
People Who Live in Glass Houses Should not
Throw Stones: Targeted Opening Message

Franking Schemes

Long Chen and Qiang Tang

New Jersey Institute of Technology
{longchen,qiang}@njit.edu

Abstract. Message franking enables a receiver to report a potential
abuse in a secure messaging system which employs an end to end en-
cryption. Such mechanism is crucial for accountability and is already
widely adopted in real world products such as the Facebook messenger.
Grubs et al [5] initiated a systematic study of such a new primitive, and
Dodis et al [2] gave a more efficient construction. We observe that in all
existing message franking schemes, the receiver has to reveal the whole
communication for a session in order to report one abuse. This is highly
undesirable in many settings where revealing other non-abusive part of
the communication leaks too much information; what is worse, a foxy
adversary may intentionally mixing private information of the receiver
with the abusive message so that the receiver will be reluctant to report.
This essentially renders the abuse reporting mechanism ineffective.
To tackle this problem, we propose a new primitive called targeted open-
ing compactly committing AEAD (TOCE for short). In a TOCE, the
receiver can select arbitrary subset of bits from the plaintext to reveal
during opening, while keep all the rest still secure as in an authenticated
encryption. We gave a careful formulation, together with a generic con-
struction which allowing a bit level targeted opening. While the generic
construction may require a substantial number of passes of symmetric
key ciphers when encrypting a large message such as a picture, we thus
further set forth and give a more efficient non-black-box construction
allowing a block-level (e.g., 256 bit) opening. We also propose a privacy-
efficiency trade off if we can relax the security of non-opened messages to
be one way secure after the abusive reporting (they are still semantically
secure if no opening).

1 Introduction

End-to-end encryption enables users to securely communicate with each other,
without worrying the message to be seen to any third party including the plat-
form that hosts the secure messaging service. Multiple large scale secure messag-
ing systems such as WhatsApp, Signal, and Facebook Messenger have already
been deployed to serve more than a billion users across the globe. On the other
hand, confidentiality also brings new challenges of other security goals.

Most notably, when one user spreads misinformation such as harassing mes-
sages, phishing links and/or any other improper contents, the recipients should
be allowed to report the malicious behavior to the service provider, so that the
sender could be penalized (e.g., blocked). On the same time, no dishonest re-
porter should be able to fabricate any fake message to frame an innocent sender.
To address this pressing challenge, Facebook Messenger [3, 4] recently introduced
the concept of message franking for such verifiable abuse reporting in encrypted
systems. Also, a new cryptographic primitive called compactly committing au-
thenticated encryption with associated data (ccAEAD) was proposed in recent
cryptography literature [5, 2] to provide formal investigations.

A ccAEAD first is a standard authenticated encryption, but with the extra
property that enables a receiver to open the plaintext if he chooses to. Two
natural properties arise: a malicious sender could not deny the opening of an
honest receiver, and a malicious receiver cannot arbitrarily open the message to
frame an honest sender. Besides these two, in practice, it is preferable to add a
short tag to enable these two properties whose size is independent of the message
size (this property refers to compactness).

Intuitively, in a message franking system, some short tag served as a proof
will be attached to the ciphertext so that a later “opening” of the ciphertext
can be verified with this tag. Imagine a user Bob receives a ciphertext which
is “stamped” by the server from a user Alice, (server signs or even stores the
tag ensuring the ciphertext is indeed sent from Alice to Bob). If Bob decodes
the ciphertext, validates the tag, and obtains an improper message, he will then
reveal either the message or the secret key, so that the service provider can check
the reported abuse. Existing methods including the one deployed in Facebook
Messenger and the constructions in [5, 2] all follow this pattern.

The undesirability of “all or nothing” abuse reporting. However, revealing the
whole piece of the plaintext transmitted during a session when reporting an abu-
sive message in many cases is undesirable to the recipient, as some parts of the
plaintext (or the existence of the conversation itself) could contain private infor-
mation. Consider the following exemplary scenarios: a doctor or a pharmacist is
communicating with one patient about the situation of some diseases the patient
is suffering from or the medicine the patient is taking; two members of a cult
group are discussing or debating on some issue regarding their special interests;
a merchant on Ebay is explaining to a customer about the product (which could
be for some special hobby and the customer would prefer to keep private) he is
selling. In all those scenarios, the conversations contain some private information
of the recipient, if improper messages such as harassing messages are generated
during those conversations, the recipients may feel reluctant to reveal his name
or the other personal information, thus not reporting the abuse.

What’s worse, having this in mind, a malicious sender would intentionally
insert some kind of personal information of the receiver when sending improper
messages. Given current all-or-nothing type of opening in ccAEAD schemes,
the attacker can simply concatenate some piece of receiver personal information
with the abusive message and send over together via the secure messaging sys-

2

tem. Doing this essentially renders abuse reporting in message franking as an
ineffective deterrence towards resolving the misinformation problem in secure
messaging. Such potential threat of existing message franking schemes calls for
a formal study that whether the abuse reporting can be done in a way that the
receiver can choose flexibly which part to reveal. In this paper, we are seeking
to answer the following question:

Can we design a message franking scheme that enables the receiver to
selectively report the abusing message, without revealing any information about

other parts of the plaintext?

Our contributions. To defend against the above attack to message franking, we
strengthen the ccAEAD notion to enable a targeted opening. In more details:

Targeted opening ccAEAD: modeling. It turns out that adding a targeted
opening property influences all security properties. We formally define the tar-
geted opening property for ccAEAD, such that a recipient could reveal any part
of the message of his choice, while other parts remain as secure as in an authen-
ticated encryption. This means for both confidentiality and ciphertext integrity,
we need to allow the attacker an extra query about opening of a targeted part of
the plaintext. Furthermore, the two binding properties also need to be revised ac-
cordingly. More specifically, it means that the sender must not be able to provide
a valid ciphertext which can be decrypted successfully but can not be targeted
opened correctly for some positions. Also the receiver can not maliciously open
any targeted part of the ciphertext to a abusive message.

Targeted opening ccAEAD: a generic construction. Unfortunately, none
of existing constructions of ccAEAD satisfies targeted opening, since their open-
ing algorithm will reveal the whole information about the message. To follow the
generic commit-then-encrypt methodology in [5] to construct a ccAEAD and also
to support targeted opening, we propose a modular approach. We first introduce
a cryptographic notion of targeted opening commitment scheme (TOC for short).
TOC is similiar to some more advanced notions like a functional commitment
[7] or vector commitment [1], since it allows one to open any part of the message
while the rest remain hidden, and to confirm that the partial message is indeed
extracted from the exact bit positions of the original message. However, differ-
ent the previous notions, TOC additionally requires a property named efficiently
checkable, which intuitively means if a commitment can be opened respect to the
entire message, it can be successfully targeted opened respect to any positions.
This property is important to guarantee sender binding of the TOCE scheme,
which requires that the decryption algorithm of the TOCE scheme can make
sure that the commitment can be successfully targeted opened according to the
decrypted message. But in the reality the decryption algorithm can not check
all kinds of targeted opening, since the number of selecting partial positions is
exponentially large. We provide a very simple initiation of TOC that only uti-
lizes collision resistant hash. We then give a generic construction of TOCE from
a TOC scheme and an AEAD scheme, together with a detailed security analysis.

3

Targeted opening ccAEAD: more efficient constructions. Our generic
construction leverages bitwise operations thus incurs large overhead for encryp-
tion, which makes the scheme only applicable when encrypting short messages
such as texts. To also consider the applicability in the setting of encrypting large
messages such as pictures, and even videos, we set forth to consider more effi-
cient constructions. We first consider a block-wise targeted opening. However,
straightforward instantiation of our generic construction, yields an encryption
algorithm that needs four passes of block cipher operations for a message string.
We observe that, if we reuse some intermediate results of the encryption part to
the commitment part, we can construct a nonce based block wise TOCE with
three passes in the random oracle model. Furthermore, if we weaker the confi-
dentiality definition and allow the unopened message part to be one-way secure
instead of semantic secure, we can get a construction of TOCE with only two
passes. Note that even for our latter weaker version construction, its security is
still strictly stronger than previous ccAEAD constructions in [5, 2].

Scheme Without Opening Targeted Opening Pass

CtE1/CtE2[5] Semantic No 2

CEP [5] Semantic No 2

HFC [2] Semantic No 1

CEP2 [6] Semantic No 2

CEP-AOP1/2 [6] Semantic Semantic 4

TOCE Semantic Semantic 4

bTOCE Semantic Semantic 3

wbTOCE Semantic One-Way 2
Table 1. Comparison for existing schemes. Without Opening and Targeted Open-
ing denote the security level of the confidentiality without opening and targeted open-
ing respectively. Pass denotes the complexity of encryption and decryption.

Related work and Comparisons. Grubs et al. [5] initiated a systematic formal
study of message franking, and formalized a cryptographic scheme called com-
pactly committing authenticated encryption with associated data (ccAEAD).
The authors did a thorough examination of existing concrete AEAD schemes
and generic constructions in use. Finally, they also provided a nonce based
construction for ccAEAD with two passes, which is as efficient as our weaker
confidentiality TOCE. Dodis et al. [2] demonstrated a concrete attack that the
Facebook message franking scheme is actually insecure. They also gave an effi-
cient construction of ccAEAD that only involves a one-pass of symmetric key
ciphers. We stress that all constructions do not support a selective opening of
only a part of the plaintext.

Concurrent work. Recently Leontiadis and Vaudeny [6] considered a similar
security definition for the message franking scheme, named after opening privacy.

