
Wave: A New Family of Trapdoor One-Way Preimage
Sampleable Functions Based on Codes ?

Thomas Debris-Alazard1,2, Nicolas Sendrier2, and Jean-Pierre Tillich2

1 Sorbonne Universités, UPMC Univ Paris 06
2 Inria, Paris

{thomas.debris,nicolas.sendrier,jean-pierre.tillich}@inria.fr

Abstract. We present here a new family of trapdoor one-way functions that are Preim-
age Sampleable on Average (PSA) based on codes, the Wave-PSA family. The trapdoor
function is one-way under two computational assumptions: the hardness of generic decod-
ing for high weights and the indistinguishability of generalized (U,U + V)-codes. Our proof
follows the GPV strategy [GPV08]. By including rejection sampling, we ensure the proper
distribution for the trapdoor inverse output. The domain sampling property of our family is
ensured by using and proving a variant of the left-over hash lemma. We instantiate the new
Wave-PSA family with ternary generalized (U,U + V)-codes to design a “hash-and-sign”
signature scheme which achieves existential unforgeability under adaptive chosen message
attacks (EUF-CMA) in the random oracle model. For 128 bits of classical security, signature
sizes are in the order of 13 thousand bits, the public key size in the order of 3 megabytes,
and the rejection rate is below one rejection every 100 signatures.

Code-Based Signature Schemes. It is a long standing open problem to build an efficient
and secure digital signature scheme based on the hardness of decoding a linear code which could
compete with widespread schemes like DSA or RSA. Those signature schemes are well known to
be broken by quantum computers and code-based schemes could indeed provide a valid quantum
resistant replacement. A first answer to this question was given by the CFS scheme proposed
in [CFS01]. It consisted in finding parity-check matrices H ∈ Fr×n2 such that the solution e of
smallest weight of the equation

eH
ᵀ

= s. (1)

could be found for a non-negligible proportion of all s in Fr2. This task was achieved by using
high rate Goppa codes. This signature scheme has however two drawbacks: (i) for high rates
Goppa codes the indistinguishability assumption used in its security proof has been invalidated
in [FGO+11], (ii) security scales only weakly superpolynomially in the keysize for polynomial
time signature generation. A crude extrapolation of parallel CFS [Fin10] and its implementations
[LS12, BCS13] yields for 128 bits of classical security a public key size of several gigabytes and a
signature time of several seconds. Those figures even grow to terabytes and hours for quantum-safe
security levels, making the scheme unpractical.

This scheme was followed by other proposals using other code families such as for instance
[BBC+13, GSJB14, LKLN17]. All of them were broken, see for instance [PT16, MP16]. Other
signature schemes based on codes were also given in the literature such as for instance the KKS
scheme [KKS97, KKS05], its variants [BMS11, GS12] or the RaCoSS proposal [FRX+17] to the
NIST. But they can be considered at best to be one-time signature schemes and great care has to
be taken to choose the parameters of these schemes in the light of the attacks given in [COV07,
OT11, HBPL18]. Finally, another possibility is to use the Fiat-Shamir heuristic. For instance
by turning the Stern zero-knowledge authentication scheme [Ste93] into a signature scheme but
this leads to rather large signature lengths (hundred(s) of kilobits). There has been some recent
progress in this area for another metric, namely the rank metric. A hash and sign signature scheme
was proposed, RankSign [GRSZ14], that enjoys remarkably small key sizes, but it got broken too

? This work was supported by the ANR CBCRYPT project, grant ANR-17-CE39-0007 of the French
Agence Nationale de la Recherche.

2 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

in [DT18]. On the other hand, following the Schnorr-Lyubashevsky [Lyu09a] approach, a new
scheme was recently proposed, namely Durandal [ABG+18]. This scheme enjoys small key sizes
and managed to meet the challenge of adapting the Lyubashevsky [Lyu09b] approach for code-
based cryptography. However, there is a lack of genericity in its security reduction, the security
of Durandal is reduced to a rather convoluted problem, namely PSSI+ (see [ABG+18, §4.1]),
capturing the problem of using possibly information leakage in the signatures to break the secret
key. This is due to the fact that it is not proven in their scheme that their signatures do not leak
information.

One-Way Preimage Sampleable Trapdoor Functions. There is a very powerful tool for
building a hash-and-sign signature scheme. It is based on the notion of one-way trapdoor preim-
age sampleable function [GPV08, §5.3]. Roughly speaking, this is a family of trapdoor one-way
functions (fa)a such that with overwhelming probability over the choice of fa (i) the distribution
of the images fa(e) is very close to the uniform distribution over its range (ii) the distribution
of the output of the trapdoor algorithm inverting fa samples from all possible preimages in an
appropriate way. This trapdoor inversion algorithm should namely sample for any x in the output
domain of fa its outputs e such that the distribution of e is indistinguishable in a statistical sense
from the input distribution to fa conditioned on fa(e) = x. This notion and its lattice-based
instantiation allowed in [GPV08] to give a full-domain hash (FDH) signature scheme with a tight
security reduction based on lattice assumptions, namely that the Short Integer Solution (SIS)
problem is hard on average. Furthermore, this approach also allowed to build the first identity
based encryption scheme that could be resistant to a quantum computer. We will call in this paper,
this approach for obtaining a FDH scheme, the GPV strategy (the authors of [GPV08] are namely
Gentry, Peikert and Vaikuntanathan). This strategy has also been adopted in Falcon [FHK+17],
a lattice based signature submission to the NIST call for post-quantum cryptographic primitives
that was recently selected as a second round candidate.

This preimage sampleable primitive is notoriously difficult to obtain when the functions fa are
not trapdoor permutations but many-to-one functions. This is typically the case when one wishes
quantum resistant primitives based on lattice based assumptions. The reason is the following. The
hard problem on which this primitive relies is the SIS problem where we want to find for a matrix
A in Zn×mq (with m ≥ n) and an element s ∈ Znq a short enough (for the Euclidean norm) solution
e ∈ Zmq to the equation

eA
ᵀ

= s mod q. (2)

A defines a preimage sampleable function as fA(e) = eAᵀ and the input to fA is chosen according
to a (discrete) Gaussian distribution of some variance σ2. Obtaining a nearly uniform distribution
for the fA(e)’s over its range requires to choose σ2 so large so that there are actually exponentially
many solutions to (2). It is a highly non-trivial task to build in this case a trapdoor inversion
algorithm that samples appropriately among all possible preimages, i.e. that is oblivious of the
trapdoor.

The situation is actually exactly the same if we want to use another candidate problem for
building this preimage sampleable primitive for being resistant to a quantum computer, namely the
decoding problem in code-based cryptography. Here we rely on the difficulty of finding a solution
e of Hamming weight exactly w with coordinates in a finite field Fq for the equation

eH
ᵀ

= s. (3)

where H is a given matrix and s (usually called a syndrome) a given vector with entries in Fq.
The weight w has to be chosen large enough so that this equation has always exponentially many
solutions (in n the length of e). As in the lattice based setting, it is non-trivial to build trapdoor
candidates with a trapdoor inversion algorithm for fH (defined as fH(e) = eHᵀ) that is oblivious
of the trapdoor.

Our Contribution: a Code-Based PSA Family and a FDH Scheme. Our main contribu-
tion is to give here a code-based one way trapdoor function that meets the preimage sampleable

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 3

property in a slighty relaxed way: it meets this property on average. We call such a function Pre-
miage Sampleable on Average, PSA in short. This property on average turns out to be enough for
giving a security proof for the signature scheme built from it. Our family relies here on the diffi-
culty of solving (3). We derive from it a FDH signature scheme which is shown to be existentially
unforgeable under a chosen-message attack (EUF-CMA) with a tight reduction to solving two
code-based problems: one is a distinguishing problem related to the trapdoor used in our scheme,
the other one is a multiple targets version of the decoding problem (3), the so called “Decoding
One Out of Many” problem (DOOM in short) [Sen11]. In [GPV08] a signature scheme based on
preimage sampleable functions is given that is shown to be strongly existentially unforgeable under
a chosen-message attack if in addition the preimage sampleable functions are also collision resis-
tant. With our choice of w and Fq, our preimage sampleable functions are not collision resistant.
However, as observed in [GPV08], collision resistance allows a tight security reduction but is not
necessary: a security proof could also be given when the function is “only” preimage sampleable.
Here we will show that it is even enough to have such a property on average. Moreover, contrarily
to the lattice setting where the size of the alphabet q grows with n, our alphabet size will be
constant in our proposal, it is fixed to q = 3.

Our Trapdoor: Generalized (U,U + V)-Codes. In [GPV08] the trapdoor consists in a short
basis of the lattice considered in the construction. Our trapdoor will be of a different nature, it
consists in choosing parity-check matrices of generalized (U,U + V)-codes. In our construction, U
and V are chosen as random codes. The number of such generalized (U,U+V)-codes of dimension
k and length n is of the same order as the number of linear codes with the same parameters,

namely qΘ(n2) when k = Θ (n). A generalized (U,U + V) code C of length n over Fq is built from

two codes U and V of length n/2 and 4 vectors a,b, c and d in Fn/2q as the following “mixture”
of U and V :

C = {(a� u + b� v, c� u + d� v) : u ∈ U, v ∈ V }

where x � y stands here for the component-wise product, also called the Hadamard or Schur
product. It is defined as:

x� y
4
=(x1y1, · · · , xn/2yn/2).

Standard (U,U + V)-codes correspond to a = c = d = 1n/2 and b = 0n/2, the all-one and the
all-zero vectors respectively.

The point of introducing such codes is that they have a natural decoding algorithm DUV solving
the decoding problem (3) that is based on a generic decoding algorithm Dgen for linear codes. Dgen

will be here a very simple decoder, namely a variation of the Prange decoder [Pra62] that is able
to produce for any parity-check matrix H ∈ Fr×nq at will a solution of (3) when w is in the range

J q−1
q r, n − r

q K. Note that this algorithm works in polynomial time and that outside this range of
weights, the complexity of the best known algorithms is exponential in n for weights w of the form

w = ωn where ω is a constant that lies outside the interval [q−1
q ρ, 1− ρ

q] with ρ
4
= r

n . DUV works by
combining the decoding of V with Dgen with the decoding of U by Dgen. The nice feature is that DUV
is more powerful than Dgen applied directly on the generalized (U,U + V)-code: the weight of the
error produced by DUV can be made in polynomial time to lie outside the interval J q−1

q r, n− r
q K.

This is in essence the trapdoor of our signature scheme. A tweak in this decoder consisting in
performing only a small amount of rejection sampling (with our choice of parameters, less than
one rejection every 100 signatures) allows to obtain solutions that are uniformly distributed over
the words of weight w. This is the key for obtaining a PSA family and a signature scheme from it.

Finally, a variation of the proof technique of [GPV08] allows to give a tight security proof of
our signature scheme that relies only on the hardness of two problems, namely

Decoding Problem: Solving at least one instance of the decoding problem (1) out of multiple
instances for a certain w that is outside the range J q−1

q r, n− r
q K

Distinguishing Problem: Deciding whether a linear code is a permuted generalized (U,U +V)
code or not.

4 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Hardness of the Decoding Problem. All code-based cryptography relies upon that problem.
Here we are in a case where there are multiple solutions of (3) and the adversary may produce
any number of instances of (3) with the same matrix H and various syndromes s and is interested
in solving only one of them. This relates to the, so called, Decoding One Out of Many (DOOM)
problem. This problem was first considered in [JJ02]. It was shown there how to adapt the known
algorithms for decoding a linear code in order to solve this modified problem. This modification
was later analyzed in [Sen11]. The parameters of the known algorithms for solving (3) can be
easily adapted to this scenario where we have to decode simultaneously multiple instances which
all have multiple solutions.

Hardness of the Distinguishing Problem. This problem might seem at first sight to be
ad-hoc. However, even in the very restricted case of (U,U + V)-codes, deciding whether a code
is a permuted (U,U + V)-code or not is an NP-complete problem. Therefore the Distinguishing
Problem is also NP-complete for generalized (U,U+V)-codes. This theorem is proven in the case of
binary (U,U +V)-codes in [DST17b, §7.1, Thm 3] and the proof carries over to an arbitrary finite
field Fq. However as observed in [DST17b, p. 3], these NP-completeness reductions hold in the
particular case where the dimensions kU and kV of the code U and V satisfy kU < kV . If we stick
to the binary case, i.e. q = 2, then in order that our (U,U + V) decoder works outside the integer
interval J r2 , n −

r
2K it is necessary that kU > kV . Unfortunately in this case there is an efficient

probabilistic algorithm solving the distinguishing problem that is based on the fact that in this
case the hull of the permuted (U,U +V)-code is typically of large dimension, namely kU −kV (see
[DST17a, §1 p.1-2]). This problem can not be settled in the binary case by considering generalized
(U,U + V)-codes instead of just plain (U,U + V)-codes, since it is only for the restricted class of
(U,U + V)-codes that the decoder considered in [DST17a] is able to work properly outside the
critical interval J r2 , n−

r
2K. This explains why the ancestor Surf [DST17a] of the scheme proposed

here that relies on binary (U,U + V)-codes can not work.
This situation changes drastically when we move to larger finite fields. In order to have a

decoding algorithm DUV that has an advantage over the generic decoder Dgen we do not need to
have a = c = d = 1n/2 and b = 0n/2 (i.e. (U,U+V)-codes) we just need that a�c and a�d−b�c
are vectors with only non-zero components. This freedom of choice for the a,b, c and d thwarts
completely the attacks based on hull considerations and changes completely the nature of the
distinguishing problem. In this case, it seems that the best approach for solving the distinguishing
problem is based on the following observation. The generalized (U,U + V)-code has codewords
of weight slightly smaller than the minimum distance of a random code of the same length and
dimension. It is very tempting to conjecture that the best algorithms for solving the Distinguishing
Problem come from detecting such codewords. This approach can be easily thwarted by choosing
the parameters of the scheme in such a way that the best algorithms for solving this task are of
prohibitive complexity. Notice that the best algorithms that we have for detecting such codewords
are in essence precisely the generic algorithms for solving the Decoding Problem. In some sense, it
seems that we might rely on the very same problem, namely solving the Decoding Problem, even
if our proof technique does not show this.

q = 3 and Large weights Decoding. In terms of simplicity of the decoding procedure used
in the signing process, it seems that defining our codes over the finite field F3 is particularly
attractive. In such a case, the biggest advantage of DUV over Dgen is obtained for large weights
rather than for small weights (there is an explanation for this asset in the paragraph “Why is
the trapdoor more powerful for large weights than for small weights?” §3.3). This is a bit unusual
in code-based cryptography to rely on the difficulty of finding solutions of large weight to the
decoding problem. However, it also opens the issue whether it would not be advantageous to make
certain (non-binary) code-based primitives rely on the hardness of solving the decoding problem
for large weights rather than for small weights. Of course these two problems are equivalent in the
binary case, i.e. q = 2, but this is not the case for larger alphabets anymore and still everything
seems to point to the direction that large weights problem is by no means easier than its small
weight counterpart.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 5

All in all, this gives the first practical signature scheme based on ternary codes which comes
with a security proof and which scales well with the parameters: it can be shown that if one wants a
security level of 2λ, then signature size is of order O(λ), public key size is of order O(λ2), signature
generation is of order O(λ3), whereas signature verification is of order O(λ2). It should be noted
that contrarily to the current thread of research in code-based or lattice-based cryptography which
consists in relying on structured codes or lattices based on ring structures in order to decrease the
key-sizes we did not follow this approach here. This allows for instance to rely on the NP-complete
Decoding Problem which is generally believed to be hard on average rather that on decoding in
quasi-cyclic codes for instance whose status is still unclear with a constant number of circulant
blocks. Despite the fact that we did not use the standard approach for reducing the key sizes
relying on quasi-cyclic codes for instance, we obtain acceptable key sizes (about 3.2 megabytes
for 128 bits of security) which compare very favorably to unstructured lattice-based signature
schemes such as TESLA for instance [ABB+17]. This is due in part to the tightness of our security
reduction.

1 Notation

We provide here some notation that will be used throughout the paper.

General Notation. The notation x
4
= y means that x is defined to be equal to y. We denote by

Fq the finite field with q elements and by Sw,n, or Sw when n is clear from the context, the subset
of Fnq of words of weight w. For a and b integers with a ≤ b, we denote by Ja, bK the set of integers
{a, a+ 1, . . . , b}.

Vector and Matrix Notation. Vectors will be written with bold letters (such as e) and upper-
case bold letters are used to denote matrices (such as H). Vectors are in row notation. Let x and
y be two vectors, we will write (x,y) to denote their concatenation. We also denote by xI the
vector whose coordinates are those of x = (xi)1≤i≤n which are indexed by I, i.e. xI = (xi)i∈I . We
will denote by HI the matrix whose columns are those of H which are indexed by I. Sometimes
we denote for a vector x by x(i) its i-th entry, or for a matrix A, by A(i, j) its entry in row i and
column j. We define the support of x = (xi)1≤i≤n as

Supp(x)
4
={i ∈ J1, nK such that xi 6= 0}

The Hamming weight of x is denoted by |x|. By some abuse of notation, we will use the same
notation to denote the size of a finite set: |S| stands for the size of the finite set S. It will be clear
from the context whether |x| means the Hamming weight or the size of a finite set. Note that
|x| = |Supp(x)|. For a vector a ∈ Fnq , we denote by Diag(a) the n × n diagonal matrix A with
its entries given by a, i.e. A(i, i) = ai for all i ∈ J1, nK and A(i, j) = 0 for i 6= j.

Probabilistic Notation. Let S be a finite set, then x ←↩ S means that x is assigned to be a
random element chosen uniformly at random in S. For two random variables X,Y , X ∼ Y means
that X and Y are identically distributed. We will also use the same notation for a random variable
and a distribution D, where X ∼ D means that X is distributed according to D. We denote the
uniform distribution on Sw by Uw.

The statistical distance between two discrete probability distributions over a same space E is
defined as:

ρ(D0,D1)
4
=

1

2

∑
x∈E
|D0(x)−D1(x)|.

Recall that a function f(n) is said to be negligible, and we denote this by f ∈ negl(n), if for all
polynomials p(n), |f(n)| < p(n)−1 for all sufficiently large n.

6 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Coding Theory. For any matrix M we denote by 〈M〉 the vector space spanned by its rows. A
q-ary linear code C of length n and dimension k is a subspace of Fnq of dimension k and is often
defined by a parity-check matrix H over Fq of size r × n as

C = 〈H〉⊥ =
{
x ∈ Fnq : xH

ᵀ
= 0

}
.

When H is of full rank (which is usually the case) we have r = n− k. A generator matrix of C is
a k × n full rank matrix G over Fq such that 〈G〉 = C. The code rate, usually denoted by R, is
defined as the ratio k/n.

An information set of a code C of length n is a set of k coordinate indices I ⊂ J1, nK which
indexes k independent columns on any generator matrix. Its complement indexes n−k independent

columns on any parity check matrix. For any s ∈ Fn−kq , H ∈ F(n−k)×n
q , and any information set I

of C = 〈H〉⊥, for all x ∈ Fnq there exists a unique e ∈ Fnq such that eHᵀ = s and xI = eI .

2 The Wave-family of Trapdoor One-Way Preimage Sampleable
Functions

2.1 One-way Preimage Sampleable Code-based Functions

In this work we will use the FDH paradigm [BR96, Cor02] using as one-way the syndrome function:

fw,H : e ∈ Sw 7−→ eHᵀ ∈ Fn−kq

The corresponding FDH signature uses a trapdoor to choose σ ∈ f−1
w,H(h) where h is the digest of

the message to be signed. Here, the signature domain is Sw and its range is the set of syndromes
Fn−kq according to H, an (n−k)×n parity check matrix of some q-ary linear [n, k] code. The weight
w is chosen such that the one-way function fw,H is surjective but not bijective. Building a secure
FDH signature in this situation can be achieved by imposing additional properties [GPV08] to the
one-way function (we will speak of the GPV strategy). This is mostly captured by the notion of
Preimage Sampleable Functions, see [GPV08, Definition 5.3.1]. We express below this notion in our
code-based context with a slightly relaxed definition dropping the collision resistance condition and
only assuming that the preimage sampleable property holds on average and not for any possible
element in the function range. This will be sufficient for proving the security of our code-based
FDH scheme.

Definition 1 (Trapdoor One-way Preimage Sampleable on Average Code-based Func-
tions). It is a pair of probabilistic polynomial-time algorithms (Trapdoor, InvertAlg) together
with a triple of functions (n(λ), k(λ), w(λ)) growing polynomially with the security parameter λ
and giving the length and dimension of the codes and the weights we consider for the syndrome
decoding problem, such that

– Trapdoor when given λ, outputs (H, T) where H is an (n− k)× n matrix over Fq and T the
trapdoor corresponding to H.

– InvertAlg is a probabilistic algorithm which takes as input T and an element s ∈ Fn−kq and
outputs an e ∈ Sw,n such that eHᵀ = s.

The following properties have to hold for all but a negligible fraction of H output by Trapdoor.

1. Domain Sampling with uniform output:

ρ(eH
ᵀ
, s) ∈ negl(λ), where e←↩ Sw,n and s←↩ Fn−kq .

2. Preimage Sampling on Average (PSA) with trapdoor:

ρ (InvertAlg(s, T), e) ∈ negl(λ), where e←↩ Sw,n and s←↩ Fn−kq .

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 7

3. One wayness without trapdoor: for any probabilistic poly-time algorithm A outputting an el-

ement e ∈ Sw,n when given H ∈ F(n−k)×n
q and s ∈ Fn−kq , the probability that eHᵀ = s

is negligible, where the probability is taken over the choice of H, the target value s chosen
uniformly at random, and A’s random coins.

Remark 1. 1. The preimage property as defined in [GPV08] would translate in our setting in the
following way. For any s ∈ Fn−kq we should have

ρ (InvertAlg(s, T), es) ∈ negl(λ), where es ←↩
{
e ∈ Sw,n : eH

ᵀ
= s
}

.

