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1 Introduction

In 2008, Satoshi Nakamoto invented the concept of a blockchain, a mechanism
to maintain a distributed ledger for an electronic payment system, Bitcoin [18].
Honest nodes mine blocks on top of each other by solving Proof-of-Work (PoW)
cryptographic puzzles; by following a longest chain protocol, they can come to
consensus on a transaction ledger that is difficult for an adversary to alter. Solv-
ing the puzzle effectively involves randomly trying a hash inequality until success.
Since Bitcoin’s invention, much work has been done on improving Nakamoto’s
design; however, it remains unclear what is the best performance achievable by
blockchain protocols. In this manuscript, we explore the performance limits of
blockchain protocols and propose a new protocol, Prism, that performs close to
those limits.

1.1 Performance measures
There are four fundamental performance measures of a PoW blockchain protocol:

1. the fraction § of hashing power the adversary can control without compro-
mising system security;

2. the throughput A, number of transactions confirmed per second;

the confirmation latency, 7, in seconds;

4. the probability € that a confirmed transaction will be removed from the
ledger in the future. (log1/e is sometimes called the security parameter in
the literature!.)

©w

For example, Bitcoin is secure against an adversary holding up to 50% of the
total network hash power (8 = 0.5), has throughput A of the order of several
transactions per seconds and confirmation latency of the order of tens of minutes
to hours. In fact, there is a tradeoff between the confirmation latency and the
confirmation error probability: the smaller the desired the confirmation error
probability, the longer the needed latency is in Bitcoin. For example, Nakamoto’s
calculations [18] show that for § = 0.3, while it takes a latency of 10 blocks
(on the average, 100 minutes) to achieve an error probability of 0.04, it takes a
latency of 30 blocks (on the average, 300 minutes) to achieve an error probability

1 All logarithms in this paper are taken with respect to base e.



of 10~*. This latency arises because in order to provide a low error probability,
blocks must be deep in the underlying blockchain to prevent the adversary from
growing a longer side chain and overwriting the block in question.

1.2 Physical limits

Bitcoin has strong security guarantees, being robust against an adversary with
up to 50% hashing power. However, its throughput and latency performance are
poor; in particular high latency is required to achieve very reliable confirmation.
Much effort has been expended to improve the performance in these metrics
while retaining the security guarantee of Bitcoin. But what are the fundamental
bounds that limit the performance of any blockchain protocol?

Blockchains are protocols that run on a distributed set of nodes connected by
a physical network. As such, their performance is limited by the attributes of the
underlying network. The two most important attributes are C', the communica-
tion capacity of the network, and D, the speed-of-light propagation delay across
the network. Propagation delay D is measured in seconds and the capacity C
is measured in transactions per second in this manuscript, since a transaction
is the basic unit of information in a payment system. Nodes participating in a
blockchain network need to communicate information with each other to reach
consensus; the capacity C' and the propagation delay D limit the rate and speed
at which such information can be communicated. These parameters encapsulate
the effects of both fundamental network properties (e.g., hardware, topology), as
well as resources consumed by the network’s relaying mechanism, such as valid-
ity checking of transactions or blocks. Assuming that each transaction needs to
be communicated at least once across the network, it is clear that A, the number
of transactions which can be confirmed per second, is at most C, i.e.

A< Cl (1)
One obvious constraint on the confirmation latency 7 is that
T>D. (2)

Another less obvious constraint on the confirmation latency comes from the
network capacity and the reliability requirement e. Indeed, if the confirmation
latency is 7 and the block size is B transactions, then at most

C

57
mined blocks can be communicated across the network during the confirma-
tion period for a given transaction. These mined blocks can be interpreted as
confirmation votes for a particular transaction during this period; i.e. votes are
communicated at rate C'/B and C/B7 votes are accumulated over duration 7.
This number is maximized at C', when the block size is smallest possible, i.e.
B = 1. On average, a fraction S < 0.5 of these blocks are adversarial, but due
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to the randomness in the mining process, there is a probability, exponentially
small in C'7, that there are more adversarial blocks than honest blocks; if this
happens, confirmation cannot be guaranteed. Hence, this probability is a lower
bound on the achievable confirmation error probability, i.e.

e =exp{—0(CT1)}. (3)

Turning this equation around, we have the following lower bound on the latency
for a given reliability requirement e:

ro(L ) o

Comparing the two constraints (2) and (4), we see that if
1
CD > log o

the latency is limited by the propagation delay; otherwise, it is limited by the
confirmation reliability requirement. The quantity C'D is analogous to the key
notion of bandwidth-delay product in networking (see eg. [11]); it is the number
of “in-flight” transactions in the network.