4

This property allows only the abusive blocks are opened while the rest non-
abusive blocks of the message remain private. In our paper, we further consider
other properties, such as integrity, sender binding and receiver binding under the
targeted open capability. Leontiadis and Vaudeny also gave two constructions to
show feasibility, thus their constructions at least need four passes block cipher
operations, while our efficient construction reduces it to three and even fewer
when taking the privacy-efficiency trade off.

2 Preliminary and Background

In this section, we explain several definitions of cryptographic primitives neces-
sary as our preliminary.

2.1 Classical cryptographic primitives

Let {0, 1}n denote the bit string with length n. Specifically, {0, 1}∗ denote the
bit string with arbitrary length.

Nonce-based pseudorandom generator. a nonce based pseudo random gen-
erator (PRG) G is a deterministic algorithm that takes as input a key K, a nonce
N , and an output length l. It outputs a string of length l bits. The PRG advan-
tage of an adverary A against G is defined by

AdvprgG (A) =

∣∣∣∣ Pr
K←{0,1}k

[
AG(K,·,·) = 1

]
− Pr

[
AR(·,·) = 1

]∣∣∣∣
where R works as follows. On query N , l it checks if a previous query N ,l′

was submitted. If l′ < l it picks a new random string of length l − l′, appends
it to the previous returned string for N , records it in a table indexed by N ,
and returns the concatenated random string. If no previous query exists, then
it picks a random string of length l, records and then returns it. We call a PRG
adversary A nonce-respecting if all its queries use a unique nonce N . One can
build a nonce-based pseudorandom generator from a block cipher in CTR mode.

Commitment scheme. A commitment scheme with verification CS = (Com,VerC)
consist of two algorithms. Associated to any commitment scheme is an open-
ing space Kf ⊆ {0, 1}∗, and a commitment space C ⊆ {0, 1}∗. The algorithm
Com is randomized and takes as input a M ∈ {0, 1}∗ and outputs a pair
(K,C) ∈ Kf × C or an error symbol ⊥. We assume that Com return ⊥ with
probability one if M /∈ M. The algorithm VerC is deterministic. It takes input
a tuple (K,C,M) ∈ {0, 1}∗ and outputs a bit. We assume that VerC returns 0
if its input (K,C,M) /∈ Kf × C ×M.

– Correctness. A commitment is correct if for allM ∈M, Pr[VerC(Com(M),M) =
1] where the probability is over the coins used by Com

5

– Binding. A commitment is binding if no (computational or unbounded) ad-
versary can output a tuple (Kc,M,K ′c,M

′, C) where both (Kc,M,C) and
(K ′c,M

′, C) can pass the verification.
– Hiding. A commitment is hiding if a commitment is indistinguishable from

a random bit string while the opening remaining secret.

Merkle Tree. A Merkle tree is a (binary) tree in which every leaf node is
labelled with the hash of a data block and every non-leaf node is labelled with
the cryptographic hash of the labels of its child nodes. Merkle trees allow efficient
and secure verification of the contents of large data structures. To prove whether
a value ci is one of leafs corresponding to a root R, we just need to provide all
the siblings of all the nodes on the path from the leaf ci to the root R. We call
all these values are a Merkle proof for ci, which can be denoted as πi in the
following. This proof πi not only show that ci is indeed one of the leafs, but also
proved ci is in the ith position of the string of all leafs c1, . . . , cl. Note that the
size of π is logarithmic to the number of the leafs.

Authenticated encryption with associated data. The AEAD is a variant
of authenticated encryption (AE) where the data to be encrypted needs both au-
thentication and integrity as opposed to just integrity. It is required, for example,
by network packets. The header needs integrity, but must be visible; payload, in-
stead, needs integrity and also confidentiality. Both need authenticity. Similar to
AE, AEAD consist of three algorithms (AEAD.KeyGen,AEAD.Enc,AEAD.Dec).

– AEAD.KeyGen(1λ): Given the security parameter λ, output a security key
K.

– AEAD.Enc(K,H,M): Given the secret key K, the header H, the message
M , output the ciphertext C.

– AEAD.Dec(K,H,M): Given the secret key K, the header H, the ciphertext
C, output the message M or a error symbol ⊥.

2.2 ccAEAD and message franking

In this section, we will revisit the definition of ccAEAD in [5], and how the
kidnapping attack works.

Definition of ccAEAD A committing AEAD scheme CE consists of four algo-
rithms (KeyGen,Enc,Dec,Ver). Let us represent the key space as K ⊆ {0, 1}∗, the
header space as H ⊆ {0, 1}∗, the message space as M ⊆ {0, 1}∗, the ciphertext
space as C ⊆ {0, 1}∗, the opening space as Kf ⊆ {0, 1}∗, and the franking tag
space T ⊆ {0, 1}∗.

– KeyGen: The randomized key generation algorithm KeyGen outputs a secret
key K ∈ K.

– Enc: The randomized algorithm Enc takes a triple (K,H,M) ∈ K ×H×M
as input and outputs a pair (C1, C2) ∈ C ×T . Here C1 is the ciphertext and
C2 is the franking tag.

6

– Dec: The deterministic algorithm Dec takes a tuple (K,H,C1, C2) ∈ K×H×
C×T as input and outputs a message, opening value pair (M,Kf) ∈M×Kf
or a distinguished error symbol ⊥.

– Verify: The deterministic algorithm Ver takes a tuple (H,M,Kf , C2) ∈ H ×
M×Kf × T as input and output a bit b. Specifically, we assume that Ver
outputs 0 for (H,M,Kf , C2) /∈ H ×M×Kf × T .

Definition of nessage franking. We notice that in the verification algorithm,
the input includes the entire message.

Alice Server Bob

(C1, C2)← Enc(K,H,M)

(C1, C2)

md← Alice‖Bob‖timestamp
s← C2‖md
a← HMAC(Kserver, s)

C1, C2, a

(M,Kf)← Dec(K,H,C1, C2)

. Report Abuse .

(M,Kf ,md, a)

b← Ver(H,M,Kf , C2)

a′ ← HMAC(Kserver, C2‖md)

Report b ∧ (a = a′)

Since in the report phase, Bob will provide the whole message to the server,
otherwise the server can not proceed the correct verification.

Security definition of ccAEAD. For a secure CE scheme, we require that it
can satisfies the following properties: confidentially, ciphertext integrity, sender
binding and receiver binding.

Specifically, the confidentially can be defined as the difference between the
probability of returning 1 in the game REALACE and RANDACE in Figure 2.2 is
negligible, while the integrity is defined as the probability of returning 1 in the
game RANDACE is negligible.

The CE scheme not only require confidentially and ciphertext binding, but
also the sender binding security and the receiver binding security. Sender binding
ensures the sender of a message is bound to the message it actually sent. This
property can prevent the sender to generate a bogus commitment that does not
give the receiver the ability to report the message. It is formal defined as that the

7

REALACE RANDACE CTXTACE
K ← KeyGen K ← KeyGen K ← KeyGen; win← 0

b← AEnc,Dec,ChalReal b← AEnc,Dec,ChalRand AEnc,Dec,ChalDec

Return b Return b Return win

Oracle Enc(H,M) Oracle Dec(H,C1, C2) Oracle Dec∗(H,C1, C2)
(C1, C2)← EncK(H,M) If (H,C1, C2) /∈ Y1 Return DecK(H,C1, C2)
Y1 ← Y1 ∪ {(H,C1, C2)} then Return ⊥
Return (C1, C2) (M,Kf)← DecK(H,C1, C2)

Oracle ChalReal(H,M) Oracle ChalRand(H,M) Oracle ChalDec∗(H,C1, C2)
(C1, C2)← EncK(H,M) (C1, C2)← C × T If (H,C1, C2) ∈ Y
Return (C1, C2) Return (C1, C2) Return ⊥

(M,Kf)← DecK(H,C1, C2)
If M 6= ⊥

then win← 1
Return (M,Kf)

Fig. 1. Security Games for confidentially and integrity for ccAEAD

probability of the game s-BINDACE on the left column of returning ture of Figure
2 is negligible. The receiver binding is adopted from the traditional binding
notions for the commitment. It formalizes the intuition that a malicious receiver
should not be able to accuse a non-abusive sender of having said something
malicious, which can be defined as the probability of the game r-BINDACE return
1 on the right column of Figure 2 is negligible.

s−BINDACE r −BINDACE
(K,H,C1, C2)←$A ((H,M,Kf), (H ′,M ′,K′f), C2)←$A
(M ′,Kf)← Dec(K,H,C1, C2) b← Ver(H,M,Kf , C2)
If M ′ = ⊥ then Return false b′ ← Ver(H ′,M ′,K′f , C2)
b← Ver(H,M ′,Kf , C2) If (H,M) = (H ′,M ′) then
If b = 0 then Return false

Return true Return(b = b′ = 1)
Return false

Fig. 2. The security games for the binding properties for ccAEAD.

3 Targeted Opening Compactly Committing AEAD

As briefly discussed in the introduction, a foxy attacker in a message franking
scheme (or the underlying ccAEAD scheme) could leverage the fact that recip-

8

ients may be reluctant to report an abusive message if his private information
is contained in the session plaintext, when the opening requires the recipient to
reveal the whole piece of the plaintext. The attacker could intentionally embed
private information about the recipient to make abuse reporting functionality es-
sentially nullified. For this reason, we initiate a systematic study about targeted
opening property in a ccAEAD scheme. The targeted opening property allows a
recipient to pick exclusively the abusive message from the plaintext, only reveal-
ing the abusive message to the server as evidence, while keep all other plaintext
still confidential.

