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ABSTRACT
Ever since their introduction, zero-knowledge proofs have become

an important tool for addressing privacy and scalability concerns

in a variety of applications. In many systems each client downloads

and verifies every new proof, and so proofs must be small and

cheap to verify. The most practical schemes require either a trusted

setup, as in (pre-processing) zk-SNARKs, or verification complex-

ity that scales linearly with the complexity of the relation, as in

Bulletproofs. The structured reference strings required by most zk-

SNARK schemes can be constructed with multi-party computation

protocols, but the resulting parameters are specific to an individ-

ual relation. Groth et al. discovered a zk-SNARK protocol with a

universal structured reference string that is also updatable, but the
string scales quadratically in the size of the supported relations.

Here we describe a zero-knowledge SNARK, Sonic, which sup-

ports a universal and continually updatable structured reference

string that scales linearly in size. We also describe a generally useful

technique in which untrusted “helpers” can compute advice that

allows batches of proofs to be verified more efficiently. Sonic proofs

are constant size, and in the “helped” batch verification context the

marginal cost of verification is comparable with the most efficient

SNARKs in the literature.
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1 INTRODUCTION
In the decades since their introduction, zero-knowledge proofs

have been used to support a wide variety of potential applications,

ranging from verifiable outsourced computation [11, 16, 24, 59]

to anonymous credentials [6, 27, 28, 32, 39], with a multitude of

other settings that also require a balance between privacy and

integrity [17, 19, 29, 31, 36]. In recent years, cryptocurrencies have

been one increasingly popular real-world application [10, 44, 52,

57], with general zero-knowledge protocols now deployed in both

Zcash and Ethereum. In the cryptocurrency setting it is common

for clients to download and verify every transaction published to

the network. This means that small proof sizes and fast verification

time are important for the practical deployment of zero-knowledge

protocols. There are several practical schemes fromwhich to choose,

with a vast space of tradeoffs in performance and cryptographic

assumptions.

Currently, the most attractive proving system from the verifier’s

perspective is a (pre-processing) succinct non-interactive argument

of knowledge, or zk-SNARK for short, which has a small constant

proof size and constant-time verification costs even for arbitrarily

large relations. The most efficient scheme described in the literature

is a zk-SNARK by Groth [45] which contains only three group

elements. Typically, zk-SNARKs require a trusted setup, a pairing-

friendly elliptic curve, and rely on strong assumptions.

In contrast, proving systems such as Bulletproofs [26] do not

require a trusted setup and depend on weaker assumptions. Un-

fortunately, although its proof sizes scale logarithmically with the

relation size, Bulletproof verification time scales linearly, evenwhen

applying batching techniques. As a result, Bulletproofs are ideal for

simpler relations.

Although zk-SNARKs have been deployed in applications, such

as the private payment protocol in Zcash, the trusted setup has

emerged as a barrier for deployment. If the setup is compromised

in Zcash, for example, an attacker could create counterfeit money

without detection. It is possible to reduce risk by performing the

setup with a multi-party computation (MPC) protocol, with the

property that only one participant must be honest for the final

parameters to be secure [25, 62]. However, the resulting parameters

are specific to the individual relation, and so each distinct applica-

tion must perform its own setup. Applications must also perform

a new setup each time their construction changes, even for minor

optimisations or bug fixes.

Groth et al. [46] recently proposed a zk-SNARK scheme with

a universal structured reference string (SRS
1
) that allows a single

setup to support all circuits of some bounded size. Moreover, the

SRS is updatable, meaning an open and dynamic set of participants

can contribute secret randomness to it indefinitely. Although this

is still a trusted setup in some sense, it increases confidence in the

security of the parameters as only one previous contributor must

have destroyed their secret randomness in order for the SRS to be

secure.

In terms of efficiency, however, while the construction due to

Groth et al. does have constant-size proofs and constant-time ver-

ification, it requires an SRS that is quadratic with respect to the

1
“Structured reference string” is the recommended language to use when referring to

what was once called a “common reference string” [63].
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number of multiplication gates in the supported arithmetic circuits.

Moreover, updating the SRS requires a quadratic number of group

exponentiations, and verifying the updates requires a linear number

of pairings. Finally, while the prover and verifier need only a linear-

size, circuit-specific string for a given fixed relation (rather than

the whole SRS), deriving this from the SRS requires an expensive

Gaussian elimination process. In a concrete setting such as Zcash,

which has a circuit with 2
17

multiplication gates, the SRS would be

on the order of terabytes and is thus prohibitively expensive.

1.1 Our Contributions
We present Sonic, a new zk-SNARK for general arithmetic circuit

satisfiability. Sonic requires a trusted setup, but unlike conventional

SNARKs the structured reference string supports all circuits (up to a

given size bound) and is also updatable, so that it can be continually

strengthened. This addresses many of the practical challenges and

risks surrounding such setups. Sonic’s structured reference string

is linear in size with respect to the size of supported circuits, as

opposed to the scheme by Groth et al., which scales quadratically.

The structured reference string in Sonic also does not need to be

specialized or pre-processed for a given circuit. This makes a large,

distributed and never-ending setup process a practical reality.

Proof verification in Sonic consists of a constant number of pair-

ing checks. Unlike other zk-SNARKs, all proof elements are in the

same source group, which has several advantages. Most signifi-

cantly, when verifying many proofs at the same time, the pairing

operations need to be computed only once. Thus the marginal costs

stem solely from a handful of exponentiations in the group. We

also remove the requirement for operations in the second source

group, which are typically more expensive.

Sonic’s verification includes checking the evaluation of a sparse

bivariate polynomial in the scalar field. We introduce a method to

check this evaluation succinctly (given a circuit-dependent precom-

putation) and thus maintain our zk-SNARK properties. Our proof

of correct evaluation introduces a new permutation argument and

a grand-product argument.

Additionally Sonic can achieve better concrete efficiency if an

untrusted “helper” party aggregates a batch of proofs. This batching

operation computes advice to speed up the verifier. In a blockchain

application, this helper could be a miner-type client that already

processes and verifies transactions for inclusion in the next block.

We define security in this setting in Section 3, and present and

prove secure the regular usage of Sonic in Section 6 and Section 7.

In Section 8 we present the more efficient version of Sonic which is

helper-assisted. Finally, we implement our protocol and discuss its

performance in Section 9, demonstrating verification times that are

competitive with state-of-the-art pre-processing zk-SNARKs for

typical arithmetic circuits. For any size of circuit proof sizes are 256

bytes and the verification times for circuits with small instances

and arbitrarily sized witnesses are approximately 0.7ms (assuming

there are helpers).

1.2 Our Techniques
The goal of Sonic is to provide zero-knowledge arguments for the

satisfiability of constraint systems representing NP-hard languages.

Sonic defines its constraint system with respect to the two-variate

polynomial equation used in Bulletproofs that was designed by

Bootle et al. [22]. In the Bulletproofs polynomial equation, there is

one polynomial that is determined by the instance of the language

and a second that is determined by the constraints. The polynomial

determined by the instance a is given by∑
i, j

ai, jX
iY j

i.e., each element of the instance is used to scale a monomial in the

overall polynomial. For this reason, an SRS that contains only hid-

den monomial evaluations suffices for committing to the instance.

Groth et al. [46] showed that an SRS that contains monomials is

updatable. The second polynomial that is determined by the con-

straints is known to the verifier. We use this knowledge to allow

the verifier to obtain evaluations of the polynomial while avoiding

putting constraint-specific secrets in the SRS.

To commit to our polynomials, we use a variation of a polynomial

commitment scheme by Kate et al. [50]. We prove the commitment

scheme secure in the algebraic group model [37], which is a model

that lies somewhere between the standard model and the generic

group model. This security proof does not follow from the initial

reductions by Kate et al. because we additionally need to show

that the adversary can extract the committed polynomials. Kate et

al.’s scheme has constant size and verification time, but is designed

for single-variate polynomials, whereas our polynomials are two-

variate. To account for this, we hide only one evaluation point in

the reference string. The polynomial defining the instance is of

a special form where it can be committed to using a univariate

scheme; i.e., it is of the form∑
i
aiX

iY i .

The prover first commits to the polynomial defining the statement,

and then the second evaluation point y is determined in the clear.

The prover can then commit to other polynomials of the form∑
i, j

ti, jX
iy j

using a univariate scheme.

When the prover and verifier both know a two-variate polyno-

mial that the verifier wants to calculate, this work can be unloaded

onto the prover. In our schemewe utilise this observation by placing

the work of computing the polynomial specifying the constraints

onto the prover. The prover then has to show that the polynomial

has been calculated correctly. We provide two methods of achieving

this. In the first, we simply provide a proof that the evaluation is cor-

rect. While asymptotically preferable, concretely this proof is three

times the size of our second method. In this scenario, many proofs

are calculated by many provers, and then a “helper” calculates the

circuit-specifying polynomial for each proof. The circuit-specifying

polynomial contains no private information, so the helper can be

run by anyone. The helper then proves that they have calculated

all of the polynomials correctly at the same time, which they can

do succinctly with a one-off circuit-dependent cost that can be

amortised over many proofs.
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Scheme Runtime Size PQ? Universal? Untrusted setup? Assumptions

Prover Verifier CRS Proof

Hyrax d(hc + c log c) +w ℓ + d(h + log(hc))
√
w d log(hc) +

√
w #   DL

ZK vSQL n log(c) ℓ + d polylog(n) log(n) d log(c) #  G# q-type, KOE
Ligero n log(n) c log(c) + h log(h) 0

√
n G#   CRHF

Bootle et al. [23] n n 0

√
n G#   CRHF

Baum et al. [4] n log(n) n
√
n

√
n log(n) G#   SIS

STARKs n polylog(n) polylog(n) 0 log
2(n) G#   CRHF

Aurora n log(n) n 0 log
2(n) G#   CRHF

Bulletproofs n log(n) n log(n) n log(n) #   DL

SNARKs n log(n) ℓ n 1 # # # q-type, KOE
Groth et al. [46] n log(n) ℓ n2

1 #  G# q-type, KOE
This work n log(n) ℓ n 1 #  G# AGM

Table 1: Asymptotic efficiency comparison of zero-knowledge proofs for arithmetic circuits. Here n is the number of gates, d is the depth of
the circuit, h is the width of the subcircuits, c is the number of copies of the subcircuits, ℓ is the size of the instance, and w is the size of the
witness. An empty circle denotes that the scheme does not have this property and a full circle denotes that the scheme does have this property.
A half circle for post-quantum security denotes that it is feasibly post-quantum secure but that there is no proof. A half circle for untrusted
setup denotes that the scheme is updatable. DL stands for discrete log, CRHF stands for collision-resistant hash functions, KOE stands for
knowledge-of-exponent, and AGM stands for algebraic group model.