To evaluate existing blockchain systems with respect to these limits, con-
sider a global network with communication links of capacity 20 Mbits/second
and round-the-world speed-of-light propagation delay D of 0.2 seconds. If we
take a transaction of size 100 bytes, then C' = 25,000 transactions per second.
The bandwidth-delay product CD = 5000 is very large. Hence, the confirma-
tion latency is limited by the propagation delay of 0.2 seconds, but not by the
confirmation reliability requirement unless it is astronomically small. Real-world
blockchain systems operate far from these physical network limits. Bitcoin, for
example, has A of the order of 10 transactions per second, 7 of the order of min-
utes to hours, and is limited by the confirmation reliability requirement rather
than the propagation delay. Ethereum has A ~ 15 transactions per second and
7 &~ 3 minutes to achieve an error probability of 0.04 for 8 = 0.3 [5].

1.3 Main contribution

The main contribution of this work is a new blockchain protocol, Prism, which
has the following provable performance guarantees:

1. security: Prism is secure up to an adversary power of 50%, i.e. for any
B < 0.5 and for arbitrary adversarial action?, it can achieve an eventual
total ordering of the transactions, with consistency and liveness guarantees.

2. throughput: For arbitrary adversarial action, Prism can achieve a through-
put

A= (1—-pB)C transactions per second.

2 The precise class of allowable adversarial actions will be defined in the formal model.



3. latency: For any g < 0.5 and for arbitrary adversarial action, Prism can
confirm honest transactions (without public double spends) with an expected

latency
az(B)

C

with confirmation reliability at least 1 — . Here, a1(8) and az(8) are con-
stants depending only on 8 (defined in (28) and (29)).

1
E[r] < max {al(ﬁ)D, log 5} seconds,

The results are summarized in Figure 1. Some comments:

— The security of Prism is as good as Bitcoin: Prism can be robust to an adver-
sary with hashing power up to § = 0.5.

— Since 1 — (3 is the fraction of honest hashing power, Prism ’s throughput
is optimal assuming each transaction needs to be communicated across the
network.

— Prism achieves a confirmation latency for honest transactions matching, in
order, to the two physical limits (2) and (4). In particular, if the desired
security parameter logé < CD, the confirmation latency is of the order
of the propagation delay and independent of log1l/e. Put it another way,
one can achieve latency close to propagation delay with a confirmation error
probability exponentially small in the bandwidth-delay product C'D.

— For a total ordering of all transactions (including double spends), on the
other hand, the trade off between latency and the security parameter is
similar to that of Bitcoin.

1.4 Approach

A critical parameter of any PoW blockchain protocol is the mining rate, i.e.
the rate at which puzzles are successfully solved (also called the PoW solution
rate). The mining rate can be easily controlled via adjusting the difficulty of
the puzzle, i.e. the threshold at which the hash inequality needs to be satisfied.
The mining rate has a profound impact on both the transaction throughput and
confirmation latency. Large mining rate can potentially increase the transaction
throughput by allowing transactions to be processed quicker, and can potentially
reduce the confirmation latency by increasing the rate at which votes are casted
to confirm a particular transaction. However, increasing the mining rate has the
effect of increasing the amount of forking in the blocktree, because blocks mined
by different nodes within the network delay cannot be mined on top of each
other and are hence forked. This de-synchronization slows down the growth rate
of the longest chain, making the system more vulnerable to private chain attacks,
and decreasing the security of the protocol. Indeed, one reason why Bitcoin is
highly secure is that the mining rate is set to be very small, one block per 10
minutes. At the current Bitcoin block size of 1 Mbytes, this corresponds to a
generated traffic of about 13 kbits/second, much less than capacity of typical
communication links [30]. Thus, Bitcoin ’s performance is security-limited, not
communication-limited, and far away from the physical limits.
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Fig. 1: Main results. (a) Throughput vs adversarial fraction 8 for Prism and
Bitcoin. The red curve is an optimized upper bound of Bitcoin’s throughput,
derived in Section 4.1. Note that the throughput of Prism is a positive fraction
of the network capacity all the way up to 8 = 0.5, but the throughput of Bitcoin
vanishes as a fraction of the capacity as 8 — 0.5. (b) Confirmation latency vs.
security parameter for Prism and Bitcoin. The red curve is a lower bound on
Bitcoin ’s latency, derived in Section 5.1. The latency of Prism is independent
of the security parameter value up to order CD and increases very slowly after
that (with slope 1/C'). For Bitcoin, latency increases much more rapidly with the
security parameter.
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blocks at each level to select a leader block. For example, at level 3, block b is
elected the leader over block a.
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Fig. 4: Prism. Throughput, latency and reliability are scaled to the physical limits
by increasing the number of transaction blocks and the number of parallel voting
chains per proposal block.