As pointed out in [S19], we have

ρ (InvertAlg(s, T), e) =
∑
s

∑
e∈f−1

w,H(s)

∣∣∣∣ 1

|Sw|
− 1

qn−k
P(InvertAlg(s, T) = e)

∣∣∣∣
=
∑
s

∑
e∈f−1

w,H(s)

∣∣∣∣∣ 1

|Sw|
− 1

qn−k|f−1
w,H(s)|

+
1

qn−k|f−1
w,H(s)|

− 1

qn−k
P(InvertAlg(s, T) = e)

∣∣∣∣∣
≥
∑
s

1

qn−k

∑
e∈f−1

w,H(s)

∣∣∣∣∣ 1

|f−1
w,H(s)|

− P(InvertAlg(s, T) = e)

∣∣∣∣∣−∑
s

∣∣∣∣∣ |f
−1
w,H(s)|
|Sw|

− 1

qn−k

∣∣∣∣∣
=

∑
s∈Fn−kq

1

qn−k
ρ (InvertAlg(s, T), es)− ρ(eH

ᵀ
, s).

Therefore with the domain sampling property and our definition of the preimage sampling
property the average of the ρ (InvertAlg(s, T), es)’s is negligible too, whereas [GPV08] re-
quires that all terms ρ (InvertAlg(s, T), es) are negligible. Note that our property that holds
for the average implies that this property holds for all but a negligible fraction of s’s. Indeed,
if we have

1

qn−k

∑
s∈Fn−kq

ρ (InvertAlg(s, T), es) = ε,

then
{s : ρ (InvertAlg(s, T), es) ≥

√
ε}

qn−k
≤
√
ε.

As noted by the anonymous reviewer, this relaxed property is enough to apply the GPV proof
technique.

2. It turns out that this relaxed definition of preimage sampleable function is enough to prove the
security of the associated signature scheme using a salt as given in the next paragraph. This
relaxed definition is of independent interest, since it can be easier to find trapdoor one-way
functions meeting this property than the more stringent definition given in [GPV08].

Given a one-way preimage sampleable on average code-based function (Trapdoor, InvertAlg)
we easily define a code-based FDH signature scheme as follows. We generate the public/secret
key as (pk, sk) = (H, T) ← Trapdoor(λ). We also select a cryptographic hash function Hash :
{0, 1}∗ → Fn−kq and a salt r of size λ0. The algorithms Sgnsk and Vrfypk are defined as follows

Sgnsk(m): Vrfypk(m, (e′, r)):
r←↩ {0, 1}λ0 s← Hash(m, r)
s← Hash(m, r) if e′Hᵀ = s and |e′| = w return 1
e← InvertAlg(s, T) else return 0
return(e, r)

A tight security reduction in the random oracle model is given in [GPV08] for PSF signature
schemes. It requires collision resistance. Our construction uses a ternary alphabet q = 3 together
with large values of w and collision resistance is not met. Still, we achieve a tight security proof
by considering in §6 a reduction to the multiple target decoding problem.

8 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

2.2 The Wave Family of One-Way Trapdoor Preimage Sampleable Functions

The trapdoor family of codes which gives an advantage for inverting fw,H is built upon the
following transformation:

Definition 2. Let a, b, c and d be vectors of Fn/2q . We define

ϕa,b,c,d : Fn/2q × Fn/2q → Fn/2q × Fn/2q

(x,y) 7→ (a� x + b� y, c� x + d� y).

We will say that ϕa,b,c,d is UV-normalized if

∀i ∈ J1, n/2K, aidi − bici = 1 and aici 6= 0. (4)

For any two subspaces U and V of Fn/2q , we extend the notation

ϕa,b,c,d(U, V)
4
= {ϕa,b,c,d(u,v) : u ∈ U,v ∈ V }

Proposition 1 (Normalized Generalized (U,U + V)-code). Let n be an even integer and let
ϕ = ϕa,b,c,d be a UV-normalized mapping. The mapping ϕ is bijective with

ϕ−1(x,y) = (d� x− b� y,−c� x + a� y).

For any two subspaces U and V of Fn/2q of parity check matrices HU and HV , the vector space
ϕ(U, V) is called a normalized generalized (U,U + V)-code. It has dimension dimU + dimV and
admits the following parity check matrix

H(ϕ,HU ,HV)
4
=

(
HUD −HUB
−HV C HV A

)
(5)

where A
4
= Diag(a), B

4
= Diag(b), C

4
= Diag(c) and D

4
= Diag(d).

In the sequel, a UV-normalized mapping ϕ implicitly defines a quadruple of vectors (a,b, c,d)
such that ϕ = ϕa,b,c,d. We will use this implicit notation and drop the subscript whenever no
ambiguity may arise.

Remark 2. – This construction can be viewed as taking two codes of length n/2 and making a
code of length n by “mixing” together a codeword u in U and a codeword v in V as the vector
formed by the set of aiui + bivi’s and ciui + divi’s.

– The condition aici 6= 0 is here to ensure that coordinates of U appear in all the coordinates
of the normalized generalized (U,U + V) codeword. This is essential for having a decoding
algorithm for the generalized (U,U+V)-code that has an advantage over standard information
set decoding algorithms for linear codes. The trapdoor of our scheme builds upon this advan-
tage. It can really be viewed as the “interesting” generalization of the standard (U,U + V)
construction.

– We have fixed aidi− bici = 1 for every i to simplify some of the expressions in what follows. It
is readily seen that any generalized (U,U + V)-code that can be obtained in the more general
case aidi − bici 6= 0 can also be obtained in the restricted case aidi − bici = 1 by choosing U
and V appropriately.

Defining Trapdoor and InvertAlg. From the security parameter λ, we derive the system pa-
rameters n, k, w and split k = kU + kV as described in §4.4. The secret key is a tuple sk =

(ϕ,HU ,HV ,S,P) where ϕ is a UV-normalized mapping, HU ∈ F(n/2−kU)×n/2
q , HV ∈ F(n/2−kV)×n/2

q ,

S ∈ F(n−k)×(n−k)
q is non-singular with k = kU + kV , and P ∈ Fn×nq is a permutation matrix. Each

element of sk is chosen randomly and uniformly in its domain.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 9

From (ϕ,HU ,HV) we derive the parity check matrix Hsk = H(ϕ,HU ,HV) as in Proposition 1.
The public key is Hpk = SHskP. Next, we need to produce an algorithm Dϕ,HU ,HV

which inverts
fw,Hsk

. The parameter w is such that this can be achieved using the underlying (U,U+V) structure
while the generic problem remains hard. In §4 we will show how to use rejection sampling to devise
Dϕ,HU ,HV

such that its output is uniformly distributed over Sw when s is uniformly distributed
over Fn−kq . This enables us to instantiate algorithm InvertAlg. To summarize:

sk← (ϕ,HU ,HV ,S,P)
pk← Hpk

(pk, sk)← Trapdoor(λ)

∣∣∣∣∣∣
InvertAlg(sk, s)

e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
)

return eP

As in [GPV08], putting this together with a domain sampling condition –which we prove in §5
from a variation of the left-over hash lemma– allows us to define a family of trapdoor preimage
sampleable functions, later referred to as the Wave-PSF family.

3 Inverting the Syndrome Function

This section is devoted to the inversion of fw,H. It amounts to solve the following problem.

Problem 1 (Syndrome Decoding with fixed weight). Given H ∈ F(n−k)×n
q , s ∈ Fn−kq , and an integer

w, find e ∈ Fnq such that eHᵀ = s and |e| = w.

We consider three nested intervals Jw−easy, w
+
easyK ⊂ Jw−UV, w

+
UVK ⊂ Jw−, w+K for w such that for s

randomly chosen in Fn−kq :

– f−1
w,H(s) is likely/very likely to exist if w ∈ Jw−, w+K (Gilbert-Varshamov bound)

– e ∈ f−1
w,H(s) is easy to find if w ∈ Jw−easy, w

+
easyK for all H (Prange algorithm)

– e ∈ f−1
w,H(s) is easy to find if w ∈ Jw−UV, w

+
UVK and H is the parity check matrix of a generalized

(U,U+V)-code. This is the key for exploiting the underlying (U,U+V) structure as a trapdoor
for inverting fw,H.

3.1 Surjective Domain of the Syndrome Function

The issue is here for which value of w we may expect that fw,H is surjective. This clearly implies
that |Sw| ≥ qn−k. In other words we have:

Fact 1 If fw,H is surjective, then w ∈ Jw−, w+K where w− < w+ are the extremum of the set{
w ∈ J0, nK |

(
n
w

)
(q − 1)w ≥ qn−k

}
.

For a fixed rate R = k/n, let us define ω−
4
= lim
n→+∞

w−/n and ω+ 4= lim
n→+∞

w−/n. Note that ω−

is known as the asymptotic Gilbert-Varshamov distance. A straightforward computation of the
expected number of errors e of weight w such that eHᵀ = s when H is random shows that we
expect an exponential number of solutions when w/n lies in (ω−, ω+). However, coding theory has
never come up with an efficient algorithm for finding a solution to this problem in the whole range
(ω−, ω+).

3.2 Easy Domain of the Syndrome Function

The subrange of (ω−, ω+) for which we know how to solve efficiently Problem 1 is given by the
condition w/n ∈ [ω−easy, ω

+
easy] where

ω−easy
4
=
q − 1

q
(1−R) and ω+

easy
4
=
q − 1

q
+
R

q
, (6)

10 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

where R
4
= k

n . This is achieved by a slightly generalized version of the Prange decoder [Pra62].
We want to find for a given s an error e of weight w such that eHᵀ = s. The matrix H is a
full-rank matrix and it therefore contains an invertible submatrix A of size (n− k)× (n− k). We
choose a set of positions I of size n − k for which H restricted to these positions is a full rank
matrix. For simplicity assume that this matrix is in the first n − k positions: H =

(
A|B

)
. We

look for an e of the form e = (e′′, e′) where e′ ∈ Fkq and e′′ ∈ Fn−kq . We should therefore have

e′′ = (s− e′Bᵀ)(A−1)
ᵀ
. In this way we can arbitrarily choose the error e′ of length k but in any

case we expect for the remaining part a vector e′′ with about q−1
q (n−k) positions that are non zero.

Therefore, the weights that are easily attainable by this strategy are between q−1
q (n−k) = nω−easy

and k + q−1
q (n − k) = nω+

easy by choosing appropriately the weight of e′ between 0 and k. This

procedure, that we call PrangeOne(·), is formalized in Algorithm 1.

Algorithm 1 PrangeOne(H, s) — One iteration of the Prange decoder

Parameters: q, n, k, D a distribution over J0, kK
Require: H ∈ F(n−k)×n

q , s ∈ Fn−kq

Ensure: eH
ᵀ

= s
1: t←↩ D
2: I ← InfoSet(H) . InfoSet(H) returns an information set of 〈H〉⊥
3: x←↩ {x ∈ Fnq | |xI | = t}
4: e← PrangeStep(H, s, I,x)
5: return e

function PrangeStep(H, s, I,x) — Prange vector completion

Require: H ∈ F(n−k)×n
q , s ∈ Fn−kq , I an information set of 〈H〉⊥, x ∈ Fnq

Ensure: eH
ᵀ

= s and eI = xI
P← any n× n permutation matrix sending I on the last k coordinates
(A | B)← HP . A ∈ F(n−k)×(n−k)

q

(0 | e′)← x . e′ ∈ Fkq
e←

((
s− e′B

ᵀ) (
A−1

)ᵀ
, e′
)
P

ᵀ

return e

Proposition 2. Let H ∈ F(n−k)×n
q of rank n − k and s which is uniformly distributed in Fn−kq .

Then, for for the output e of PrangeOne(H, s) we have

|e| = S + T

where S ∈ J0, n− kK and T ∈ J0, kK are independent random variables, S is the Hamming weight
of a vector that is uniformly distributed over Fn−kq and P(T = t) = D(t). The distribution of |e| is
given by

P (|e| = w) =

w∑
t=0

(
n−k
w−t
)
(q − 1)w−t

qn−k
D(t), E(|e|) = D + q−1

q (n− k) = D + nω−easy

where D =
∑k
t=0 tD(t).

From this proposition, we deduce immediately that any weight w in Jω−easyn, ω
+
easynK can be reached

by this Prange decoder with a probabilistic polynomial time algorithm that uses a distribution D
such that D = w − ω−easyn and which is sufficiently concentrated around its expectation. It will
be helpful in what follows to be able to choose a probability distribution D as this gives a rather
large degree of freedom in the distribution of |e| that will come very handy to simulate an output
distribution that is uniform over the words of weight w in the generalized (U,U +V)-decoder that
we will consider in what follows.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 11

To summarize this discussion we have shown that when we want to ensure that fH is surjective,
w has to verify w− ≤ w ≤ w+. However, in a cryptographic setting w/n cannot lie in [ω−easy, ω

+
easy] ⊆

[ω−, ω+] otherwise anybody that uses the generalized Prange algorithm would be able to invert
fw,H. All of this is summarized in Figure 1 where we draw the above different areas asymptotically
in n of w/n when k/n is fixed and q = 3.

Fig. 1. Areas of relative signature distances when q = 3.

Enlarging the Easy Domain Jw−
easy, w

+
easyK. Inverting the syndrome function fw,H is the

basic problem upon which all code-based cryptography relies. This problem has been studied for

a long time for relative weights ω
4
= w

n in (0, ω−easy) and despite many efforts the best algorithms
[Ste88, Dum91, Bar97, MMT11, BJMM12, MO15, DT17, BM18] for solving this problem are all
exponential in n for such fixed relative weights. In other words, after more than fifty years of
research, none of those algorithms came up with a polynomial complexity for relative weights ω
in (0, ω−easy). Furthermore, by adapting all the previous algorithms beyond this point we observe
for them the same behaviour: they are all polynomial in the range of relative weights [ω−easy, ω

+
easy]

and become exponential once again when ω is in (ω+
easy, 1). All these results point towards the fact

that inverting fw,H in polynomial time on a larger range is fundamentally a hard problem. In the
following subsection we present a trapdoor on the matrices H that enables to invert in polynomial
time fw,H on a larger range by tweaking the Prange decoder.

3.3 Solution with Trapdoor

Let us recall that our trapdoor to invert fw,H is given by the family of normalized generalized
(U,U + V)-codes (see Proposition 1 in §2.2). As we will see in what follows, this family comes
with a simple procedure which enables to invert fw,H with errors of weight which belongs to

12 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Jw−UV, w
+
UVK ⊂ Jw−, w+K but with Jw−easy, w

+
easyK (Jw−UV, w

+
UVK. We summarize this situation in

Figure 2.
We wish to point out here, to avoid any misunderstanding that the procedure we give here is

not the one we use at the end to instantiate Wave, but is merely here to give the underlying idea
of the trapdoor. Rejection sampling will be needed as explained in the following section to avoid
any information leakage on the trapdoor coming from the outputs of the algorithm given here.

hard hardhardeasy
w

0 w−easy w+
easy nw−UV w+

UV

easy with (U,U+V) trapdoor

Fig. 2. Hardness of (U,U + V) Decoding

It turns out that in the case of a normalized generalized (U,U +V)-code, a simple tweak of the
Prange decoder will be able to reach relative weights w/n outside the “easy” region [ω−easy, ω

+
easy].

It exploits the fundamental leverage of the Prange decoder : it consists in choosing the error e
satisfying eHᵀ = s as we want in k positions when the code that we decode is random and of
dimension k. When we want an error of low weight, we put zeroes on those positions, whereas if
we want an error of large weight, we put non-zero values. This idea leads to even smaller or larger
weights in the case of a normalized generalized (U,U + V)-code. To explain this point, recall that
we want to solve the following decoding problem in this case.

Problem 2 (decoding problem for normalized generalized (U,U + V)-codes). Given a normalized
generalized (U,U+V) code (ϕ,HU ,HV) (see Proposition 1) of parity-check matrix H = H(ϕ,HU ,HV) ∈
F(n−k)×n
q , and a syndrome s ∈ Fn−kq , find e ∈ Fnq of weight w such that eHᵀ = s.

The following notation will be very useful to explain how we solve this problem.

Notation 1 For a vector e in Fnq , we denote by eU and eV the vectors in Fn/2q such that

(eU , eV) = ϕ−1(e).

The decoding algorithm we will consider recovers eV and then eU . From eU and eV we recover e
since e = ϕ(eU , eV). The point of introducing such an eU and an eV is that

Proposition 3. Solving the decoding problem 2 is equivalent to find an e ∈ Fnq of weight w
satisfying

eUH
ᵀ
U = sU (7)

eV H
ᵀ
V = sV (8)

where s = (sU , sV) with sU ∈ Fn/2−kUq and sV ∈ Fn/2−kVq .

Remark 3. We have put U and V as superscripts in sU and sV to avoid any confusion with the
notation we have just introduced for eU and eV .

Proof. Let us observe that,

e = ϕ(eU , eV) = (a� eU + b� eV , c� eU + d� eV) = (eUA + eV B, eUC + eV D)

with A = Diag(a),B = Diag(b),C = Diag(c),D = Diag(d). By using this, eHᵀ = s translates
into, {

eUADᵀHᵀ
U + eV BDᵀHᵀ

U − eUCBᵀHᵀ
U − eV DBᵀHᵀ

U = sU

−eUACᵀHᵀ
V − eV BCᵀHᵀ

V + eUCAᵀHᵀ
V + eV DAᵀHᵀ

V = sV

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 13

which amounts to eU (AD − BC)Hᵀ
U = sU and eV (AD − BC)Hᵀ

V = sV , since A, B, C, D are
diagonal matrices, they are therefore symmetric and commute with each other. We finish the proof
by observing that AD−BC = In/2, the identity matrix of size n/2. ut

Performing the two decoding (7) and (8) independently with the Prange algorithm gains nothing.
However if we first solve (8) with the Prange algorithm, and then seek a solution of (7) which
properly depends on eV we increase the range of weights accessible in polynomial time for e.
It then turns out that the range [ω−UV, ω

+
UV] of relative weights w/n for which the (U,U + V)-

decoder works in polynomial time is larger than [ω−easy, ω
+
easy]. This will provide an advantage to

the trapdoor owner.

Tweaking the Prange Decoder for Reaching Large Weights. When q = 2, small and large weights
play a symmetrical role. This is not the case anymore for q ≥ 3. In what follows we will suppose
that q ≥ 3. In order to find a solution e of large weight to the decoding problem eHᵀ = s, we use
Proposition 3 and first find an arbitrary solution eV to eV Hᵀ

V = sV . The idea, now for performing
the second decoding eUHᵀ

U = sU , is to take advantage of eV to find a solution eU that maximizes
the weight of e = ϕ(eU , eV). On any information set of the U code, we can fix arbitrarily eU .
Such a set is of size kU and on those positions i we can always choose eU (i) such that this induces
simultaneously two positions in e that are non-zero. These are ei and ei+n/2. We just have to
choose eU (i) so that we have simultaneously{

aieU (i) + bieV (i) 6= 0
cieU (i) + dieV (i) 6= 0.

This is always possible since q ≥ 3 and aici 6= 0 for all i which gives an expected weight of e:

E(|e|) = 2

(
kU +

q − 1

q
(n/2− kU)

)
=
q − 1

q
n+

2kU
q

(9)

The best choice for kU is to take kU = k up to the point where q−1
q n + 2k

q = n, that is k = n/2

and for larger values of k we choose kU = n/2 and kV = k − kU .

Why Is the Trapdoor More Powerful for Large Weights than for Small Weights? This strategy can
be clearly adapted for small weights. However, it is less powerful in this case. Indeed, to minimize
the weight of the final error we would like to choose eU (i) in kU positions such that{

aieU (i) + bieV (i) = 0
cieU (i) + dieV (i) = 0

Here as aidi − bici = 1 and aici 6= 0 in the family of codes we consider, this is possible if
and only if eV (i) = 0. Therefore, contrarily to the case where we want to reach errors of large
weight, the area of positions where we can gain twice is constrained to be of size n/2 − |eV |.
The minimal weight for eV we can reach in polynomial time with the Prange decoder is given by
q−1
q (n/2−kV). In this way the set of positions where we can double the number of 0 will be of size

n/2− q−1
q (n/2− kV) = n

2q + q−1
q kV . It can be verified that this strategy would give the following

expected weight for the final error we get:

E(|e|) =

{
q−1
q n− 2 q−1

q kU if kU ≤ n
2q + q−1

q kV
2(q−1)2

(2q−1)q (n− k) else.

This discussion is summarized in Figure 3 where we draw ω−UV and ω+
UV which are the highest

and the smallest relative distances that our decoder can reach asymptotically in n when k/n is
fixed and q = 3.

14 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Fig. 3. Areas of relative signature distances with our trapdoor when q = 3

4 Preimage Sampling with Trapdoor: Achieving a Uniformly
Distributed Output

We restrict here our study to the case,

q = 3.

All the results we are going to give can be generalized to larger values of q. To be a trapdoor one-
way preimage sampleable function, we have to enforce that the outputs of our algorithm, which
inverts our trapdoor function, are very close to be uniformly distributed over Sw. The procedure
described in the previous section using directly the Prange decoder, does not meet this property.
As we will prove, by changing it slightly, we will achieve this task by still keeping the property
to output errors of weight w for which it is hard to solve the decoding problem for this weight.
However, the parameters will have to be chosen carefully and the area of weights w for which
we can output errors in polynomial time decreases. Figure 4 gives a rough picture of what will
happen.

hard hardhardeasy
w

0

w−easy w+
easy

nw−UV w+
UV

easy with (U,U+V) trapdoor

no leakage with (U,U + V) trapdoor

Fig. 4. Hardness of (U,U + V) Decoding with no leakage of signature

4.1 Rejection Sampling to reach Uniformly Distributed Output

We will tweak slightly the generalized (U,U +V)-decoder from the previous section by performing
in particular rejection sampling on eU and eV in order to obtain an error e satisfying eHᵀ = s that

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 15

is uniformly distributed over the words of weight w when the syndrome s is randomly chosen in
Fn−k3 . Solving the decoding problem 2 of the generalized (U,U + V)-code will be done by solving
(7) and (8) through an algorithm whose skeleton is given in Algorithm 2. DecodeV(HV , s

V)
returns a vector satisfying eV Hᵀ

V = sV , whereas DecodeU(HU , ϕ, s
U , eV) is assumed to return a

vector satisfying eUHᵀ
U = sU and such that |ϕ(eU , eV)| = w. Here s = (sU , sV) with sU ∈ Fn/2−kU3

and sV ∈ Fn/2−kV3 .

Algorithm 2 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , s

V)
3: until Condition 1 is met
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV) . We assume that |ϕ(eU , eV)| = w here.
6: e← ϕ(eU , eV)
7: until Condition 2 is met
8: return e

What we want to achieve by rejection sampling is that the distribution of e output by this
algorithm is the same as the distribution of eunif that denotes a vector that is chosen uniformly
at random among the words of weight w in Fn3 . This will be achieved by ensuring that

1. the eV fed into DecodeU(·) at Step 5 has the same distribution as eunif
V ,

2. the distribution of eU surviving to Condition 2 at Step 7 conditioned on the value of eV is the
same as the distribution of eunif

U conditioned on eunif
V .