A TOCE scheme consists of five algorithms, i.e., TOCE = (KG,Enc,Dec,TOpen,TVer).
Let us represent the key space as K ⊆ {0, 1}∗, the header space as H ⊆ {0, 1}∗,
the message space as M ⊆ {0, 1}∗, the ciphertext space as C ⊆ {0, 1}∗, the
opening space as Kf ⊆ {0, 1}∗, the targeted opening space as S ⊆ {0, 1}∗and
the franking tag space T ⊆ {0, 1}∗.

Before we describe the syntax, we first define the position function ϕ as
follows. If M is a bit string with length n, ϕ is a function that take as input the
message M , picks the bits of M with the indices {i1, i2, . . . , ij}, (for each index
chosen from {1, . . . , n}) depending on ϕ’s definition. Without loss of generality,
we denote the identity function I as choosing all the positions from {1, . . . , n},
i.e., I(M) = M . We define the space of all position functions as Φ.

– Key generation: The randomized algorithm KeyGen outputs a secret key
K ∈ K.

– Encryption: The randomized algorithm Enc takes a triple (K,H,M) ∈
K × H ×M as input and outputs a pair (C1, C2) ∈ C × T . Here C1 is the
ciphertext that carries the payload and C2 is the franking tag, and H is the
associated data.

– Decryption: The deterministic algorithm Dec takes a tuple (K,H,C1, C2) ∈
K × H × C × T as input and outputs a message and opening value pair
(M,Kf) ∈M×Kf or the error symbol ⊥.

– Targeted open: The deterministic algorithm TOpen takes as input a tuple
(H,M,Kf , C2, ϕ) ∈ H ×M×Kf × T × Φ, and outputs the targeted value
represented as ϕ(M) and the corresponding targeted opening S.

– Verification: The deterministic algorithm TVer takes as input a tuple values
of (H,ϕ(M), S, ϕ, C2) and output a bit b. Specifically, we assume that Ver
outputs 0 if the targeted opening is not valid.

Compactness. Similarly to previous work [5, 2], we also require the tocc-
AEAD scheme to be compact, which means the length of the tag part of the
ciphertext is independent with the message length. This is important for the
server to authenticate the tag and even store the short tag.

With the revised syntax, the message franking protocol would now be mod-
ified correspondingly as follows.

Correctness. We say a TOCE scheme has decryption correctness if for all
(K,H,M) ∈ K × H ×M it holds that Pr[Dec(K,H,C1, C2) = M] = 1 where

9

Alice Server Bob

(C1, C2)← Enc(K,H,M)

(C1, C2)

md← Alice‖Bob‖time
s← C2‖md
a← HMAC(Kserver, s)

C1, C2, a

(M,Kf)← Dec(K,H,C1, C2)

. Report Abuse .

S ← TOpen(H,M,Kf , C2, ϕ)

(H,ϕ(M), S, ϕ,md, a)

b← TVer(H,ϕ(M), S, ϕ, C2)

a′ ← HMAC(Kserver, C2‖md)

Report b ∧ (a = a′)

Fig. 3. Message franking supporting targeted opening

10

the probability is taken over the coins in the key generation Kg and the en-
cryption Enc. We say a target commitment ccAEAD scheme has targeted open
commitment correctness if for all (H,M,S, ϕ) ∈ H ×M×S × Φ it holds that

Pr[TVer(ϕ(M), S, ϕ, C2) = 1] = 1

where the probability is taken over the random variables in the following proce-
dure:

1. K ←$KeyGen;
2. (C1, C2)←$EncK(H,M);
3. (M,Kf)← DecK(H,C1, C2);
4. S ← TOpen(H,M,Kf , C2, ϕ).

3.1 Security definitions

In this subsection, we will give a detailed characterization of the security notions
in the new setting allowing targeted opening (which could be multiple times for
the same plaintext). We note that a TOCE would still satisfy the confidentiality,
ciphertext integrity, sender binding, and receiver binding, but all of them are
influenced by the targeted opening functionality thus we need to adapt carefully.

Message confidentiality. In a TOCE scheme, we require that the messages bits
that have not been opened, remain semantically secure. This requires no single
bit of information will be leaked except the explicitly revealed part. In the TO-
IND game defined in Fig 4 below, we further allow the adversary to have access
to TOpen oracle. To avoid trivial impossibility, we require that for the two
challenge messages, the opened part to be identical. It is straightforward that if
the recipient does not open any bits, the standard IND-CPA security will apply.

Ciphertext integrity. We also require that any adversary without the secret key
can not generate new valid ciphertexts from existing ciphertexts. Thus we define
the TO-CTXT game in Fig 4. Similarly, we allow the adversary to query the
TOpen oracle.

Sender binding ensures the sender of a message is bound to the message it
actually sent. So we define the TO-s-BIND game in Fig 4. In this game, we
require that a valid ciphertext which is decrypted to M ′ can be successfully
targeted opened according to any position function ϕ and pass the verification
algorithm for the opening S, the partial message ϕ(M ′) and the position function
ϕ. Previously, a CE scheme can generically meet sender binding by running the
verification algorithm during the decryption and return ⊥ if the verification
returns 0 [2]. However, since the space of the position function Φ is exponentially
large, we can not add the verification step for all ϕ in the decryption algorithm.
The proof for the sender binding property for TOCE scheme is highly non-trivial.

11

Receiver binding ensures the receive can not maliciously open the ciphertext to
two different message. This is shown in the TO-r-BIND game in Fig 4. Differ-
ent with the previous CE scheme, we do not require the adversary to output
two whole messages, but simply two partial messages and a position function.
Besides, we also provide the TOpen oracle to the adversary.

3.2 A generic construction of toccAEAD

In this subsection, we introduce a generic construction for the desired toccAEAD
scheme. This construction follows the commitment-then-encrypt mythology. To
satisfy the targeted opening property, we propose the notion of targeted open-
ing commitment (TOC) and provide a candidate construction for TOC. Follow
the strategy of TOC-then-encrypt, we can easily obtain the construction of toc-
cAEAD.

Targeted opening commitment scheme is a new primitive that allows to
commit an bit string with length ` in such a way that one can later open the com-
mitment of certain segments at specific positions (or arbitrary non-consecutive
substring), so it can open in a way that mi is the i-th bit of the committed
message1. Specifically, TOC can be formalized as following four algorithms.

– TOC.Setup(1λ): Given the security parameter λ, the key generation outputs
some public parameters pp.

– TOC.Com(pp,M): On input a bit string M and the public parameters pp,
the committing algorithm outputs a commitment string C and the commit
key K.

– TOC.TOpen (pp, C,K, ϕ,M) : On input the public parameter pp, the com-
mitment C, the commitment key K, the position function ϕ and the message
M . This target opening algorithm is to produce a opening S which prove
that ϕ(M) consists of the certain bits according to the position function ϕ.

– TOC.TVer(pp, C, S,m, ϕ): The verification algorithm accepts (i.e., it outputs
1) only if S is a valid proof that C was created to a bit string M such that
ϕ(M) = m.

In the most settings, we can assume that the TOC.Setup all ready exists, and
one takes the public parameter pp as implicit input for other tree algorithms. So
we usually can omit them in scheme descriptions. A TOC scheme must satisfy
the correctness, i.e., if Com(M) = C and S = TOC.TOpen(C,K,ϕ,M) for any
ϕ, the probability Pr(TOC.TVer(C, S,m,ϕ) = 0) is negligible.

The target opening commitment meets an attractive security requirement
named position binding. Informally, this says that it should be infeasible, for
any polynomially bounded adversary having knowledge of pp, to come up with

1 We may view a TOC as a special case of the more general notion of vector com-
mitment [1] or functional commitment [7]. Both of them rely on algebraic structure
and public key operations. We formulate the notion of ToC simply for the sake of
potential efficient constructions that are more suitable for secure messaging.

12

TO-INDACE TO-r-BINDACE
K ←$KeyGen ((m,S), (m′, S′), C2, ϕ)←$AEnc,Dec,TOpen

state← AEnc,Dec,TOpen b← TVer(m,S,C2, ϕ)
{H∗, (M0,M1)} ←$A(st) b′ ← TVer(m,S′, C2, ϕ)
b←$ {0, 1} If m = m′ then
(C∗1 , C

∗
2)← EncK(H∗,Mb) Return false

b′ ←$AEnc,Dec,TOpen(C∗1 , C
∗
2 , st) Return(b = b′ = 1)

Return b = b′

TO-CTXTACE TO-s-BINDACE
K ←$Kg (K,H,C1, C2, ϕ)←$AEnc,Dec,TOpen

win← false (M ′,Kf)← Dec(K,H,C1, C2)

AEnc,Dec∗,TOpen,ChalDec If M ′ = ⊥ then Return false
Return win S ← TOpen(H,M ′,Kf , C2, ϕ)

b← TVer(H,ϕ(M ′), S, C2)
If b = 0 then Return true
Else Return false

Oracle Enc(H,M) Oracle Dec(H,C1, C2)
(C1, C2)← EncK(H,M) If (H,C1, C2) /∈ Y1

Y1 ← Y1 ∪ {(H,C1, C2)} then Return ⊥
Return (C1, C2) If (H,C1, C2) = (H∗, C∗1 , C

∗
2)

then Return ⊥
(M,Kf)← DecK(H,C1, C2)
Return (M,Kf)

Oracle TOpen(H,C1, C2, ϕ) Oracle Dec∗(H,C1, C2)
If (H∗, C∗1 , C

∗
2) = (H,C1, C2) then Return DecK(H,C1, C2)

If ϕ(M0) 6= ϕ(M1) then
Return ⊥ Oracle ChalDec(H,C1, C2)

If (H,C1, C2) /∈ Y1 then If (H,C1, C2) ∈ Y1 then
Return ⊥ Return ⊥

(M,Kf)← DecK(H,C1, C2) (M,Kf)← DecK(H,C1, C2)
(ϕ(M), S)← TOpenK(M,Kf , ϕ) If M /∈ ⊥ then
Return (m = ϕ(M), S) win← true

Fig. 4. Security games for TOCE

13

a commitment C and two different valid openings for the same position i. More
formally:

Definition 1 (Position Binding). A TOC scheme satisfies position binding
if for every PPT adversary A and position function ϕ the following probability
(which is taken over all honestly generated parameters) is at most negligible in
λ, i.e.,

Pr[(C,m,m′, S, S′, ϕ)←$A] ≤ negl(λ)

where TOC.TVer(C,m, S, ϕ) = 1, TOC.TVer(C,m′, S′, ϕ) = 1 and m 6= m′.