To increase the mining rate while maintaining security, one line of work in
the literature has used more complex fork choice rules and/or added reference
links to convert the blocktree into more complex structures such as a directed
acyclic graph (DAG). This allows a block to be confirmed by other blocks that
are not necessarily its descendents on a main chain. (Figure 2). Examples of
such works are GHOST [29], Inclusive [15], Spectre [28], Phantom[27] and Conflux
[16]. However, as discussed in more details in the related work section, GHOST ,
Phantom, and Conflux all have security issues, and Spectre does not provide total
ordering of transactions. It is fair to say that handling a highly forked blocktree
is challenging.

In this work, we take a different approach. We start by deconstructing the
basic blockchain structure into its atomic functionalities, illustrated in Figure 3.
The selection of a main chain in a blockchain protocol (e.g., the longest chain
in Bitcoin) can be viewed as electing a leader block among all the blocks at
each level of the blocktree, where the level of a block is defined as its distance
(in number of blocks) from the genesis block. Blocks in a blockchain then serve
three purposes: they elect leaders, they add transactions to the main chain, and
they vote for ancestor blocks through parent link relationships. We explicitly
separate these three functionalities by representing the blocktree in a conceptu-
ally equivalent form. In this representation, blocks are divided into three types:
proposer blocks, transaction blocks and voter blocks. The voter blocks vote for
transactions indirectly by voting for proposer blocks, which in turn link to trans-
action blocks. Proposer blocks are grouped according to their level in the original
blocktree, and each voter blocktree votes among the proposer blocks at the same
level to select a leader block among them. The elected leader blocks can then
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bring in the transactions to form the final ledger. The voter blocks are organized
in their own blocktree and support each other through parent links. Thus, the
parent links in the original blocktree have two implicit functionalities which are
explicitly separated in this representation: 1) they provide a partial ordering of
the proposal blocks according to their levels, and 2) they help the voting blocks
to vote for each other.

This alternative representation of the traditional blockchain, although seem-
ingly more complex than the original blockchain representation, provides a nat-
ural path for scaling the performance of blockchain protocols to approach phys-
ical limits (Figure 4). To increase the transaction throughput, one can simply
increase the number of transaction blocks that a proposer block points to with-
out compromising the security of the blockchain. This number is limited only by
the physical capacity of the underlying communication network. To provide fast
confirmation, one can increase the number of parallel voting trees, with many
voters voting on the proposal blocks in parallel, until reaching the physical limit
of confirming with speed-of-light latency and extremely high reliability. Note
that even though the overall block generation rate has increased tremendously,
the number of proposal blocks per level remains small and manageable, and the
voting blocks are organized into many separate voting chains with low block
mining rate per chain and hence little forking. The overall structure, compris-
ing of the three kinds of blocks and the links between them, is a DAG, but a
structured DAG.

This complexity management presupposes a way to provide sortition in the
mining process: when miners mine for blocks, they should not know in advance
whether the block will become a proposal block, a transaction block, or a voting
block, and if it is a voting block, it should not know in advance what particular
chain the voting block will be in. Otherwise an adversary can focus its hashing
power to attack a particular part of the structure. This sortition can be ac-
complished by using the random hash value when a block is successfully mined;
this is similar to the 2-for-1 PoW technique used in [10], which is also used in
Fruitchains [22] for the purpose of providing fairness in rewards. In fact, the
principle of decoupling functionalities of the blockchain, central to our approach,
has already been applied in Fruitchains, as well as other works such as BitcoinNG.
This line of work will be discussed in depth in Section 2, but its focus is only on
decoupling the transactions-carrying functionality. In our work, we broaden this
principle to decouple all functionalities.