There is a property of the decoders DecodeV(·) and DecodeU(·) derived from Prange de-
coders that we will consider that will be very helpful here. They will namely be very close to meet
the following conditions.

Definition 3. DecodeV(·) is said to be weightwise uniform if the output eV of DecodeV(HV , s
V)

is such that P(eV) is just a function of |x| when sV is chosen uniformly at random in Fn/2−kV3 .
DecodeU(·) is m1-uniform if the outputput eU of DecodeU(HU , ϕ, s

U , eV) satisfies that the
conditional probability P(eU |eV) is just a function of the pair (|eV |,m1(ϕ(eU , eV)) where

m1(x)
4
=
∣∣{1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1

}∣∣ .
It is readily observed that for all x ∈ Sw,

P(eunif
V = xV) and P(eunif

U = xU | eunif
V = xV)

are also only functions of |xV | and (|xV |,m1(x)) respectively. From this it is readily seen that
we obtain the right distributions for eV and eU conditioned on eV by just ensuring that the
distribution of |eV | follows the same distribution as |eunif

V | and that the distribution of m1(e)
conditioned on |eV | is the same as the distribution of m1(eunif) conditioned on |eunif

V |. This is
shown by the following lemma.

Lemma 1. Let e be the output of Algorithm 2 when sV and sU are chosen uniformly at random in

Fn/2−kV3 and Fn/2−kU3 respectively. Assume that DecodeU(·) is m1-uniform whereas DecodeV(·)
is weightwise uniform. If for any possible y and z,

|eV | ∼ |eunif
V | and P(m1(e) = z | |eV | = y) = P(m1(eunif) = z | |eunif

V | = y) (10)

then
e ∼ eunif.

The probabilities are taken here over the choice of sU and sV and over the internal coins of
DecodeU(·) and DecodeV(·).

16 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Proof. We have for any x in Sw

P(e = x) = P(eU = xU | eV = xV)P(eV = xV)

= P(DecodeU(HU , ϕ, s
U , eV) = xU | eV = xV)P(DecodeV(HV , s

V) = xV)

=
P(m1(e) = z | |eV | = y)

n(y, z)

P(|eV | = y)

n(y)

4
=P (11)

where n(y) is the number of vectors of Fn3 of weight y and n(y, z) is the number of vectors e in
Fn3 such that eV = xV and such that m1(e) = z (this last number only depends on xV through
its weight y). Equation (11) is here a consequence of the weightwise uniformity of DecodeV(·)
on one hand and the m1-uniformity of DecodeU(·) on the other hand. We conclude by noticing
that

P =
P(m1(eunif) = z | |eunif

V | = y)

n(y, z)

P(|eunif
V | = y)

n(y)
(12)

= P(eunif
U = xU | eunif

V = xV)P(eunif
V = xV)

= P(eunif = x). (13)

Equation (12) follows from the assumptions on the distribution of |eV | and of the conditional
distribution of m1(e) for a given weight |eV |. ut

This shows that in order to obtain that e is uniformly distributed over Sw it is enough to
perform rejection sampling based on the weight |eV | for DecodeV(·) and based on the pair
(|eV |,m1(e)) for DecodeU(·). In other words, our decoding algorithm with rejection sampling
will use a rejection vector rV on the weights of eV for DecodeV(·) and a two-dimensional rejection
vector rU for the values of (|eV |,m1(e)) for DecodeU(·). The corresponding algorithm is specified
in Algorithm 3.

Algorithm 3 DecodeUV(HV ,HU , ϕ, s)

1: repeat
2: eV ← DecodeV(HV , s

V)
3: until rand([0, 1]) ≤ rV (|eV |)
4: repeat
5: eU ← DecodeU(HU , ϕ, s

U , eV)
6: e← ϕ(eU , eV)
7: until rand([0, 1]) ≤ rU (|eV |,m1(e))
8: return e

Standard results on rejection sampling yield the following proposition:

Proposition 4. Let,

q1(i)
4
=P (|eV | = i) ; qunif

1 (i)
4
=P

(
|eunif
V | = i

)
(14)

q2(s, t)
4
=P (m1(e) = s | |eV | = t) ; qunif

2 (s, t)
4
=P

(
m1(eunif) = s | |eunif

V | = t
)

(15)

for any i, t ∈ J0, n/2K and s ∈ J0, tK. Let rV and rU be defined as

rV (i)
4
=

1

M rs
V

qunif
1 (i)

q1(i)
and rU (s, t)

4
=

1

M rs
U (t)

qunif
2 (s, t)

q2(s, t)

with

M rs
V
4
= max

0≤i≤n/2

qunif
1 (i)

q1(i)
and M rs

U (t)
4
= max

0≤s≤t

qunif
2 (s, t)

q2(s, t)

Then if DecodeV(·) is weightwise uniform and DecodeU(·) is m1-uniform, the output e of
Algorithm 3 satisfies

e ∼ eunif.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 17

4.2 Application to the Prange Decoder

To instantiate rejection sampling, we have to provide here (i) how DecodeV(·) and DecodeU(·)
are instantiated and (ii) how qunif

1 , qunif
2 , q1 and q2 are computed. Let us begin by the following

proposition (the proof is given in Appendix A) which gives qunif
1 and qunif

2 .

Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be integers. We have,

qunif
1 (i) =

(
n/2
i

)(
n
w

)
2w/2

i∑
p=0

w+p≡0 mod 2

(
i

p

)(
n/2− i

(w + p)/2− i

)
23p/2 (16)

qunif
2 (s, t) =


(ts)(

n/2−t
w+s

2
−t)2

3s
2∑

p
(tp)(

n/2−t
w+p

2
−t)2

3p
2

if w + s ≡ 0 mod 2.

0 else

(17)

Algorithms DecodeV(·),DecodeU(·) are described in Algorithms 4 and 5. They use the
rejection vectors given in Proposition 4 which is based on the expressions given in Proposition 5.

Algorithm 4 DecodeV(HV , s
V) the Decoder outputting an eV such that eV Hᵀ

V = sV .

1: J , I ← FreeSet(HV)
2: `←↩ DV
3: xV ←↩

{
x ∈ Fn/23 | |xJ | = `,Supp(x) ⊆ I

}
. (xV)I\J is random

4: eV ← PrangeStep(HV , s
V , I,xV)

5: return eV

function FreeSet(H)

Require: H ∈ F(n−k)×n
3

Ensure: I an information set of 〈H〉⊥ and J ⊂ I of size k − d
1: repeat
2: J ←↩ J1, nK of size k − d
3: until the rank of the columns of H indexed by J1, nK\J is n− k
4: repeat
5: J ′ ←↩ J1, nK\J of size d
6: I ← J t J ′
7: until I is an information set of 〈H〉⊥
8: return J , I

These two algorithms both use the Prange decoder in the same way as we did with the procedure
described in §3.3 to reach large weights, except that here we introduced some internal distributions
DV and the DtU ’s. These distributions are here to tweak the weight distributions of DecodeV(·)
and DecodeU(·) in order to reduce the rejection rate. We have:

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be integers. Let d be

an integer, k′V
4
= kV − d and k′U

4
= kU − d. Let XV (resp. Xt

U) be a random variable distributed
according to DV (resp. DtU). We have,

q1(i) =

i∑
t=0

(
n/2−k′V
i−t

)
2i−t

3n/2−k
′
V

P(XV = t) (18)

q2(s, t) =


∑

t+k′U−n/2≤k6=0≤t

k0
4
= k′U−k6=0

(t−k 6=0
s)(

n/2−t−k0
w+s

2
−t−k0

)2
3s
2∑

p
(t−k6=0

p)(
n/2−t−k0
w+p

2
−t−k0

)2
3p
2

P(Xt
U = k 6=0) if w ≡ s mod 2.

0 else

(19)

18 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Algorithm 5 DecodeU(HU , ϕ, s
U , eV) the U-Decoder outputting an eU such that eUHᵀ

U = sU

and |ϕ(eU , eV)| = w.

1: t← |eV |
2: k 6=0 ←↩ DtU
3: k0 ← k′U − k 6=0 . k′U

4
= kU − d

4: repeat
5: J , I ← FreeSetW(HU , eV , k 6=0)

6: xU ←↩ {x ∈ Fn/23 | ∀j ∈ J , x(j) /∈ {− bi
ai
eV (i),− di

ci
eV (i)} and Supp(x) ⊆ I}

7: eU ← PrangeStep(HU , s
U , I,xU)

8: until |ϕ(eU , eV)| = w
9: return eU

function FreeSetW(H,x, k 6=0)

Require: H ∈ F(n−k)×n
q ,x ∈ Fnq and k 6=0 ∈ J0, kK.

Ensure: J and I an information set of 〈H〉⊥ such that |{i ∈ J : xi 6= 0}| = k 6=0 and J ⊂ I of size k− d.
1: repeat
2: J1 ←↩ Supp(x) of size k 6=0

3: J2 ←↩ J1, nK\ Supp(x) of size k − d− k 6=0.
4: J ← J1 t J2

5: until the rank of the columns of H indexed by J1, nK\J is n− k
6: repeat
7: J ′ ←↩ J1, nK\J of size d
8: I ← J t J ′
9: until I is an information set of 〈H〉⊥

10: return J , I

A parameter d is introduced in Proposition 6 and in Algorithms 4 and 5. When 3d ≈ 2λ the
probability for not being able to complete a set of k − d positions into an information set of an
[n, k] code is of order 1

2λ
. In Algorithm 4 (resp. 5) we pick a set of kV − d (resp. kU − d) random

positions. Those positions will be filled with the ad-hoc rule using DV (resp. DtU). With probability
at least 1 − 1

2λ
those sets can be completed with d extra positions to reach an information set.

Those d positions are filled randomly. We perform the Prange decoder and also fill the remaining
n/2 − kV (resp. n/2 − kU) positions with random values. Doing things this way will allow us to
prove that we are close enough to the two uniformity conditions of Definition 3. We are going to
prove that,

Theorem 1. Let e be the output of Algorithm 3 based on Algorithms 4,5 and eunif be a uniformly
distributed error of weight w. We have

P
(
ρ(e, eunif) > 3−d/2

)
≤ 3−d/2.

where the probability is taken over the choice of matrices HU and HV .

A much stronger result showing that ρ(e, eunif) is typically smaller than n23−d will be given in
the appendix. This result will be used to select the parameter d instead of the previous theorem.

It will be helpful to consider now the following definition.

Definition 4 (Bad and Good Subsets). Let d ≤ k ≤ n be integers and H ∈ F(n−k)×n
3 . A

subset E ⊆ J1, nK of size k− d is defined as a good set for H if HE is of full rank where E denotes
the complementary of E. Otherwise, E is defined as a bad set for H.

The proof of this theorem relies on introducing a variant of the decoder based on variants of
the U and V decoders VarDecodeV(·) and VarDecodeU(·) of algorithms DecodeV(·) and
DecodeU(·) respectively. These new decoders will work as DecodeV(·) and DecodeU(·) when
J is a good set and depart from it when J is a bad set. In the later case, the Prange decoder is
not used anymore and an error is output that simulates what the Prange decoder would do with

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 19

the exception that there is no guarantee that the error eV that is output by VarDecodeV(·)
satisfies eV Hᵀ

V = sV or that the eU that is output by VarDecodeU(·) satisfies eUHᵀ
U = sU . The

eV and eU that are output are chosen on the positions of J as DecodeV() and DecodeU() as
would have done it, but the rest of the positions are chosen uniformly at random in F3. It is clear
that in this case

Fact 2 VarDecodeV(·) is weightwise uniform and VarDecodeU(·) is m1-uniform.

The point of considering VarDecodeV(·) and VarDecodeU(·) is that they are very good ap-
proximations of DecodeV(·) and DecodeU(·) that meet the uniformity conditions that ensure
by using Lemma 1 that the output of Algorithm 3 using VarDecodeV(·) and VarDecodeU(·)
instead of DecodeV(·) and DecodeU(·) produces an error e that is uniformly distributed over
the words of weight w. The outputs of VarDecodeV(·) and VarDecodeU(·) only differ from the
output of DecodeV(·) and DecodeU(·) when a bad set J is encountered. These considerations
can be used to prove the following proposition.

Proposition 7. Algorithm 3 based on VarDecodeV(·) and VarDecodeU(·) produces uniformly
distributed errors eunif of weight w. Let e be the output of Algorithm 3 with the use of DecodeV(·)
and DecodeU(·). Let Junif be uniformly distributed over the subsets of J1, n/2K of size kV − d
whereas JHV is uniformly distributed over the same subsets that are good for HV . Let Iunif

xV ,`
be

uniformly distributed over the subsets of J1, n/2K of size kU − d such that their intersection with
xV is of size ` whereas IHU

xV ,`
is the uniform distribution over the same subsets that are good for

HU . We have:

ρ
(
e; eunif

)
≤ ρ

(
JHV ; Junif

)
+
∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k6=0 = ` | eV = xV)P

(
eunif
V = xV

)
Proof. The first statement about the output of Algorithm 3 is a direct consequence of Fact 2
and Lemma 1. The proof of the rest of the proposition relies on the following proposition [GM02,
Proposition 8.10]:

Proposition 8. Let X,Y be two random variables over a common set A. For any randomized
function f with domain A using internal coins independent from X and Y , we have:

ρ (f(X); f(Y)) ≤ ρ (X;Y) .

Let us define for xV ∈ Fn/23 and xU ∈ Fn/23 ,

p(xV)
4
=P (eV = xV) ; q(xV)

4
=P

(
eunif
V = xV

)
p(xU |xV)

4
=P (eU = xU | eV = xV) ; q(xU |xV)

4
=P

(
eunif
U = xU | eunif

V = xV
)
.

We have,

ρ
(
e; eunif

)
= ρ

(
eU , eV ; eunif

U , eunif
V

)
=

1

2

∑
xV ,xU

|p(xV)p(xU |xV)− q(xV)q(xU |xV)|

=
1

2

∑
xV ,xU

|(p(xV)− q(xV))p(xU |xV) + (p(xU |xV)− q(xU |xV))q(xV)|

≤ 1

2

∑
xV ,xU

|(p(xV)− q(xV))p(xU |xV)|+ |(p(xU |xV)− q(xU |xV)q(xV)|

=
1

2

∑
xV

|(p(xV)− q(xV))|+ 1

2

∑
xV ,xU

|p(xU |xV)− q(xU |xV)| q(xV) (20)

20 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

where in the last line we used that
∑

xU
|p(xU |xV)| = 1 for any xV . Thanks to Proposition 8:

1

2

∑
xV

|p(xV)− q(xV)| ≤ ρ
(
JHV ; Junif

)
(21)

as the internal distribution DV of DecodeV(·) is independent of JHV and Junif. Let us upper-
bound the second term of the inequality. The distribution of k 6=0 is only function of the weight of
the vector given as input to DecodeU(·) or VarDecodeU(·). Therefore,

P (k 6=0 = ` | eV = xV) = P
(
k 6=0 = ` | eunif

V = xV
)

(22)

Let us define,

p(xU |xV , `)
4
=P(eU = xU | k6=0 = `, eV = xV) ; q(xU |xV , `)

4
=P(eunif

U = xU | k 6=0 = `, eunif
V = xV).

With this notation we obtain from (22)

p(xU |xV)− q(xU |xV) =
∑
`

(p(xU |xV , `)− q(xU |xV , `))P (k 6=0 = ` | eV = xV) (23)

The internal coins of DecodeU(·) and VarDecodeU(·) are independent of IHU

xV ,`
and Iunif

xV ,`
and

by using Proposition 8 we have for any xV and `:

1

2

∑
xU

|p(xU |xV , `)− q(xU |xV , `)| ≤ ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
(24)

Combining Equations (20), (21), (23) and (24) concludes the proof. ut

The expectations of ρ
(
JHV ; Junif

)
and ρ

(
IHU

xV ,`
; Iunif

xV ,`

)
are upperbounded by

Lemma 2. We have

ρ
(
JHV ; Junif

)
=

#{subsets of J1, n/2K of size k − d bad for H}(
n/2
k−d
) (25)

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
=

Nx,`(|x|
`

)(
n/2−|x|
k−d−`

) (26)

E
{
ρ
(
JHV ; Junif

)}
≤ 3−d

2
(27)

E
{
ρ
(
IHU

xV ,`
; Iunif

xV ,`

)}
≤ 3−d

2
, , (28)

where Nx,` is the number of subsets of J1, n/2K of size k − d such that their intersection with
Supp(x) is of size ` and that are bad for H.

Proof. (25) (26) follow from the fact that that the statistical distance between the uniform dis-
tribution over J1, sK and the uniform distribution over J1, tK (with t ≥ s) is equal to t−s

t . Let us

index from 1 to
(
n/2
k−d
)

the subsets of size k− d of J1, n/2K and let Xi be the indicator of the event
“the subset of index i is bad”. We have

N =

(n/2k−d)∑
i=1

Xi. (29)

Recall now (for a proof see Lemma 8 in the appendix) that for integers d < m:

P(rank (M) < m− d) ≤ 1

2 · 3d

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 21

when M is chosen uniformly at random in F(m−d)×m
3 . This implies P(Xi = 1) ≤ 1

2·3d and

E
{
ρ
(
JHV ; Junif

)}
= E

{
N

(n/2k−d)

}
=
∑(n/2k−d)
i=1

P(Xi=1)

(n/2k−d)
≤ 1

2·3d . This proves (27). (28) follows from

similar arguments. ut

We are ready now to prove Theorem 1.

Proof (of Theorem 1). By using Markov’s inequality we have

P
(
ρ(e, eunif) > 3−d/2

)
≤ 3d/2E(ρ(e, eunif))

≤ 3d/2E

ρ (JHV ; Junif
)

+
∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k 6=0 = ` | eV = xV)P

(
eunif
V = xV

)
(by Prop. 7)

≤ 3d/2

3−d

2
+
∑
xV ,`

3−d

2
P (k 6=0 = ` | eV = xV)P

(
eunif
V = xV

) (by Lem. 2)

= 3−d/2.

ut

4.3 Instantiating the Distributions

Any choice for the distributions DV and DtU in Algorithms 4 and 5 will enable uniform sampling by
a proper choice of the rejection vectors rV and rU in Algorithm 3. We argue here, through a case
study, that an appropriate choice of the distributions may considerably reduce the rejection rate.
In fact, what matters is to have the smallest possible values for M rs

V and M rs
U (t) in Proposition 4.

The first step to achieve this is to correctly align the distributions to their targets, we do that
by a proper choice for the mean value or of the mode (i.e. maximum value) of the distributions.
Next we choose a “shape” for the distributions. Here we will take (generalized and truncated)
Laplace distributions with a prescribed mean and parameterize them to minimize rejection.

For typical parameters with 128 bits of classical security, we will give a case study with the
above strategy, in which the total rejection rate is below 1%.

Aligning the Distributions:

1. For the distribution DV . The output of Algorithm 4 has an average weight ¯̀+2/3(n/2−kV +d),
where ¯̀ denotes the mean of DV . It must be close to E(|eunif

V |). We will admit E(|eunif
V |) =∑n/2

i=0 iq
unif
V (i) = n

2

(
1−

(
1− w

n

)2 − 1
2

(
w
n

)2)
. The mean value ¯̀ of DV is chosen (close to)

(1− α)(kV − d) where α ∈ [0, 1] is defined as follows

(1− α)(kV − d) =
n

2

(
1−

(
1− w

n

)2

− 1

2

(w
n

)2
)
− 2

3

(n
2
− kV + d

)
. (30)

2. For the distribution DtU , 0 ≤ t ≤ n/2. Here, for every t, we want to align the functions
s 7→ q2(s, t) and s 7→ qunif

2 (s, t) (see Proposition 4). We get a very good estimate of the s which
maximizes qunif

2 (s, t) by solving numerically the equation qunif
2 (s− 1, t) = qunif

2 (s+ 1, t), that is

8 (t− s) (t− s+ 1) (n− w − s+ 1)

(s+ 1) s (w + s+ 1− 2 t)
= 1

We will denote mmax
target(t) the unique real positive root of the above polynomial equation.

We use the notations of Algorithm 5, with in addition e = ϕ(eU , eV). We now have to de-
termine which value of k 6=0 (line 2) will be such that q2(s, t) also reaches its maximum for

22 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

s = mmax
target(t). For a given t, q2(s, t) is the probability to have m1(e) = s. This number counts

the pairs (i, i+n/2) with i ∈ J0, n/2K such that exactly one of e(i) and e(i+n/2) is non-zero.
This may only happen when i ∈ Supp(eV) \ J , in which case e(i) and e(i + n/2) are two
random distinct elements of F3 and this particular i is counted in m1(e) with probability 2/3.
Since |Supp(eV) \J | = t− k 6=0, we typically have m1(e) = 2

3 (t− k 6=0) and the best alignment
is reached when the most probable output of distribution DtU is k6=0 = t− 3

2m
max
target(t).

Matching the “Shapes”: to avoid a high rejection rate we need to choose distributions so that
the tails of the emulated q1 and q2 are not lower than their respective targets. A bad choice in
this respect could lead to values of M rs

V and M rs
U (t) growing exponentially with the block size. We

chose generalized and truncated Laplace distributions to avoid this.

Definition 5 (Generalized Truncated Discrete Laplace Distribution). Let µ, σ, β be pos-
itive real numbers, let a and b be two integers. We say that a random variable X is distributed
according to the Generalized Truncated Discrete Laplace Distribution of parameters µ, σ, β, a, b,
which is denoted X ∼ Lapβ(µ, σ, a, b), if for all i ∈ Ja, bK,

P (X = i) =
e−(|i−µ|σ)

β

N

where N is a normalization factor.

We choose{
DV = LapβV (µV , σV , 0, kV − d)
DtU = LapβU (t)(µU (t), σU (t), t+ kU − d− n/2, t)

with

{
µV = (1− α)(kV − d)
µU (t) = t− 3

2m
max
target(t) + ε(t)

where βV and σV are selected to minimize M rs
V , and βU (t), ε(t), and σU (t) are selected to minimize

M rs
U (t). We observed heuristically that the exponents βV and βU (t) are in the interval [1, 2], and

that the alignment offset ε(t) is in the interval [0, 2].