Scheme Universal SRS Circuit SRS Size Prover computation Verifier computation

Groth’16 [45] — 3n +m G 3 G 4n +m − ℓ Ex 3P + ℓ Ex
Bulletproofs

n
2
G — 2 log

2
(n) + 6 G 8n Ex 4n Ex

This work (helped) 4dG 12n G 7 G, 5 F 18n Ex 10P
This work (unhelped) 4dG 36n G 20 G, 16 F 273n Ex 13P

Table 2: Comparison of helped and unhelped Sonic against a pairing-based zk-SNARK and against Bulletproofs (which do not require pairing
groups) for arithmetic circuit satisfiability with d the maximum size of committed polynomials, ℓ-element known circuit inputs, m wires,
and n gates. Computational costs are measured in terms of number of group exponentiations and pairings. Gmeans group elements in either
source group, Fmeans field elements, Ex means group exponentiations, and P means pairings. Helped Sonic has 2 additional group elements
per batch. Unhelped Sonic has approximately three times the number of constraints due to the need to convert the circuit into one that is
uniformly sparse, and this has been taken into account in our estimates for the circuit SRS and the prover computation.

2 RELATEDWORK
An efficiency comparison of all of the schemes we discuss is pro-

vided in Table 1.We also give a more concrete efficiency comparison

in Table 2 of Sonic against the fastest zk-SNARK in the literature

(Groth 2016 [45]) and Bulletproofs [26].

Hyrax [61] is a zero-knowledge protocol that processes circuits

using a sum-check protocol originally introduced from the verifiable

computation scheme by Goldwasser et al [43] and improved by

Cormode et al. [33]. It is especially well-suited to circuits with a

high level of parallelisation, such as showing that a committed

value is included in a Merkle tree. Additionally, the protocol is

ideal for circuits with small witnesses. It directly uses a parallelised

sum-check protocol on the instance wires, and on the witness wires

it applies a zero-knowledge variant of the sum-check protocol.

Their sum-check protocol uses an adaptation of the inner-product

argument from Bulletproofs to check multiplication constraints.

Originally designed for handling SQL queries, Zhang et al. de-

signed a zero-knowledge variant of vSQL [65]. Their scheme also

processes circuits using techniques by Cormode et al. [33]. This

means that their techniques also have better efficiency for highly

parallelised circuits. Like our scheme, they rely on a polynomial

commitment scheme. However, rather than design their scheme

around Kate et al.’s single variant scheme, they use Papamanthou

et al.’s multivariate scheme [58]. This multivariate scheme is useful

for vSQL because they can use multivariate polynomials where

each variable has degree 1. For our scheme, there are two variables

of degree O(n), so Papamanthou et al.’s scheme would result in a

quadratic-sized reference string and quadratic prover computation.

Symmetric primitives such as Reed-Solomon codes have recently

been gaining attention for their post-quantum potential, as there are

no known quantum attacks on error-correcting codes and protocols

that use them do not require expensive and trusted pre-processing

phases. Schemes that use these techniques [2, 9, 23] are typically

made non-interactive in the random oracle model, as opposed to

the quantum random oracle model, and designing efficient zero-

knowledge protocols in the quantum random oracle model [21]

remains an open problem. The codes are typically cheap to compute

for the prover. The downside to this style of proof is that they

require very large circuits before the asymptotics can take effect,

because the constants are relatively large.

Ligero [2] uses Reed-Solomon codes for security. This work

stems from the “MPC-in-the-head” paradigm [30, 42, 49]. The idea
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is to model the computation as being carried out by a multiparty

computation, but then have the prover and verifier simulate mul-

tiple parties. A large part of its overhead comes from compiling

the addition gates, and the authors observed that when there are

many repetitions of the same addition gates in the same layer, it

is possible to batch the compilation. Bootle et al. [23] introduce a

model that they call the ideal linear commitment (ILC) model in

which a prover can commit to vectors by sending them to a chan-

nel, and a verifier can query the channel on linear combinations of

the committed vectors. They then compile the ILC programs into

proofs using a code by Ishai et al. [48] which can be computed in

linear time. As a result, they prove the possibility of zk-proofs that

have linear prover overhead. STARKs [9] look to simultaneously

minimise proof size and verifier computation and show, with an im-

plementation, that protocols based on interactive oracle proofs [14]

can be practical. Indeed their prover, when applied to a circuit

with 2
27

gates, takes roughly 1 minute to run. However, proof sizes

are still over 100kB, even for relatively small circuits. Aurora [13]

uses similar techniques to STARKs, except that it is designed to

run directly over constraint systems like those used in zk-SNARKs.

As such, they avoid the concrete overhead that STARKs require

for compiling a program into a constraint system. Baum et al. [4]

introduced the first lattice-based protocol with sublinear communi-

cation costs. They achieve this by designing a proof of knowledge

for committed values using techniques by Cramer et al. [34]. The

proof of knowledge is efficient in the amortised setting. They apply

this proof of knowledge to circuits processed using Bulletproof

techniques. As a result their verifier time is high.

Bulletproofs [22, 26] are based on the discrete logarithm problem

and have no trusted setup. Their proof sizes are logarithmic, which

is achieved through the use of an inner product argument. On

the downside the verification time is high. Although Bulletproofs

lend themselves well to batching, even batched proofs require a

computation per proof that depends on the size of the circuit. The

prover costs for Bulletproofs are typically high due to the use of

expensive cryptographic operations. For very small circuits, such

as for range proofs, Bulletproofs have the advantage of having

relatively low concrete overhead.

Using knowledge assumptions, it is possible to build zk-SNARKs

[15, 18, 35, 45, 47, 54, 59]. These have constant-sized proofs and

verifier times that depend solely on the instance. However, they

typically rely on using circuit-specific quadratic span programs or

quadratic arithmetic programs [40]. As such the common reference

strings are not updatable or universal [12]. The prover costs for

zk-SNARKs are typically high due to the use of expensive crypto-

graphic operations, although recent work has looked into methods

to distribute these costs [64].

Alternative methods to achieve universal setups include gener-

ating a circuit-specific reference string for a universal circuit such

as Valiant’s universal circuit construction [55, 60]. Universal cir-

cuits must define the path taken by the input data and the cost

of this universal routing is O(n log(n)) gates. Practically speaking

universal circuits incur a large overhead on the prover computation.

Ben-Sasson et al. discuss using a TinyRAM architecture to describe

universal computations as simple programs [11, 15]. They have a

unique SRS representing each instruction in the architecture, and

they recursively compose the proofs to achieve succinctness. While

useful for programmers that wish to convert between C programs

and constraint systems for zk-SNARKs, these approaches incur a

large overhead on the prover computation.

Groth et al. [46] introduced the notion of updatability for struc-

tured reference strings and built a zk-SNARK from an updatable

and universal string. They achieved these results by including a

null space argument to show that a quadratic arithmetic circuit is

satisfied. However, computing this null space requires expensive

Gaussian elimination. Even as a one-off cost, this is often unrealistic.

Further, although they can have linear-sized structured reference

strings for the prover and verifier, to allow for updatability they

require a global string with O(n2) elements.

3 DEFINITIONS FOR UPDATABLE
REFERENCE STRINGS

In this section, we revisit the definitions around updatable SRS

schemes due to Groth et al. [46], in terms of defining properties

of zero-knowledge proofs in the case in which the adversary may

subvert or participate in the generation of the common reference

string. Given that our protocol in Section 6 is interactive (but made

non-interactive in the random oracle model), we also present new

definitions for interactive protocols that take into account these

alternative methods of SRS generation.

3.1 Notation
If x is a binary string then |x | denotes its bit length. If S is a finite

set then |S | denotes its size and x
$

←− S denotes sampling a member

uniformly from S and assigning it to x . We use λ ∈ N to denote the

security parameter and 1
λ
to denote its unary representation. We

use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise.

“PPT” stands for “probabilistic polynomial time” and “DPT” stands

for “deterministic polynomial time.” We use y ← A(x ; r ) to denote

running algorithm A on inputs x and random coins r and assigning

its output to y. We write y
$

←− A(x) or y
r
←− A(x) (when we want to

refer to r later on) to denote y ← A(x ; r ) for r sampled uniformly

at random.

We use code-based games in security definitions and proofs [8].

A game SecA (λ), played with respect to a security notion Sec and
adversary A, has a main procedure whose output is the output of

the game. The notation Pr[SecA (λ)] is used to denote the probabil-

ity that this output is 1.

3.2 The Subvertible SRS Model
Intuitively, the subvertible SRS model [7] allows the adversary to

fully generate the reference string itself, and the updatable SRS

model [46] allows the adversary to partially contribute to its gen-

eration by performing some update. Formally, an updatable SRS

scheme is defined by two PPT algorithms Setup and Update, and a

DPT algorithm VerifySRS. These behave as follows:

• (srs, ρ)
$

←− Setup(1λ) takes as input the security parameter

and returns a SRS and proof of its correctness.
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• (srs′, ρ ′)
$

←− Update(1λ , srs, (ρi )ni=1
) takes as input the

security parameter, a SRS, and a list of update proofs. It

outputs an updated SRS and a proof of the correctness of

the update.

• b ← VerifySRS(1λ , srs, (ρi )ni=1
) takes as input the secu-

rity parameter, a SRS, and a list of proofs. It outputs a bit

indicating acceptance (b = 1), or rejection (b = 0).

We consider an updatable SRS to be perfectly correct if an honest

updater always convinces an honest verifier.

Definition 3.1. An updatable SRS scheme is perfectly correct if

Pr

[
(srs, ρ)

$

←− Setup(1λ) : VerifySRS(1λ , srs, ρ) = 1

]
= 1,

and if for all (λ, srs, (ρi )
n
i=1
) where VerifySRS(1λ , srs, (ρ)ni=1

) = 1,

we have that

Pr

[
(srs′, ρn+1)

$

←− Update(1λ , srs, (ρi )ni=1
) :

VerifySRS(1λ , srs′, (ρ)n+1

i=1
) = 1

]
= 1.

In terms of the usage of these SRSs, a protocol cannot satisfy

both subvertible zero-knowledge and subvertible soundness [7].

That is, assuming the adversary knows all the randomness used

to generate the SRS, they can either break the zero-knowledge

property of the scheme or they can break the soundness property

of the scheme. We thus recall here the two strongest properties

we can hope to satisfy, which are subvertible zero-knowledge and

updatable knowledge soundness. The definitions of these properties

are simplified versions of the ones given by Groth et al. [46], with

the addition of a random oracle H (which behaves as expected, so

we omit its description).

LetR be a polynomial-time decidable relationwith triples (srs,ϕ,
w). We say w is a witness to the instance ϕ being in the relation

defined by srs when (srs,ϕ,w) ∈ R. We consider an argument

(Prove,Verify) to be subversion zero-knowledge if an adversarial

verifier, including one that (fully) generates the SRS, cannot differ-

entiate between real and simulated proofs.