In Bitcoin, the irreversibility of a block in the longest chain is achieved by
a law of large numbers effect: the chance that an adversary with less that 50%
hashing power can grow a private chain without the block and longer than the
public chain diminishes with the depth of the block in the public chain. This is
the essence of the random walk analysis in Nakamoto’s original paper [18] and
is also implicit in the formal security analysis of Bitcoin in [10] (through the
definition of typical execution). The law of large numbers allows the averaging
of the randomness of the mining process, so that the chance of the adversary
getting lucky and mining many blocks in quick succession is small. This averaging
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is achieved over time, and comes at the expense of long latency, which increases
with the desired level of reliability.

Prism also exploits the law of large numbers, but over the number of parallel
voter trees instead of over time. Due to the sortition mechanism, the mining
processes of both the adversary and the honest nodes are independent across the
voting trees. By having many such trees, many votes are cast on the proposer
blocks at a given level, and the chance of an adversary with less than 50% hashing
power being able to reverse many of these votes decreases exponentially with m,
the number of voter trees. The number of voter trees is m, and hence the rate of
vote generation, is limited only by the physical capacity C' of the network. Thus,
we can attain irreversibility of a large fraction of the votes with high probability
(approaching 1 exponentially fast in the bandwidth-delay product C'D) without
waiting for a long time. We show that this irreversibility of votes allows fast
confirmation of a final leader block among a list of proposer blocks at a given
level. In particular, it is guaranteed that the adversary cannot propose another
block in the future that has enough votes to become the final leader block at
that level. The ability to do this for all levels up to a given level generates a
list of transaction ledgers, one of which must be a prefix of the eventual totally-
ordered ledger (Figure 5). Together with liveness of honest transactions, we show
that this “list decoding” capability is sufficient for fast confirmation of all honest
transactions®. If a given block obtains a substantial enough majority of votes,
then the list can be narrowed to contain only that block, which can then be
declared the leader block. In the worst case, when votes are tied between two
or more proposer blocks at the same level (due to active intervention by the
adversary, for example), the irreversibility of all of the votes and a content-
dependent tie-breaking rule is needed to come to global consensus on a unique
leader block; this requires higher latency. Hence, Prism requires high latency in
the worst case to guarantee total ordering of all transactions.

The above discussion gives some intuition behind Prism, but a formal analysis
is needed to rigorously establish security, latency and throughput performance
guarantees. Such a formal analysis was done on Bitcoin in [10] in a synchronous
round-by-round model and subsequently extended in [21] to an asynchronous
model with an upper bound on block network delay. In particular, [10] pio-
neered the backbone protocol analysis framework where it was shown that two
key properties, the common-prefix property and the chain-quality property, of
the Bitcoin backbone guarantee persistence and liveness of the ledger maintained
by Bitcoin respectively. We leverage this framework to provide a formal analysis
of Prism in the synchronous round-by-round model (we conjecture that simi-
lar results can be established in the more sophisticated asynchronous model of
[21]). Technically, the most challenging part of the analysis is on fast latency
confirmation, where we show that: 1) the common-prefix property of the vote
trees guarantee vote persistence, so that a large fraction of the votes will not be

3 List decoding is a concept in coding theory. Instead of decoding to a unique codeword,
list decoding generates a list of possible codewords which is guaranteed to contain
the true codeword.
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reversed; 2) the chain-quality of the main chains of the vote trees guarantee vote
liveness, so that a large fraction of the vote trees will contain honest votes on
the proposer blocks at each level of the proposal tree.

1.5 Outline of paper

In Section 2, we discuss other lines of work in relation to our approach. In Section
3, we review the synchronous model used in [10] and introduce our network model
that ties the blockchain parameters to physical parameters of the underlying
network. In Section 4, we focus on throughput, and discuss a simplified version
of the protocol, Prism 1.0, which achieves full security and optimal throughput.
Since Prism 1.0 lacks voter blocktrees, it has latency equivalent to Bitcoin. In
Section 5, we add vote trees to the protocol, and perform a formal analysis of
its security and fast latency. The result is a protocol, Prism, which can achieve
full security, optimal throughput and near physical limit latency on ledger list
decoding and confirmation of honest transactions. In Section 6, we will discuss
the issue of incentivization, as well as applications of our results to Proof-of-Stake
and smart contracts systems.