Case Study: n = 8482, (kU , kV) = (3558, 2047), w = 7980, α = 0.5748 and d = 81. With
σV = 30.31 and βV = 1.982, we obtain M rs

V ≈ 1.000895. With ε = 0.29 and βU = 1.788 identical
for all t, the optimal σU (t) lies in the interval [7.27, 11.58], and we obtain an average value of
1.0086 for M rs

U (t). The result is marginally better by selecting the best βU (t) and ε(t) for each t.
The total rejection rate is thus below 1%.

4.4 Choosing the parameters

Using the parameter α introduced in (30) in the previous subsection as

(1− α)(kV − d) =
n

2

(
1−

(
1− w

n

)2

− 1

2

(w
n

)2
)
− 2

3

(n
2
− kV + d

)
.

we may define all the system parameters depending only on α, the code rate k/n, d and the block
size n

w =

⌊
n

(
1− α+

1

3

√
(3α− 1)

(
3α+ 4

k − 2d

n
− 1

))⌋
(31)

kV = d+

⌊
n

2

3

3α− 1

((
1− w

n

)2

+
1

2

(w
n

)2

− 1

3

)⌋
; kU = d+

⌊n
2

(
−2 + 3

w

n

)⌋
. (32)

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 23

5 Achieving Uniform Domain Sampling

The following definition will be useful to understand the structure of normalized generalized (U,U+
V)-codes.

Definition 6. (number of V blocks of type I). In a normalized generalized (U,U + V)-code
of length n associated to (a,b, c,d), the number of V blocks of type I, which we denote by nI , is
defined by:

nI
4
= |{1 ≤ i ≤ n/2 : bidi = 0}| .

Remark 4. nI can be viewed as the number of positions in which a codeword of the form (b �
v,d� v) is necessarily equal to 0: this comes from the fact that on a position where either bi = 0
or di = 0, the other one is necessarily different from 0 as aidi − bici = 1. In other words we also
have

nI = |{1 ≤ i ≤ n/2 : bi = 0}|+ |{1 ≤ i ≤ n/2 : di = 0}| .

We denote by Hpk the public parity-check matrix of a normalized generalized (U,U + V)-code as
described in §2.2. It turns out that Hpk has enough randomness in it for making the syndromes
associated to it indistinguishable in the strongest possible sense, i.e. statistically, from random
syndromes as the following proposition shows. In other words, our scheme achieves the Domain
Sampling property of Definition 1. Note that the upper-bound we give here depends on the number
nI we have just introduced.

Proposition 9. Let DH
w be the distribution of eHᵀ when e is drawn uniformly at random among

Sw and let U be the uniform distribution over Fn−k3 . We have

EHpk

(
ρ(DHpk

w ,U)
)
≤ 1

2

√
ε with,

ε =
3n−k

2w
(
n
w

) + 3n/2−kV
n/2∑
j=0

qunif
1 (j)2

2j
(
n/2
j

) + 3n/2−kU
nI∑
j=0

(
nI
j

)(
n−nI
w−j

)2(
n
w

)2
2j

where qunif
1 is given in Proposition 5 in §4.

This bound decays exponentially in n in a certain regime of parameters as shown by

Proposition 10. Let RU
4
= 2kU

n , RV
4
= 2kV

n , R
4
= k

n , ω
4
= w

n , ν
4
= nI

n , then under the same assump-
tions as in Proposition 9, we have as n tends to infinity

EHpk

(
ρ(DHpk

w ,U)
)
≤ 2(α+o(1))n

where α
4
= 1

2 min ((1−R) log2(3)− ω − h2(ω), α1, α2) and

α1
4
= min

(x,y)∈R

1

2
(1−RV) log2 3− ω − 2h2(ω) +

h2(x)

2
+ x

(
h2(y) +

3

2
y − 1

2

)
+ (1− x)h2

(
ω − x(1− y)

1− x

)
R 4= {(x, y) ∈ [0, 1)× [0, 1] : 0 ≤ ω − x(1− y) ≤ 1− x}

α2

4
= min

max(0,ω+ν−1)≤x≤min(ν,ω)

1

2
(1−RU) log2 3− 2h2(ω) + νh2

(x
ν

)
+ 2(1− ν)h2

(
ω − x
1− ν

)
− x.

Remark 5. For the set of parameters we present in the appendix, we have ε ≈ 2−354 and α ≈
−0.02135. Note that the upper-bound of Proposition 9 is by no means sharp, this comes from

the 3
n
2−kU

(∑nI
j=0

(nIj)(n−nIw−j)
2

(nw)
2
2j

)
term which is a very crude upper-bound which is given here to

avoid more complicated terms. It is straightforward to come up with a much sharper bound by
improving this part of the upper-bound.

24 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

The proof of this proposition relies among other things on the following variation of the left-over
hash lemma (see [BDK+11]) that is adapted to our case: here the hash function to which we apply
the left-over hash lemma is defined as h(e) = eHᵀ

pk. Functions h do not form a universal family
of hash functions (essentially because the distribution of the Hpk’s is not the uniform distribution

over F(n−k)×n
3). However in our case we can still bound ε by a direct computation.

Lemma 3. Consider a finite family H = (hi)i∈I of functions from a finite set E to a finite set
F . Denote by ε the bias of the collision probability, i.e. the quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F |
(1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly at random in E. Let
U be the uniform distribution over F and D(h) be the distribution of the outputs h(e) when e is
chosen uniformly at random in E. We have

Eh (ρ(D(h),U)) ≤ 1

2

√
ε.

This lemma is proved in Appendix §C.1. In order to use this lemma to bound the statistical
distance we are interested in, we used the following lemma.

Lemma 4. Assume that x and y are random vectors of Sw that are drawn uniformly at random
in this set. We have

PHpk,x,y

(
xH

ᵀ
pk = yH

ᵀ
pk

)
≤ 1

3n−k
(1 + ε) with ε given in Proposition 9.

Proof. By Proposition 3, the probability we are looking for is:

P
(
(xU − yU)H

ᵀ
U = 0 and (xV − yV)H

ᵀ
V = 0

)
where the probability is taken over HU ,HV ,x,y. To compute this probability we will use a stan-
dard result, namely the following lemma.

Lemma 5. Let y be a non-zero vector of Fn3 and s an arbitrary element in Fr3. We choose a matrix
H of size r × n uniformly at random among the set of r × n ternary matrices. In this case

P
(
yH

ᵀ
= s
)

=
1

3r

Proof. The coefficient of H at row i and column j is denoted by hij , whereas the coefficients of y
and s are denoted by yi and si respectively. The probability we are looking for is the probability
to have ∑

j

hijyj = si (33)

for all i in J1, rK. Since y is non zero, it has at least one non-zero coordinate. Without loss of
generality, we may assume that y1 = 1. We may rewrite (33) as hi1 =

∑
j>1 hijyj . This event

happens with probability 1
3 for a given i and with probability 1

3r on all r events simultaneously
due to the independence of the hij ’s. ut

This leads us to distinguish between the events:

Event 1: E1
4
={xU = yU and xV 6= yV } ; Event 2: E2

4
={xU 6= yU and xV = yV }

Event 3: E3
4
={xU 6= yU and xV 6= yV } ; Event 4: E4

4
={xU = yU and xV = yV }

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 25

Under these events we get thanks to Lemma 5 and k = kU + kV :

PHsk,x,y

(
xH

ᵀ
sk = yH

ᵀ
sk

)
=

4∑
i=1

PHsk

(
xH

ᵀ
sk = yH

ᵀ
sk|Ei

)
Px,y (Ei)

=
Px,y (E1)

3n/2−kV
+

Px,y (E2)

3n/2−kU
+

Px,y (E3)

3n−k
+ Px,y (E4)

≤ 1

3n−k

(
1 + 3n/2−kUP (E1) + 3n/2−kV P (E2) + 3n−kP(E4)

)
, (34)

where we used for the last inequality the trivial upper-bound P (E3) ≤ 1. Let us now upper-bound
(or compute) the probabilities of the events E1, E2 and E4. For E4, recall that from the definition
of normalized generalized (U,U + V)-codes, we clearly have

Px,y (E4) = P(x = y) =
1

2w
(
n
w

) . (35)

Let us now estimate the probability of E2 for which we first derive the following upper-bound:

P (E2) ≤ P (xV = yV)

To upper-bound this probability, we first observe that for any error e ∈ Fn/23 of weight j:

P(xV = e) = P (xV = e | |xV | = j)P(|xV | = j)

=
1

2j
(
n/2
j

)q1(j)

where qunif
1 (j) denotes P(|eunif

V | = j) and is computed in Proposition 5. From this we deduce that

P(xV = yV) =

n/2∑
j=0

∑
e∈Fn/23 :|e|=j

Px(xV = e)2

=

n/2∑
j=0

1

2j
(
n/2
j

)qunif
1 (j)2

which gives:

P (E2) ≤
n/2∑
j=0

qunif
1 (j)2

2j
(
n/2
j

) . (36)

Let us now estimate the probability of E1 for which we derive the following upper-bound:

Px,y(E1) ≤ P(xU = yU)

By definition of xU and yU , the event we are looking for is {d� (x1 − y1) = b� (x2 − y2)}
which is the same (up to a permutation of indices of x and y and by multiplying some of their
component by −1) as the case where we consider:

b1 = · · · = bnI = 0 ; bnI+1 = · · · = bn/2 = d1 = · · · = dn/2 = 1

where nI is the number of blocks of type I. This gives the following probability to upper-bound

P (∀i ∈ J1, nIK, (x1 − y1)(i) = 0,∀i ∈ JnI + 1, n/2K, (x1 − y1)(i) = (x2 − y2)(i))

26 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

We clearly have:

P(∀i ∈ J1, nIK, (x1 − y1)(i) = 0,∀i ∈ JnI + 1, n/2K, (x1 − y1)(i) = (x2 − y2)(i))

≤
∑

e∈FnI3

P (∀i ∈ J1, nIK,x1(i) = e(i))
2

≤
nI∑
j=0

∑
e′∈FnI3 :|e′|=j

P (∀i ∈ J1, nIK,x1(i) = e′(i))
2

=

nI∑
j=0

∑
e′∈FnI3 :|e′|=j

((
n−nI
w−j

)
2w−j(

n
w

)
2w

)2

=

nI∑
j=0

(
nI
j

)
2j

((
n−nI
w−j

)(
n
w

)
2j

)2

which gives:

P(E1) ≤
nI∑
j=0

(
nI
j

)
2−j

((
n−nI
w−j

)(
n
w

))2

(37)

Therefore, with Equations (34),(35), (36) and (37) we finally conclude the proof. ut

6 Security Proof

6.1 Basic Tools

Basic Definitions. A distinguisher between two distributions D0 and D1 over the same space E
is a randomized algorithm which takes as input an element of E that follows the distribution D0

or D1 and outputs b ∈ {0, 1}. It is characterized by its advantage:

AdvD
0,D1

(A)
4
=Pξ∼D0 (A(ξ) outputs 1)− Pξ∼D1 (A(ξ) outputs 1) .

Definition 7 (Computational Distance and Indistinguishability). The computational dis-
tance between two distributions D0 and D1 in time t is:

ρc
(
D0,D1

)
(t)
4
= max
|A|≤t

{
AdvD

0,D1

(A)
}

where |A| denotes the running time of A on its inputs.

For signature schemes, one of the strongest security notion is existential unforgeability under an
adaptive chosen message attack (EUF-CMA). In this model the adversary has access to all signa-
tures of its choice and its goal is to produce a valid forgery. A valid forgery is a message/signature
pair (m, σ) such that Vrfypk(m, σ) = 1 whereas the signature of m has never been requested.

Definition 8 (EUF-CMA Security). A forger A is a (t, qhash, qsign, ε)-adversary in EUF-CMA
against a signature scheme S if after at most qhash queries to the hash oracle, qsign signatures
queries and t working time, it outputs a valid forgery with probability at least ε. The EUF-CMA
success probability against S is:

SuccEUF-CMA
S (t, qhash, qsign)

4
= max (ε|it exists a (t, qhash, qsign, ε)-adversary) .

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 27

6.2 Code-Based Problems

We introduce the code-based problems that will be used in the security reduction.

Problem 3. [DOOM – Decoding One Out of Many] For H ∈ F(n−k)×n
3 , s1, · · · , sN ∈ Fn−k3 , integer

w, find e ∈ Fn3 and i ∈ J1, NK such that eHᵀ = si and |e| = w.

We will come back to the best known algorithms to solve this problem as a function of the
distance w in §7.1.

Definition 9 (One-Wayness of DOOM). We define the success of an algorithm A against
DOOM with the parameters n, k,N,w as:

Succn,k,N,wDOOM (A) = P
(
A (H, s1, · · · , sN) solution of DOOM

)
where H ←↩ F(n−k)×n

3 , si ←↩ Fn−k3 and the probability is taken over H, the si’s and the internal
coins of A. The computational success in time t of breaking DOOM with the parameters n, k,N,w
is then defined as:

Succn,k,N,wDOOM (t) = max
|A|≤t

{
Succn,k,N,wDOOM (A)

}
.

Another problem appears in the security proof: distinguish random codes from a code drawn
uniformly at random in the family used for public keys in the signature scheme. In what follows
Dpub denotes the distribution of public keys Hpk whereas Drand denotes the uniform distribution

over F(n−kU−kV)×n
3 .

6.3 EUF-CMA Security Proof

Theorem 2. (Security Reduction). Let qhash (resp. qsign) be the number of queries to the hash
(resp. signing) oracle. We assume that λ0 = λ+ 2 log2(qsign) where λ is the security parameter of
the signature scheme. We have in the random oracle model for all time t, tc = t + O

(
qhash · n2

)
and ε given in Proposition 9:

SuccEUF-CMA
SWave

(t, qhash, qsign) ≤ 2Succn,k,qhash,wDOOM (tc) + ρc (Drand,Dpub) (tc)

+ qsign

(
EHpk

(
ρ
(
DHpk
w ,Uw

))
+

√
ε

2
+
qhash + qsign

q2
sign × 2λ

)
+

1

2
(qhash + qsign)

√
ε+

1

2λ

where DHpk
w is the distribution sampled as follows:

– s←↩ Fn−k3 , r←↩ {0, 1}λ0 , e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
), output (eP, r).

with Dϕ,HU ,HV
the Algorithm 3 using Algorithms 4 and 5 and Uw is the uniform distribution over

Sw.

This theorem is proved in Appendix E.

7 Security Assumptions and Parameter Selection

Our scheme is secure under two security assumptions. One relates to the hardness decoding and
the other to the indistinguishability of generalized (U,U + V)-codes.

7.1 Message Attack – Hardness of Decoding

Here we are interested in the hardness of the DOOM problem as stated in Problem 3 for the case
q = 3 when the target weight w is large. This variant of the problem, including the multiple target
(DOOM) aspect, was recently investigated in [BCDL19]. This work adapted to this setting the best
generic decoding techniques [Dum91, Ste88, MMT11, BJMM12] which use the so-called PGE+SS
framework (“Partial Gaussian Elimination and Subset Sum”). It also uses Wagner’s generalized
birthday algorithm [Wag02] and the representation technique [HJ10].

28 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

7.2 Key Attack – Indistinguishability of generalized (U,U + V)-Codes

Here we are interested in the hardness of the problem to distinguish random codes from permuted
generalized normalized (U,U + V)-code. All the proofs of this subsection are in Appendix D.

A normalized generalized (U,U + V)-code where U and V are random seems very close to a
random linear code. There is for instance only a very slight difference between the weight distri-
bution of a random linear code and the weight distribution of a random normalized generalized
(U,U + V)-code of the same length and dimension. This slight difference happens for small and
large weights and is due to codewords where v = 0 or u = 0 which are of the form (a� u, c� u)
where u belongs to U or codewords of the form (b� v,d� v) where v belongs to V as shown by
the following proposition:

Proposition 11. Assume that we choose a normalized generalized (U,U + V)-code over F3 with
a number nI of linear combinations of type I by picking the parity-check matrices of U and V
uniformly at random among the ternary matrices of size (n/2− kU)× n/2 and (n/2− kV)× n/2
respectively. Let a(u,v)(z), a(u,0)(z) and a(0,v)(z) be the expected number of codewords of weight
z that are respectively in the normalized generalized (U,U + V)-code, of the form (a � u, c � u)
where u belongs to U and of the form (b � v,d � v) where v belongs to V . These numbers are
given for even z in J0, nK by

a(u,0)(z) =

(
n/2
z/2

)
2z/2

3n/2−kU
; a(0,v)(z) =

1

3n/2−kV

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(u,0)(z)+a(0,v)(z)+
1

3n−kU−kV

(nz
)

2z −
(
n/2

z/2

)
2z/2 −

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


and for odd z ∈ J0, nK by

a(u,0)(z) = 0 ; a(0,v)(z) =
1

3n/2−kV

z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(0,v)(z) +
1

3n−kU−kV

(nz
)

2z −
z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


On the other hand, when we choose a linear code of length n over F3 with a random parity-check
matrix of size (n − kU − kV) × n chosen uniformly at random, then the expected number a(z) of
codewords of weight z > 0 is given by

a(z) =

(
n
z

)
2z

3n−kU−kV
.

We have plotted in Figure 5 the normalized logarithm of the density of codewords of the form

(a � u, c � u) and (b � v,d � v) of relative even weight x
4
= z

n against x in the case where U is

of rate kU
n/2 = 0.7, V is of rate kV

n/2 = 0.3 and nI
n/2 = 1

2 . These two relative densities are defined

respectively by

αu(z/n)
4
=

log2(a(u,0)(z)/a(u,v)(z))

n
; αv(z/n)

4
=

log2(a(0,v)(z)/a(u,v)(z))

n

We see that for a relative weight z/n below approximately 0.26 almost all the codewords are of
the form (a� u, c� u).

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 29

Fig. 5. αu(z/n) and αv(z/n) against x
4
= z

n
.

Since the weight distribution is invariant by permuting the positions, this slight difference also
survives in the permuted version of the normalized generalized (U,U + V)-code. These considera-
tions lead to the best attack we have found for recovering the structure of a permuted normalized
generalized (U,U + V)-code. It consists in applying known algorithms aiming at recovering low
weight codewords in a linear code. We run such an algorithm until getting at some point either a
permuted (a� u, c� u) codeword where u is in U or a permuted (b� v,d� v) codeword where
v belongs to V . The rationale behind this algorithm is that the density of codewords of the form
(a� u, c� u) or (b� v,d� v) is bigger when the weight of the codeword gets smaller.

Once we have such a codeword we can bootstrap from there very similarly to what has been
done in [OT11, Subs. 4.4]. Note that this attack is actually very close in spirit to the attack that
was devised on the KKS signature scheme [OT11]. In essence, the attack against the KKS scheme
really amounts to recover the support of the V code. The difference with the KKS scheme is that
the support of V is much bigger in our case. As explained in the conclusion of [OT11] the attack
against the KKS scheme has in essence an exponential complexity. This exponent becomes really
prohibitive in our case when the parameters of U and V are chosen appropriately as we will now
explain. Let us first introduce the following notation that will be useful in the following.

Punctured Code. For a subset I ⊂ J1, nK and a code C of length n, we denote by PuncI(C),
the code C punctured in I, namely {cĪ = (cj)j∈J1,nK\I : c ∈ C}. In other words, the set of vectors
obtained by deleting in the codewords of C the positions that belong to I.

Recovering the U Code up to Permutation. We consider here the permuted code

U ′
4
=(a� U, c� U)P = {(a� u, c� u)P : u ∈ U}.

The attack in this case consists in recovering a basis of U ′. Once this is done, it is easy to recover
the U code up to permutation by matching the pairs of coordinates which are either always equal
or always sum to 0 in U ′. The basic algorithm for recovering the code U ′ is given in Algorithm 6.

It uses other auxiliary functions

– Codewords(PuncI(Cpk), p) which computes all (or a big fraction of) codewords of weight p of
the punctured public code PuncI(Cpk). All modern [Dum91, FS09, MMT11, BJMM12, MO15]
algorithms for decoding linear codes perform such a task in their inner loop.

– Complete(x, I, Cpk) which computes the codeword c in Cpk such that its restriction outside
I is equal to x.

– CheckU(x) which checks whether x belongs to U ′.

30 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Algorithm 6 ComputeU: algorithm that computes a set of independent elements in U ′.

Parameters: (i) ` : small integer (typically ` 6 40),
(ii) p : very small integer (typically 1 6 p 6 10).
Input: (i) Cpk the public code used for verifying signatures.
(ii) N a certain number of iterations
Output: an independent set of elements in U ′

1: function ComputeU(Cpk,N)
2: for i = 1, . . . , N do
3: B ← ∅
4: Choose a set I ⊂ J1, nK of size n− k − ` uniformly at random
5: L ← Codewords(PuncI(Cpk), p)
6: for all x ∈ L do
7: x← Complete(x, I, Cpk)
8: if CheckU(x) then
9: add x to B if x /∈< B >

10: return B

Choosing N Appropriately. Let us first analyse how we have to choose N such that Compu-
teU returns Ω(1) elements. This is essentially the analysis which can be found in [OT11, §5.2].

Proposition 12. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteU adds elements to the list B is lower-bounded by

Psucc ≥
n/2∑
z=0

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) f

((
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU)

)
(38)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. Algorithm 6 returns a non zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Complexity of Recovering a Permuted Version of U . The complexity of a call to Compu-
teU can be estimated as follows. We denote the complexity of computing the list of codewords
of weight p in a code of length k + ` and dimension k by C1(p, k, `). It depends on the particu-
lar algorithm used here. For more details see [Dum91, FS09, MMT11, BJMM12, MO15]. This is
the complexity of the call Codewords(PuncI(Cpk), p) in Step 5 in Algorithm 6. The complexity
of ComputeU and hence the complexity of recovering a permuted version of U is clearly lower

bounded by Ω
(
C1(p,k,`)
Psucc

)
. It turns out that the whole complexity of recovering a permuted version

of U is actually of this order, namely Θ
(
C1(p,k,`)
Psucc

)
. This can be done by a combination of two

techniques

– Once a non-zero element of U ′ has been identified, it is much easier to find other ones. This
uses one of the tricks for breaking the KKS scheme (see [OT11, Subs. 4.4]). The point is
the following: if we start again the procedure ComputeU, but this time by choosing a set I
on which we puncture the code which contains the support of the codeword that we already
found, then the number N of iterations that we have to perform until finding a new element
is negligible when compared to the original value of N .