Definition 3.2 (Subvertible Zero-Knowledge). An argument for

the relation R is S-zero-knowledge if for all PPT algorithmsA there

exists a PPT extractor X and a simulator SimProve such that the

advantage |2 Pr[S-ZKA,X(1λ)] − 1| is negligible in λ, where this
game is defined as follows:

main S-ZKA,XA (λ)

b
$

←− {0, 1}

(srs, (ρi )
n
i=1
)

r
←− AH (1λ)

τ
$

←− XA (r )

if VerifySRS(1λ , srs, (ρi )ni=1
) = 0 return 0

b ′ ← AH,Opf (r )
return b ′ = b

Opf(ϕ,w)

if (srs,ϕ,w) < R return ⊥

if b = 0 return SimProve(srs,τ ,ϕ)
else return Prove(srs,ϕ,w)

To define update knowledge-soundness, we consider an adver-

sary that can influence the generation of the SRS. To do this, it can

query an oracle with an intent set to “setup” (for the first update

proof), “update” (for all subsequent update proofs), or “final” (to

signal the SRS for which it will attempt to forge proofs). The ora-

cle sets the SRS only if: (1) all update proofs verify; and (2) it was

responsible for generating at least one of the update proofs. We

do not use updatable knowledge soundness directly, but this part

of the security game (in which A and U-Os interact to create the

SRS) can be re-purposed for any cryptographic primitive. In this

paper we use this updatability notion mainly for the polynomial

commitment scheme we present in Section 6.2.

Definition 3.3 (Updatable Knowledge Soundness). An argument

for the relation R is U-knowledge-sound if for all PPT algorithmsA

there exists a PPT extractor XA such that Pr[U-KSNDA,XA (1
λ)]

is negligible in λ, where this game is defined as follows:

main U-KSNDA,XA (λ)

srs← ⊥

(ϕ,π )
r
←− AH,U-Os (1λ)

w
$

←− XA (srs, r )
return Verify(srs,ϕ,π ) ∧ (srs,ϕ,w) < R

U-Os(intent, srsn , (ρi )ni=1
)

if srs , ⊥ return ⊥

if intent = setup

(srs′, ρ ′)
$

←− Setup(1λ)
Q ← Q ∪ {ρ ′}
return (srs′, ρ ′)

if intent = update
b ← VerifySRS(1λ , srsn , (ρi )ni=1

)

if b = 0 return ⊥

(srs′, ρ ′)
$

←− Update(1λ , srsn , (ρi )ni=1
)

Q ← Q ∪ {ρ ′}
return (srs′, ρ ′)

if intent = final
b ← VerifySRS(1λ , srsn , (ρi )ni=1

)

if b = 0 or Q ∩ {ρi }i = ∅ return ⊥
srs← srsn ; return srs

else return ⊥

To argue about the soundness of Sonic, we consider an inter-

active definition. We do not use the standard definition of special

soundness because our verifier provides two challenges, but rather

the generalized notion of witness-extended emulation [53]. We adapt

the definition given by Bootle et al. [22] as follows:

Definition 3.4. Let P be an argument for the relation R. Then it

satisfies updatable witness-extended emulation if for all DPT P∗ there
exists an expected PT emulator E such that for all PPT algorithms

5



A:

Pr[(srs′, ρ ′)
$

←− Setup(1λ) ;

(srs, (ρi )i ,ϕ,w)
$

←− A(srs′, ρ ′) ;

view← ⟨P∗(srs,ϕ,w),V(srs,ϕ)⟩ :

VerifySRS(1λ , srs, (ρi )i ) ∧ A(view) = 1]

≈ Pr[(srs′, (ρ ′i )i )
$

←− Setup(1λ) ;

(srs, (ρi )
n
i=1
,ϕ,w)

$

←− A(srs′, ρ ′) ;

(view,w) ← E ⟨P
∗(srs,ϕ,w ),V(srs,ϕ)⟩

:

VerifySRS(1λ , srs, (ρi )i ) ∧ A(view) = 1 ∧

if view is accepting then (ϕ,w) ∈ R],

where the oracle called by E ⟨P
∗(srs,ϕ,w ),V(srs,ϕ)⟩

permits rewind-

ing to a specific point and resuming with fresh randomness for the

verifier from this point onwards.

This definition uses a slightly different setup from the one in

Definition 3.3: rather than interact arbitrarily with an update oracle

to set the SRS, the adversary is instead given an initial one and is

then allowed to update that in a one-shot fashion. Following Groth

et al. [46, Lemma 6], these two definitions are equivalent for Sonic,

so we opt for the simpler one.

4 BUILDING BLOCKS

4.1 Bilinear Groups
Let BilinearGen(1λ) be a bilinear group generator that given the se-

curity parameter 1
λ
produces bilinear parameters bp = (p,G1,G2,

GT , e,д,h), whereG1,G2,GT are groups of prime order p with gen-

eratorsд ∈ G1,h ∈ G2 and e : G1×G2 → GT is a non-degenerative

bilinear map. That is, e(дa ,hb ) = e(д,h)ab ∀a,b ∈ Fp and e(д,h)
generates GT .

We require bilinear groups such that the maximum size of our

circuit is bounded by d2 ≤ (p − 1)/32. In practice we expect that

d2 ≪ (p − 1)/32.

We employ bilinear group generators that produce what Gal-

braith, Paterson and Smart [38] classify as Type III bilinear groups.

For such groups no efficiently computable homomorphism between

G1 and G2 exist. These are currently the most efficient bilinear

groups.

4.2 The Algebraic Group Model
Sonic is proven secure in the algebraic group model (AGM) by

Fuchsbauer et al [37], who used it to prove (among other things)

that Groth’s 2016 scheme [45] is secure under a “q-type” variant
of the discrete log assumption. Previously the only security proof

for this scheme was provided in the generic group model (GGM).

Although proofs in the GGM can increase our confidence in the

security of a scheme, its scope is limited since it does not capture

group-specific algorithms that make use of its representation (such

as index calculus approaches).

The AGM lies between the standard model and the GGM, and

it is a restricted model of computation that covers group-specific

attacks while allowing a meaningful security analysis. Adversaries

are assumed to be restricted in the sense that they can output

only group elements obtained by applying the group operation to

previously received group elements. Unlike the GGM, in the AGM

one proves security implications via reductions to assumptions

(just as in proofs in the standard model).

It is so far unknown how the AGM relates to knowledge-of-

exponent (KOE) assumptions, which have been used to build every

known SNARK that has been proven secure in the standard model

(and indeed it is known that SNARKs cannot be proven secure

under more standard falsifiable assumptions [41]). The format of

these KOE assumptions is similar to the AGM in the sense that

proving the assumption incorrect would require showing that there

is an adversary that can compute group elements of a given format

but that cannot extract an algebraic representation. Popular KOE

assumptions in asymmetric bilinear groups all require the adversary

to compute elements in the second source group. As we would like

to avoid introducing proof elements in the second source group (as

these are typically more expensive due to current implementations

of asymmetric bilinear groups), we instead decided to work with

the AGM.

An algorithm Aalg is called algebraic if whenever it outputs an

element Z in G, it also outputs a representation (z1, . . . , zt ) ∈ F
t
p

such that Z =
∏t

i=1
дzii where L = {д1, . . . ,дt } is the list of all

group elements given to Aalg in its execution thus far. Unlike the

GGM, in the AGM one proves security implications via reductions.

To prove our scheme secure in the algebraic group model we use

the q discrete log assumption (q-DLOG), as follows:

Assumption 4.1 (q-DLOG assumption). Suppose that A is an
algebraic adversary. Then

Pr


bp ← BilinearGen(1λ); x

$

←− Fp ;

x ′
$

←− A(bp, {дx
i
,hx

i
}
q
i=−q ) : x = x ′


is negligible in 1

λ .

4.3 Structured Reference String
In all of the following we require a structured reference string with

unknowns x and α of the following form{
{дx

i
}di=−d , {д

αx i }di=−d,i,0
, {hx

i
,hαx

i
}di=−d , e(д,h

α )
}

for some large enough d to support the circuit depth n.
This string is designed so that дα is omitted from the reference

string. Thus we can, when necessary, force the prover to demon-

strate that a committed polynomial (in x ) has a zero constant term.

4.4 Polynomial Commitment Scheme
Sonic uses two main primitives as building blocks: a polynomial

commitment scheme and a signature of correct computation. A

polynomial commitment scheme is defined by three DPT protocols:

• F ← Commit(bp, srs,max, f (X )) takes as input the bi-

linear group, the structured reference string, a maximum

degree, and a Laurent polynomial with powers between

−d and max. It returns a commitment F .
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• (f (z),W ) ← Open(bp, srs,max, F , z, f (X )) takes as input
the same parameters as the commit algorithm in addition

to a commitment F and a point in the field z. It returns an
evaluation f (z) and a proof of its correctness.

• b ← pcV(bp, srs,max, F , z,v,W ) takes as input the bilin-
ear group, the SRS, a maximum degree, a commitment, a

point in the field, an evaluation and a proof. It outputs a

bit indicating acceptance (b = 1), or rejection (b = 0).

We require that this scheme is evaluation binding; i.e., given a

commitment F , an adversary cannot open F to two different eval-

uations v1 and v2 (more formally, that it cannot output a tuple

(F , z,v1,v2,W1,W2) such that pcV returns 1 on both sets of eval-

uations and proofs). We also require that it is bounded polyno-
mial extractable; i.e., any adversary that can provide a valid evalua-

tion opening also knows an opening f (X ) with powers −d ≤ i ≤
max, i , d −max (more formally, that this is true for any adversary

that outputs a tuple (F , z,v,W ) that passes verification). For both
properties, we require that they hold with respect to an adversary

that can update the SRS; i.e., that has access initially to the oracle

in Definition 3.3.

In Section 6.2 we provide a polynomial commitment scheme sat-

isfying these two properties. We prove its security in the algebraic

group model in Theorem 6.3.

4.5 Signature of Correct Computation
A signature of correct computation is defined by two DPT protocols:

• (s(z,y), sc) ← scP(bp, srs, s(X ,Y ), (z,y)) takes as input

the bilinear group, the SRS, a two-variate polynomial s(X ,Y ),
and two points in the field (z,y). It returns an evaluation

s(z,y) and a proof sc.
• b ← scV(bp, srs, s(X ,Y ), (z,y), s, sc) takes as input the

same parameters as the scP algorithm in addition to an

evaluation and a proof. It outputs a bit indicating accep-

tance (b = 1), or rejection (b = 0).

We require that this scheme is sound; i.e., given (z,y) and s , an
adversary can convince the verifier only if s = s(z,y).