2 Related work

In this section, we discuss and compare our approach to several lines of work.

2.1 High-forking protocols

As discussed in the introduction, one approach for increasing throughput and
decreasing latency is the use of more sophisticated fork choice and voting rules
to deal with the high-forking nature of the blocktree. Examples of such high-
forking protocols include GHOST [29], Inclusive [15], Spectre [28], Phantom [27],
and Conflux [16]. The earliest of these schemes, GHOST, handles forking through
a fork-choice rule that builds on the heaviest subtree [29]. The authors observed
that in order to improve throughput, we must increase the block mining rate,
f. However, as f grows, so too does the number of blocks mined in parallel,
which are wasted under Bitcoin’s longest-chain fork choice rule, thereby reducing
security. GHOST’s heaviest-subtree rule allows the system to benefit from blocks
that were mined in parallel by honest nodes since such blocks are counted in
the main chain calculation. While it was shown in [29] that GHOST is secured
against a 50% purely private attack, it turns out that GHOST is vulnerable to a
public-private balancing attack [19], where the adversary can use minimal effort
to split the work of the honest nodes across two subtrees of equal weight, and
then launch a private attack. It turns out that counting side-chain blocks in
selecting the main chain allows the adversary to withhold earlier mined blocks
and use them at later times to balance the growth of the two subtrees. We present
an analysis of this attack in the Appendix and show that this attack restricts
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the mining rate f of GHOST to be similar to that of Bitcoin, thus minimizing
the advantage of GHOST.

To improve security at high mining rates, another popular idea is to add
reference links between blocks in addition to traditional parent links, resulting
in a DAG-structured blockchain. Each block in a DAG can reference multiple
previous blocks instead of a unique ancestor (as in Bitcoin). The pertinent chal-
lenges are how to choose the reference links and how to obtain a total ordering
of blocks from the observed DAG in a way that is secure. In a family of proto-
cols, Inclusive, Spectre and Phantom, every block references all previous orphan
blocks. These reference links are interpreted in differing ways to give these dif-
ferent protocols. For example, in [15], the key observation is that the reference
link structure provides enough information to emulate any main-chain protocol,
such as the longest-chain or GHOST protocol, while in addition providing the
ability to pull in stale blocks into a valid ledger. However, the security guarantee
remains the same as that of Bitcoin (namely, tending to zero as the mining rate
grows), and it does not achieve optimal throughput.

Spectre is an innovative scheme that builds upon the the DAG idea to achieve
low confirmation time by interpreting the reference links as votes to compare be-
tween pairs of blocks [28]. However, the fast confirmation is restricted to honest
transactions and the system does not guarantee liveness for double-spends as well
as not having the ability to confirm smart contracts that need a totally-ordered
ledger. Since complete ordering is important for core blockchain applications
(e.g., cryptocurrencies), a later work, Phantom, builds on Spectre to achieve
consensus on a total ordering of transactions by having participants topologi-
cally sort their local DAGs [27]. The authors suggest that by combining Spectre
and Phantom, one may be able to achieve low confirmation latency for hon-
est transactions as well as eventual total ordering. However, a recent work [16]
demonstrates a liveness attack on Phantom. Furthermore, the proposed hybrid
scheme cannot confirm non-contentious smart contracts with fast latency. Al-
though Prism uses a DAG to order transactions, it diverges from prior DAG
schemes by separating block proposal from block ordering in the protocol. This
helps because an adversarial party that misbehaves during block proposal does
not affect the security of transaction ordering, and vice versa; it provides a degree
of algorithmic sandboxing.

Conflux is another DAG-based protocol whose goal is to increase throughput
[16]. However, Conflux’s reference links are not used to determine where to mine
blocks or how to confirm them; they are only used to include side-chain blocks
into the main chain to improve throughput. The main chain itself is selected by
the GHOST rule. Due to the vulnerability of GHOST to the balancing attack,
the secured throughput of Conflux is limited to Bitcoin levels. (See discussions in
Section 4.6.)

2.2 Decoupled consensus

Our design approach is based on the principle of decoupling the various func-
tionalities of the blockchain. This decoupling principle has already been applied
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in various earlier works, but mainly in decoupling the transactions. We review
these works here.