– The call to CheckU can be implemented in such a way that the additional complexity coming
from all the calls to this function is of the same order as the N calls to Codewords. The
strategy to adopt depends on the values of the dimensions k and kU . In certain cases, it is
easy to detect such codewords since they have a typical weight that is significantly smaller
than the other codewords. In more complicated cases, we might have to combine a technique
checking first the weight of x, if it is above some prescribed threshold, we decide that it is not
in U ′, if it is below the threshold, we decide that it is a suspicious candidate and use then the

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 31

previous trick. We namely check whether the support of the codeword x can be used to find
other suspicious candidates much more quickly than performing N calls to CheckU.

To keep the length of this paper within some reasonable limit we avoid here giving the analysis of
those steps and we will just use the aforementioned lower bound on the complexity of recovering
a permuted version of U .

Recovering the V Code up to a Permutation We consider here the permuted code

V ′
4
=(b� V,d� V)P = {(b� v,d� v)P where v ∈ V }.

The attack in this case consists in recovering a basis of V ′. Once this is achieved, the support
Supp(V ′) of V ′ can easily be obtained. Recall that this is the set of positions for which there exists
at least one codeword of V ′ that is non-zero in this position. This allows to easily recover the
code V up to some permutation. The algorithm for recovering V ′ is the same as the algorithm for
recovering U ′. We call the associated function ComputeV though since they differ in the choice
for N . The analysis is slightly different indeed.

Choosing N Appropriately. As in the previous subsection let us analyse how we have to choose
N in order that ComputeV returns Ω(1) elements of V ′. We have in this case the following result.

Proposition 13. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteV adds elements to the list B is lower-bounded by

Psucc ≥
min(n−k−`,n−nI)∑

z=0

n/2−nI∑
m=0

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) bp/2c
max
i=0

f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV)

)
n/2−nI−m∑

j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. ComputeV returns a non-zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Complexity of Recovering a Permuted Version of V . As for recovering the permuted U

code, the complexity for recovering the permuted V is of order Ω
(
C1(p,k,`)
Psucc

)
.

Distinguishing a Generalized (U,U + V)-Code It is not clear in the second case that from
the single knowledge of V ′ and a permuted version of V we are able to find a permutation of the
positions which gives to the whole code the structure of a generalized (U,U + V)-code. However
in both cases as single successful call to ComputeV (resp. ComputeU) is really distinguishing
the code from a random code of the same length and dimension. In other words, we have a
distinguishing attack whose complexity is given by the following proposition

Proposition 14. Algorithm 6 lead to a distinguishing attack whose complexity is given by

min

(
O

(
min
p,`

CU (p, `)

)
, O

(
min
p,`

CV (p, `)

))

CU (p, `)
4
=

C1(p, k, `)
n/2∑
z=0

(n/2z)(n/2−zk+`−2z)2k+`−2z

(n
k+`)

bp/2c
max
i=0

f

(
(k+`−2z
p−2i)(zi)2p−i

3max(0,k+`−z−kU)

) (39)

32 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

CV (p, `)
4
=

C1(p, k, `)∑
I

(
n
2
−nI
m)(nI

n−k−`−z)
(n
n−k−`)

bp/2c
max
i=0

f

(
(n−nI−z−2m

p−2i)(mi)2p−i

3max(0,n−nI−z−m−kV)

)(
n/2−nI−m

j

)
2j
(

nI
z−n+2nI+2m+j

)
.

(40)

where C1(p, k, `) is the the complexity of a computing a constant fraction (say half of them)
of the codewords of weight p in a code of length k + ` and dimension k and f is the function

f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. The sum in the denominator of (40) is over the domain

I 4={(z,m, j) | 0 ≤ z ≤ min(n− k − `, n− nI), 0 ≤ m ≤ n/2− nI , 0 ≤ j ≤ n/2− nI −m}.

We explain in Appendices §D.3 and §D.4 how to estimate CU and CV .

7.3 Parameter Selection

With proper rejection sampling, the security of Wave provably reduces to the two previous hard
computational problems. The best known solvers, presented above, both have an exponential
complexity. For a given set of system parameters (n,w, kU , kV , k = kU + kV), their asymptotic
complexities can be expressed as

– for the message attack, 2cMn(1+o(1)) where cM is a function of w/n and k/n
– for the key attack, 2cKn(1+o(1)) where cK is a function of kU/n and kV /n

Using the relations of §4.4, both cM and cK can be expressed as functions of the code rate R = k/n
and of the parameter α. Minimizing the public key size under the constraint cM (R,α) = cK(R,α),
we obtain

R = 0.660, α = 0.574635, cM ≈ cK ≈ 0.015074.

For λ bits of (classical) security we get (K the key size in bits):

n =
λ

0.015074
= 66.34λ, w = 0.9396n, kU = 0.8379

n

2
, kV = 0.4821

n

2
, K = 1565.0λ2

To reach 128 bits of security we obtain n = 8492, w = 7980, kU = 3558, kV = 2047 for a public
key size of 3.2 megabytes. We also checked that the other terms in the security reduction do not
interfere here. For instance, we recommend to choose the vectors a,b, c,d uniformly at random
among the choices that give a ϕ that is UV -normalized, meaning that for all i in J1, n/2K we should
have aidi− bici = 1 and aici 6= 0. We reject choices that lead to a number nI of V blocks of type I
that are not close to their expected value E(nI) = n/6. By doing so we can control the parameter

ε giving an upper-bound on EHpk

(
ρ(DHpk

w ,U)
)

. In the case nI = n/6 this upper-bound is of order

≈ 2−177.

7.4 Implementation

The scheme was implemented in C as a proof of concept3. For the parameters (n,w) = (8492, 7980),
one signature is produced in about 0.3 seconds4. The parameters of the generalized Laplace distri-
butions are selected as described in §4.3. The Laplace distributions themselves are precomputed
with 24 significants bits, one for V and, for U , one for each possible value of t. The corresponding
rejection vectors are precomputed as well with 128 significant bits. In total, precomputed data
amounts to 1.8 megabytes.

3 http://wave.inria.fr
4 using a single core of an Intel c© Xeon c© E3-1240 v5 clocked at 3.5GHz

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 33

8 Concluding Remarks and Further Work

We have presented Wave the first code-based “hash-and-sign” signature scheme which strictly
follows the GPV strategy [GPV08]. This strategy provides a very high level of security, but because
of the multiple constraints it imposes, very few schemes managed to comply to it. For instance,
only one such scheme based on hard lattice problems [FHK+17] was proposed to the recent NIST
standardization effort. Our scheme is secure under two assumptions from coding theory. Both of
those assumptions relate closely to hard decoding problems. Using rejection sampling, we have
shown how to efficiently avoid key leakage from any number of signatures. The main purpose of
our work was to propose this new scheme and assess its security. Still, it has a few issues and
extensions that are of interest.

The Far Away Decoding Problem. The message security of Wave relates to the hardness of finding
a codeword far from a given word. A recent work [BCDL19] adapts the best ISD techniques for
low weight [MMT11, BJMM12] and goes even further with a higher order generalized birthday
algorithm [Wag02]. Interestingly enough, in the non-binary case, this work gives a worst case
exponent for the far away codeword that is significantly larger than the close codeword worst case
exponent. This seems to point to the fact that the far away codeword problem may even be more
difficult to solve than the close codeword problem. This raises the issue of obtaining code-based
primitives with better parameters that build upon the far away codeword rather than on the usual
close codeword problem.

Distinguishability. Deciding whether a matrix is a parity check matrix of a generalized (U,U +V)-
code is also a new problem. As shown in [DST17b] it is hard in the worst case since the problem
is NP-complete. In the binary case, (U,U + V) codes have a large hull dimension for some set
of parameters which are precisely those used in [DST17b]. In the ternary case the normalized
generalized (U,U+V)-codes do not suffer from this flaw. The freedom of the choice on vectors a,b, c
and d is very likely to make the distinguishing problem much harder for generalized (U,U + V)-
codes than for plain (U,U + V)-codes. Coming up with non-metric based distinguishers in the
generalized case seems a tantalizing problem here.

On the Tightness of the Security Reduction. It could be argued that one of the reasons of why we
have a tight security-reduction comes from the fact that we reduce to the multiple instances version
of the decoding problem, namely DOOM, instead of the decoding problem itself. This is true to
some extent, however this problem is as natural as the decoding problem itself. It has already
been studied in some depth [Sen11] and the decoding techniques for linear codes have a natural
extension to DOOM as noticed in [Sen11]. We also note that with our approach, where a message
has many possible signatures, we avoid the tightness impossibility results given in [BJLS16] for
instance.

Rejection Sampling. Rejection sampling in our algorithm is relatively unobtrusive: a rejection every
few signatures with a crude tuning of the decoder. We believe that it can be further improved.
Our decoding has two steps. Each step is parametrized by a weight distribution which conditions
the output weight distribution. We believe that we can tune those distributions to reduce the
probability of rejection to an arbitrarily small value. This task requires a better understanding of
the distributions involved. This could offer an interesting trade-off in which the designer/signer
would have to precompute and store a set of distributions but in exchange would produce a signing
algorithm that emulates a uniform distribution without rejection sampling.

Improving Parameters. In order to prove that the distribution of the output of the signing algorithm
is almost the uniform distribution over the words of the same length and weight in a very strong
sense (i.e. the statistical distance between both distributions should be negligible) we chose to
degrade a little bit the signing algorithm. This was achieved by excluding d positions from the
information sets. In this case, the distribution of sets that can be completed in d positions to give
an information set is almost the same as the uniform distribution over the sets of such size. We
use this phenomenon to upper-bound the aforementioned statistical distance (see Theorem 3 in
Section 4). However, this is a very crude approach and the upper-bound we obtain in this way is
extremely pessimistic. We conjecture that the statistical distance is still negligible even in the case

34 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

d = 0. Choosing d = 0 allows to reduce the block size by more than 10%. For this reason, proving
such a conjecture would be an interesting task.

Acknowledgements

We are grateful to Damien Stehlé for his constructive help, in particular for clarifying the link
between our definition of “preimage sampleable on average” and the GPV framework [GPV08].
We are also indebted to André Chailloux, Léo Ducas and Thomas Prest for their early interest,
insightful suggestions, and unwavering support.

References

[ABB+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward Eaton, Gus
Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in the quantum random oracle
model. In Post-Quantum Cryptography 2017, volume 10346 of LNCS, pages 143–162, Utrecht,
The Netherlands, June 2017. Springer.

[ABG+18] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Duran-
dal: a rank metric based signature scheme. IACR Cryptology ePrint Archive, 2018.

[Bar97] Alexander Barg. Complexity issues in coding theory. Electronic Colloquium on Computational
Complexity, October 1997.

[BBC+13] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Davide Schipani.
Using LDGM codes and sparse syndromes to achieve digital signatures. In Post-Quantum
Cryptography 2013, volume 7932 of LNCS, pages 1–15. Springer, 2013.

[BCDL19] Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu Lequesne. Ternary
syndrome decoding with large weights. preprint, February 2019. arXiv:1903.07464, to appear
in the proceedings of SAC 2019.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-time code-based
cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware
and Embedded Systems - CHES 2013, volume 8086 of LNCS, pages 250–272. Springer, 2013.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 1–20, 2011.

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight crypto-
graphic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
- EUROCRYPT 2016, volume 9666 of LNCS, pages 273–304. Springer, 2016.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary
linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances in
Cryptology - EUROCRYPT 2012, LNCS. Springer, 2012.

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for
LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
2018, volume 10786 of LNCS, pages 25–46, Fort Lauderdale, FL, USA, April 2018. Springer.

[BMS11] Paulo S.L.M Barreto, Rafael Misoczki, and Marcos A. Jr. Simplicio. One-time signature scheme
from syndrome decoding over generic error-correcting codes. Journal of Systems and Software,
84(2):198–204, 2011.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how to sign with
rsa and rabin. In Advances in Cryptology - EUROCRYPT ’96, volume 1070 of LNCS, pages
399–416. Springer, 1996.

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a McEliece-based
digital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of
LNCS, pages 157–174, Gold Coast, Australia, 2001. Springer.

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and
Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2,
2002, Proceedings, pages 272–287, 2002.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 35

[COV07] Pierre-Louis Cayrel, Ayoub Otmani, and Damien Vergnaud. On Kabatianskii-Krouk-Smeets
signatures. In Arithmetic of Finite Fields - WAIFI 2007, volume 4547 of LNCS, pages 237–251,
Madrid, Spain, June 21–22 2007.

[DST17a] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. A new signature scheme
based on (U |U + V) codes. preprint, June 2017. arXiv:1706.08065v1.

[DST17b] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. The problem with the surf
scheme. preprint, November 2017. arXiv:1706.08065.

[DT17] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. preprint, January 2017.
arXiv:1701.07416.

[DT18] Thomas Debris-Alazard and Jean-Pierre Tillich. Two attacks on rank metric code-based
schemes: Ranksign and an identity-based-encryption scheme. In Advances in Cryptology -
ASIACRYPT 2018, volume 11272 of LNCS, pages 62–92, Brisbane, Australia, December 2018.
Springer.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish
Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[FGO+11] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. A distinguisher for high rate McEliece cryptosystems. In Proc. IEEE Inf. Theory
Workshop- ITW 2011, pages 282–286, Paraty, Brasil, October 2011.

[FHK+17] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:
Fast-Fourier Lattice-based Compact Signatures over NTRU. First round submission to the
NIST post-quantum cryptography call, November 2017.

[Fin10] Matthieu Finiasz. Parallel-CFS - strengthening the CFS McEliece-based signature scheme.
In Selected Areas in Cryptography 17th International Workshop, 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, revised selected papers, volume 6544 of LNCS, pages 159–170.
Springer, 2010.

[FRX+17] Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiyomoto, Kirill Morozov, and
Tsuyoshi Takagi. RaCoSS (random code-based signature scheme). First round submission to
the NIST post-quantum cryptography call, November 2017.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryp-
tosystems. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of
LNCS, pages 88–105. Springer, 2009.

[GM02] Shafi Goldwasser and Daniele Micciancio. Complexity of Lattice Problems: A Cryptographic
Perspective, volume 671 of Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, March 2002.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 197–206. ACM, 2008.

[GRSZ14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. New results for rank-based
cryptography. In Progress in Cryptology - AFRICACRYPT 2014, volume 8469 of LNCS, pages
1–12, 2014.

[GS12] Philippe Gaborit and Julien Schrek. Efficient code-based one-time signature from automor-
phism groups with syndrome compatibility. In Proc. IEEE Int. Symposium Inf. Theory -
ISIT 2012, pages 1982–1986, Cambridge, MA, USA, July 2012.

[GSJB14] Danilo Gligoroski, Simona Samardjiska, H̊akon Jacobsen, and Sergey Bezzateev. McEliece in
the world of Escher. IACR Cryptology ePrint Archive, Report2014/360, 2014. http://eprint.
iacr.org/.

[HBPL18] Andreas Huelsing, Daniel J. Bernstein, Lorenz Panny, and Tanja Lange. Official NIST com-
ments made for RaCoSS, 2018. Official NIST comments made for RaCoSS.

[HJ10] Nicholas Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110 of LNCS.
Sringer, 2010.

[JJ02] Thomas Johansson and Fredrik Jönsson. On the complexity of some cryptographic problems
based on the general decoding problem. IEEE Trans. Inform. Theory, 48(10):2669–2678, Oc-
tober 2002.

[KKS97] Gregory Kabatianskii, Evgenii Krouk, and Ben. J. M. Smeets. A digital signature scheme based
on random error-correcting codes. In IMA Int. Conf., volume 1355 of LNCS, pages 161–167.
Springer, 1997.

36 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

[KKS05] Gregory Kabatianskii, Evgenii Krouk, and Sergei Semenov. Error Correcting Coding and Se-
curity for Data Networks: Analysis of the Superchannel Concept. John Wiley & Sons, 2005.

[LKLN17] Wijik Lee, Young-Sik Kim, Yong-Woo Lee, and Jong-Seon No. Post quantum signature scheme
based on modified Reed-Muller code pqsigRM. First round submission to the NIST post-
quantum cryptography call, November 2017.

[LS12] Gregory Landais and Nicolas Sendrier. Implementing CFS. In Progress in Cryptology - IN-
DOCRYPT 2012, volume 7668 of LNCS, pages 474–488. Springer, 2012.

[Lyu09a] V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signa-
tures. In ASIACRYPT, 2009.

[Lyu09b] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based
signatures. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 598–616. Springer, 2009.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in
O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decod-
ing of binary linear codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, volume 9056 of LNCS, pages 203–228. Springer, 2015.

[MP16] Dustin Moody and Ray A. Perlner. Vulnerabilities of ”McEliece in the World of Escher”. In
Post-Quantum Cryptography 2016, LNCS. Springer, 2016.

[OT11] Ayoub Otmani and Jean-Pierre Tillich. An efficient attack on all concrete KKS proposals. In
Post-Quantum Cryptography 2011, volume 7071 of LNCS, pages 98–116, 2011.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

[PT16] Aurélie Phesso and Jean-Pierre Tillich. An efficient attack on a code-based signature scheme.
In Post-Quantum Cryptography 2016, volume 9606 of LNCS, pages 86–103, Fukuoka, Japan,
February 2016. Springer.

[S19] Personal communication with Damien Stehlé.
[Sen11] Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptography 2011, volume

7071 of LNCS, pages 51–67, 2011.
[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR

Cryptology ePrint Archive, 2004:332, 2004.
[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolf-

mann, editors, Coding Theory and Applications, volume 388 of LNCS, pages 106–113. Springer,
1988.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In D.R. Stinson,
editor, Advances in Cryptology - CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer,
1993.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, Advances in Cryptology
- CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, 2002.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 37

A Some Useful Distributions

The purpose of this section is to prove Propositions 5 and 6 which give the distributions qunif
1 , qunif

2 , q1

and q2.

A.1 Proof of Proposition 5

Let us first recall the definitions of qunif
1 and qunif

2 . We have

qunif
1 (i) = P(|eunif

V | = i) ; qunif
2 (s, t) = P(m1(eunif) = s | |eV | = t)

where

– eunif is a random vector drawn uniformly at random among the vectors of weight w in Fn3
– eunif

V

4
=−c � e1 + a � e2 with e1 and e2 being vectors in Fn/23 such that eunif = (e1, e2) and

a,b, c and d are vectors of Fn/23 verifying the following equations

∀i ∈ J1, n/2K, aidi − bici = 1 ; aici 6= 0 (41)

– m1(x)
4
= |{1 ≤ i ≤ n/2 : |(xi, xi+n/2)| = 1}|.

Let us prove now Proposition 5:

Proposition 5. Let n be an even integer, w ≤ n, i, t ≤ n/2 and s ≤ t be integers. We have,

qunif
1 (i) =

(
n/2
i

)(
n
w

)
2w/2

i∑
p=0

w+p≡0 mod 2

(
i

p

)(
n/2− i

(w + p)/2− i

)
23p/2 (16)

qunif
2 (s, t) =


(ts)(

n/2−t
w+s

2
−t)2

3s
2∑

p
(tp)(

n/2−t
w+p

2
−t)2

3p
2

if w + s ≡ 0 mod 2.

0 else

(17)

Proof. Let us first compute the distribution qunif
1 . The following lemma will be useful:

Lemma 6. |e2 − e1| ∼ |eunif
V |.

Proof (Proof of Lemma 6). Let e′1
4
= c�e1, e′2

4
= a�e2, e′

4
=(e′1, e

′
2). e′ is clearly a random vector

that is uniformly distributed over the words of weight w in Fn3 because all the entries of a and c are
non-zero. Since eunif

V = −c� e1 + a� e2 = e′2 − e′1 we deduce that |e2 − e1| and |eunif
V | = |e′2 − e′1|

have the same distribution. ut

From this lemma, to compute the distribution q1 it is enough to determine for all i in J1, n/2K,
P(|e2 − e1| = i) where (e1, e2) is uniformly distributed over the words of weight w. Let us define
the following quantities:

p
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}}| (42)

r
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1,−1), (−1, 1)}}| (43)

l
4
= |{1 ≤ i ≤ n/2 : (e1(i), e2(i)) ∈ {(1, 1), (−1,−1)}}| (44)

We have:

w = |e| = 2l + 2r + p ; j = |e1 − e2| = p+ r

38 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

We have therefore that p ≡ w mod 2, r = j − p and l = (w + p)/2 − j. By summing over
all possibilities for p, it follows that the number of errors e = (e1, e2) of weight w such that
|e1 − e2| = j is given by

j∑
p=0

p≡w mod 2

(
n/2

j

)(
j

p

)
4p2j−p

(
n/2− j
w+p

2 − j

)
2
w+p

2 −j =

j∑
p=0

p≡w mod 2

(
n/2

j

)(
j

p

)(
n/2− j
w+p

2 − j

)
2
w+3p

2

which concludes the computation of qunif
1 . Let us now compute the distribution qunif

2 .

Lemma 7. Let n′(s, t) be the number of words eunif = (e1, e2) of weight w that verify |e2−e1| = t
and m1(eunif) = s. We have,

n′(s, t) =

{(
n/2
t

)
2w/2

(
t
s

)
23s/2

(n/2−t
w+s

2 −t

)
if s ≡ w mod 2

0 else.

Proof. We use the quantities defined in Equations (42),(43) and (44). Note that m1(eunif) = p.
For words which define n′(s, t) we have p = s, r = t − p = t − s and l = w+p

2 − t = w+s
2 − t.

Moreover the constraint p ≡ w mod 2 translates into s ≡ w mod 2. ut

This concludes the proof by noticing that

P(m1(eunif) = s | |eV | = t) =
n′(s, t)∑
p n
′(p, t)

.

A.2 Proof of Proposition 6

Our aim here is to prove Proposition 6. It gives the weight distribution of DecodeV(·) as q1

and m1(·)-distribution of DecodeU(·) as q2. Let us recall that algorithms DecodeV(·) and
DecodeU(·) are given in Subsection 4.2. We are now ready to prove:

Proposition 6. Let n be an even integer, w ≤ n, i, t, kU ≤ n/2 and s ≤ t be integers. Let d be

an integer, k′V
4
= kV − d and k′U

4
= kU − d. Let XV (resp. Xt

U) be a random variable distributed
according to DV (resp. DtU). We have,

q1(i) =

i∑
t=0

(
n/2−k′V
i−t

)
2i−t

3n/2−k
′
V

P(XV = t) (18)

q2(s, t) =


∑

t+k′U−n/2≤k6=0≤t

k0
4
= k′U−k6=0

(t−k 6=0
s)(

n/2−t−k0
w+s

2
−t−k0

)2
3s
2∑

p
(t−k6=0

p)(
n/2−t−k0
w+p

2
−t−k0

)2
3p
2

P(Xt
U = k 6=0) if w ≡ s mod 2.