We provide two competing constructions: one in Section 8 and

the other in Section 7. The first has linear verifier computation, but

can be aggregated by an untrusted helper to achieve constant veri-

fier computation in the batched setting. The second has constant

verifier computation but higher concrete overhead. Both construc-

tions have constant size.

5 SYSTEM OF CONSTRAINTS
Sonic represents circuits using a form of constraint system proposed

by Bootle et al. [22]. We make several modifications so that their

approach is practical in our setting.

Our constraint system has three vectors of length n: a, b, c rep-
resenting the left inputs, right inputs, and outputs of multiplication

constraints respectively, so that

a ◦ b = c.

We also have Q linear constraints of the form

a · uq + b · vq + c ·wq = kq

where uq, vq,wq ∈ F
n
are fixed vectors for the q-th linear con-

straint, with instance value kq ∈ Fp . For example, to represent the

constraint x2 + y2 = z, one would set

• a = (x ,y), b = (x ,y), c = (x2,y2)

• u1 = (1, 0),v1 = (−1, 0),w1 = (0, 0),k1 = 0

• u2 = (0, 1),v2 = (0,−1),w2 = (0, 0),k2 = 0

• u3 = (0, 0),v3 = (0, 0),w3 = (1, 1),k3 = z

Any arithmetic circuit can be represented with our constraint sys-

tem by using the multiplication constraints to determine the multi-

plication gates and the linear constraints to determine the wiring

of the circuit and the addition gates. Thus the constraint system

covers NP.

We proceed to compress the n multiplication constraints into an

equation in formal indeterminate Y , as

n∑
i=1

(aibi − ci )Y
i = 0.

In order to support our later argument, we (redundantly) encode

these constraints into negative exponents of Y , as

n∑
i=1

(aibi − ci )Y
−i = 0.

We compress the Q linear constraints similarly, scaling by Yn to

preserve linear independence.

Q∑
q=1

(
a · uq + b · vq + c ·wq − kq

)
Yq+n = 0.

Let us define the polynomials

ui (Y ) =

Q∑
q=1

Yq+nuq,i

vi (Y ) =

Q∑
q=1

Yq+nvq,i

wi (Y ) = −Y
i − Y−i +

Q∑
q=1

Yq+nwq,i

k(Y ) =

Q∑
q=1

Yq+nkq

and combine our multiplicative and linear constraints to form the

equation

a · u(Y ) + b · v(Y ) + c ·w(Y )

+

n∑
i=1

aibi (Y
i + Y−i ) − k(Y ) = 0. (1)

Given a choice of (a, b, c,k(Y )), we have that Equation 1 holds at all

points if the constraint system is satisfied. If the constraint system

is not satisfied the equation fails to hold with high probability, given

a large enough field.

We apply a technique from Bootle et al. [22] to embed the left

hand side of Equation 1 into the constant term of a polynomial
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t(X ,Y ) in a second formal indeterminate X . We design the polyno-

mial r (X ,Y ) such that r (X ,Y ) = r (XY , 1).

r (X ,Y ) =
n∑
i=1

(
aiX

iY i + biX
−iY−i + ciX

−i−nY−i−n
)

s(X ,Y ) =
n∑
i=1

(
ui (Y )X

−i +vi (Y )X
i +wi (Y )X

i+n
)

r ′(X ,Y ) = r (X ,Y ) + s(X ,Y )

t(X ,Y ) = r (X , 1)r ′(X ,Y ) − k(Y )

The coefficient of X 0
in t(X ,Y ) is the left-hand side of Equation 1.

Sonic demonstrates that the constant term of t(X ,Y ) is zero, thus
demonstrating that our constraint system is satisfied.

6 THE BASIC SONIC PROTOCOL
Sonic is a zero-knowledge argument of knowledge that allows a

prover to demonstrate that a constraint system (described in Sec-

tion 5) is satisfied for a hidden witness (a, b, c) and for known

instance k. The instance k is uploaded into the constraint system

through the polynomial k(Y ). Given a choice of r (X ,Y ) from Sec-

tion 5, if for randomy ∈ Fp we have that the constant term of t(X ,y)
is zero, the constraint system is satisfied with high probability.

Our Sonic protocol is built directly from a polynomial commit-

ment scheme and a signature of correct computation, as visualised

in Figure 1. We discuss here the basic Sonic protocol, assuming

these building blocks are in place, and provide a suitable bounded

extractable polynomial commitment scheme in Section 6.2 that we

prove secure in the AGM. In Sections 7 and 8 we discuss two differ-

ent methods of constructing the signature of correct computation,

one which gives rise to a standalone zk-SNARK and one which

achieves better practical results through the use of an untrusted

helper.

Figure 1: The basic Sonic protocol is built on top of a bounded-
extractable polynomial commitment scheme and a signature of cor-
rect computation.

Our protocol begins by having the prover construct r (X ,Y ) using
their hidden witness. They commit to r (X , 1), setting the maximum

degree to n. The verifier sends a random challenge y. The prover
commits to t(X ,y), and our commitment scheme ensures that this

polynomial has no constant term. The verifier sends a second chal-

lenge z. The prover opens their committed polynomials to r (z, 1),
r (z,y) and t(z,y). The verifier can calculate r ′(z,y) for itself from
these values and thus can check that r (z,y)r ′(z,y) − k(y) = t(z,y).
Note that the coefficients of the public polynomial k(Y ) are deter-
mined by the instance that the prover is claiming is in the language.

If this holds then the verifier learns that the evaluated polynomials

were computed by a prover that knows a valid witness. A more

formal description of this protocol is given in Figure 2.

The verifier’s check that the quadratic polynomial equation is

satisfied is performed in the field. This means we avoid having

proof elements on both sides of the pairing, which is useful for effi-

ciency, without contradicting Groth’s result about NILPs requiring

a quadratic constraint [45]. As a result, when batching we avoid

having to check one pairing equation per proof (pairing operations

are expensive) and can instead check one field equation per proof.

The Fiat-Shamir transformation takes an interactive argument

and replaces the verifier challenges with the output of a hash func-

tion. The idea is that the hash functionwill produce random-looking

outputs and therefore be a suitable replacement for the verifier. We

describe Sonic in the interactive setting where all verifier chal-

lenges are random field elements. In practice we assume that the

Fiat-Shamir heuristic would be applied in order to obtain a non-

interactive zero-knowledge argument in the random oracle model.

Theorem 6.1. Assuming the ability to extract a trapdoor for the
subverted reference string, Sonic satisfies subversion zero-knowledge.

Proof. To prove subversion zero-knowledge, we need to both

show the existence of an extractorXA that can compute a trapdoor,

and describe a SimProve algorithm that produces indistinguishable

proofs when provided with the extracted trapdoor. We do not dis-

cuss the details of SRS generation in this paper so do not prove the

existence of the extractor, but one such example can be found in

the original proof of Groth et al. [46, Lemma 4].

The simulator is given the trapdoor дα and chooses random vec-

tors a, b from Fp of length n and sets c = a ·b. It computes r (X ,Y ),
r ′(X ,Y ), t(X ,Y ) as in Section 5 where (unlike for the prover) t(X ,Y )
can have a non-zero coefficient in X 0

. The simulator then behaves

exactly as the prover in Figure 2 with its random polynomials.

Both the prover and the simulator evaluate дr (x,1), r (z, 1), and
r (zy, 1). This reveals 3 evaluations (some of these are in the expo-

nent). The prover has four blinders for r (X ) with respect to the

powers −2n − 1,−2n − 2,−2n − 3,−2n − 4. Thus for a verifier that

obtains less than three evaluations, the prover’s polynomial is in-

distinguishable from the simulator’s random polynomial. All other

components in the proofs are either uniquely determined given the

previous components for both prover and simulator, or are calcu-

lated independently from the witness (and are chosen in the same

method by both prover and simulator). □

Theorem 6.2. Sonic has witness extended emulation, when instan-
tiated using a secure polynomial commitment scheme and a sound
signature of correct computation.

Proof. Soundness of the signature of correct computation gives

us that s = s(z,y).
Bounded polynomial extractability tells us that R contains the

polynomial

r (X , 1) =
n∑

i=−d,i,−d+n

riX
i

and that T contains the polynomial

τ (X ) =
d∑

i=−d,i,0

τiX
i .
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Common input: info = bp, srs, s(X ,Y ), k(Y ), e(д,hα )
Prover’s input: a, b, c

zkP1(info, a, b, c) 7→ R:

cn+1, cn+2, cn+3, cn+4

$

←− Fp
r (X ,Y ) ← r (X ,Y ) +

∑
4

i=1
cn+iX

−2n−iY−2n−i

R ← Commit(bp, srs,n, r (X , 1))
send R

zkV1(info,R) 7→ y:

send y
$

←− Fp

zkP2(y) 7→ T :

T ← Commit(bp, srs,d, t(X ,y))
send T

zkV2(T ) 7→ z:

send z
$

←− Fp

zkP3(z) 7→ (a,Wa ,b,Wb ,Wt , s, sc):
(a = r (z, 1),Wa ) ← Open(R, z, r (X , 1))
(b = r (z,y),Wb ) ← Open(R,yz, r (X , 1))
(t = t(z,y),Wt ) ← Open(T , z, t(X ,y)))
(s = s(z,y), sc) ← scP(info, s(X ,Y ), (z,y))
send (a,Wa ,b,Wb ,Wt , s, sc)

zkV3(a,Wa ,b,Wb ,Wt , s, sc) 7→ 0/1:

t ← a(b + s) − k(y)
check scV(info, s(X ,Y ), (z,y), (s, sc))
check pcV(bp, srs,n,R, z, (a,Wa ))

check pcV(bp, srs,n,R,yz, (b,Wb ))

check pcV(bp, srs,d,T , z, (t ,Wt ))

return 1 if all checks pass, else return 0

Figure 2: The interactive Sonic protocol to check that the prover knows a valid assignment of the wires in the circuit. The stated algorithms
describe the individual steps of each of the parties (e.g., zkVi describes the i-th step of the verifier given the output of zkPi−1), and both parties
are assumed to keep state for the duration of the interaction.

Observe that in our polynomial constraint system 3n < d (otherwise

we cannot commit to t(X ,Y )), thus r (X ,Y ) has no −d + n term.

We show that the elementT can be computed only if the circuit is

satisfied by the polynomial coefficients extracted fromR. Evaluation
binding tells us that a = r (z, 1),b = r (zy, 1) = r (z,y) and the verifier
checks that t = a(b+s)−k(y) = τ (z). Suppose this holds forn+Q+1

different challenges y ∈ Fp . Then we have equality of polynomials

in Section 5 since a non-zero polynomial of degree n+Q + 1 cannot

have n +Q roots; i.e.,

r (X )(r (X ,Y ) + s(X ,Y )) − k(Y )

has no constant term. This implies that r (X ,y) defines a valid wit-

ness. □

6.1 Efficiency
As seen in Figure 2, our prover uses two polynomial commitments

which it opens at three points. It also uses one signature of correct

computation. Two of these openings can be batched using tech-

niques we describe in Appendix C. The idea behind the batching

is that given two polynomial commitments F1 and F2, if a verifier

chooses random values r1 and r2, then an adversary can open F
r1

1
F r2

2

only if it can also (with high probability) open F1 and F2 separately.