A TOC scheme also requires the targeted hiding property, i.e., the bits that
have not been opened will remain semantically secure. Informally, a TOC scheme
is targeted hiding if an adversary cannot distinguish whether a commitment was
created to a bit string M or to M ′, even after seeing some openings at certain
bit positions where the two bit strings agree.

Definition 2 (Targeted Hiding). A TOC scheme satisfies targeted hiding if
for every PPT adversary A and position function ϕ,∣∣Pr(T-HIDEA ⇒ 1)− 1/2

∣∣ ≤ negl(λ),

where the T-HIDE game is defined in Fig 5 and the probability is taken over all
honestly generated parameters.

T-HIDEA

1 : b←$ {0, 1}
2 : pp←$KeyGen

3 : (M0,M1)←$A(pp)

4 : (C∗,Kf)←$TOC.Com(pp,Mb)

5 : b′ ←$ATOpen(1n, pp, C)

6 : return b = b′

Oracle TOpen(C,ϕ)

1 : if C = C∗

2 : if ϕ(M0) 6= ϕ(M1)

3 : return ⊥
4 : else S ← TOC.TOpen(pp, C,Kf , ϕ,M)

5 : return (S, ϕ(M))

Fig. 5. The security game for targeted hiding

Another important property we need is named efficient checkable. Intuitively,
this property guarantees that the no adversary can generate a malicious commit-
ment which successful targeted verified according to the identity function I, but
can not be successful verified according to some other position function ϕ. This
property is important for the proof of sender binding property for the following
generic construction of TOCE scheme. Formally, we have

14

Definition 3 (Efficient Checkable). A TOC scheme satisfies efficient check-
able if for every PPT adversary A, the probability of outputting a commitment
C, a position function φ and a message M , which satisfy

– S1 = TOC.TOpen(C,K, I,M) and TOC.TVer(C,M,S, I) = 1;

– S2 = TOC.TOpen(C,K,ϕ,M) and TOC.TVer(C,ϕ(M), S2, ϕ) = 0,

is negligible.

A simple instantiation of TOC. We can give a very simply construction
of TOC that only involves the collision resistant hash function. Intuitively, this
construction is obtained by using bit commitment scheme to commit each bit of
the message, and then hash all the commitment value together.

– TOC.Com(M): On input a bit string M = m1m2 . . .m` with length `, and
the public parameters pp, the committing algorithm first commits each bit
running the bit commitment algorithm bCom(mi, pp) and outputs a commit-
ment ci and the opening ri. In particular, bCom can be instantiated simply
with a collision resistant hash. Then apply a collision resistant hash H on
the commitments of the message bit to build a Merkle tree using c1, . . . , c`
as leaves, and the resulting root is denoted as C. The algorithm outputs
commitment C and openings (or commitment key) K := r1, . . . , r`.

– TOC.TOpen (C,K,ϕ,M) : On input the public parameter pp, the commit-
ment C, the commitment key K, the position function φ and the message M .
This target opening algorithm first evaluates ϕ(M), suppose ϕ(M) := {mij},
where ij is the index that the corresponding bit to be opened. For each ij ,
the algorithm first reveals cij and the corresponding Merkle proof πij , and
the corresponding openings rij

– TOC.TVer(C, S,m,ϕ): For each ij , the verification algorithm first checks
whether the Merkle proof πij is correctly formed, and then checks whether
h(mij , rij) = cij . If all passes, the algorithm outputs 1, otherwise outputs 0.

Security sketch. The above construction is fairly simple, we only briefly explain
the security here and defer a detailed proof to the full version. Regarding posi-
tion binding, it is fairly easy to see. For an index i, supposed it is opened, the
actual commitment ci with its Merkle proof can be verified. Then following the
property of the underlying bit commitment , the opening of ci can be ensured by
the binding property (or simply the collision resistance of the hash). Regarding
targeted hiding, in the first step, the revealed contains only information about
commitments of the unopened message bits, which are simulatable with nothing,
thus the remaining bits are still semantically secure.

A generic construction of toccAEAD. Here we will provide a generic con-
struction TOCtE of toccAEAD from a TOC scheme TOC=(TOC.Com,TOC.TOpen,
TOC.TVer) and any AEAD scheme AEAD=(AEAD.KeyGen, AEAD.Enc, AEAD.Dec).

15

– TOCtE.KeyGen(1λ): On input the security parameter λ, use AEAD.KeyGen
to generate the secret key K, and output K as the secret key for the TOCE
scheme.

– TOCtE.Enc(K,H,M): On input the secret key K, the header H and the mes-
sage m, firstly one commits the message M and the header under the TOC
scheme and get (C2,Kf) = TOC.Com(M‖H) where C2 is the commitment
and Kf is the commit key. Secondly, one takes C2 as the header of AEAD,
encrypts the concatenation of the message M and the commitment key Kf ,
and get C1 = AEAD,Enc(K,C2,M‖Kf). Finally, the algorithm outputs the
ciphertext (C1, C2).

– TOCtE.Dec(K,H,C1, C2): On input the secret key K, the header H and
the ciphertext (C1, C2), firstly if ⊥ ← AEAD.Dec(K,C2, C1) then return ⊥;
otherwise parse the result of AEAD.Dec(K,C2, C1) as M and Kf . Secondly,
compute SI ← TOC.TOpen(C2,M,Kf , I) for the identity position function
I. If TOC.TVer(SI ,Kf ,M, I) = 0, abort; otherwise return (M,Kf).

– TOCtE.TOpen(H,M,Kf , C2, ϕ): On input the header H, the message M , the
commit key Kf and the position function ϕ, suppose the lengths of H and M
are l1 and l2 respectively, one can define a new position function ϕ′(·) for a bit
string with length l1 + l2 as inputting the first l1 bits to ϕ and concatenating
the output of ϕ with next l2 input bits as it is, i.e., ϕ′(M‖H) = ϕ(M)‖H.
Then use the target opening algorithm S ← TOC.TOpen(C2,M‖H,Kf , ϕ

′)
for the extended position function ϕ′.

– TOCtE.TVer(H,ϕ(M), S, ϕ, C2): On input the header H, the partial message
ϕ(M), the targeted opening S, the position function ϕ and the tag C2, one
can get the extended position function ϕ′ just as above. If

TOC.TVer(C2, S, ϕ(M)‖H,ϕ′) = 0,

output 0, otherwise output 1.

3.3 Security analysis

In this subsection, we will prove the TOCtE scheme satisfy the confidentiality,
integrity, sender binding and receiver binding properties defined in Fig 4.

Theorem 1 (Confidentiality). Let TOCtE be the generic TOCE scheme de-
scribed as above, which is based the AEAD scheme and the TOC scheme. Let
A be an adversary for the game TO-IND in Fig 4. Then we give the adversary
B against the hiding property of TOC scheme and the adversary C against the
AEAD scheme, which satisfy

AdvTOCtEA ≤ AdvAEADC + AdvTOCB

Proof. We start from the Game 1 in the left column of Fig 6, which is the real
game that the adversary faces. According to the confidentiality of the AEAD,

16

we can replace the encryption result of the AEAD to the encryption of random
message, then we get the Game 2.

Next, we will reduce the hiding property of the target opening commitment
to Game 2. Precisely, given the adversary A to attack the Game 2, we can
construct an adversary B to attack the hiding property of the TOC scheme. B
works as follows. He first generates the secret key K for AEAD, provide public
parameter forA, then answer the oracles forA. Note that B can easily answer the
Enc oracle by generate the commitment by himself as C1 and encrypt a random
message by K as C2. B answer the decryption oracle by search (H,M1,M2) in
the list Y1 and find the corresponding (M,Kf). When A output the message pair
(M1,M2), B provide same message pair to the challenger. When the challenger
reply the commitment C∗, B output the challenge ciphertext (C∗1 , C

∗
2) to adv

where C∗1 is the AEAD encryption of H and a random message M and C∗2 is
the commitment.

To answer the oracle TOpen, given (H,C1, C2, φ), if (H,C1, C2) is the chal-
lenge ciphertext, B first check whether ϕ(M0) 6= ϕ(M1), then use the (C2, ϕ)
to ask the TOC.TOpen oracle and output S, ϕ(M), otherwise return ⊥. If
(H,C1, C2) is not the challenge ciphertext, B first check whether (H,C1, C2)
is in Y1. If not, return ⊥. Otherwise B can find corresponding (M,Kf) and
compute the TOC.TOpen by himself.