0 else

(19)

Proof. The computation of q1 easily follows from the fact that |eV | (the output of Prange Algo-
rithm, Line 4 in Algorithm 4) can be written (Proposition 2 in Subsection 3.2) as S + T where S
and T are independent random variables such that S denotes the weight of a vector that is uni-

formly distributed over Fn/2−k
′
V

3 and T is distributed according to DV (in the Prange algorithm
used in DecodeV(·) we uniformly picked d symbols in the information set). To compute q2 let
us count the number n(s, t, k 6=0) of different eU that can be output by DecodeU(·) for a given
value of eV (which is supposed to be of weight t) and J (included in an information set I) that is
assumed to intersect the support of eV in exactly k6=0 positions and that are such that m1(e) = s.
We can partition J1, n/2K as

J1, n/2K = J ∪ I1 ∪ I2

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 39

where I1 is the set of positions that are not in J but in the support of eV , whereas I2 is the set
of positions that are neither in J nor in the support of eV . By assumption on eV we know that
|I1| = t− k 6=0. Furthermore |J | = kU − d and I2 = n/2− |J | − |I1| = n/2− kU + d− (t− k6=0) =

n/2− t− k0 where k0
4
= kU − d− k 6=0. For i ∈ {0, 1, 2} we let

Ji
4
={i ∈ J1, n/2K : |(ei, ei+n/2)| = i} ; ji

4
= |Ji|.

We necessarily have

j1 = s ; n− w = j1 + 2j0.

We derive from these equalities that

j0 =
n− w − s

2

Now we also have

J1 ⊆ I1 ; J0 ⊆ I2.

We can choose the j1 = s positions of J1 as we wish among the t− k 6=0 positions of I1. Similarly
we may choose the j0 = n−w−s

2 positions of J0 as we wish among the n/2− t− k0 positions of I2.
Vector eU is necessarily fixed over all positions in J by choice of the Prange algorithm, it is also
necessarily fixed in the positions I1 \ J1 and J0. For positions i in J1 ∪ (I2 \ J0) there are two
possibilities for the value eU (i). This implies that

n(s, t, k 6=0) =

(
t− k6=0

s

)(
n/2− t− k0

n−w−s
2

)
2s2n/2−t−k0−

n−w−s
2

=

(
t− k6=0

s

)(
n/2− t− k0

n−w−s
2

)
2

3s
2 +w

2 −t−k0 .

We therefore have

P(m1(e) = s | |eV | = t,J ∩ Supp(eV) = k 6=0) =
n(s, t, k 6=0)∑
p n(s, t, p)

=

(
t−k 6=0

s

)(n/2−t−k0
n−w−s

2

)
2

3s
2 +w

2 −t−k0∑
p

(
t−k6=0

p

)(n/2−t−k0
n−w−p

2

)
2

3p
2 +w

2 −t−k0

=

(
t−k 6=0

s

)(n/2−t−k0
n−w−s

2

)
2

3s
2∑

p

(
t−k6=0

p

)(n/2−t−k0
n−w−p

2

)
2

3p
2

.

This concludes the proof by summing over all possibilities for k 6=0.

B A refinement of Theorem 1

The following theorem strengthens significantly Theorem 1.

Theorem 3. Let e be the output of Algorithm 3 based on Algorithms 4,5 and eunif be a uniformly
distributed error of weight w. We have

P
(
ρ(e, eunif) >

(n/2 + 1)(n/2− kU + d+ 1) + 1

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)
+ 3d

∑
t,`

2 + 4n3nγ0/2(
n/2
t

)(
t
`

)(
n/2−t
k−d−`

)
(αt,` − 1)2

40 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

where the probability is taken over the choice of matrices HV and HU with,

γ
4
= min
x>0

(
(1−RV + δ) log3

(
1 + 3x

x

)
+ (RV − δ) log3(1 + x)

)
− 1 +RV

γ1(π)
4
= inf
x>0

π log3(1 + 3x) + (τ − π) log3(1 + x)− (τ − λ) log3(x)

γ2(π)
4
= inf
x>0

(1−R+ δ − π) log3(1 + 3x) + (R− δ + π − τ) log3(1 + x)− (1−R+ δ − τ + λ) log3(x)

γ0
4
= R− 1 + sup

π

{
γ1(π) + γ2(π) + (1−R+ δ)h3

(
π

1−R+ δ

)
+ (R− δ)h3

(
τ − π
R− δ

)}
.

αt,`
4
=

2

P (k6=0 = ` | |eV | = t)P(|eunif
V | = t)

where,

δ =
d

n/2
, RV

4
=
kV
n/2

, RU
4
=
kU
n/2

, τ
4
=

t

n/2
, λ

4
=

`

n/2

and,

h3(x)
4
=−(1− x) log3(1− x)− x log3

(x
2

)
.

Remark 6. For the set of parameters of §7.3 (with d = 81), we have P
(
ρ(e, eunif) > 1

2106

)
< 2−600.

The quantities

ρ
(
JHV ; Junif

)
;
∑
xV ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P
(
k 6=0 = ` | eunif

V = xV
)
P
(
eunif
V = xV

)
are functions of HV and HU . We are going to show that their probabilities over HV and HU to
be greater than 1/3d is negligible. We will first need the following lemma .

Lemma 8. Let d and m be two positive integers with d < m and let M be a matrix chosen

uniformly at random in F(m−d)×m
3 . The probability that M is of rank < m − d is upper-bounded

by 1
2·3d .

Proof. Let M1, . . . ,Mm−d be the rows of M. Let Vi be the vector space spanned by M1, . . . ,Mi. If
M is not of full rank then necessarily for at least one i ∈ J1,m−dK we have dimVi = dimVi−1 = i−1

where V−1
4
={0}.The probability P that M is not of full rank is therefore upper-bounded by

P ≤
m−d∑
i=1

P(dimVi = dimVi−1 = i− 1)

≤
m−d∑
i=1

P(dimVi = i− 1|dimVi−1 = i− 1)

=

m−d∑
i=1

1

3m+1−i

≤ 1

2 · 3d
.

ut

The following lemmas will be useful too.

Lemma 9. Let X and Y be two Bernoulli variables that are independent conditioned on an event

E. Let ε
4
=P(E). Then

E(XY)− E(X)E(Y) ≤ 2ε.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 41

Proof. We have

E(XY) = P(X = 1, Y = 1|E)P(E) + P(X = 1, Y = 1|E)P(E)

≤ P(X = 1|E)P(Y = 1|E)(1− ε) + ε.

On the other hand

E(X)E(Y) ≥ P(X = 1|E)P(Y = 1|E)(1− ε)2.

Using both bounds yields

E(XY)− E(X)E(Y) ≤ P (X = 1|E)P(Y = 1|E)(1− ε− (1− ε)2) + ε

≤ 2ε.

ut

Lemma 10. Let s = σn, t = τn and w = ωn be three positive integers such that w ≤ min(s, t).
We have

w∑
i=0

(
s

i

)(
t

w − i

)
3i ≤ 3γn

where

γ
4
= inf
x>0

σ log3(1 + 3x) + τ log3(1 + x)− ω log3(x).

Proof. Let

a(x)
4
=

s∑
j=0

(
s

j

)
(3x)j

= (1 + 3x)s

b(x)
4
=

t∑
j=0

(
t

j

)
xj

= (1 + x)t

c(x)
4
= a(x)b(x)

We also define the coeffients ck by c(x) =
∑
k ckt

k. Notice that

w∑
i=0

(
s

i

)(
t

w − i

)
3i = cw

≤ inf
x>0

c(x)

xw

= inf
x>0

a(x)b(x)

xw

= inf
x>0

(1 + 3x)s(1 + x)t

xw

= inf
x>0

3(σ log3(1+3x)+τ log3(1+x)−ω log3(x))n

= 3γn.

ut

42 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Lemma 11. Let H be a matrix chosen uniformly at random in F(n/2−k)×n/2
3 and let d be an integer

in the range J1, kK. We define R
4
= k/(n/2) and δ = d/(n/2). Let Junif be uniformly distributed over

the subsets of J1, n/2K of size kV − d whereas JH is uniformly distributed over the same subsets
that are good for H. We have

P
(
ρ(Junif; JH) >

1

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)
where

γ
4
= min
x>0

(
(1−R+ δ) log3

(
1 + 3x

x

)
+ (R− δ) log3(1 + x)

)
− 1 +R

Proof. Recall that the statistical distance between the uniform distribution over J1, sK and the
uniform distribution over J1, tK (with t ≥ s) is equal to t−s

t . Let N be the number of subsets of
J1, n/2K of size k − d that are bad for H. By using the previous remark, we obtain

ρ(Junif; JH) =
N(
n/2
k−d
) . (45)

Let us index from 1 to
(
n/2
k−d
)

the subsets of size k − d of J1, n/2K and let Xi be the indicator of
the event “the subset of index i is bad”. We have

N =

(n/2k−d)∑
i=1

Xi. (46)

We have by using Bienaymé-Tchebychev’s inequality, that for any positive integer t:

P(N > E(N) + t) ≤Var(N)

t2

=

∑
i Var(Xi) +

∑
i 6=j E(XiXj)− E(Xi)E(Xj)

t2

≤E(N)

t2
+

1

t2

∑
i6=j

E(XiXj)− E(Xi)E(Xj)

 (47)

where we use in the last line that Var(Xi) ≤ E(X2
i) and E(X2

i) = E(Xi). Let us now upper-
bound the second term of the inequality. We first define for any i 6= j the intersection of the
complementary of the sets indexed by i and j as Ei,j .

By definition of a bad set, if Ei,j = ∅ then Xi = 1 and Xj = 1 are independent events and

E(XiXj) = E(Xi)E(Xj). Otherwise, let ei,j
4
= |Ei,j | > 0. Observe that Xi and Xj are independent

conditioned on the event that HEi,j is of full rank. We can apply Lemma 9 and obtain for ei,j ≥ 1

E(XiXj)− E(Xi)E(Xj) ≤
1

3n/2−k−ei,j
(48)

Let us make the following computations by using (48):

∑
i 6=j

E(XiXj)− E(Xi)E(Xj) =
∑
i

n/2−k+d∑
e=1

∑
j:ei,j=e

E(XiXj)− E(Xi)E(Xj)

≤
∑
i

n/2−k+d∑
e=1

∑
j:ei,j=e

1

3n/2−k−ei,j

≤ 1

3n/2−k

(
n/2

k − d

) n/2−k+d∑
e=0

3e
(
n/2− k + d

e

)(
k − d

n/2− k + d− e

)
(49)

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 43

We finish the proof by using Lemma 10 with the sum that appears in the the last term and obtain

P(N > E(N) + t) ≤ E(N)

t2
+

1

t2

(
n/2

k − d

)
3γn/2

≤
(
n/2
k−d
)

2 · 3dt2
+

1

t2

(
n/2

k − d

)
3γn/2

where in the last inequality we used that E(N) ≤ (n/2k−d)
2·3d which is obtained thanks to Lemma 8.

Therefore, by choosing t =
(n/2k−d)
2·3d ,

P

(
N > E(N) +

(
n/2
k−d
)

2 · 3d

)
≤ 1(

n/2
k−d
) (2 · 3d + 4 · 32d+γn/2

)

But now as E(N) ≤ (n/2k−d)
2·3d ,

P

(
N >

(
n/2
k−d
)

3d

)
≤ 2(

n/2
k−d
) (3d + 2 · 32d+γn/2

)
from which we easily conclude the proof by using Equation (45). ut

Lemma 12. Let H be a matrix chosen uniformly at random in F(n/2−k)×n/2
3 . Let t ∈ J0, n/2K,

` ∈ J0, n/2K. Let R
4
= 2k

n , λ
4
= 2`

n , t
4
= 2t

n and

γ1(π)
4
= inf
x>0

π log3(1 + 3x) + (τ − π) log3(1 + x)− (τ − λ) log3(x)

γ2(π)
4
= inf
x>0

(1−R+ δ − π) log3(1 + 3x) + (R− δ + π − τ) log3(1 + x)− (1−R+ δ − τ + λ) log3(x)

γ0
4
= R− 1 + sup

π
γ1(π) + γ2(π) + (1−R+ δ)h3

(
π

1−R+ δ

)
+ (R− δ)h3

(
τ − π
R− δ

)
.

∆
4
=

(
n/2
t

)(
t
`

)(
n/2−t
k−d−`

)
2 · 3d

(α− 1).

where α is an arbitrary constant satisfying α > 1. We have,

P

 1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) >

α

2 · 3d

 ≤ 1

(α− 1)∆
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2.

where we used the same notation as in Proposition 7.

Proof. Let Nx,` be the number of subsets of J1, n/2K of size k− d such that their intersection with
Supp(x) is of size ` and that are bad for H. We have

ρ(Iunif
x,` ; IHx,`) =

Nx,`(|x|
`

)(
n/2−|x|
k−d−`

) . (50)

Let us index these subsets by 1, . . . ,
(|x|
`

)(
n/2−|x|
k−d−`

)
and let Xx,`(i) be the indicator of the event “the

subset of index i is bad”. We have

Nx,` =

(|x|`)(n/2−|x|k−d−`)∑
i=1

Xx,`(i). (51)

44 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Let

N
4
=

∑
x∈{0,1}n/2:|x|=t

Nx,` (52)

We have, ∑
x,∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) = N. (53)

We have by using Bienaymé-Tchebychev’s inequality, that for any positive integer ∆:

P(N > E(N) +∆) ≤ Var(N)

∆2

=

∑
x,i Var(Xx,`(i)) +

∑
(x,i) 6=(y,j) (E (Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j)))

∆2

≤ E(N)

∆2
+

1

∆2

 ∑
(x,i)6=(y,j)

(E (Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)))


(54)

where we use in the last line that Var(Xx,`(i)) ≤ E(Xx,`(i)
2), E(Xx,`(i)

2) = E(Xx,`(i)).
Let us now upper-bound the second term of the inequality. We first define for any (x, i) and

(y, j) the intersection of the complementary of the sets indexed by i and j for (x, i) and (y, j) as

E(x, i; y, j). Let e(x, i; y,m)
4
= |E(x, i; y, j)| and we suppose that e(x, i; y, j) > 0. By using Lemma

9 we obtain:

E(Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)) ≤ 1

3|n/2−k−e(x,i;y,j)|
. (55)

When e(x, i; y, j) = 0,Xx,`(i) andXy,m(j) are independent and we have in this case E(Xx,`(i)Xy,m(j))−
E(Xx,`(i))E(Xy,m(j)) = 0. This implies

∑
(x,i)6=(y,j)

(E(Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j)))

≤
∑
(x,i)

n/2−k+d∑
e=1

∑
(y,j):e(x,i;y,j)=e

(E(Xx,`(i)Xy,m(j))− E(Xx,`(i))E(Xy,m(j)))

≤
∑
(x,i)

n/2−k+d∑
e=1

∑
(y,j):e(x,i;y,j)=e

1

3|n/2−k−e|
(By using Eq.(55))

Our aim now is to compute the following quantity:

S(x, i,y)
4
=

n/2−k+d∑
e=1

∑
j:e(x,i;y,j)=e

1

3|n/2−k−e|
(56)

Let us denote by Ei (resp. Fj) the complementary of the set indexed by i (resp. j). Let,

p
4
= |Supp(y) ∩ Ei| .

It will be helpful to partition the support J1, n/2K as

J1, n/2K = (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei) ∪ (Supp(y) ∩ Ei)

Here,
|Fj | = |Ei| = n/2− k + d ; |E i| = k − d

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 45

By definition we have |Supp(y)| = t. We also have∣∣∣Supp(y) ∩ Ei
∣∣∣ = |Ei| − |Supp(y) ∩ Ei|

= n/2− k + d− p (57)∣∣Supp(y) ∩ Ei
∣∣ = |Supp(y)| − |Supp(y) ∩ Ei|

= t− p (58)∣∣∣Supp(y) ∩ Ei
∣∣∣ =

∣∣∣Supp(y)
∣∣∣− ∣∣∣Supp(y) ∩ Ei

∣∣∣
= n/2− t− (n/2− k + d− p)
= k − d+ p− t. (59)

We bring in now

f
4
= |Supp(y) ∩ Ei ∩ Fj | (60)

g
4
=
∣∣∣Supp(y) ∩ Ei ∩ Fj

∣∣∣ . (61)

Observe that we have

e = |Ei ∩ Fj | = |Supp(y) ∩ Ei ∩ Fj |+
∣∣∣Supp(y) ∩ Ei ∩ Fj

∣∣∣ = f + g. (62)

and that
|Supp(y) ∩ Fj | = |Supp(y)| −

∣∣Supp(y) ∩ Fj
∣∣ = t− `. (63)

Let us compute the cardinalities of Fj intersected with the sets of the partition. We already know
two of them, let us compute the two remaining ones∣∣Supp(y) ∩ E i ∩ Fj

∣∣ = |Supp(y) ∩ Fj | − |Supp(y) ∩ Ei ∩ Fj |
= t− `− f (64)∣∣∣Supp(y) ∩ Fj ∩ E i
∣∣∣ =

∣∣∣Supp(y) ∩ Fj
∣∣∣− ∣∣∣Supp(y) ∩ Fj ∩ Ei

∣∣∣
= |Fj | − |Supp(y) ∩ Fj | −

∣∣∣Supp(y) ∩ Fj ∩ Ei
∣∣∣

= n/2− k + d− (t− `)− g
= n/2− k + d− t+ `− g. (65)

Therefore, S(x, i,y) of Equation (56) is given by summing over all possible f and g as:

S(x, i,y) =
∑
f,g

(
p

f

)(
n/2− k + d− p

g

)(
t− p

t− `− f

)(
k − d+ p− t)

n/2− k + d− t+ `− g

)
1

3|n/2−k−f−g|

≤
∑
f,g

(
p

f

)(
n/2− k + d− p

g

)(
t− p

t− `− f

)(
k − d+ p− t)

n/2− k + d− t+ `− g

)
1

3n/2−k−f−g

=
1

3n/2−k

∑
f

(
p

f

)(
t− p

t− `− f

)
3f
∑
g

(
n/2− k + d− p

g

)(
k − d+ p− t

n/2− k + d− t+ `− g

)
3g

(66)

We now use Lemma 10 to bound (66) as

S(x, i,y) ≤ 3(R−1)n/23γ1(π)n/23γ2(π)n/2

where π
4
= 2p

n . Now, the number of binary vectors y of weight t such that |Supp(y) ∩ Ei| = p is
given by: (

n/2− k + d

p

)
2p
(
k − d
t− p

)
2t−p ≤ 3[(1−R+δ)h3(π

1−R+δ)+(R−δ)h3(τ−πR−δ)]n/2 (67)

46 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

We deduce from this that∑
(x,i)6=(y,j)

E(Xx,`(i)Xy,`(j))− E(Xx,`(i))E(Xy,`(j))

≤ n
(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2. (68)

Plugging this upper-bound into (54) yields

P(N > E(N) +∆) ≤ E(N)

∆2
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2

We readily observe that E(N) ≤ ∆
α−1 and that

P

 1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ(Iunif
x,` ; IHx,`) >

1

3d

 ≤ P(N > E(N) +∆)

≤ 1

(α− 1)∆
+

1

∆2
n

(
n/2

t

)(
t

`

)(
n/2− t
k − d− `

)
3nγ0/2.

ut

We are now ready to prove Theorem 3.

Proof (Theorem 3). By Proposition 7,

ρ
(
e; eunif

)
≤ ρ

(
JHV ; Junif

)
+

∑
xV ∈Fn/23 ,`

ρ
(
IHU

xV ,`
; Iunif

xV ,`

)
P (k 6=0 = ` | eV = xV)P

(
eunif
V = xV

)
= ρ

(
JHV ; Junif

)
+
∑
t,`

1(
n/2
t

) ∑
x∈{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P
(
k 6=0 = ` | |eunif

V | = t
)
P
(
|eunif
V | = t

)
,

where we used the fact that ρ
(
IHU

x,` ; Iunif
x,`

)
is constant on all x that have the same support to

reduce the sum of the possible x from Fn/23 to {0, 1}n/2. Therefore,

P
(
ρ
(
e; eunif

)
>

(n/2 + 1)(n/2− kU + d+ 1) + 1

3d

)
≤ P

(
ρ
(
JHV ; Junif

)
>

1

3d

)

+
∑
t,`

P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P (k 6=0 = ` | |eV | = t)P

(
|eunif
V | = t

)
>

1

3d


We used the union-bound here and the fact that t ranges over J0, n/2K whereas ` ranges over
Jt+ kU − d− n/2, tK. We observe now that

P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
P (k6=0 = ` | |eV | = t)P

(
|eunif
V | = t

)
>

1

3d


≤ P

 1(
n/2
t

) ∑
x{0,1}n/2:|x|=t

ρ
(
IHU

x,` ; Iunif
x,`

)
>

1

3dP (k 6=0 = ` | |eV | = t)P
(
|eunif
V | = t

)
 (69)

Let us define,

α
4
=

2

P (k 6=0 = ` | |eV | = t)P (|eV | = t)
≥ 2 (70)

To conclude the proof it enough to apply Lemma 12 with α defined in (70) with each term of (69)
as long as α 1

2·3d < 1 otherwise we can directly upper-bound the probability by 0. ut

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 47

C Proof of Proposition 9

C.1 Proof of the variation of the left-over hash lemma

Lemma 3. Consider a finite family H = (hi)i∈I of functions from a finite set E to a finite set
F . Denote by ε the bias of the collision probability, i.e. the quantity such that

Ph,e,e′(h(e) = h(e′)) =
1

|F |
(1 + ε)

where h is drawn uniformly at random in H, e and e′ are drawn uniformly at random in E. Let
U be the uniform distribution over F and D(h) be the distribution of the outputs h(e) when e is
chosen uniformly at random in E. We have

Eh (ρ(D(h),U)) ≤ 1

2

√
ε.