The polynomial k(Y ) is sparse and determined by the instance, and

thus takes O(ℓ) field operations to compute.

6.2 Polynomial Commitment Scheme
Sonic uses a polynomial commitment scheme which is an adap-

tation of a scheme by Kate, Zaverucha, and Goldberg [50]. This

scheme has constant-sized proofs for any size polynomial and ver-

ification consists of checking a single pairing. We require that

the scheme is evaluation binding; i.e., given a commitment F , an
adversary cannot open F to two different evaluations v1 and v2.

Our proof of evaluation binding is directly taken from Kate et al.’s

reduction to q-SDH. However, we also require that the scheme

is bounded polynomial extractable; i.e., any algebraic adversary

that opens a commitment F knows an opening f (X ) with powers

−d ≤ i ≤ max, i , 0. Kate et al. prove only that their scheme

is “strongly correct”; i.e., if an adversary knows an opening f (X )
with polynomial degree to a commitment then f (X ) has degree
bounded by d . In this sense Kate et al. are implicitly relying on

a knowledge assumption, because there is no guarantee that an

adversary that can open a commitment knows a polynomial inside

the commitment. We prove our adapted polynomial commitment

scheme secure in the algebraic group model and this proof may be

of independent interest.

Our proof uses the fact that f (X ) − f (z) is divisible by (X − z),
even for Laurent polynomials. To see this observe that

f (X ) − f (z) =
d∑
−d

aiX
i − aiz

i

=

d∑
i=1

ai (X − z)(X
i−1 + zX i−2 + . . . zi−1) + 0a0

+

−d∑
i=−1

ai (X − z)(−z
−1X−i − z−2X−i+1 − . . . − z−iX−1)

Theorem 6.3. In the algebraic group model, the polynomial com-
mitment scheme in Figure 3 is evaluation binding and bounded poly-
nomial extractable under the 2d-DLOG assumption.
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Common input: info = bp, srs,max
Prover’s input: f (X )

Commit(info, f (X )) 7→ F :

F ← дαx
d−maxf (x )

return F

Open(info, F , z, f (X )) 7→ (f (z),W ):

w(X ) ←
f (X )−f (z)

X−z
W ← дw (x )

return (f (z),W )

pcV(info, F , z, (v,W )) 7→ 0/1:

check e(W ,hαx )e(дvW −z ,hα ) = e(F ,hx
−d+max

)

return 1 if all check passes, else return 0

Figure 3: Polynomial commitment scheme inspired by Kate et
al [50].

Proof. We closely follow the structure used by Fuchsbauer et

al. [37, Theorem 7.2]. We consider an algebraic adversary Aalg
against the security of the polynomial commitment scheme; by

definition, this means that Aalg breaks either bounded polynomial

extractability or evaluation binding; i.e., that

Advpcbp,Aalg
≤ Advextractbp,Aalg

+ Advbindbp,Aalg
.

We show that

Advpcbp,Aalg
≤ Advq-DLOGbp,Balg

+ Advq-DLOGbp,Calg

for adversaries Balg and Calg, which proves the theorem.

We start with bounded polynomial extractability, where we show

that

Advextractbp,Aalg
≤ Advq-DLOGbp,Balg

.

An adversary Balg(д
1,дx , . . . ,дx

q
) simulates the bounded polyno-

mial extractability game with Aalg as follows.

(1) WhenAalg queries its oracle U-Os on setup, Balg chooses
random values (u1,u2) and uses its DLOG instance to gener-

ate and return an SRS with implicit randomness (u1x ,u2x).
(2) When Aalg queries its oracle on update, Balg uses the

algebraic representation provided by Aalg to learn the

randomness (xi ,αi ) used by Aalg in generating its inter-

mediate SRSs (if any exist). It then picks new random-

ness (u ′
1
,u ′

2
) and updates its own stored randomness as

(u1,u2) = (xiu
′
1
u1,αiu

′
2
u2). It then uses this randomness

(consisting of its old randomness, the randomness of Aalg,

and its new randomness) to simulate the update proof. It

returns the simulated update proof and the new SRS to A.

(3) When Aalg queries its oracle on final, Balg behaves as the
honest oracle.

(4) Balg runs (F , z,v,W )
r
←− Aalg(bp, srs,max).

(5) The randomness r determines multivariate polynomials

f (X ,Xα ) = fx (X ) + Xα fα (X ),

w(X ,Xα ) = wx (X ) + Xαwα (X ),

such that

F = дf (xu1,xu2)
andW = дw (xu1,xu2).

From these polynomials, Balg computes the polynomial

Q1(X ,Xα ) = Xα (X − z)w(X ,Xα ) +vXα − X
−d+max f (X ,Xα ).

It aborts if Q1(X ,Xα ) = 0.

(6) Define the univariate polynomial Q ′
1
(X ) = Q1(u1X ,u2X ).

Balg aborts if Q
′
1
(X ) = 0.

(7) Balg factorsQ
′
1
(X ) to obtain its roots (of which there are at

most 4d) and checks them against the q-DLOG instance to

determine if x is among them. If so, it returns x . Otherwise
it returns ⊥.

Now let us analyse the probability that Aalg breaks bounded

polynomial extractability; i.e., that

f (X ,Xα ) , XαX
d−max ©«

max∑
i=−d,i,0

aiX
iª®¬ ,

but that Balg does not return the target x . This happens if (1) Balg
aborts in Step 5, (2) Balg aborts in Step 6, or (3) if x is not amongst

the roots obtained in Step 7. We consider these three scenarios in

turn.

In Step 5, if Q1(X ,Xα ) = 0 then

Xα (X − z)w(X ,Xα ) +vXα − (X
−d+max)f (X ,Xα ) = 0

which implies that

(X − z)wx (X ) +v − (X
−d+max)fα (X ) = 0

and (X − z) divides (X−d+max)fα (X ) − v and fα (X ) has non-zero
terms between −max and d . Thus fα (X ) has no terms with degree

less than −max. Moreover fα (X ) has no zero term because this is

not given in the reference string. Thus B aborts in this step only if

f (X ,Xα ) is as assumed, which meansAalg has not broken bounded

polynomial extractability.

In Step 6, Balg aborts only ifQ1(u1X ,u2X ) = 0. By the Schwartz-

Zippel lemma, the probability of this occurring is bounded by
(4d )2
p−1

where d is the total degree of Q (recall we have negative powers).

Following the generic bound for Boneh and Boyen’s SDH assump-

tion [20] we may assume that Advq-DLOGbp,Balg
≥

q2

p−1
; i.e., that the

probability that Balg aborts in this way is negligible.

In Step 7, Q1(u1x ,u2x) exactly defines the verifier’s equation, so

if Aalg succeeds then Q1(u1x ,u2x) = 0. Thus Q ′
1
(x) = 0 and x is a

root of Q ′
1
(X ).

Thus when Aalд succeeds at breaking bounded polynomial ex-

tractability,Balg returns x unlessQ1(u1X ,u2X ) = 0, which happens

with bounded probability. Thus

Advextractbp,Aalg
≤ Advq-DLOGbp,Balg

as desired.
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We now consider evaluation binding, where we show that

Advbindbp,Aalg
≤ Advq-DLOGbp,Calg

.

In fact, Calg does not act directly on the q-DLOG assumption, but

rather on the q-SDH assumption [20], which states that given

(д,дx , . . . ,дx
q
) it is hard to compute (c,д

1

x−c ) for some value c .
In particular we show that if Aalg can open their commitment at z
to two different evaluations then Calg can compute a tuple of this

form. Following the generic bound for q-SDH [20], this assumption

is implied by q-DLOG so the result holds.

The adversary Calg(д
1,дx , . . . ,дx

q
) simulates the evaluation

binding game with Aalg as follows.

(1) Calg behaves just as Balg did in its Steps 1-4 in answering

oracle queries.

(2) Calg runs (F , z,v1,v2,W1,W2)
r
←− Aalg(bp, srs,max).

(3) If v1 , v2 Calg returns (z, (W1W
−1

2
)

1

v
2
−v

1 ). Otherwise it

returns ⊥.

If v1 , v2 then

e(W ,hα )e(W −zдv ,hα ) = e(W ,hα )e(W ′−zдv
′

,hα )

and rearrangement yields

e(WW ′−1,hα (x−z)) = e(дv
′−v ,hα ).

Thus Calg returns (z,д
1

x−z ) and

Advbindbp,Aalg
≤ Advq-DLOGbp,Calg

as required. □

7 SUCCINCT SIGNATURES OF CORRECT
COMPUTATION

In Section 6, we provided our main Sonic construction assuming a

secure polynomial commitment scheme and signature of correct

computation. While we showed a secure polynomial commitment

scheme in Section 6.2, it remains to provide an instantiation of a

secure signature of correct computation (scP, scV) [58]. Recall from
Section 6 that Sonic uses a signature of correct computation to

ensure that an element s is equal to s(z,y) for a known polynomial

s(X ,Y ) =
d∑

i, j=−d

si, jX
iY j .

We require the soundness notion that no adversary can convince an

scV verifier unless s = s(z,y), and as usual require this property to

hold even against adversaries that can update the SRS. We provide

two competing realisations of signatures of correct computation.

The first one is described in this section and it is calculated by a

prover, and has succinct size and verifier computation. The second

one considers settings in which one can use untrusted helpers to

improve practical efficiency, and we describe it in Section 8.

We use the structure of s(X ,Y ) in order to prove its correct

calculation using a permutation argument, which itself has a grand-
product argument as an underlying component. We take inspiration

from our main construction and from the permutation and grand-

product arguments described by Bayer and Groth [5] and by Bootle

et al [23]. We restrict ourselves to constraint systems for which

s(X ,Y ) can be expressed as the sum ofM polynomials, where the

j-th such polynomial is of the form

Ψj (X ,Y ) =
n∑
i=1

ψj,σj,iX
iYσj,i

for (fixed) polynomial permutation σ j and coefficients ψj,i ∈ F.
By introducing additional multiplication constraints to replace any

linear constraints that do not fit this format, we can coerce any

constraint system in Section 5 into the correct form.