Finally, we get the result

AdvTOCtEA ≤ AdvAEADC + AdvTOCB

ut

Theorem 2 (Integrity). Let TOCtE be the generic TOCE scheme described
as above, which is based the AEAD scheme and the TOC scheme. Let A be an
adversary for the game TO-CTXT in Fig 4. Then we can give adversaries B
against the integrity of the AEAD scheme and C against the the targeted binding
of the TOC scheme, which satisfy

AdvTOCtEA,TO−CTXT ≤ AdvAEADC,CTXT + AdvTOCB,BIND

.

Proof.

We have the TO-CTXT game as Fig 7. First of all, we can transform the TO-
CTXT game to the game G1 in Fig 8. The only difference between the TO-CTXT
game and the game G1 is that we replace the oracle Dec∗ and TOpen with
the oracle Dec′ and TOpen′. For the Dec′ oracle and TOpen′, the challenger
first looks up the existing table to answer the decryption query. If the queried
ciphertext does not exist in the table but it still can pass the validity check, the
flag win will be setted to true. Then we have that

AdvTO−CTXTTOCtE (A) ≤ Pr[GA1 ⇒ true]

17

Game1(n)

K ← AEAD.Kg

(H,M1,M2, state)← AEnc,Dec,SOpen

(C∗2 ,Kf) = TOC.Com(H‖Mb)

C∗1 ← AEAD.Enck(C∗2 ,Mb‖Kf)

b′ ← AEnc,Dec,SOpen(state, C∗1 , C
∗
2)

Return b′ = b

Oracle Enc(H,M)

(C2,Kf) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2, {0, 1}|M‖Kf |)

Y1 ← Y1 ∪ {H,C1, C2}
Return (H,C1, C2)

Oracle Dec(H,C1, C2)

if (H,C1, C2) /∈ Y1

then return ⊥
(M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥

Oracle TOpen(H,C1, C2, ϕ)

if (H∗, C∗1 , C
∗
2) = (H,C1, C2) then

if ϕ(M0) 6= ϕ(M1)

then return ⊥
if (H,C1, C2) /∈ Y1

then return ⊥
(M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return S, ϕ(M)

Game2(n)

K ← AEAD.Kg

(H,M1,M2, state)← AEnc,Dec,SOpen

(C∗2 ,Kf) = TOC.Com(H‖Mb)

C∗1 ← AEAD.Enck(C∗2 , {0, 1}|Mb‖Kf |)

b′ ← AEnc,Dec,SOpen(state, C∗1 , C
∗
2)

return b′ = b

Oracle Enc(H,M)

(C2,Kf) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2, {0, 1}|M‖Kf |)

Y1 ← Y1 ∪ {H,C1, C2}
return (H,C1, C2)

Oracle Dec(H,C1, C2)

if (H,C1, C2) /∈ Y1

then return ⊥
Search (H,M1,M2) in Y1 and find (M,Kf)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥

Oracle TOpen(H,C1, C2, ϕ)

if (H∗, C∗1 , C
∗
2) = (H,C1, C2) then

if ϕ(M0) 6= ϕ(M1)

then return ⊥
if (H,C1, C2) /∈ Y1

then return ⊥
Search (H,C1, C2) in Y1 and find (M,Kf)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

then return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return S, ϕ(M)

The Confidentiality of AEAD

Fig. 6. Security games for the proof for confidentiality.

18

TO-CTXT

K ← AEAD.Kg

win← false

AEnc,Dec,SOpen

return win

Oracle Enc(H,M)

(C2,Kf) = TOC.Com(H‖M)

C1 ← AEAD.Enck(C2,M‖Kf)

Y1 ← Y1 ∪ {H,C1, C2}
Return (H,C1, C2)

Oracle Dec∗(H,C1, C2)

if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
else return (M,Kf)

Oracle TOpen(H,C1, C2, ϕ)

if ⊥ ← AEAD.Dec(H,M1,M2) then

return ⊥
else (M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0 then

return ⊥
S ← TOpen(C2,M,Kf , ϕ)

return (S, ϕ(M))

Oracle ChalDec∗(H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
if M 6= ⊥

win← true

else return (M,Kf)

Fig. 7. The TO-CTXT game for TOCtE

19

Note that for win to be set with a query (H,C1, C2) in Game G1, it must be
that no previous encryption query (H,M) for some M returned (C1, C2). Let
the winning query be on the values (H∗, C∗1 , C

∗
2). We partition the probability of

setting win into two cases, either (C∗1 , C
∗
2) is distinct from all encryption outputs,

or (C∗1 , C
∗
2) is one of the encryption outputs and H∗ is not the header for the

encryption query that returned C∗1 , C
∗
2 . Let winH be the event that A wins with

a query where H∗ is a different header, and winC be the event that A wins with
a query where (C∗1 , C

∗
2) is distinct. Then Pr[GA0 ⇒ true] ≤ Pr[winH] + Pr[winC].

We will first bound Pr[winC]. In this case we will construct an adversary B in
the CTXT game of AEAD. This adversary simulates G0 for A, as follows. When
A queries (H,M) to Enc, B first generates a targeted opening commitment
and opening Kf , C2 though TOC.Com(M‖H). Then, B queries Enc oracle of
the CTXT game for AEAD with (C2,M‖Kf). It stores the result in a table,
then outputs C1, C2 to A. It simulates Dec∗, TOpen′ and ChalDec queries
that are outputs of previous Enc queries by consulting its table and outputting
either the proper value (for Dec and TOpen) or ⊥ (for ChalDec). When
Aqueries Dec∗, TOpen′ and ChalDec with a value not in the table, B submits
(C2, C1) as a forgery to its decryption oracle, and use the returned results in the
further calculations. Our Bperfectly simulates G1 for A. Since A’s query must
be a successful forgery and B will break CTXT of AEAD in this reduction with
probability at least Pr[winC], i.e., Pr[winC] ≤ AdvCTXTAEAD(B).

To bound Pr[winH] and complete the proof we can build another reduction
using an adversary C against the targeted binding property of the TOC scheme.
The adversary C simulates A’s view of G1 as B did, except C generates a random
encryption key and computes AEAD.Enc and AEAD.Dec internally. When A
makes a query (H,C1, C2) to Dec∗, TOpen or ChalDec where H is not the
header input to the encryption query that output C1, C2, C fetches from its stored
values the message M and opening Kf corresponding to C2, as well as H0, the
header part of the encryption query that produced C1, C2. In the TOC binding
game C outputs ((M‖H,S, I), (M‖H0, S

′, I), C2) for S and S′ are both targeted
opening respecting to the identity function I. The environment of G1 is perfectly
simulated by C. Since in the winning case for (H,C1, C2), TOC.Ver(M‖H,S, I)
must output 1. In this case, A has broken binding property of the commitment.

Theorem 3 (Sender Binding). Let TOCtE be the generic TOCE scheme
described as above, which is based the AEAD scheme and the TOC scheme.
Let A be an adversary for the game TO-s-BIND in Fig 4. Then we can give
adversaries B against the efficient checkable property of the

AdvTOCtEA,TO-s-BIND ≤ AdvTOCB,CHECK .

Proof. In the decryption algorithm of our TOCtE scheme, one need to tar-
geted open the commitment part C2 according the identity function I and check
whether the verification can be passed. So if a ciphertext can be successfully
decrypted but can not pass the verification when it is opened according to some
position function ϕ, the efficient checkable property can be broken.

20

Game G1

K ← AEAD.Kg

win← false

AEnc,Dec,SOpen

return win

Oracle Enc(H,M)

(C2,Kf) = TOC.Com(H,M)

C1 ← AEAD.Enck(C2,M‖Kf)

Y1 ← Y1 ∪ {H,C1, C2}
D[H,C1, C2]← (M,Kf)

Return (H,C1, C2)

Oracle Dec′(H,C1, C2)

if D[H,C1, C2] 6= ⊥ then

return D[H,C1, C2]

else if ⊥ ← AEAD.Dec(H,C1, C2) then

return ⊥
else (M,Kf)← AEAD.Dec(H,C1, C2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
else win← true

return (M,Kf)

Oracle TOpen′(H,C1, C2, ϕ)

if D(H,C1, C2) 6= ⊥
return (M,Kf)← D(H,C1, C2)

else (M,Kf)← AEAD.DecK(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0 then

return ⊥
else S ← TOpen(C2,M,Kf , ϕ)

win← true

return (S, ϕ(M))

Oracle ChalDec(H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
if ⊥ ← AEAD.Dec(H,M1,M2)

return ⊥
else (M,Kf)← AEAD.Dec(H,M1,M2)

S ← TOC.TOpen(C2,M,Kf , I)

if TOC.TVer(S,Kf ,M, I) = 0

return ⊥
if M 6= ⊥
win← true

else return (M,Kf)

Fig. 8. The game for the integrity proof.

21

Theorem 4 (Receiver Binding). Let TOCtE be the generic TOCE scheme
described as above, which is based the AEAD scheme and the TOC scheme. Let A
be an adversary for the game TO-r-BIND in Fig 4. Then we can give adversaries
B against the efficient checkable property of the

AdvTOCtEA,TO-r-BIND ≤ AdvTOCB,BIND.

3.4 An efficient instantiation

In this section, we will provide an efficient instantiation for our targeted open
commitment. Here we use the pseudo-random function G and the cryptographic
hash function H as primitives.

– TOC.Com(M) : Given the message M as the input, parse M into a sequence
of bits m1, . . . ,ml. Then use the pseudo-random generator G with seed sd
to generate a sequence of r1, . . . , rl ∈ {0, 1}λ, and compute hi = H(ri,mi)
for i = 1, . . . , l. Then use the Merkle tree to hash all hi together and get the
final commitment C. The corresponding opening is Kf = sd.