Proof. Let qh,f be the probability distribution of the discrete random variable (h0, h0(e)) where h0

is drawn uniformly at random in H and e drawn uniformly at random in E (i.e. qh,f = Ph0,e(h0 =
h, h0(e) = f)). By definition of the statistical distance we have

Eh {ρ(D(h),U)} =
∑
h∈H

1

|H|
ρ(D(h),U)

=
∑
h∈H

1

2|H|
∑
f∈F

∣∣∣∣Pe(h(e) = f)− 1

|F |

∣∣∣∣
=

1

2

∑
(h,f)∈H×F

∣∣∣∣Ph0,e(h0 = h, h0(e) = f)− 1

|H| · |F |

∣∣∣∣
=

1

2

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ . (71)

Using the Cauchy-Schwarz inequality, we obtain

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ ≤
√√√√ ∑

(h,f)∈H×F

(
qh,f −

1

|H| · |F |

)2

·
√
|H| · |F |. (72)

Let us observe now that∑
(h,f)∈H×F

(
qh,f −

1

|H| · |F |

)2

=
∑
h,f

(
q2
h,f − 2

qh,f
|H| · |F |

+
1

|H|2 · |F |2

)

=
∑
h,f

q2
h,f − 2

∑
h,f qh,f

|H| · |F |
+

1

|H| · |F |

=
∑
h,f

q2
h,f −

1

|H| · |F |
. (73)

Consider for i ∈ {0, 1} independent random variables hi and ei that are drawn uniformly at
random in H and E respectively. We continue this computation by noticing now that∑

h,f

q2
h,f =

∑
h,f

Ph0,e0(h0 = h, h0(e0) = f)Ph1,e1(h1 = h, h1(e1) = f)

= Ph0,h1,e0,e1 (h0 = h1, h0(e0) = h1(e1))

=
Ph0,e0,e1 (h0(e0) = h0(e1))

|H|

=
1 + ε

|H| · |F |
. (74)

48 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

By substituting for
∑
h,f q

2
h,f the expression obtained in (74) into (73) and then back into (72) we

finally obtain

∑
(h,f)∈H×F

∣∣∣∣qh,f − 1

|H| · |F |

∣∣∣∣ ≤
√

1 + ε

|H| · |F |
− 1

|H| · |F |
√
|H| · |F | =

√
ε

|H| · |F |
√
|H| · |F | =

√
ε.

This finishes the proof of our lemma.

Lemmas 4 and 3 imply directly Proposition 9 as shown in the following proof.

Proof (Proposition 9). Indeed we let in Lemma 3, E
4
=Fn3 , F

4
=Fn−k3 and H be the set of functions

associated to the 4-tuples (HU ,HV ,S,P) used to generate a public parity-check matrix Hpk. These
functions h are given by h(e) = eHᵀ

pk. Lemma 4 gives an upper-bound for the ε term in Lemma
3 and this finishes the proof of Proposition 9.

D Distinguishing a Permuted Normalized Generalized (U,U+V)-Code

D.1 Proof of Proposition 11

Our aim here is to prove,

Proposition 11. Assume that we choose a normalized generalized (U,U + V)-code over F3 with
a number nI of linear combinations of type I by picking the parity-check matrices of U and V
uniformly at random among the ternary matrices of size (n/2− kU)× n/2 and (n/2− kV)× n/2
respectively. Let a(u,v)(z), a(u,0)(z) and a(0,v)(z) be the expected number of codewords of weight
z that are respectively in the normalized generalized (U,U + V)-code, of the form (a � u, c � u)
where u belongs to U and of the form (b � v,d � v) where v belongs to V . These numbers are
given for even z in J0, nK by

a(u,0)(z) =

(
n/2
z/2

)
2z/2

3n/2−kU
; a(0,v)(z) =

1

3n/2−kV

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(u,0)(z)+a(0,v)(z)+
1

3n−kU−kV

(nz
)

2z −
(
n/2

z/2

)
2z/2 −

z∑
j=0
j even

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


and for odd z ∈ J0, nK by

a(u,0)(z) = 0 ; a(0,v)(z) =
1

3n/2−kV

z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2

a(u,v)(z) = a(0,v)(z) +
1

3n−kU−kV

(nz
)

2z −
z∑
j=0
j odd

(
nI
j

)(
n/2− nI

z−j
2

)
2(z+j)/2


On the other hand, when we choose a linear code of length n over F3 with a random parity-check
matrix of size (n − kU − kV) × n chosen uniformly at random, then the expected number a(z) of
codewords of weight z > 0 is given by

a(z) =

(
n
z

)
2z

3n−kU−kV
.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 49

Proof. Lemma 5 in §5 will be useful for the proof. The last part of Proposition 11 is a direct
application of this lemma. We namely have,

Proposition 15. Let a(z) be the expected number of codewords of weight z in a ternary linear
code C of length n whose parity-check matrix is chosen H uniformly at random among all binary
matrices of size r × n. We have

a(z) =

(
n
z

)
3r
.

We are ready now to prove Proposition 11 concerning the expected weight distribution of a
random generalized normalized (U,U + V)-code, namely a code (a � U + b � V, c � U + d � V)
that we will denote by C.
Weight distributions of (a � U, c � U)

4
={(a � u, c � u) : u ∈ U} and (b � V,d � V)

4
={(b �

v,d� v) : v ∈ V }. Let us recall from the definition of normalized generalized codes that aici 6= 0
for all i ∈ J1, n/2K and therefore it follows directly from Proposition 15 since a(u,0)(z) = 0 for
odd and a(u,0)(z) is equal to the expected number of codewords of weight z/2 in a random lin-
ear code of length n/2 with a parity-check matrix of size (n/2 − kU) × n/2 when z is even. On
the other hand, the weight distribution of (b � v,d � v) for v ∈ V is little more sophisticate.
It depends of the number nI (see Definition 6) when either bi = 0 or di = 0, the other one
is necessarily different from 0. In this way, a(0,v)(z) is equal to the expected number of weight

j + z−j
2 for all j in J1, nIK in a random linear code of length n/2 where j positions correspond to

the nI positions which gives the number of block of type I and z−j
2 for the others as there are

involved in components which count twice in the weight. Furthermore this code has a parity-check
matrix of size (n/2−kV)×n/2 which easily gives from Proposition 15 the expected result for a(0,v).

Weight distributions of C. The normalized generalized (U,U + V)-code is chosen randomly by
picking up a parity-check matrix HU of U (resp. HV of V) uniformly at random among the set of

(n/2− kU)× n/2 (resp. (n/2− kV)× n/2) ternary matrices. Let Z
4
=
∑

x∈Fn3 :|x|=z Zx where Zx is

the indicator function of “x ∈ C”. Therefore,

a(u,v)(z) = E(Z)

=
∑

x∈Fn3 :|x|=z

P(x ∈ C) (75)

Therefore, by Proposition 3 we get: x ∈ C ⇐⇒ xUHᵀ
U = 0 and xV Hᵀ

V = 0 which lead to three
disjoint cases to (we use in each case Lemma 5):

Case 1: xU = 0 and xV 6= 0,

P(x ∈ C) = P(xV H
ᵀ
V = 0) =

1

3n/2−kV

Case 2: xU 6= 0 and xV = 0,

P(x ∈ C) = P(xUH
ᵀ
U = 0) =

1

3n/2−kU

Case 3: xU 6= 0 and xV 6= 0,

P(x ∈ C) = P(xV H
ᵀ
V = 0,xUH

ᵀ
U = 0) =

1

3n/2−kU
1

3n/2−kV

By substituting P(x ∈ C) in (75) and using definition of number of blocks of type I we conclude
the proof. ut

50 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

D.2 Proof of Propositions 12 and 13

Our aim is to prove the following proposition. It gives the expected number of iteration of Algo-
rithm 6 to output a non zero list with probability Ω(1).

Proposition 12. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteU adds elements to the list B is lower-bounded by

Psucc ≥
n/2∑
z=0

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) f

((
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU)

)
(38)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. Algorithm 6 returns a non zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Proof. It will be helpful to recall [OT11, Lemma 3]

Lemma 13. Choose a random code Crand of length n from a parity-check matrix of size r × n
chosen uniformly at random in Fr×n3 . Let X be some subset of Fn3 of size m. We have

P(X ∩ Crand 6= ∅) ≥ f
(m

3r

)
.

We say that two positions i and j are matched (for U ′) if and only if there exists λ ∈ {±1}
such that ci = λcj for every c ∈ U ′. From the fact that we only consider normalized generalized
(U,U + V)-codes, there are n/2 pairs of matched positions. Z will now be defined by the number
of matched pairs that are included in J1, nK \ I where I is the random set of size n− k − ` which
is drawn in Instruction 4 of Algorithm 6. We compute the probability of success by conditioning
on the values taken by Z:

Psucc =

n/2∑
z=0

P(Z = z)P (∃x ∈ U ′ : |xĪ | = p |Z = z) (76)

where Ī 4=J1, nK \ I. Notice that we can partition Ī as Ī = J1 ∪J2 where J2 consists in the union
of the matched pairs in Ī. Note that |J2| = 2z. We may further partition J2 as J2 = J21 ∪ J22

where the elements of a matched pair are divided into the two sets. In other words, neither J21

nor J22 contains a matched pair. We are going to consider the codes

U”
4
= Punc

I
(U ′) ; U ′′′

4
= Punc
I∪J22

(U ′)

The last code is of length n − (n − k − ` + z) = k + ` − z as |J22| = z and |I| = n − k − `. The
point of defining the first code is that

P (∃x ∈ U ′ : |xĪ | = p | Z = z)

is equal to the probability that U” contains a codeword of weight p. The problem is that we can
not apply Lemma 13 to it due to the matched positions it contains (the code is not random).
This is precisely the point of defining U ′′′. In this case, we can consider that it is a random
code whose parity-check matrix is chosen uniformly at random among the set of matrices of size
max(0, k + ` − z − kU) × (k + ` − z). We can therefore apply Lemma 13 to it. We have to be
careful about the words of weight p in U” though, since they do not have the same probability
of occurring in U” due to the possible presence of matched pairs in the support. This is why we
introduce for i in J0, bp/2cK the sets Xi defined as follows

Xi
4
={x = (xi)i∈Ī\J22

∈ Fk+`−z
3 : |xJ1

| = p− 2i, |xJ21
| = i}

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 51

A codeword of weight p in U” corresponds to some word in one of the Xi’s by puncturing it in
J22. We obviously have the lower bound

P {∃x ∈ U ′ : |xĪ | = p | Z = z} ≥
bp/2c
max
i=0
{P(Xi ∩ U ′′′ 6= ∅)} (77)

By using Lemma 13 we have

P(Xi ∩ U ′′′ 6= ∅) ≥ f

((
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU)

)
. (78)

On the other hand, we may notice that

P(Z = z) =

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) .

Thanks to these considerations we conclude the proof. ut

Proposition 13. The probability Psucc that one iteration of the for loop (Instruction 2) in Com-
puteV adds elements to the list B is lower-bounded by

Psucc ≥
min(n−k−`,n−nI)∑

z=0

n/2−nI∑
m=0

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) bp/2c
max
i=0

f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV)

)
n/2−nI−m∑

j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)

where f is the function defined by f(x)
4
= max

(
x(1− x/2), 1− 1

x

)
. ComputeV returns a non-zero

list with probability Ω(1) when N is chosen as N = Ω
(

1
Psucc

)
.

Proof. We have n
2 − nI pairs of matched positions i and j (it exists λ ∈ {±1} such that ci = λcj

for every c ∈ V ′). Let us define the following set: J is the set of positions that are of the images
of the permutation P of the positions 1 ≤ i ≤ n/2 such that bi 6= 0 and the images of positions
n/2 + j with 0 ≤ j ≤ n/2 such that dj 6= 0.

Remark 7. From Definition 6 and Remark 4 in §5 it follows that |J | = n− nI .

Let us now bring in the following random variables I ′ 4= I ∩J , Z
4
= |I ′| and M be the number

of matched pairs which are included in J \ I ′. J \ I ′ represents the set of positions that are not
necessarily equal to 0 in the punctured code PuncI(V ′) (see Figure 6). ComputeV outputs at

Fig. 6. A figure representing J , I and I′ and the form of a codeword in V ′.

positions in J

00.........0 00............0 00......0

I

I’

52 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

least one element of V ′ if there is an element of weight p in PuncI′(V
′). Therefore the probability

of success Psucc is given by

Psucc =

min(n−k−`,n−nI)∑
z=0

n/2−nI∑
m=0

P (∃x ∈ V ′ : |xJ ′ | = p | Z = z,M = m)P(Z = z,M = m) (79)

where

J ′ 4=J \ I ′.
Notice that we can partition J ′ as J ′ = J1 ∪ J2 where J2 consists in the union of the matched
pairs in J ′. Note that |J2| = 2m. We may further partition J2 as J2 = J21 ∪ J22 where the
elements of a matched pair are divided in two sets. In other words, neither J21 nor J22 contains
a matched pair. We are going to consider the following codes

V ”
4
= Punc
I∪J̄

(V ′) ; V ′′′
4
= Punc
I∪J̄∪J22

(V ′).

V ” is of length n−nI − z, whereas the last code is of length n−nI − z−m. The point of defining
the first code is that

P (∃x ∈ V ′ : |xJ ′ | = p | Z = z)

is equal to the probability that V ” contains a codeword of weight p. The problem is that we can not
apply Lemma 13 to it due to the matched positions it contains. This is precisely the point of defining
V ′′′. In this case, we can consider that it is a random code whose parity-check matrix is chosen
uniformly at random among the set of matrices of size max(0, n−nI−z−m−kV)× (nV −z−m).
We can therefore apply Lemma 13 to it. We have to be careful about the words of weight p in
V ” though, since they do not have the same probability of occurring in V ” due to the possible
presence of matched pairs in the support. This is why we introduce for i in J0, bp/2cK the sets Xi

defined as follows

Xi
4
={x = (xi)i∈J ′\J22

∈ Fn−nI−z−m3 : |xJ1
| = p− 2i, |xJ21

| = i}

A codeword of weight p in V ” corresponds to some word in one of the Xi’s by puncturing it in
J22. We obviously have the lower bound

P {∃x ∈ V ′ : |xĪ | = p | Z = z,M = m} ≥
bp/2c
max
i=0
{P(Xi ∩ V ′′′ 6= ∅)} (80)

By using Lemma 13 we have

P(Xi ∩ V ′′′ 6= ∅) ≥ f

((
n−nI−z−2m

p−2i

)(
m
i

)
2p−i

3max(0,n−nI−z−m−kV)

)
. (81)

On the other hand, we have

P(Z = z,M = m) =

(n
2−nI
m

)(
nI

n−k−`−z
)(

n
n−k−`

) n/2−nI−m∑
j=0

(
n/2− nI −m

j

)
2j
(

nI
z − n+ 2nI + 2m+ j

)
Thanks to these considerations we conclude the proof. ut

D.3 Effective Estimate of the Security Exponent for the Recovery of U

Non Asymptotic Setting. Given k, kU , we want to estimate minp,` WFp,` where

WFp,` = CU (p, `) = Cp,`/Pp,`

Cp,` = C1(p, k, `) = max
(
Lp,`, L

2
p,`3
−`
)

with Lp,` =
√(

k+`
p

)
2p

Pp,` = Psucc =

n/2∑
z=0

((
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) max
0≤i≤p/2

f

((
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU)

))

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 53

with f(x) = max(1−1/x, x−x2/2). We may simplify the function f() which is equal up to a small
constant factor (smaller than 3) to min(1, x). We will now assume f(x) = min(1, x). We write

Pp,` =

n/2∑
z=0

G`(z)Fp,`(z),

with

G`(z) =

(
n/2
z

)(
n/2−z
k+`−2z

)
2k+`−2z(

n
k+`

) ,

Fp,`(z) = max
0≤i≤p/2

f

((
k+`−2z
p−2i

)(
z
i

)
2p−i

3max(0,k+`−z−kU)

)
= min

1,

max
0≤i≤p/2

φp,`(z, i)

3k+`−z−kU

 ,

φp,`(z, i) =
(
k+`−2z
p−2i

)(
z
i

)
2p−i

(the max in the denominator of Fp,` can be removed because φp,` ≥ 1).

Asymptotic Setting. We are interested by the asymptotic behavior of the above quantities
when n goes to infinity. For the sake of simplicity, we will use the same notations, but all integers
parameters k, kU , p, `, z, i are replaced by their relative values, the letter x ∈ {k, kU , p, `, z, i} now
stands for x/n, and instead of an integer it is a real number.

The functions Cp,`, Lp,`, Pp,`, G`, Fp,`, φp,` now stand for for their relative asymptotic exponent,
that is any X above now stands for limn→∞

1
n log2X.

We rewrite

WFp,` = Cp,` − Pp,`

Cp,` = max (Lp,`, 2Lp,` − ` log2 3) with Lp,` =
k + `

2
h3

(
p

k + `

)
G`(z) =

1

2
h2(2z) +

(
1

2
− z
)
h3

(
k + `− 2z

1
2 − z

)
− h2(k + `)

Fp,`(z) = min
(

0, F̃p,`(z)
)

F̃p,`(z) = max
0≤i≤p/2

φp,`(z, i)− (k + `− z − kU) log2 3

φp,`(z, i) = (k + `− 2z)h3

(
p− 2i

k + `− 2z

)
+ wh3

(
i

z

)
where hq(x) = −x log2(x/(q − 1))− (1− x) log2(1− x) is the q-ary entropy function. The sum in
the denominator of Pp,` will be replaced by a maximum over z

Pp,` = max
0≤z≤1/2

(G`(z) + Fp,`(z)) (82)

To determine which value of z dominates in the above maximum, we need to study the variations
of z 7→ G`(z) and z → Fp,`(z). But before that we need to study the variation of i 7→ φp,`(z, i) to
determine the dominant term in max0≤i≤p/2 φp,`(z, i).

– The partial derivative of φp,`(z, i) with respect to i is

∂φp,`
∂i

(z, i) = log2

(p− 2i)2(z − i)
2i(k + `− 2z − p+ 2i)2

It follows that the value of i which maximizes φp,`(z, i) is the solution of a polynomial equation
of degree 3.

Q(i) = 2i(k + `− 2z − p+ 2i)2 − (p− 2i)2(z − i) (83)

54 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

An easy analysis shows that Q admits a unique real root in the interval [0, p/2]. We denote it
i0(z). We have

F̃p,`(z) = φp,`(z, i0(z))− (k + `− z − kU) log2 3

– The variations of z 7→ F̃p,`(z) are dominated by the term z log2 3 and F̃p,`(z) is an increasing

function of z. We denote z1 the (unique) root of F̃p,`(z) in the range]k + `− 1/2, (k + `)/2[.
The function Fp,`(z) is increasing (almost linearly) for z ∈]k + ` − 1/2, z1] and is null for
z ∈ [z1, (k + `)/2[.

– The derivative of z → F̃p,`(z) is equal to

dF̃p,`
dz

(z) =
di0
dz

(z)
∂φp,`
∂i

(z, i0(z)) +
∂φp,`
∂z

(z, i0(z)) + log2 3

=
∂φp,`
∂z

(z, i0(z)) + log2 3 = log2

3z(k + `− 2z − p+ 2i0(z))2

(z − i0(z))(k + `− 2z)2
.

– The derivative of z → G`(z) is equal to

dG`
dz

(z) = log2

(k + `− 2z)2

2z(1− 2k − 2`+ 2z)

and is null for z0 = (k + `)2/2. The function z 7→ G`(z) is increasing for z ∈ [k + `− 1/2, z0],
decreasing for z ∈ [z0, (k + `)/2], and G`(z0) = 0.

– The derivative of z → G`(z) + F̃p,`(z) is equal to

P ′p,`(z) =
dG`
dz

(z) +
dF̃p,`
dz

(z) = log2

3(k + `− 2z − p+ 2i0(z))2

2(z − i0(z))(1− 2k − 2`+ 2z)
. (84)

There exists a unique z ∈]k+ `− 1/2, (k+ `)/2[which cancels the above derivative we denote
it z2.

For a given pair (p, `),

– Compute z0, if Fp,`(z0) = 0 then Pp,` = 0 and WFp,` = Cp,`.
– Compute z1, z2, and z = min(z1, z2)

WFp,` = Cp,` −G`(z)− Fp,`(z)

Proposition 16. For any (k, kU , p, `) let z0 = (k+ `)2/2 and let z1 and z2 denote respectively the
roots of z 7→ F̃p,`(z) and z 7→ P ′p,`(z) for z in]k + `− 1/2, (k + `)/2[. We have

Wp,` = Cp,` −G`(z)− Fp,`(z), where z = max(z0,min(z1, z2)).

Further Simplifications.

– We have a very good approximation of i0(z) with

i0(z) ≈ p

2

pw

pw + (k + `− 2z)2
.

The above assumes that Q(i), given in (83), is close to affine when i ∈ [0, p/2]. It is true enough
in practice.

– Get rid of parameter p. We have

Cp,` = max (Lp,`, 2Lp,` − ` log2 3)

In the max above, and for the optimal values of the parameters p and `, the two terms are
always equal. This gives us and additional identity

h3

(
p

k + `

)
=

2` log2 3

k + `

which allows us to express the optimal value of p as function of `.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 55

Application to Wave. For Wave kU = 0.8379n/2 and k = 0.660n. In relative value kU = 0.41895
and k = 0.660. The minimal value for Wp,` is reached for (p, `) = (0.0003463, 0.001458) and the
dominant term in (82) corresponds to z = 0.24002. Finally

1

n
log2 min

p,`
CU (p, `) = 0.015074.

Application to Wave Dual Code. The above analysis must also be applied the dual code. In that
case, we replace k by n− k and kU by n/2− kV (in the dual U is replaced by V ⊥ and V by U⊥).
We repeat the analysis with kU = 0.24107 and k = 0.340. The minimal value for Wp,` is reached
for (p, `) = (0.00005596, 0.0002650) and the dominant term in (82) corresponds to z = 0.08084.
Finally

1

n
log2 min

p,`
CV ⊥(p, `) = 0.015222.

D.4 Security Exponent for the Recovery of V

For the Wave parameters the cost CV (p, `) for recovering V is much larger than the cost CU (p, `)
for recovering U . The same holds for U⊥ versus V ⊥. Finally, for Wave parameters, the smallest of
all is CU (p, `) and it will be used for selecting the parameters.

E Proofs for §6

E.1 Basic Tools

Basic results on the statistical distance. We will need here a few straightforward facts about
the statistical distance that we recall here.