To expand further, our constraint system is determined by vec-

tors uq ,vq ,wq of size n that are typically sparse. To represent Ψj
in the desired form, we require that each power of Y in s(X ,Y )
appears in no more thanM occurrences, which means that for all

1 ≤ i ≤ n, only three values of uq ,vq ,wq can be non-zero. If uq is

too dense (the maximum density is determined by the number of

permutation arguments and there is an efficiency trade off between

proof size and prover computation), we split our original constraint

into two or more constraints: we set 0 =
∑n−ℓ
i=1

aiuq,i − an+1 and

kq = an+1 +

n∑
i=n−ℓ+1

aiuq,i + b ·vq + c ·wq .

In doing so we have extended the length of a by one, and so also

must extend the length of b and c by one to obtain a dummy multi-

plicative constraint. The precise number of additional multiplication

constraints depends on the number of additive constraints (essen-

tially it implies that if there are more than 2n addition constraints in

an arithmetic circuit, then these are no longer free). In practice we

found that the increase in the number of multiplication constraints

for SHA256 circuits is approximately a factor of 3 whenM = 3.

Our signature of correct computation uses a polynomial permu-

tation argument, which itself uses a grand-product argument. The

permutation argument allows us to verify that each polynomial

commitment contains Ψj (X ,y), and this can then be opened at z to
verify thatΨj (z,y) has been calculated correctly. The purpose of this
argument is to offload the verifier’s computational costs onto the

prover. After using batching techniques described in Appendix C,

we get proof sizes of approximately 1kB.

The permutation verifier does not take in the permutation itself,

but a derived reference string srsΨ that can be deterministically

generated from the global srs and the permutation Ψ using 4 multi-

exponentiations of size n in G1. The cost of generating the derived

reference string is then amortised when the protocol is run over

multiple instances.

7.1 Polynomial Permutation Argument
A polynomial permutation argument is defined by three DPT pro-

tocols

• srsΨ ← Derive(bp, srs,Ψ(X ,Y )) takes as input a bilin-

ear group, a structured reference string, and a polynomial

Ψ(X ,Y ) =
n∑
i=1

ψσiX
iYσi

. It outputs a derived reference

string srsΨ .
• (ψ , perm) ← permP(srsΨ,y, z,Ψ(X ,Y )) takes as input a

derived reference string, two points in the field, and a

polynomial Ψ(X ,Y ). It outputs ψ = Ψ(z,y) and a proof

perm.
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Figure 4: Sonic is built using a polynomial commitment scheme
and a signature of correct computation. Here we describe how the
prover can construct the signature of correct computation using
permutation arguments, grand-product arguments, and the polyno-
mial commitment scheme described in Section 6.2.

Common input: info = {srsΨj }
M
j=1

, y, z

scP(info, {Ψj (X ,Y )}Mj=1
) 7→ (s, {ψj , permj }

M
j=1
):

for 1 ≤ j ≤ M :

(ψj , permj ) ← permP(srsΨj ,y, z,Ψj (X ,Y ))
s ←

∑M
j=1

ψj
return (s, {ψj , permj }

M
j=1
)

scV(info, (s, {ψj , permj }
M
j=1
)) 7→ 0/1:

check s =
∑M
j=1

ψj
for 1 ≤ j ≤ M :

check permV(srsΨj ,y, z, (ψj , permj ))

return 1 if all checks pass, else return 0

Figure 5: A signature of correct computation using a permutation
argument.

• 0/1 ← permV(srsΨ,y, z, (ψ , perm)) takes as input a de-

rived reference string, two points in the field, an evaluation,

and a proof. It outputs a bit indicating acceptance (b = 1),

or rejection (b = 0).

We require that this scheme is sound; i.e., an adversary can convince

a verifier only ifψ = Ψ(z,y). As with our earlier building blocks, we
require this to hold even against adversaries that can update the SRS.

Our polynomial permutation argument is given in Appendix A.

Theorem 7.1. The signature of computation scheme in Figure 5 is
sound when instantiated using a sound permutation argument.

Proof. The polynomial s(X ,Y ) is given by

∑
j ψj (X ,Y ). The

soundness of the permutation argument gives us that no adversary

can convince the verifier of Ψj unlessψj is the correct evalutation of

Ψj at (z,y); i.e.,ψj =
∑n
i=1

ψj,iz
iyσj,i . Thus the verifier is convinced

if and only if s =
∑
j ψj is the correct evaluation of s(X ,Y ) at z,y. □

7.2 Grand-Product Argument
One of the main components of our polynomial permutation argu-

ment is a grand-product argument. A grand-product argument is

defined by two DPT protocols

• gprod ← gprodP(bp, srs,A,B,a(X ),b(X )) takes as input
the bilinear group, the SRS, two polynomial commitments,

and two openings such that

∏
i ai =

∏
i bi .

• 0/1 ← permV(bp, srs,A,B, gprod) takes as input the bi-
linear group, the SRS, two polynomial commitments, and

a proof. It outputs a bit indicating acceptance (b = 1), or

rejection (b = 0).

We require that this scheme is knowledge-sound; i.e., an adver-

sary can convince a verifier only if it knows openings to A and

B whose coefficients have the same grand-product; i.e., such that∏
i ai =

∏
i bi . Again, we require this to hold even against adver-

saries that can update the SRS. Our grand-product argument is

given in the full version of the paper [56].

8 SIGNATURES OF CORRECT
COMPUTATIONWITH EFFICIENT HELPED
VERIFICATION

Recall that Sonic uses a signature of correct computation to ensure

that an element s is equal to s(z,y) for a known polynomial

s(X ,Y ) =
d∑

i, j=−d

si, jX
iY j .

In Section 7 we described a signature of correct computation that

is calculated directly by a prover, and has succinct size and verifier

computation. Alternatively, in some settings one can use untrusted

helpers to improve practical efficiency, which we describe in this

section. In the helper setting, proof sizes and prover computation

are significantly more efficient.

In the amortised setting, where one is proving the same thing

many times, we can use “helpers” in order to aggregate many signa-

tures of correct computation at the same time. The proofs provided

by the helper are succinct and the helper can be run by anyone (i.e.,

they do not need any secret information from the prover). Verifi-

cation requires a one-off linear-sized polynomial evaluation in the

field and an addition two pairing equations per proof. Compared

to the unhelped costs (which require an additional 4 pairings per

proof) this is more efficient assuming there is a sufficiently large

number of proofs in the batch. As discussed in the introduction,

the natural candidate for this role in the setting of blockchains is a

miner, as they are already investing computational energy into the

system. An efficiency overview is given in Table 3.

The algorithm for our helped signature of correct computation

is given in Figure 7. The helper is denoted by hscP and the verifier

is denoted by hscV. Roughly the idea is as follows. The helper

commits to s(X ,yj ) for each element yj . The verifier provides a

random challenge u. The helper commits to s(u,X ), and then opens

its commitment to s(X ,yj ) atu and its commitment s(u,X ) atyj and
checks the two are equal. The verifier provides a random challenge
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Helper Verifier Proof size

Helped O(mn log(n)) O(m) + O(n) 3m + 3 G1, 2m + 1 F

Unhelped - O(m) 16m G1, 14m F

Table 3: Computational efficiency and proof size for the sc with re-
spect to the helped verifier. Here n is the number of multiplication
gates andm is the number of proofs for the same constraint system.
Although the unhelped version has better asymptotic efficiency, in
practice the helped verifier is more efficient.

Figure 6: Sonic can be constructed using a signature of correct com-
putation that is calculated by a helper as opposed to directly by the
prover. The helper algorithm is run on a batch of proofs, and pro-
vides the setting in which Sonic obtains the best practical efficiency.

v . The helper opens s(u,X ) at v . The verifier computes s(u,v) for
itself and checks that the helper’s opening is correct.

Theorem 8.1. The aggregated signature of correct computation
in Figure 7 is sound when instantiated using a secure polynomial
commitment scheme.

Proof. Bounded polynomial extraction of the underlying poly-

nomial commitment gives us that there exist algebraic extractors

that output degree-d Laurent polynomials s ′j (X ) and c
′(X ) such that

Sj = д
αs ′j (x )

andC = дαc
′(x )

. First observe that the probability that

c ′(v) = s(u,v) at a randomly chosen v but that c ′(X ) , s(u,X ) is
negligible in a sufficiently large field. Second observe that given

c ′(X ) = s(u,X ), a PPT algebraic adversary can open C only at a

(not randomly chosen) value yj to s(u,yj ). Finally observe that

the probability that s ′j (X ) = s(u,yj ) at a randomly chosen u but

that s ′j (X ) , s(X ,yj ) is negligible in a sufficiently large field. Thus

soundness follows from the evaluation binding of the polynomial

commitment. □

9 IMPLEMENTATION
In order to compare the concrete performance of our construction

to other protocols we provide an open-source implementation in

Rust [1] of Sonic implemented with helpers. We chose to implement

only this variant of Sonic because it has better practical efficiency.

The numbers in Table 4 were obtained on CPU i7 2600K with 32 GB

of RAM, running at 3.4 GHz.

In terms of our parameters, we make use of the BLS12-381 elliptic

curve construction, which is designed so that its group order is

a prime p such that Fp is equipped with large 2
n
roots of unity

Common input: info = bp, srs, {zj ,yj }mj=1
, s(X ,Y )

hscP1(info) 7→ ({Sj , sj ,Wj }
m
j=1
):

for 1 ≤ j ≤ m:

Sj ← Commit(bp, srs,d, s(X ,yj ))
(sj ,Wj ) ← Open(Sj , zj , s(X ,yj ))

send {Sj , sj ,Wj }
m
j=1

hscV1(info, {Sj , sj ,Wj }
m
j=1
) 7→ u:

send u
$

←− Fp

hscP2(u) 7→ {ŝj ,Ŵj ,Q j }
m
j=1

:

C ← Commit(bp, srs,d, s(u,X ))
for 1 ≤ j ≤ m:

(ŝj ,Ŵj ) ← Open(Sj ,u, s(X ,yj ))
(ŝj ,Q j ) ← Open(C,yj , s(u,X ))

send {ŝj ,Ŵj ,Q j }
m
j=1

hscV2({ŝj ,Ŵj ,Q j }
m
j=1
) 7→ v :

send v
$

←− Fp

hscP2(v) 7→ Qv :

(s(u,v),Qv ) ← Open(C,v, s(u,X ))
send Qv

hscV(Qv ) 7→ 0/1:

sv ← s(u,v)
for 1 ≤ j ≤ m:

check pcV(bp, srs, Sj ,d, zj , (sj ,Wj ))

check pcV(bp, srs, Sj ,d,u, (ŝj ,Ŵj ))

check pcV(bp, srs,C,d,yj , (ŝj ,Q j ))

check pcV(bp, srs,C,d,v, (sv ,Qv ))

return 1 if all checks pass, else return 0

Figure 7: The helper protocol for computing aggregated signatures
of correct computation.

for performing fast polynomial multiplications with radix-2 fast-

Fourier transforms. BLS12-381 targets the 128-bit security level. Kim

and Babalescu [51] describe an optimization to the Number Field

Sieve algorithm, analyzed further by Babalescu and Duquesne [3],

which may reduce security to 117 bits, but the attack requires a

(currently unknown) efficient algorithm for scanning a large space

of polynomials.

