf starts with
guessing j0 and j1 and simulates the game until the j1-th query as follows: any query
Dec(Ci) is answered with a random Mi ←M; any query KDMEnc(ψi) is answered with
a random Ci ←M (all repeated queries are answered consistently).

If the j0-th query was a query Dec(Ci) answered by Mi then define ψj0 : K 7→ Mi;
if it was a query KDMEnc(ψ) then let ψj0 := ψ; define ψj1 analogously. Acf returns
(ψj0 , ψj1).

First note that if A guessed j1 correctly then the simulation is perfect, as for the
random key K∗, the same message was never queried twice (via encryption or decryption).
Moreover, if A also guessed j0 correctly then (ψj0 , ψj1) is indeed a collision and A wins the
claw-freeness game. We thus have Advcf

Ψ(Acf) ≥ 1/q2 ·Pr[E], which proves the lemma.

We now give a reduction A against KC that simulates the KDM game to adversary B
by forwarding all queries to its own oracle. When A cannot answer a KDMEnc query
because its own oracle KCEnc replies ⊥ it aborts the simulation. In order to use the
above lemma, A will also abort when it could continue the simulation. In particular, A
aborts and returns 1 when one of the two things happen:
(1) B makes two queries ψ,ψ′ to KDMEnc, which when forwarded to A’s RKEnc

oracle return the same C; or

(2) A forwards a KDMEnc query to its KDMEnc oracle which is answered with ⊥.
Note that these two cases define precisely the event E above. We thus have that A aborts
the simulation whenever E occurs. If A does not abort the simulation, it returns whatever
B outputs.

Let KCi denote game KC-CCAΞe,Ξd,A
BC with bit b fixed to i and Ei the event that E

occurs in this case. Define KDMi analogously and let ε := q2 ·Advcf
Ψ(Acf). Then we have:

Advkdm-cca
BC (Ψ,B) + 1 = Pr[KDM0|E0] Pr[E0] + Pr[KDM0|¬E0] Pr[¬E0]

+ Pr[KDM1|E1] Pr[E1] + Pr[KDM1|¬E1] Pr[¬E1]
= Pr[KDM0|E0] Pr[E0] + Pr[KC0|¬E0] Pr[¬E0]

+ Pr[KDM1|E1] Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
≤ 1 · ε+ Pr[KC0|¬E0] Pr[¬E0] + 1 · Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
= ε+ Pr[KC0|E0] Pr[E0] + Pr[KC0|¬E0] Pr[¬E0]

+ Pr[KC1|E1] Pr[E1] + Pr[KC1|¬E1] Pr[¬E1]
= ε+ Advkc-cca

BC (Ξe, Ξd, A) + 1 ,

where for the second equality we used that games KDM and KC have the same output
conditioned on ¬E; the inequality uses Pr[E0] ≤ ε by Lemma 3; and the second to last
equality follows from B’s behavior in case of E happening, thus Pr[KC0|E0] = 0 and
Pr[KC1|E1] = 1. This concludes this direction of the proof.
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Game MUAEASE:
b←←{0, 1}; v ← 0
b′←←AInit,Enc,Dec

return (b′ = b)

Proc. Init():
v ← v + 1; Kv←←K

Proc. Enc(i,M ,N ,H ):
if ¬(1 ≤ i ≤ v): return ⊥
C1 ← Enc(Ki,M ,N ,H )
C0←←{0, 1}|C1|

CL← CL : (i,Cb,N ,H )
return Cb

Proc. Dec(i,C ,N ,H ):
if ¬(1 ≤ i ≤ v): return ⊥
if (i,C ,N ,H ) ∈ CL: return ⊥
M1 ← Dec(Ki,C ,N ,H )
M0 ←⊥
return Mb

Figure 13: Game MUAEAAE defining the multi-user AE-security of a symmetric encryption
scheme SE.