– TOC.TOpen(M, sd, ϕ): Given the seed sd, we can generate the random num-
ber r1, . . . , rl. Then we can easily compute each hi from ri and mi . Suppose
that the position function ϕ denotes to targeted open the bitsmi1 ,mi2 , . . . ,mik

while conceal the rest bits mj1 , . . . ,mjk′ , so the targeted opening S should
be the values hj for j ∈ {j1, . . . , jk′} and (ri,mi) for i ∈ {i1, . . . , ik}.

– TOC.TVer(C, S, ϕ(M)): Given the targeted opening S as hj for j ∈ {j1, . . . , jk′}
and (ri,mi) for i ∈ {i1, . . . , ik}, the verifier compute hi = H(ri,mi) and
gather all hi for i = 1, . . . , l. Then verifier checks whether H(h1, . . . , hl) = C.

The targeted hiding property can easily obtain if we model the hash func-
tion as the random oracle. Also, the targeted binding property and the efficient
checkable property can easily obtain from the collision resistance of the function
H.

4 More Efficient TOCE

Our generic construction above can achieve targeted opening in an ideal case,
i.e., the receiver can choose arbitrary bit to open, thus requires cryptographic
operations such as committing, to be called on each bit of the message. Such
kind of selective capability is unnecessarily strong. For example, when the abu-
sive message is an improper picture, the revealed message would not need the
precision to bit. Even the abusive message is simply some texts, a meaningful
sentence is also composed of multiple consecutive characters which are at least
hundreds of bits. Moreover, such a method incurs large overhead when the mes-
sage size is large, for instance, when one user is sending a picture, or a short
video via secure messaging, applying the above construction may require a large
number of hash operations.

22

In this section, we seek for more efficient constructions of toccAEAD with a
slightly weaker targeted open capability which is still useful in many settings.
In particular, as all AEAD schemes apply some ciphers on message blocks with
size λ bits (λ could be 256 for example), we will restrict the targeted opening
at the block level: plaintext M is now divided into m1, . . . ,m`, each mi is with
length λ. During the opening phase, the receiver will reveal the message blocks
according to the indices, i.e., {mj} = ϕ(M,λ), now the selection function ϕ
takes an extra input of message block size λ, and the indices are chosen by the
recipient from {1, . . . , `}, and ` = |M |/λ.

There are two reasons to explore in depth such a block-wise targeted open-
ing: (1) the recipient would still be able to choose some of the blocks to reveal
to report abusive messages. If a block of 256 bits (just 32 English characters) al-
ready contains substantial amount of personal information, there won’t be much
room for abusive messages; even if the recipient chooses not to reveal this block,
the missing tiny piece of information in this hidden block would not influence
the abuse reporting much. To put it another way, in a revealed block of 256 bits
chosen by the recipient, the leaked information excluding the abusive message
would be insignificant to him. (2) trivial application of the generic construc-
tion to message blocks still has an large overhead, thus more specially designed
constructions are needed.

To be more precise about the overhead, one efficiency metric we consider is
the pass defined in [2], which characterizes the ratio of the number of calls of
symmetric key cryptographic building block such as a cipher (or hash) needed for
a ccAEAD over the number of calls for a regular AEAD scheme. In particular,
in [2], the authors gave an elegant construction of ccAEAD that only requires
one pass! The intuition is to chain the ciphertext together so that the binding
properties are generated along the way of encryption.

Inefficiency of toccAEAD constructions. The toccAEAD of the previous
generic construction can be bit-wise targeted opening. Essentially, it can also
be trivially extended to blockwise targeted open. However, since the pseudo
random generator need at least one path to generate enough randomness, the
TOC scheme need at least two pass to compute the commitment and the AEAD
scheme need at least one pass to encrypt, the generic construction of toccAEAD
need at least four pass to compute encryption. Obviously, it is far from one desires
for practical use, and we need to design more efficient specific constructions for
block wise targeted opening.

4.1 Block-wise targeted open ccAEAD definitions

Now let us define the block-wise toccAEAD. The syntax is essentially the same as
regular toccAEAD, with the only exception that each message bit now becomes
a message block with length λ.

Targeted opening, compactness, and using few passes seem to be antagonistic
to each other. The cascaded construction in [2] achieved both compactness and
using only one pass; however, the messages are all chained together, verifying mi

23

requires knowledge of m−1, thus inherently difficult to enable targeted opening.
On the other hand, processing each data block separately to enable targeted
opening, then different randomness seems required for each message block. Gen-
erating those randomness already somehow requires one pass of crypto calls.
Together with the encryption itself, and the commitment, this already causes
three passes. (If we need further compress all the commitments for compactness,
requires one more pass such as the trivial instantiation of our generic construc-
tion). Those attempts motivate us to consider a potential weaker notion, and
seek for a non-black box construction to reduce the number of passes needed.

Nonce-based scheme. The above generic construction of targeted opening
committing AEAD is randomized. However, cryptographers have advocated that
modern AEAD schemes should be designed as nonce-based instead. Thus the
internal randomness during the encryption should be replaced with an input
nonce, and the security should hold as long as the nonce never repeats throughout
the course of encrypting messages with a particular key.

Formally, a nonce-based block-wise targeted opening committing AEAD is
a following tuple of algorithms (KeyGen,Enc,Dec,TOpen,TVer), which is similar
to the previous definition. In addition to the other sets, we associate to any
nbTOCE scheme a nonce space N ∈ {0, 1}∗. We also define the block-wise
position function ϕ as follows. If message M is a bit string with length n, ϕt
is a function that divides M into l = n/t blocks m1, . . . ,ml of size t,2 then
picks a subset of the blocks mi with the indices i1, i2, . . . , ik depending on ϕt’s
definition. The space of all the block-wise position functions is Φt.

– Key generation: The randomized algorithm KeyGen outputs a secret key
K ∈ K.

– Encryption: The deterministic algorithm Enc takes a triple (K,N,H,M) ∈
K ×N ×H ×M as input and outputs a pair (C1, C2) ∈ C × T . Here C1 is
the ciphertext that carries the payload and C2 is the franking tag.

– Decryption: The deterministic algorithm Dec takes a tuple (K,N,H,C1, C2) ∈
K×N ×H×C × T as input and outputs a message and opening value pair
(M,Kf) ∈M×Kf .

– Targeted open: The deterministic algorithm TOpen takes as input a tuple
(H,M,Kf , C2, ϕt) ∈ H×M×Kf × T × Φt, the targeted value represented
as ϕt(M), and the corresponding opening S.

– Verification: The deterministic algorithm TVer takes as input a tuple values
of (H,ϕt(M), S, C2, , ϕt) ∈ H × ϕt(M) × S × T × Φt and output a bit b.
Specifically, we assume that TVer outputs 0 if the targeted opening is not
valid.

Blockwise TOCE security definitions. We weaken the confidentiality after
opening part of the message blocks of a TOCE, which enables us to search for
a more efficient construction that uses fewer passes. There are multiple ways

2 For simplicity, we assume that n can be divided by t, otherwise we can pad M with
bits zeros.

24

of weakening on confidentiality of the remaining message blocks. The first one
requires that a message block that has not been opened, will remain semantically
secure, if the message block is unpredictable, i.e., generated from a distribution
that has sufficient entropy. The second one requires that a message block that has
not been opened, will remain one way secure, i.e., adversary who sees the opening
of some other message blocks, cannot recover the remaining unopened ones.
Clearly, the first definition is strictly stronger, so we adopt the first weakened
definition. We emphasize here that all messages satisfy the standard semantic
security if no message blocks are revealed by the receiver.

Formally, we define the security games for the nonce based block wise targeted
opening ccAEAD in Figure 9. Note that the adversary never repeat the same
N across a pair of encryption queries, and the challenge nonce N∗ also will not
be queried for the Enc oracle. To achieve more efficient construction, we also
provide a more weaker notion of confidentiality as follows:

4.2 Block wise TOCE construction

We now proceed to describe our nonce based block-wise targeted open ccAEAD
construction. This structure is directly modified from the Committing Encrypt-
and-PRF structure in [5], except that our construction supports select opening.

Let G is a nonce-based pseudo-random generator. H is a collision resistant
hash function which can be modelized as a random oracle. Integer t denotes the
block size of the message (e.g., 256 for popular ciphers). So the scheme is as
follows.

– bTOCE.KeyGen(1λ): Generate a seed sd for the pseudo random generator G.
The secret key K is sd.

– bTOCE.Enc(N,H,K,M): Given the nonce N , the secret key K = sd and
the message M ∈ {0, 1}lt, do the following steps:

1. Use the pseudorandom generator G with the seed sd and the nonce N
to generate bits strings R with the size of lt, i.e., R = (r0, r1, . . . , r`)←
G(sd,N, lt) where each ri ∈ {0, 1}t.

2. Divide each M into ` blocks m1, . . . ,m`, and every block has t bits.
Then use one time pad to encrypt each message mi, i.e., Ci1 = ri ⊕mi,
for i = 1, . . . , `;

3. Hash each ri together with mi and get hi = H(ri,mi);

4. Compute the final tag C2 = H(H,h1, . . . , hl);

5. Compute the MAC T = H(r0, C2) respect to the key r0;

The final output ciphertext is (C1, C2) where C1 =
(
{Ci1}li=1, T

)
.

– bTOCE.Dec(K,N,H, (C1, C2)): Firstly, use seed K = sd to recover r0 and
R = (r1, . . . , r`). Then one can get mi = Ci1 ⊕ ri and hi = H(mi, ri) for
i = 1, . . . , l. If C2 = H(H,h1, . . . , hl) and T = H(r0, C2), output the message
M = {m1, . . . ,ml} and the opening Kf = R = {r1, . . . , rl}, otherwise output
⊥.