Proposition 17. For i in J1, 3K, let Xi and Yi be discrete random variables such that the range
Ai of Xi coincides with the range of Yi. For ai ∈ Ai and i ∈ J2, 3K we let p(.|a2) be the conditional
distribution of X1 given that X2 = a2, whereas p(.|a2, a3) stands for the conditional distribution
of X1 given that X2 = a2 and X3 = a3. Similarly q(.|a2) stands for the conditional distribution of
Y1 given that Y2 = a2 whereas q(.|a2, a3) stands for the conditional distribution of Y1 given that
Y2 = a2 and Y3 = a3. We also assume that for all ai ∈ Ai and i ∈ J2, 3K, we have P(X3 = a3|X2 =
a2) = P(Y3 = a3|Y2 = a2). In such a case for all a2 in A2 we have

ρ (p(.|a2), q(.|a2)) ≤ sup
a3∈A3

ρ (p(.|a2, a3), q(.|a2, a3)) .

Proof. We will overload the notation p and q by writing for a3 in A3

p(a3|a2)
4
= P(X3 = a3|X2 = a2)

q(a3|a2)
4
= P(Y3 = a3|Y2 = a2)

ρ(p(.|a2), q(.|a2)) =
1

2

∑
a1∈A1

|p(a1|a2)− q(a1|a2)|

=
1

2

∑
a1∈A1

∣∣∣∣∣ ∑
a3∈A3

p(a1|a2, a3)p(a3|a2)− q(a1|a2, a3)q(a3|a2)

∣∣∣∣∣
≤ 1

2

∑
a3∈A3

p(a3|a2)
∑
a1∈A1

|p(a1|a2, a3)− q(a1|a2, a3)|

=
∑
a3∈A3

ρ (p(.|a2, a3), q(.|a2, a3)) p(a3|a2)

≤ sup
a3∈A3

ρ (p(.|a2, a3), q(.|a2, a3)) .

56 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

The following proposition will be helpful to bound the statistical distance between n-tuples of
random variables.

Proposition 18. Let Xi and Yi with i ∈ {1, 2} be discrete random variables where the range Ai
of Xi coincides with the range of Yi. For a1 in A1 we let p(.|a1) be the conditional distribution of
X2 given that X1 = a1 whereas q(.|a1) is the conditional distribution of Y2 given that Y1 = a1. We
have

ρ (X1X2, Y1Y2) ≤ sup
a1∈A1

ρ (p(.|a1), q(.|a1)) + ρ (X1, Y1) .

Proof.

ρ (X1X2, Y1Y2) =
1

2

∑
a1,a2

|P(X1 = a1, X2 = a2)− P(Y1 = a1, Y2 = a2)|

=
1

2

∑
a1,a2

|P(X2 = a2|X1 = a1)P(X1 = a1)− P(Y2 = a2|Y1 = a1)P(Y1 = a1)|

To simplify notation we overload the meaning of p and q with the following notation

p(a1)
4
= P(X1 = a1)

q(a1)
4
= P(Y1 = a).

With this notation at hand we obtain

ρ (X1X2, Y1Y2) =
1

2

∑
a1,a2

|p(a2|a1)p(a1)− q(a2|a1)q(a1)|

=
1

2

∑
a1,a2

|p(a2|a1)p(a1)− q(a2|a1)p(a1) + q(a2|a1)p(a1)− q(a2|a1)q(a1)|

≤ 1

2

∑
a1,a2

|p(a2|a1)− q(a2|a1)| p(a1) +
1

2

∑
a1,a2

|p(a1)− q(a1)| q(a2|a1)

≤ sup
a1

ρ (p(.|a1), q(.|a1)) +
1

2

∑
a1

|p(a1)− q(a1)|
∑
a2∈A2

q(a2|a1)︸ ︷︷ ︸
=1

= sup
a1∈A1

ρ (p(.|a1), q(.|a1)) + ρ (X1, Y1) .

The Game Associated to Our Code-Based Signature Scheme. In our case, the security
of the signature scheme is defined as a game with an adversary that has access to hash and sign
oracles. It will be helpful here to be more formal and to define more precisely the games we will
consider. They are games between two players, an adversary and a challenger. In a game G, the
challenger executes three kind of procedures:

– an initialization procedure Initialize which is called once at the beginning of the game.
– oracle procedures which can be requested at the will of the adversary. In our case, there will

be two, Hash and Sign. The adversary A which is an algorithm may call Hash at most qhash

times and Sign at most qsign times.
– a final procedure Finalize which is executed once A has terminated. The output of A is given

as input to this procedure.

The output of the game G, which is denoted G(A), is the output of the finalization procedure
(which is a bit b ∈ {0, 1}). The game G with A is said to be successful if G(A) = 1. The standard
approach for obtaining a security proof in a certain model is to construct a sequence of games such
that the success of the first game with an adversary A is exactly the success against the model of

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 57

security, the difference of the probability of success between two consecutive games is negligible
until the final game where the probability of success is the probability for A to break one of the
problems which is supposed to be hard. In this way, no adversary can break the claim of security
with non-negligible success unless it breaks one of the problems that are supposed to be hard.

In the following, SWave will denote the signature scheme defined with the Wave-PSF family.

Definition 10 (challenger procedures in the EUF-CMA Game). The challenger procedures
for the EUF-CMA Game corresponding to SWave are defined as:

proc Initialize(λ) proc Hash(m, r) proc Sign(m) proc Finalize(m, e, r)

(pk, sk)← Gen(1λ) return Hash(m, r) r←↩ {0, 1}λ0 s← Hash(m, r)
Hpk ← pk s← Hash(m, r) return

(ϕ,HU ,HV ,S,P)← sk e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
) eHᵀ

pk = s ∧ |e| = w
return Hpk return (eP, r)

E.2 The Proof

We can now prove the following theorem

Theorem 2. (Security Reduction). Let qhash (resp. qsign) be the number of queries to the hash
(resp. signing) oracle. We assume that λ0 = λ+ 2 log2(qsign) where λ is the security parameter of
the signature scheme. We have in the random oracle model for all time t, tc = t + O

(
qhash · n2

)
and ε given in Proposition 9:

SuccEUF-CMA
SWave

(t, qhash, qsign) ≤ 2Succn,k,qhash,wDOOM (tc) + ρc (Drand,Dpub) (tc)

+ qsign

(
EHpk

(
ρ
(
DHpk
w ,Uw

))
+

√
ε

2
+
qhash + qsign

q2
sign × 2λ

)
+

1

2
(qhash + qsign)

√
ε+

1

2λ

where DHpk
w is the distribution sampled as follows:

– s←↩ Fn−k3 , r←↩ {0, 1}λ0 , e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
), output (eP, r).

with Dϕ,HU ,HV
the Algorithm 3 using Algorithms 4 and 5 and Uw is the uniform distribution over

Sw.

Proof. Let A be a (t, qsign, qhash, ε)-adversary in the EUF-CMA model against SWave and let
(H0, s1, · · · , sqhash

) be drawn uniformly at random among all instances of DOOM for parame-
ters n, k, qhash, w. We stress here that syndromes sj are random and independent vectors of Fn−k3 .

Game 0 is the EUF-CMA game for SWave.

Game 1 is identical to Game 0 unless the following failure event F occurs: there is a collision in
a signature query (i.e. two signatures queries for a same message m lead to the same salt r). By
using the difference lemma (see for instance [Sho04, Lemma 1]) we get:

P (S0) ≤ P (S1) + P (F) .

Here (and also in what follows) P (Si) denotes the probability of success for A of game Gi. The
following lemma shows that in our case as λ0 = λ+ 2 log2(qsign), the probability of the event F is
negligible.

Lemma 14. For λ0 = λ+ 2 log2(qsign) we have: P (F) ≤ 1
2λ
.

Proof. Let us begin by the following lemma.

58 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Lemma 15. The probability of no collisions after drawing independently t elements among n is
bounded by t2/n.

Proof. Let us consider for 1 ≤ i < j ≤ t the indicator function Xi,j of the event “there is a collision
between ith and jth drawn”. The probability that we are looking to bound is then given by:

P

 ⋃
1≤i<j≤t

Xi,j = 1


But classically we have,

P

 ⋃
1≤i<j≤t

Xi,j = 1

 ≤ ∑
1≤i<j≤t

P (Xi,j = 1) .

In our case we make t drawing independently in a set of size n, thus:

P(Xi,j = 1) =
1

n

which concludes the proof. ut

In our case, the probability of the event F is bounded by the previous inequality with t = qsign

and n = 2λ0 . In this way, with λ0 = λ+ 2 log2 qsign, we get

P (F) ≤
q2
sign

2λ0
=

1

2λ0−2 log2(qsign)
=

1

2λ

which concludes the proof. ut

Game 2 is modified from Game 1 by replacing the procedures Initialize, Hash and Sign as
follows (the modifications are in red):

proc Initialize proc Hash(m, r) proc Sign(m)

(pk, sk)← Gen(1λ) if Lm undefined if Lm undefined

Hpk ← pk Lm ← qsign random elements in Fλ0
2 Lm ← qsign random elements in Fλ0

2

(ϕ,HU ,HV ,S,P)← sk if r ∈ Lm r← Lm.next()
j ← 0 em,r ←↩ Sw s← Hash(m, r)

return Hpk return em,rH
ᵀ
pk e← Dϕ,HU ,HV

(s
(
S−1

)ᵀ
)

else return (eP, r)
j ← j + 1
return sj

Here the call Lm.next() returns elements of Lm sequentially. The list is large enough to satisfy
all queries. The Hash procedure now creates the list Lm if needed, then, if r ∈ Lm it returns
em,rH

ᵀ
pk with em,r ←↩ Sw. Although we do not use it in this game, we remark that (em,r, r) is

a valid signature for m. The error value is stored. If r 6∈ Lm it outputs one of sj of the instance
(H0, s1, . . . , sqhash

) of the DOOM problem. The Sign procedure is unchanged, except for r which
is now taken in Lm.

This game can be related to the previous one through the following lemma.

Lemma 16.

P(S1) ≤ P(S2) +
qhash

2

√
ε where ε is given in Proposition 9.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 59

Proof. The behavior of Games 1 and 2 only really differ in the calls to Hash. In Game 1, a random
value Xi uniformly distributed in Fn−k3 is output at the i-th call of Hash. In Game 2, if Hash is
queried with a pair (m, r) such that r ∈ Lm, it outputs Yi = eHᵀ

pk where e has been chosen
uniformly at random in Sw. We have

P(S1)− P(S2) =
∑
H

P(Hpk = H) [P(S1|Hpk = H)− P(S2|Hpk = H)]

≤ EHpk
{ρ (X1 · · ·Xqhash , Y1 · · ·Yqhash)} . (85)

Notice that a direct application of Proposition 9 yields

EHpk
{ρ (X1, Y1)} ≤

√
ε

2
. (86)

We can use now Proposition 18 to bound ρ (X1X2, Y1, Y2) . We use the notation p and q to denote
by p(.|x1) the conditional distribution of X2 given that X1 = x1 whereas q(.|x1) denotes the
conditional distribution of Y2 given that Y1 = x1):

ρ (X1X2, Y1Y2) = sup
x1∈Fn−k3

ρ (p(.|x1), q(.|x1)) + ρ (X1, Y1)

By using Proposition 9 and (86) we deduce

EHpk
{ρ (X1X2, Y1Y2)} ≤

√
ε

2
+

√
ε

2
=
√
ε.

An easy induction concludes the proof. ut

Game 3 differs from Game 2 by changing in proc Sign calls “e ← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
)” by

“e← em,r” and “return (eP, r)” by “return (e, r)”. Any signature (e, r) produced by proc Sign

is valid. We will prove that:

Lemma 17.

P (S2) ≤ P (S3) + qsign

(
EHpk

(
ρ
(
Uw,D

Hpk
w

))
+

√
ε

2
+
qhash + qsign

2λ0

)
.

where ε is given in Proposition 9.

Proof. Both games differ in the output of Sign. Let X1, · · · , Xqsign be the outputs of Sign in Game
2, whereas Y1, · · · , Yqsign are the outputs of Sign in Game 3. We have

P (S2) ≤ P (S3) + ρ
(
X1 · · ·Xqsign , Y1 · · ·Yqsign

)
.

We will bound this statistical distance by using recursively Proposition 18 and bound each term
by the following lemma

Lemma 18. We denote Xi(m) the output of i-th call to proc Sign in Game 2 if the signing
procedure is queried with message m, whereas Yi(m) denotes the corresponding output for Game
3. Then, for all message m,

ρ (Xi(m), Yi(m)) ≤ EHpk

{
ρ
(
Uw,D

Hpk
w

)}
+ εHpk

+
qhash + qsign

2λ0

where εHpk
is defined as

εHpk

4
= ρ

(
eH

ᵀ
pk, s

)
with s←↩ Fn−k3 , e←↩ Uw and Uw be the uniform distribution over words of Fn3 of weight w.

60 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

Proof. Recall that Xi(m) and Yi(m) are obtained as follows

– Xi(m) : r← Lm.next(), s← Hash(m, r), e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
), Xi(m)← (eP, r).

– DHpk

3 (m) : r← Lm.next(), e← em,r, output (e, r).

Let (m1, r1), . . . , (mt, rt) the queries made to proc Hash, including those done by the signing

oracle so far and let R
4
= {ri : 1 ≤ i ≤ t}. We have t ≤ q

4
= qhash + qsign. We also define EHpk

2 (m)

and EHpk

3 (m) the distributions DHpk

2 (m),DHpk

3 (m) conditioned on r /∈ R. Since r /∈ R happens
with probability at least 1− q

2λ0
as r ∈ {0, 1}λ0 . We have:

ρ(DHpk

2 (m),DHpk

3 (m)) ≤ ρ(EHpk

2 (m), EHpk

3 (m)) +
q

2λ0
. (87)

We consider the intermediate distribution DHpk

2.5 that can be sampled as follows:

– DHpk

2.5 (m) : r← Lm.next(), s←↩ Fn−k3 , e← Dϕ,HU ,HV
(s
(
S−1

)ᵀ
), output (eP, r).

and EHpk

2.5 (m) the distribution DHpk

2.5 (m) conditioned on r /∈ R. In EHpk

2 (m), since r /∈ R, the call
to Hash(m, r) is new and outputs s which is εHpk

close to uniform. Therefore, we have:

ρ(EHpk

2 (m), EHpk

2.5 (m)) ≤ εHpk
. (88)

Now, let’s compare EHpk

2.5 (m) and EHpk

3 (m). Distribution EHpk

2.5 (m) outputs a random r /∈ R and e

according to distribution DHpk
w . Distribution EHpk

3 (m) outputs a random r /∈ R and e according
to distribution Uw hence:

ρ(EHpk

2.5 (m), EHpk

3 (m)) ≤ ρ(DHpk
w ,Uw). (89)

Putting Equations (87),(88) and (89) together, we get:

ρ(DHpk

2 (m),DHpk

3 (m)) ≤ ρ(EHpk

2 (m), EHpk

3 (m)) +
q

2λ0

≤ ρ(EHpk

2 (m), EHpk

2.5 (m)) + ρ(EHpk

2.5 (m), EHpk

3 (m)) +
q

2λ0

≤ εHpk
+ ρ(DHpk

w ,Uw) +
q

2λ0
.

which concludes the proof of the lemma. ut
ut

Game 4 is the game where we replace the public matrix Hpk by H0. In this way we will force
the adversary to build a solution of the DOOM problem. Here if a difference is detected between
games it gives a distinguisher between distributions Drand and Dpub:

P (S3) ≤ P (S4) + ρc (Dpub,Drand) (tc) .

We show in appendix how to emulate the lists Lm in such a way that list operations cost,
including its construction, is at most linear in the security parameter λ. Since λ ≤ n, it follows
that the cost to a call to proc Hash cannot exceed O(n2) and the running time of the challenger
is tc = t+O

(
qhash · n2

)
.

Game 5 differs in the finalize procedure.

proc Finalize(m, e, r)

s← Hash(m, r)
b← eHᵀ

pk = s ∧ |e| = w
return b ∧ r /∈ Lm

We assume the forger outputs a valid signature (e, r) for the message
m. The probability of success of Game 5 is the probability of the event
“S4 ∧ (r 6∈ Lm)”.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 61

If the forgery is valid, the message m has never been queried by Sign, and the adversary never
had access to any element of the list Lm. This way, the two events are independent and we get:

P (S5) = (1− 2−λ0)qsignP (S4) .

As we assumed λ0 = λ+ 2 log2(qsign) ≥ log2(q2
sign), we have:

(
1− 2−λ0

)qsign ≥ (1− 1

q2
sign

)qsign
≥ 1

2
.

Therefore

P (S5) ≥ 1

2
P (S4) . (90)

The probability P (S5) is then exactly the probability forA to output ej ∈ Sw such that ejH0
ᵀ

= sj
for some j which gives

P (S5) ≤ Succn,k,qhash,wDOOM (tc). (91)

This concludes the proof of Theorem 2 by combining this together with all the bounds obtained
for each of the previous games. ut

E.3 List Emulation

In the security proof, we need to build lists of indices (salts) in Fλ0
3 . Those lists have size qsign, the

maximum number of signature queries allowed to the adversary, a number which is possibly very
large. For each message m which is either hashed or signed in the game we need to be able to

– create a list Lm of qsign random elements of Fλ0
3 , when calling the constructor new list();

– pick an element in Lm, using the method Lm.next(), this element can be picked only once;
– decide whether or not a given salt r is in Lm, when calling Lm.contains(r).

The straightforward manner to achieve this is to draw qsign random numbers when the list is
constructed, this has to be done once for each different message m used in the game. This may
result in a quadratic cost qhashqsign just to build the lists. Once the lists are constructed, and
assuming they are stored in a proper data structure (a heap for instance) picking an element or
testing membership has a cost at most O(log qsign), that is at most linear in the security parameter
λ.

class list method list.contains(r)

elt, index return r ∈ {elt[i], 1 ≤ i ≤ qsign}
list()
index← 0 method list.next()

for i = 1, . . . , qsign index← index + 1

elt[i]← randint(2λ0) return elt[index]

Fig. 7. Standard implementation of the list operations.

Note that in our game we condition on the event that all elements of Lm are different. This
implies that now Lm is obtained by choosing among the subsets of size qsign of Fλ0

3 uniformly at
random. We wish to emulate the list operations and never construct them explicitly such that
the probabilistic model for Lm.next() and Lm.contains(r) stays the same as above (but again
conditioned on the event that all elements of Lm are different). For this purpose, we want to ensure
that at any time we call either Lm.contains(r) or Lm.next() we have

P(Lm.contains(r) = true) = P(r ∈ Lm|Q) (92)

P(r = Lm.next()) = p(r|Q) (93)

62 Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

for every r ∈ Fλ0
3 . Here Q represents the queries to r made so far and whether or not these r’s

belong to Lm. Queries to r can be made through two different calls. The first one is a call of
the form Sign(m) when it chooses r during the random assignment r ←↩ {0, 1}λ0 . This results
in a call to Hash(m, r) which queries itself whether r belongs to Lm or not through the call
Lm.contains(r). The answer is necessarily positive in this case. The second way to query r is
by calling Hash(m, r) directly. In this case, both answers true and false are possible. p(r|Q)
represents the probability distribution of Lm.next() that we have in the above implementation of
the list operations given the previous queries Q.

A convenient way to represent Q is through three lists S, Htrue and Hfalse. S is the list of r’s
that have been queried through a call Sign(m). They belong necessarily to Lm. Htrue is the set
of r’s that have not been queried so far through a call to Sign(m) but have been queried through
a direct call Hash(m, r) and for which Lm.contains(r) returned true. Hfalse is the list of r’s that
have been queried by a call of the form Hash(m, r) and Lm.contains(r) returned false.

We clearly have

P(r ∈ Lm|Q) = 0 if r ∈ Hfalse (94)

P(r ∈ Lm|Q) = 1 if r ∈ S ∪Htrue (95)

P(r ∈ Lm|Q) =
qsign − |Htrue| − |S|

2λ0 − |Htrue| − |S| − |Hfalse|
else. (96)

To compute the probability distribution p(r|Q) it is helpful to notice that

P(Lm.next() outputs an element of Htrue) =
|Htrue|

qsign − |S|
. (97)

This can be used to derive p(r|Q) as follows

p(r|Q) = 0 if r ∈ Hfalse ∪ S (98)

p(r|Q) =
1

qsign − S
if r ∈ Htrue (99)

p(r|Q) =
qsign − |S| − |Htrue|

(qsign − S)(2λ0 − |Htrue| − |S| − |Hfalse|)
else. (100)

(98) is obvious. (99) follows from that all elements of Htrue have the same probability to be
chosen as return value for Lm.next() and (97). (100) follows by a similar reasoning by arguing
(i) that all the elements of Fλ0

3 \ (S ∪Htrue ∪Hfalse) have the same probability to be chosen
as return value for Lm.next(), (ii) the probability that Lm.next() outputs an element of Fλ0

3 \
(S ∪Htrue ∪Hfalse) is the probability that it does not output an element of Htrue which is 1 −
|Htrue|
qsign−|S| =

qsign−|S|−|Htrue|
qsign−|S| .

Figure 8 explains how we perform the emulation of the list operations so that they perform
similarly to genuine list operations as specified above. The idea is to create and to operate explicitly
on the lists S, Htrue and Hfalse described earlier. We have chosen there

β =
qsign − |Htrue| − |S|

2λ0 − |Htrue| − |S| − |Hfalse|
and γ =

|Htrue|
qsign − |S|

.

we also assume that when we call randomPop() on a list it outputs an element of the list uniformly
at random and removes this element from it. The method push adds an element in a list. The
procedure rand() picks a real number between 0 and 1 uniformly at random.

The correctness of this emulation follows directly from the calculations given above. For in-

stance the correctness of the call Lm.next() follows from the fact that with probability |Htrue|
qsign−|S| = γ

it outputs an element of Htrue chosen uniformly at random (see (97)). In such a case the corre-
sponding element has to be moved from Htrue to S (since it has been queried now through a
call to Sign(m)). The correctness of Lm.contains(r) is a direct consequence of the formulas
for P(r ∈ Lm|Q) given in (94), (95) and (96). All push, pop, membership testing above can be
implemented in time proportional to λ0.

Wave: a New Family of Trapdoor One-Way PSF Based on Codes 63

class list method list.contains(r) method list.next()

Htrue, Hfalse, S if r 6∈ Htrue ∪Hfalse ∪ S if rand() ≤ γ
list() if rand() ≤ β r← Htrue.randomPop()
Htrue ← ∅ Htrue.push(r) else

Hfalse ← ∅ else r←↩ Fλ0
3 \ (Htrue ∪ S ∪Hfalse)

S ← ∅ Hfalse.push(r) S.push(r)
return r ∈ Htrue ∪ S return r

Fig. 8. Emulation of the list operations.