GameAj :
b← 1; v ← 0
b′←←AInit,Enc,Dec

return (b′ = 1)

Proc. Init():
v ← v+1; Kv←←K

Proc. Enc(i,M ,N ,H ):
if ¬(1 ≤ i ≤ v): return ⊥
C ← Enc(Ki,M ,N ,H )
if i ≤ j : C ← {0, 1}|C |
CL← CL : (i,C ,N ,H )
return C

Proc. Dec(i,C ,N ,H ):
if ¬(1 ≤ i ≤ v): return ⊥
if (i,C ,N ,H ) ∈ CL: return ⊥
if i ≤ j : M ←⊥
M ← Dec(Ki,C ,N ,H )
return M

Figure 14: Gamej (with 0 ≤ j ≤ n) showing MUAE game which returns random values
when i ≤ j and an encryption under Ki otherwise.

B Multi-User to Single-User Reduction for AE

Multi-user security. We define the MUAE-security of SE = (Gen,Enc,Dec) by
considering the game described in Fig. 13. The MUAE advantage of an adversary A
against an MUAE game is defined by

Advmu-ae
SE (A) := 2 · Pr

[
MUAEASE

]
− 1 .

Note that nonces may not be repeated for each user in Enc.

Theorem 4. Let SE be an authenticated encryption scheme. Then for any adversary A
attacking the MUAE-security of SE while making at most n queries to Init, there exist
AE adversaries B1, . . . ,Bn such that

Advmu-ae
SE (A) ≤

n∑
i=1

Advae
SE(Bi) .

Proof. The proof proceeds via a standard hybrid argument. We start by defining a sequence
of games Gamej (for 0 ≤ j < n) as shown in Fig. 14. Gamej runs similarly to the MUAE
game except that if i (the index of the key) is less than or equal to j, then ciphertext C
is randomly generated. For i > j, the encryption algorithm is used under key Ki. Thus
Game0 is identical to the MUAE game with b = 1 and Gamen is identical to the MUAE
game with b = 0.
Let A be any adversary in the MUAE game. To bound the advantage of A, note that

Advmu-ae
SE (A) := Pr[GameA0 ]− Pr[GameAn ]

=
n−1∑
j=0

(Pr[GameAj ]− Pr[GameAj+1]) .
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Adversary BEnc,Dec
j :

b′←←AInit,Enc,Dec

return b′

Init():
if i = j + 1: Ki ←⊥
else Ki←←K

Enc(i,M ,N ,H ):
C ← Enc(Ki,M ,N ,H )
if i ≤ j:

C←←{0, 1}|C|
if i = j + 1:

C ← Bj .Enc(M ,N ,H )
return C

Dec(i,C ,N ,H ):
if i ≤ j : M ←⊥
if i = j + 1:

M ← Bj .Dec(C ,N ,H )
else M ← Dec(Ki,C ,N ,H )
return M

Figure 15: Adversary B in the single-user AE game based on a multi-user AE adversary A.

Thus, for j = 0, . . . , n− 1 it remains to bound

Pr[GameAj ]− Pr[GameAj+1] .

To this end, we will rely on the underlying security of SE.

Claim. For any j, and for any adversary A, there exists a Bj such that

Pr[GameAj ]− Pr[GameAj+1] = Advae
SE(Bj) .

The key observation is that in Gamej , for the first j keys queried, j uniform strings are
returned as the ciphertext and for the remaining keys, n− j encryptions are returned. In
Gamej+1, j + 1 uniform strings and n− j − 1 encryptions are returned. Leveraging this
difference of one real encryption at the j + 1 position, we can construct an AE adversary
Bj to emulate the environment of an MUAE adversary A to break the single user AE
security.

Adversary Bj works as shown in Fig. 15. When the challenge bit b in the AE game (that
Bj is playing) is 1, adversary A’s view of the environment is identical to that in Gamej .
When Bj ’s challenge bit is b = 0, adversary A’s view is identical to that in Gamej+1.
When A outputs a bit b′, games Gamej and Gamej+1 check if b′ = 1. This is equivalent to
outputting b′, which is also the bit that Bj outputs. In other words,

Advae
SE(Bj) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] = Pr[GameAj ]− Pr[GameAj+1] .
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