25

TO − nINDAnTOCE TO − r − nBINDAnTOCE
K ←$KeyGen ((m,S), (m′, S′), C2, ϕ)←$AEnc,Dec,TOpen

st1 ← AEnc,Dec,TOpen b← TVer(m,S,C2, ϕ)
{N∗, H∗, (M0,M1), st2} ←$A(st1) b′ ← TVer(m,S′, C2, ϕ)
b←$ {0, 1} If m = m′ then
(C∗1 , C

∗
2)← Enc(K,N∗, H∗,Mb) Return false

b←$AEnc,Dec,TOpen(C∗1 , C
∗
2 , st2) Return(b = b′ = 1)

Return b

TO − nCTXTACE TO − s− nBINDACE
K ←$KeyGen (K,H,C1, C2, ϕ)←$AEnc,Dec,TOpen

win← false (M ′,Kf)← Dec(K,N,H,C1, C2)

AEnc,Dec∗,TOpen,ChalDec If M ′ = ⊥ then Return false
Return win S ← TOpen(H,M ′,Kf , C2, ϕ)

b← TVer(H,ϕ(M ′), S, C2)
If b = 0 then Return true
Else Return false

Oracle Enc(N,H,M) Oracle Dec(N,H,C1, C2)
(C1, C2)← Enc(K,N,H,M) If (N,H,C1, C2) /∈ Y1

Y1 ← Y1 ∪ {(N,H,C1, C2)} then Return ⊥
Return (C1, C2) If (N,H,C1, C2) = (N∗, H∗, C∗1 , C

∗
2)

then Return ⊥
(M,Kf)← Dec(K,N,H,C1, C2)
Return (M,Kf)

Oracle TOpen(N,H,C1, C2, ϕ) Oracle Dec∗(N,H,C1, C2)
If (H∗, C∗1 , C

∗
2) = (H,C1, C2) then Return Dec(K,N,H,C1, C2)

If ϕ(M0) 6= ϕ(M1) then
Return ⊥ Oracle ChalDec(N,H,C1, C2)

If (N,H,C1, C2) /∈ Y1 then If (N,H,C1, C2) ∈ Y1 then
Return ⊥ Return ⊥

(M,Kf)← Dec(K,N,H,C1, C2) (M,Kf)← Dec(K,N,H,C1, C2)
(ϕ(M), S)← TOpen(H,M,Kf , C2, ϕ) If M /∈ ⊥ then
Return (m = ϕ(M), S) win← true

Return (M,Kf)

Fig. 9. The security games for the nonce based block wise TOCE.

26

– bTOCE.TOpen(H,M,R, ϕt): If the position function ϕt denotes to open the
blocks with index i1, . . . , ij , one just compute each hi = H(ri,mi) and output
the targeted opening S =

{
{hi}i/∈{i1,...,ij}, {ri}i∈{i1,...,ij}

}
and the opened

messages ϕt(M) = {mi}i∈{i1,...,ij}.
– bTOCE.TVer(H,ϕt(M), S, C2, ϕt): If the position function ϕt denotes to open

the blocks with index i1, . . . , ij , one parse the targeted opening S as {hi}i/∈{i1,...,ij}
and {ri}i∈{i1,...,ij} and ϕt(M) as {mi}i∈{i1,...,ij}. Then compute hi = H(ri,mi)
for i ∈ {i1, . . . , ij} and check whether C2 = H(H,h1, . . . , hl). If the check is
passed, output 1 otherwise output 0.

Comparison. The main advantage of bTOCE is efficiency. Note that bTOCE
only need tree pass, while the generic construction need at least four passes.

4.3 Security Analysis

Next we will provide a security analysis for our bTOCE scheme.

Confidentiality. The confidentiality of the scheme can be seen from the fol-
lowing theorem.

Theorem 5 (Confidentiality). Let G is a nonce-based pseudo-random genera-
tor. H is a collision resistant hash function which can be modelized as a random
oracle. Let A be the TO-nIND adversary, and B be the adversary against the
pseudo random generator G.

AdvATO-nIND ≤ negl(n) + AdvBG

Proof. Let G0 = TO-nINDAbTOCE . Firstly, we replace the pseudo random strings
r0, r1, . . . , rl with truly random strings and obtain game G1 in Figure 10. So
the challenger answers the Dec and TOpen oracles by retrieving the stored
plaintext-ciphertext table instead of decrypting the ciphertext with the secret
key. Hence we have

AdvATO-nIND ≤ AdvAG1
+ AdvBG

where B is the adversary to attack the PRG G.
Secondly, we replace each hi in game G1 with newly generated random string

according to the random oracle model and get Game G2. Hence we have

AdvAG1
≤ AdvAG2

.

Since C1 and C2 in Game G2 are both independent of the message Mb, we have

AdvAG2
≤ negl(n)

ut

27

Game G1

K ←$KeyGen

st1 ← AEnc,Dec,TOpen(1λ)

{N∗, H∗, (M0,M1), st2} ←$A(st1)

b←$ {0, 1}
(H∗, C∗1 , C

∗
2)← EncK(N∗, H∗,Mb)

b′ ←$AEnc,Dec,TOpen(C∗1 , C
∗
2 , st2)

return b = b′

Oracle Enc(N,H,M)

(r0, r1, . . . , rl)←$ {0, 1}lt

for i from 1 to n

Ci1 = mi ⊕ ri
hi = H(ri,mi)

C2 = H(H,h1, . . . , hl)

T = H(r0, C2)

C1 =
(
{Ci1}ni=1, T

)
Kf = (r1, . . . , rl)

Y1 ← Y1 ∪ {N,H,C1, C2}
D[N,H,C1, C2]← (M,Kf)

Return (N,H,C1, C2)

Oracle Dec(N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

else return ⊥

Oracle TOpen(N,H,C1, C2, ϕt)

if D[N,H,C1, C2] = ⊥ then

return ⊥
else (M,R)← D[N,H,C1, C2]

parse M as (m1, . . . ,ml)

parse R as (r1, . . . , rl)

ϕt corresponds to positions (i1, . . . , ij)

for j from 1 to s

hij = H(rij ,mij)

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕt(M))

Fig. 10. Game G1 for confidentiality proof

28

Integrity. Next we will show the integrity of our bTOCE scheme.

Lemma 1. Let H be a collision resistant hash function. M = (m1, . . . ,ml) ∈
{0, 1}lλ and R = (r1, . . . , rl) ∈ {0, 1}lλ. So the function

F(H,M,R) = H (H,H(r1,m1), . . . ,H(rl,ml)) (1)

is collision resistance.

Lemma 2. Let H be a collision resistant hash function. The function

MACr(∗) = H(r, ∗) (2)

is a MAC scheme with respect to the key r. We can define the algorithms Tagr
and Verr accordingly. Specifically, it is multi-user unforgeable under chosen-
message attack.

Theorem 6 (Integrity). Let A be the TO-nCTXT adversary, B be the ad-
versary against the collision resistance of F defined in (1), C be the multi-user
unforgeability under chosen-message attack (MU-UF-CMA) for MAC in (2).

AdvbTOCETO-nCTXT(A) ≤ AdvCRF (B) + AdvMU−UF−CMA
MAC (C)

Proof. Let G0 = TO-nCTXTAbTOCE . By the random oracle model, we can tran-
sition to a game G1 in which G are replaced by a random oracle G′ and r0 is
randomly chosen from {0, 1}λ. Here G′ takes a secret key sd and a nonce N , and
outputs a random string from {0, 1}lλ. We modify game G1 to obtain game G2

in Figure 11. The differences are that:

1. queries to Dec∗ on tuples (N,H,C1, C2) for which there was a previous query
to Enc(N,H,M) that returned C1,C2 simply reply with (M,Kf) without
bothering to do decryption;

2. we set win to true if any other query to Dec successfully decrypts.

The first difference is without loss, since the Dec∗ in G2 would have anyway re-
turned (M,Kf). The second difference only increases the adversary’s probability
of success. Thus

Pr[GA1 ⇒ 1] ≤ Pr[GA2 ⇒ 1].

We now bound A’s probability of success in G2 by its ability to forge against
the MAC in the equation (2). The MU-UF-CMA adversary C can simulate the
environment of A by using the Tag and Ver oracles to perform tagging and
verification via MAC.

We need to show that anytime win would have been set in G2 for ciphertext
(N∗, H∗, C∗1 , C

∗
2), the corresponding query to Ver(C∗2 , T

∗) is a successful forgery
for the MAC scheme F , i.e., C∗2 is not generated from the oracle Tag. To proof
this claim, we need to consider two scenarios. The first scenario is that T ∗ did
not exist in previous answers of Enc queries, so obviously the T ∗ can not be the
answer of the Tag oracle and (C∗2 , T

∗) is a successful MAC forgery. The second

29

scenario is that T ∗ is included in previous answers of Enc which corresponding
input is (N,H,M). Let the return from the corresponding Enc query on inputs
(N,H,M) be the pair (N,H,C1, C

∗
2) where C1 =

(
{Ci1}ni=1, T

∗) and correspond-
ing randomness is R. Let the ciphertext (N∗, H∗, C∗1 , C

∗
2) is decrypted to the

message M∗ and the corresponding randomness is R∗. According to the collision
resistance of F , (H,R,M) = (H∗, R∗,M∗) with the probability 1−AdvCRF . Then
since each Ci1 is computed from XOR strings mi and ri, C

i
1 = Ci1

∗
due to the

same R∗ and M∗. According to the property of random oracle G′, the probability
of N 6= N∗ but R = R∗ is less than 2−lλ. If (N∗, H∗, C∗1 , C

∗
2) = (N,H,C1, C

∗
2),

it is contradict to our assumption which states (N∗, H∗, C∗1 , C
∗
2) is not generate

from Enc oracle, because in the second scenario the A have queried the Enc
oracle with the point (N,H,M) = (N∗, H∗,M∗). Hence we have

Pr[GA1 ⇒ 1] ≤ AdvCRF (B) + AdvMU−UF−CMA
MAC (C) + 2−lλ

ut

Sender Binding property can be easily verified, since the targeted opening is
just a subset of all {r1, . . . , rl}, while all ri are already checked in the decryption
algorithm.