Proof verification is dominated by a set of pairing equation

checks and an evaluation of s(X ,Y ) in the scalar field. Most of

the pairings within (and amongst many) proof verifications involve

fixed elements in G2, so the verifier can combine all of them into a

single equation with a probabilistic check. In the context of batch

verification each individual proof thus requires arithmetic only in
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Input size (bits) Gates Size Timing

SRS (MB) Proof (bytes) SRS (s) Prove (s) Helper (s) Helped Verifier (ms)

Pedersen hash preimage (input size)

48 203 0.47 256 2.24 0.15 0.09 0.69

384 1562 3.74 256 17.62 0.84 0.46 0.72

Unpadded SHA256 preimage

512 39,516 91.05 256 422.39 14.63 8.41 0.68

1024 78,263 182.09 256 831.87 28.93 14.23 0.68

1536 117,010 273.14 256 1301.43 38.86 21.54 0.68

Table 4: Sonic’s efficiency in proving knowledge of x such that H (x ) = y for different sizes of x . Numbers are given to two significant digits.
The first rows are for the Pedersen hash function and the final rows are for SHA256. “Helper” and “Helped Verifier” are the marginal cost
of aggregating and verifying an additional proof assuming that the helper has been run. These are calculated by batch-verifying 100 proofs,
subtracting the cost to verify one, and dividing by 99.

G1. Only a small, fixed number of pairing operations are performed

at the end.

As mentioned in Section 8, the evaluation of s(X ,Y ) can be done

once for a batch of proofs given some post-processing by an un-

trusted helper. We consider the performance of batch verification

with this post-processing.

In each individual proof we must compute k(y) depending on

our instance. We keep this polynomial sparse by having coefficients

only in our instance variables, and keeping all other coefficients

zero. If constants are needed in the circuit, they are expressed with

coefficients of an instance variable that is fixed to one.

We provide an adaptor which translates circuits written in the

form of quadratic “rank-1 constraint systems” (R1CS) [11], a widely

deployed NP language currently undergoing standardisation, into

the system of constraints natural to our proving system. This adds

some constant amount of overhead during proving and verifying

steps, but eases implementation and comparison with existing con-

structions.

The numbers obtained are relevant only to batched proofs, so

we wrote an idealized verifier of the Groth 2016 scheme [45], where

a batch of proofs are verified together. In this idealized version

we assume the G2 elements do not need to be deserialised and

that there is only one public input. We found the marginal cost of

verification was around 0.6ms, compared to Sonic’s 0.7ms. We thus

claim that Sonic has verification time which is competitive with

the state-of-the-art for zk-SNARKs, but unlike prior zk-SNARKs

has a universal and updatable SRS.

In Table 4 we mimicked Bulletproofs [26, Table 3] in measuring

the results of our Sonic implementation. Our implementation is not

constant time, however, which may affect this comparison (or in-

deed the comparison of prover performance to any implementation

with constant-time algorithms). We measured the efficiency of the

prover, the verifier, and the helped verifier in proving knowledge of

x such that H (x) = y. Proof sizes are always 256 bytes and verifier

computation is always around 0.7ms. In Bulletproofs, in contrast,

the proof size for the unpadded 512-bit SHA256 preimage is 1376

bytes and verification time is 41.52 ms, although as we mention

this comparison is not exact give in particular that their system

was throttled to 2 GHz and that there are optimised implementa-

tions for fixed circuits.
2
The runtime of our prover goes up in a

roughly linear fashion, as expected. The cost of the helped verifier,

in contrast, remains the same for all circuit sizes.

10 CONCLUSIONS
Zero-knowledge protocols have gained significant traction in recent

years in the application domain of cryptocurrencies, which has led

to the development of new protocols with significant performance

gains. At the same time, the requirements of this application have

given rise to protocols with new features, such as an untrusted

setup and a reference string that allows one to prove more than

a single relation. In this paper, we present Sonic, which captures

a valuable set of tradeoffs between these key functional require-

ments of untrusted setup and universality. At the same time, as we

demonstrate via a prototype implementation, Sonic has proof sizes

and verification time that are competitive with the state-of-the-art.
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A THE POLYNOMIAL PERMUTATION
ARGUMENT

The prover wishes to demonstrate the correct evaluation of

Ψ(X ,Y ) =
n∑
i=1

ψσiX
iYσi

for y, z ∈ F. Observe that the permutation of this polynomial

Φ(X ,Y ) =
n∑
i=1

ψiX
iY i

is such that Φ(X ,Y ) = Φ(XY , 1). Therefore we can use arguments

about the correct calculation of Φ together with a permutation

argument to obtain arguments about the correct calculation of Ψ.
Our permutation argument given in Figure 9 is similar to that of

Bootle et al. [23]. If the prover commits to f (X ) =
∑n
i=1

aiX
i
, then

we have for random challenges β,γ ∈ Fp that

n∏
i=1

ai + σiβ + γ =
n∏
i=1

ψiy
i + iβ + γ (2)

holds with non-negligible probability if and only if for all i , ai =
ψσiy

σi
. Notice that if ai = ψσiy

σi
then a + βσ contains a permuta-

tion of the entries in (ψ1y
1+β , . . . ,ψny

n+nβ). However, ifa is not a

permutation, then with overwhelming probability over β there will

be entries that do not appear anywhere in a + βσ . The prover will
now convince the verifier that (2) holds. By the Schwartz-Zippel

Derive(bp, srs,Ψ) 7→ srsΨ
P1 ← Commit(bp, srs,d,

∑n
i=1

X i )

P2 ← Commit(bp, srs,d,
∑n
i=1

ψiX
i )

P3 ← Commit(bp, srs,d,
∑n
i=1

iX i )

P4 ← Commit(bp, srs,d,
∑n
i=1

σiX
i )

srsΨ ← {bp, srs, P1, P2, P3, P4}

return srsΨ

Figure 8: The Derive algorithm.

lemma this is unlikely to hold over the random choice of γ unless

a + βσ indeed contains the correct permutation.

TheDerive algorithm to generate the specialised reference strings

for the permutations is given in Figure 8.

The prover calculates S ′, a commitment to Φ(X ,y). The verifier
checks that the commitment to Φ is computed correctly. The srsΨ
contains P2, a commitment to Ψ(X , 1). The prover opens S ′ atu and

P2 atuy. If the opening are equal and verify thenwith overwhelming

probability the commitment is correct.

The prover calculates S , a commitment to Ψ(X ,y). In order to

check that the coefficients of S are the permutation of the coeffi-

cients of Ψ(X ,y), the verifier chooses random challenges β,γ ∈ Fp
and asks the prover to demonstrate that the product of the co-

efficients of SP
β
4
P
γ
1
is equal to the product of the coefficients of

S ′P
β
3
P
γ
1
, thus simulating the argument from Equation 2.

The prover then opens S at z toψ , which the verifier checks. If

all the checks hold then we have thatψ = Ψ(z,y).

Lemma A.1. The permutation argument in Figure 9 is sound when
instantiated using a secure polynomial commitment scheme and a
sound grand-product argument.

Proof. The bounded extractability of the polynomial commit-

ment scheme gives us that there exists algebraic extractors that

output degree d Laurent polynomials s(X ), s ′(X ), p2(X ) such that

s = s(z),v = s ′(u) andv = p2(uy). If p2(uy) ,
∑n
i=1

ψiu
iyi then the

adversary can find a second opening for P2 and in doing so break

evaluation binding of the commitment scheme. The probability that

s ′(u) = v but s ′(u) , p2(Xy) is negligible by the Schwartz-Zippel

Lemma.

The soundness of the grand-product argument gives us that∏n
i=1

si + βσi + γ =
∏n

i=1
s ′i + βi + γ

⇐∏n
i=1

si + βσi + γ =
∏n

i=1
ψiy

i + βi + γ

Again by the Schwartz-Zippel Lemma, this implies that si = ψi
with all but negligible probability. □

Due to space limitations, a presentation of the underlying grand-

product argument is deferred to the full version of the paper [56].

B THE GRAND PRODUCT ARGUMENT
For our signature of correct computation in Section 7 we require

a grand product argument. Namely we need the prover to demon-

strate that the product of the coefficients of two commitments U
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Common input: info = srsΨ , y, z

P1 = Commit(bp, srs,d,
∑n
i=1

X i ), P2 = Commit(bp, srs,d,
∑n
i=1

ψiX
i ),

P3 = Commit(bp, srs,d,
∑n
i=1

iX i ), P4 = Commit(bp, srs,d,
∑n
i=1

σiX
i )

Ψ(X ,Y ) =
n∑
i=1

ψσiX
iYσi

, Φ(X ,Y ) =
n∑
i=1

ψiX
iY i

permP
1
(info) 7→ (S, S ′):

for 1 ≤ j ≤ M :

S ← Commit(bp, srs,d,Ψ(X ,y))
S ′ ← Commit(bp, srs,d,Φ(X ,y))

send S, S ′

permV
1
(info, S, S ′) 7→ (u, β,γ ):

send u, β ,γ
$

←− Fp

permP
2
(u, β ,γ ) 7→ (s,v,W ,W ′,Q ′,π ):

S̄ ← SP
β
4
P
γ
1

P̄ ← S ′P
β
3
P
γ
1

(ψ = Ψ(z,y),W ) ← Open(bp, srs, S, z,Ψ(X ,y))
(v,W ′) ← Open(bp, srs, S ′,u,Φ(X ,y))
(v,Q ′) ← Open(bp, srs, P2,uy,

∑n
i=1

ψiX
i )

s̄(X ) ←
∑n
i=1

ψσiy
σiX i + βσiX

i + γX i

p̄(X ) ←
∑n
i=1

ψiy
iX i + βiX i + γX i

gprod← gprodP(S̄, P̄ , s̄(X ), p̄(X ))
send (ψ ,W ,v,W ′,Q ′,π )

permV
2
(ψ ,W ,v,W ′,Q ′, gprod) 7→ 0/1:

S̄ ← SP
β
4
P
γ
1

P̄ ← S ′P
β
3
P
γ
1

check pcV(bp, srs, S,d, z, (s,W ))
check pcV(bp, srs, S ′,d,u, (v,W ′))
check pcV(bp, srs, P2,d,uy, (v,Q

′))

check gprodV(S̄, P̄ , gprod)
return 1 if all checks pass, else return 0

Figure 9: The permutation argument.

andV are equal, whereU andV are fully well-formed commitments

to degree-n polynomials

U = дα
∑n
i=1

aix i , V = дα
∑n
i=1

ai+n+1x i .