Receiver Binding. We have the following theorem.

Theorem 7. Let A be the TO-nCTXT adversary. There is an adversary against
the collision resistance of the hash function H.

AdvbTOCETO-nCTXT(A) ≤ l ·AdvCRH (B)

4.4 Construction with weaker confidentiality after opening

Definition 4 (Weak confidentiality after opening). We define two security
games for weaker confidentiality as Figure 12, where the oracle Enc and Dec
are as same as that in the previous games in Figure 9. Formally, We say a nonce
based block wise targeted opening ccAEAD scheme satisfies weaker confidentiality
if it satisfies:

– the standard IND-CPA security without opening, i.e.,

Pr[IND-CPAAnTOCE ⇒ 1] ≤ negl(λ);

– the targeted opening one-way security, i.e.,

Pr[One-WayAnTOCE ⇒ 1] ≤ negl(λ).

Next we will introduce a more efficient construction but with weaker confi-
dentiality. Similarly, H is a hash function and G is a pseudo random generator.

30

Game G1

K ← KeyGen

win← false

AEnc,Dec,ChalDec,TOpen

return win

Oracle Enc(N,H,M)

R = (r1, . . . , rl)←$G′(sd,N)

r0 ←$ {0, 1}λ

for i from 1 to n

Ci1 = mi ⊕ ri
hi = H(ri,mi)

C2 = H(H,h1, . . . , hl)

T = Tagr0(C2)

C1 =
(
{Ci1}li=1, T

)
Y1 ← Y1 ∪ {N,H,C1, C2}
D[N,H,C1, C2]← (M,R)

Return (H,C1, C2)

Oracle Dec∗(N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

else R = (r1, . . . , rl)← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
if 0←$Verr0(T,C2)

return ⊥
else win← true

return M = (m1, . . . ,ml) and R

Oracle TOpen(N,H,C1, C2, ϕ)

if D[N,H,C1, C2] 6= ⊥ then

(M,R)← D[N,H,C1, C2]

else R = (r1, . . . , rl)← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
ϕ corresponds to positions (i1, . . . , is)

else win← true

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕ(M))

Oracle ChalDec(H,C1, C2)

if (H,C1, C2) ∈ Y1

return ⊥
r1, . . . , rl ← G(sd,N, lλ)

for i from 1 to n

mi = Cii ⊕ ri
hi = H(ri,mi)

if C2 6= H(H,h1, . . . , hl)

return ⊥
if 0←$Verr0(C2, T)

return ⊥
else win← true

return (M, sd)

Fig. 11. Game G1 for integrity proof

31

CTag,Ver

sd← {0, 1}λ

win← false

AEnc,Dec∗,ChalDec,TOpen

return win

Oracle EncK(N,H,M)

R = (r1, . . . , rl)←$G(sd,N, l · t)
for i from 1 to l

Ci1 = mi ⊕ ri
hi = H(ri,mi)

C2 = H(H,h1, . . . , hl)

T = Tag(C2)

C1 =
(
{Ci1}ni=1, T

)
Y1 ← Y1 ∪ {N,H,C1, C2}
D[N,H,C1, C2]← (M,R)

Return (N,H,C1, C2)

Oracle Dec∗(N,H,C1, C2)

if D[N,H,C1, C2] 6= ⊥ then

return D[N,H,C1, C2]

R = (r1, . . . , rl)← G(sd,N, l · t)
for i from 1 to n

mi = Cii ⊕ ri
if C2 6= H(H,h1, . . . , hl)

return ⊥
if 0←$Ver(C2, T)

return ⊥
else win← true

return M = (m1, . . . ,ml) and R

Oracle TOpen(N,H,C1, C2, ϕt)

if D[N,H,C1, C2] 6= ⊥ then

(M,R)← D[N,H,C1, C2]

R = (r1, . . . , rl)← G(sd,N, l · t)
ϕt corresponds to positions (i1, . . . , is)

for j from 1 to s

hij = H(rij ,mij)

S =
(
{hi}i∈{l}/{i1,...,ij}, {ri}i∈{i1,...,ij}

)
return (S, ϕt(M))

Oracle ChalDec(sd,N,H,C1, C2)

if (N,H,C1, C2) ∈ Y1

return ⊥
R = (r1, . . . , rl)← G(sd,N, lt)

for i from 1 to n

mi = Cii ⊕ ri
if C2 6= H(H,h1, . . . , hl)

return ⊥
if 0←$Ver(C2, T)

return ⊥
else win← true

return (M,R)

32

IND-CPAAnTOCE

K ←$KeyGen

st1 ← AEnc,Dec(1λ)

{N∗, H∗, (M0,M1), st2} ←$A(st1)

b←$ {0, 1}
(H∗, C∗1 , C

∗
2)← EncK(N∗, H∗,Mb)

b′ ←$AEnc,Dec(C∗1 , C
∗
2 , st2)

return b = b′

One-WayAnTOCE

K ←$KeyGen

(N∗, H∗,M∗)←$N ×H×M
(N∗, H∗, C∗1 , C

∗
2)← Enc(K,N∗, H∗,M∗)

M ′ ←$AEnc,Dec,TOpen∗(N∗, H∗, C∗1 , C
∗
2)

return M = M ′

Oracle TOpen∗(N,H,C1, C2, ϕ)

if (N,H,M) = (N∗, H∗,M∗)

if ϕ = I return ⊥
if (N,H,C1, C2) ∈ Y1 return ⊥
(M,Kf)← Dec(K,N,H,C1, C2)

(ϕ(M), S)← TOpen(H,M,Kf , C2, ϕ)

return (m = ϕ(M), S)

Fig. 12. The security games for weaker confidentiality

– bTOCE.KeyGen(1λ): Generate a seed sd for the pseudo random generator G.
The secret key K is sd.

– bTOCE.Enc(N,H,K,M): Given the nonce N , the secret key K = sd and
the message M ∈ {0, 1}lt, do the following steps:
1. Use the pseudorandom generator G with the seed sd and the nonce N

to generate bits strings R with the size of lt, i.e.,R = (r0, r1, . . . , r`) ←
G(sd,N, (l + 1)t) where each ri ∈ {0, 1}t.

2. Divide each M into ` blocks m1, . . . ,m`, and every block has t bits.
Then use one time pad to encrypt each message mi, i.e., Ci1 = ri ⊕mi,
for i = 1, . . . , `;

3. Hash each ri together with mi and get hi = H(mi);
4. Compute the final tag C2 = H(H,h1, . . . , hl).
5. Compute the MAC T = H(r0, C2)

The finally output ciphertext is C1 =
(
{Ci1}li=1, T

)
and the tag C2.

– bTOCE.Dec(K,N,H, (C1, C2)): Firstly, use seed K = sd to recover R =
(r1, . . . , r`). Then one can get mi = Ci1 ⊕ ri and hi = H(mi) for i = 1, . . . , l.
If C2 = H(H,h1, . . . , hl, r0), output the message M = {m1, . . . ,ml} and the
opening Kf = R = {r1, . . . , rl}, otherwise output ⊥.

– bTOCE.TOpen(H,M,R, ϕt): If the position function ϕt denotes to open the
blocks with index i1, . . . , ij , one just compute each hi = H(mi) and output
the targeted opening S =

{
{hi}i/∈{i1,...,ij}, r0

}
and the opened messages

ϕt(M) = {mi}i∈{i1,...,ij}.
– bTOCE.TVer(H,ϕt(M), S, C2, ϕt): If the position function ϕt denotes to open

the blocks with index i1, . . . , ij , one parses the targeted opening S as {hi}i/∈{i1,...,ij}
and r0, and ϕt(M) as {mi}i∈{i1,...,ij}. Then compute hi = H(mi) for i ∈

33

{i1, . . . , ij} and check whether C2 = H(H,h1, . . . , hl, r0). If the check is
passed, output 1 otherwise output 0.

Security Analysis. One can easily prove that the wbTOCE scheme satisfies
the weak confidentially in Definition 4 in the random oracle model.

References

1. Dario Catalano and Dario Fiore. Vector commitments and their applications. In
Public-Key Cryptography–PKC 2013, pages 55–72. Springer, 2013.

2. Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast mes-
sage franking: From invisible salamanders to encryptment. In Annual International
Cryptology Conference, pages 155–186. Springer, 2018.

3. Facebook. Facebook messenger app, 2016. https://www.messenger.com/.
4. Facebook. Messenger secret conversations technical whitepaper, 2016.

https://fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.pdf.
5. Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing

authenticated encryption. In Annual International Cryptology Conference, pages
66–97. Springer, 2017.

6. Iraklis Leontiadis and Serge Vaudenay. Private message franking with af-
ter opening privacy. Cryptology ePrint Archive, Report 2018/938, 2018.
https://eprint.iacr.org/2018/938.

7. Beno2̂t Libert, Somindu Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from sim-
ple assumptions. In 43rd International Colloquium on Automata, Languages and
Programming (ICALP 2016), 2016.

34