We further assume that the polynomials do not have a constant

term. We can interpretUV xn+1

as a commitment to

f (X ) =
∑

aiX
i .

We wish to demonstrate that

n∏
i=1

ai =
2n+2∏
i=n+2

ai . (3)

We can represent these requirements with the following con-

straints system.

(1) a · b = c
(2) b = (1, c1, . . . , c2n+1)

(3) cn+1 = 1

(4) c2n+1 = cn

We show that this constraint system is satisfied using our Sonic

argument described in Section 6. However, because all but two

of our constraints are shift constraints, we can adapt the polyno-

mial that the verifier must compute. Our adapted polynomial can

be computed using a small number of field operations, thus the

signature of correct computation is not required (otherwise we

would be using a signature of computation to build a signature of

computation).

B.1 Polynomial Encoding of Constraints
We follow the principles of our main argument by encoding the

constraint system into a single equation in formal indeterminate Y .

cn+1 − 1 + (cn − c2n+1)Y +
2n+1∑
i=1

(aibi − ci )Y
i+1 = 0 (4)
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We design a polynomial t(X ,Y ) for which the left hand side of

Equation 4 is the constant term.

r (X ,Y ) = Y
(∑

2n+1

i=1
aiX

iY i + c−1

n Xn+1Yn+1

)
s(X ,Y ) = Xn+2 + Xn+1Y − X 2n+2Y
r ′(X ,Y ) =

∑
2n+2

i=1
biX
−i

=
∑

2n+2

i=1
ciX
−i−1 + X−1

k(Y ) = 1 +
∑

2n+1

i=1
ciY

i+1

t(X ,Y ) = (r (X ,Y ) + s(X ,Y ))r ′(X ,Y ) − k(Y )

If we have that Equation 4 is satisfied then at all y we have that

tj (X ,y) has a constant term of zero. Otherwise, it has a nonzero con-

stant term at most y and so also at random y with high probability,

given a large enough field.

B.2 Protocol for the Grand-Product Argument
Our protocol for a grand product argument is given in Figure 10. It

begins by asking the prover to provide the commitments{
C = дα

∑
2n+1

i=1
cix i , c−1

n

}M
j=1

for which the prover must show that C has no negative exponents

of X . The verifier samples challenge y
$

←− Fp and asks the prover

to commit to

T = дα t (x,y).

The verifier now samples z
$

←− Fp and asks the helper to open

дαc
−1

n xn+1

UV xn+1

at yz to va C at z−1
to vc

C at y to vk T at z to t .

Given these evaluations, the verifier can compute

r (z,y) = yva

s(z,y) = zn+2 + zn+1y − z2n+2y

r ′(z,y) = vcz
−1 + z−1

k(y) = vky + 1

and we have

t(z,y) = (r (z,y) + s(z,y))r ′(z,y) − k(y).

The verifier can now check that t = t(z,y), demonstrating that

the earlier commitment to t(X ,y) was computed correctly with

respect to UV xn+1

and C , and that it has a constant term of zero,

completing the argument.

Lemma B.1. The grand-product argument in Figure 10 is sound
when instantiated with a secure polynomial commitment scheme and
a sound well-formedness argument (see Section B.3).

Proof. By the extractability of the polynomial commitment

scheme, there exists an algebraic extractor that outputs polynomi-

als a(X ), c(X ), t(X ) such that va = a(yz), vc = c(z−1), vk = c(y)
and t = t(z). By the well-formedness argument, c(X ) cannot have
negative powers. By the well-formedness argument,U and V have

algebraic representations with powers between 1 and n. The pairing
equation gives us that

a(X ) = c−1

n Xn+1 + u(X ) + xn+1v(X ).

The verifier computes s(z,y) for itself. The verifier also learns that

the coefficients of vc and vk are consistent, otherwise an adversary

could open the same commitment to two different polynomial eval-

uations and break evaluation binding. Thus r ′ and k are calculated

correct. Further, because the prover opens T to

t = a(b + s) − k(y)

t(X ) cannot have a non-zeroX 0
coefficient (otherwise an adversary

could break the bounded property of the polynomial commitment

scheme).

Suppose this holds for 2n + 4 different challenges y ∈ Zp . Then
we have equality of polynomials in Appendix B.1 since a non-zero

polynomial of degree 2n + 4 cannot have 2n + 3 roots i.e.

(r (X ,Y ) + s(X ,Y ))r ′(X ,Y ) − k(Y )

has no constant term. This implies thatu(X ) andv(X ) define a valid
opening. □

B.3 Well-formedness Argument
Our techniques for the grand-product argument require us to en-

sure that a number of elements computed during the protocol are

commitments to polynomials of the form

f (X ) =
n∑
i=1

aiX
i

for some n-length vector a. If we have that

F = дα f (x )

the prover sends

L = дx
−d f (x )

R = дx
d−n f (x )

which the verifier can check with the pairings

e(F ,h) = e(L,hαx
d
)

e(F ,h) = e(R,hαx
n−d
)

C BATCHING ARGUMENTS FOR IMPROVED
EFFICIENCY

The unhelped Sonic protocol uses 3+7M polynomial commitments,

whereM is the number of permutations required to represent the

computation. AssumingM = 3, this means there are 24 polynomial

commitment arguments. By having the prover batch some of these

arguments together, we can reduce the total number of polynomial

commitments to 7 + 3M . As a result, the proofs for our unhelped

Sonic protocol have 20 elements in G1 and 16 elements in Fp . As-
suming a group size and field size of 256 bits, this means the proof

sizes are approximately 1kB.

C.1 Batching Polynomial Commitments
Suppose that the prover is required to open commitments

F1, . . . , Fk

with maximum degree max1, . . . ,maxk at the same randomly cho-

sen point z. To avoid encountering the same costs k times, the

prover first engages with the verifier, as shown below.
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Common input: info = bp, srs,U , V , e(дx
n+1

,hα )

Prover’s input: (a,b,c) such thatU = дα
∑n
i=1

aix i ,V = дα
∑n
i=1

ai+n+1x i

gprodP
1
(info, (a1, . . . ,a2n+1)) 7→ (A,C,Cw ,Uw ,Uv , c

−1

n ):

an+1 ← c−1

n
A← дan+1αxn+1

UV xn+1

C ← Commit(bp, srs,d, c(X ))

Cw ← wformP(bp, srs, 2n + 1,C,c)
Uw ← wformP(bp, srs,n,U , (a1, . . . ,an ))
Uv ← wformP(bp, srs,n,V , (an+2, . . . ,a2n+1))

send (A,C,Cw ,Uw ,Uv , c
−1

n )

gprodV
1
(info, (A,C,Cw ,Uw ,Uv , c−1

n )) 7→ gprodP:

send y
$

←− Fp

gprod
2
(y) 7→ T :

T ← Commit(bp, srs,d, t(X ,y))
send T

gprodV
2
(T ) 7→ gprodP:

send z
$

←− Fp

gprod
3
(z) 7→ ((va ,Wa ), (vc ,Wc ), (vk ,Wk ),Wt ):

(va ,Wa ) ← Open(A,yz,a(X ))
(vc ,Wc ) ← Open(C, z−1, c(X ))
(vk ,Wk ) ← Open(C,y, c(X ))
(t ,Wt ) ← Open(T , z, t(X ))
return ((va ,Wa ), (vc ,Wc ), (vk ,Wk ),Wt )

gprodV
3
((va ,Wa ), (vc ,Wc ), (vk ,Wk ),Wt ) 7→ 0/1:

r ← yva
s ← zn+2 + zn+1y − z2n+2y
r ′ ← vcz

−1

k ← vky + 1

t ← (r + s)r ′ − k

check e(A,h) = e(дαan+1xn+1

U ,h)e(V ,hx
n+1

)

check pcV(bp, srs,A,d,yz, (va ,Wa ))

check pcV(bp, srs,C,d, z−1, (vc ,Wc ))

check pcV(bp, srs,C,d,y, (vk ,Wk ))

check pcV(bp, srs,T ,d, (t ,Wt ))

check wformV(bp, srs, 2n + 1,C,Cw )
check wformV(bp, srs,n,U ,Uw )
check wformV(bp, srs,n,V ,Vw )
return 1 if all checks pass, else return 0

Figure 10: The grand-product argument.

19



P 7→ V :

The prover sends F1, . . . , Fk .

V 7→ P :

The verifier sends random z to the prover.

P 7→ V :

The prover sends v1, . . . ,vk
It claims these are the correct openings at z.

V 7→ P :

The verifier sends random γ to the prover.

P 7→ V :

The prover setsw(X ) =
∑k
i=1

γ i (fi (X )−fi (z))
X−z .

They return дw (x ).

V 7→ P :

The verifier sets FT =
∏k

i=1
e(F

γ i
i ,h

αx−d+maxi
).

They set v =
∏k

i=1
viγ

i
.

They check e(W ,hαx )e(дvW z ,hα ) = F .

Observe that the probability that at random γ ,

k∑
i=1

viγ
i =

k∑
i=1

fi (z)γ
i

but at some i

vi , fi (z)

is negligible in a sufficiently large field. Further observe that FT
contains

∑k
i=1

fi (x)γ
i
in the target group. This can be proven secure

using a similar argument to that in Theorem 6.3.

C.2 Batching Grand-Product Arguments
The prover is required to show that

(S̄1, P̄1), . . . , (S̄M , P̄M )

all satisfy a grand-product argument. Thus they know

(s̄1(X ), p̄1(X )), . . . , (s̄M (X ), p̄M (X ))

such that ∏
j
s̄i, j =

∏
j
p̄i, j

for all 1 ≤ i ≤ M and

S̄i = д
α s̄i (x )

and P̄i = д
α p̄i (x ).

Each grand-product argument requires three well-formedness ar-

gument and four polynomial commitments. To avoid encountering

these costsM times, the prover batches the well-formedness argu-

ments and the commitment toT = Commit(bp, srs,d, t(X ,y)) (the
most expensive polynomial). Batching the commitment to T works

as follows.

• The prover sends (A1,C1), . . . , (AM ,CM ).
• The verifier sends random y as in the grand-product argu-

ment in addition to γ to the prover.

• The prover computes t(X ,y) ← γ t1(X ,y) + γ
2t2(X ,y) +

γ 3t3(X ,y) and sets T ← Commit(bp, srs,d, t(X ,y)).
• The verifier sends z as in the grand-product argument.

• The prover opens va,i ,vc,i ,vk,i as per the grand-product
argument. However they open T at z to t only once.

• The verifier checks that t =
∑m
i=1
(ri + si )r

′
iγ

i − kiγ
i

Observe that the probability that at random γ ,

M∑
i=1

tiγ
i =

M∑
i=1

(ri + si )r
′
iγ

i − kiγ
i

but at some i
ti , (ri + si )r

′
i − ki

is negligible in a sufficiently large field.
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