BitcoinNG [8] elects a single leader to propose a predetermined number of
transaction blocks, called an epoch. At the end of this epoch, a new leader is
elected. Thus, there is a decoupling of proposal blocks and transaction blocks,
the goal being to increase the throughput. However, since the transaction blocks
are not mined but are put on the chain by the leader after the leader is elected,
this protocol is subject to potential bribery and DDoS attacks on the leaders,
whereby an adversary can corrupt a block proposer after learning its identity. In
contrast, Prism does not reveal the identity of a block proposer a priori.

The objective of Fruitchains [22] is to provide better chain quality compared
to Bitcoin; at a high level, chain quality refers to the fraction of blocks in the
main chain belonging to the adversary. In Bitcoin, adversaries can augment this
fraction relative to their computational power by using strategic mining and
block release policies, such as selfish mining [9,26,20]. Fruitchains mechanically
resembles Nakamoto consensus, except miners now mine separate mini-blocks,
called fruits, for each transaction. Fairness is achieved because the fraction of
fruits a miner can mine is proportional to its computational power. As in Bit-
coinNG , the fruits (transactions) are decoupled from the proposal blocks in the
blocktree, but for a different reason: to improve fairness.

2.3 Hybrid blockchain-BFT consensus

Another line of work to improve throughput and latency combines ideas from
Byzantine fault tolerant (BFT) along with blockchains. Hybrid consensus uses
a combination of traditional mining under a longest-chain fork choice rule with
Byzantine fault tolerant (BFT) consensus [23]. The basic idea is that every k
blocks, a BFT protocol is run by an elected committee of nodes. Hybrid con-
sensus is designed to provide responsiveness, which describes systems whose
performance depends on the actual network performance rather than an a priori
bound on network delays. The authors show that no responsive protocol can be
secure against more than 1/3 adversarial power, and hybrid consensus achieves
this bound. In this work, our focus is not on being responsive to network delay,
but close to the propagation delay physical limit and small error probability.

A closely-related protocol called Thunderella includes a slow Nakamoto con-
sensus blockchain, as well as a faster confirmation chain that is coordinated
by a leader and verified by a BFT voting protocol [24]. Thunderella achieves
low latency under optimistic conditions, including having a honest leader and a
B < 0.25, while having consistency under worst case condition (8 = 0.5). In con-
trast, our protocol achieves low latency under all conditions, but for list-decoding
and confirmation of honest transactions.
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3 Model

3.1 Mining and communication model

Let V' denote the set of participating nodes in the network. Each transaction
is a cryptographically secure payment message. When a transaction arrives at
the network, it is assumed to be instantaneously broadcast to all nodes in the
network. A block consists of an ordered list of B transactions and a few reference
links to other blocks. Each node n € A controls p, fraction of total hashing
power and it create blocks from the transactions and mines them with Poisson
process rate fp, blocks per second. There are two types of nodes — honest nodes,
H C N, who strictly follow the protocol, and the adversarial nodes, N'/H, who
are allowed to not follow the protocol. The adversarial nodes control g fraction of
hashing power i.e, > .\, /1 P = B, whereas the honest nodes control the other
1—f fraction of hashing power®. As a consequence, the honest nodes mine blocks
with Poisson process rate ) o, fpy, = (1 — 3)f and the adversarial nodes mine
blocks with Poisson process rate ) _\, ey fpo = Bf. Without loss of generality
we can assume a single adversarial node with g fraction of hashing power.

The nodes exchange blocks via a broadcast channel. The time taken trans-
mitting a block from one honest node to another honest node is assumed to be
A seconds. On the other hand, the adversary can transmit and receive blocks
with arbitrary delay, up to delay A.

To simplify our analysis, we discretize the above continuous-time model into
the discrete-time round-by-round synchronous model proposed in [10]. Each
round in this model corresponds to A seconds in the continuous-time model
above. In the rth round, let H[r] and Z[r] be the number of blocks mined by the
honest nodes and by the adversarial nodes respectively. The random variables
H[r] and Z[r] are Poisson distributed with means (1 — 8)fA and SfA respec-
tively and are independent of each other and independent across rounds. The
H{r] blocks are broadcast to all the nodes during the round, while the adversary
may choose to keep some or all of the Z[r] blocks in private. The adversary may
also choose to broadcast any private block it mined from previous rounds. The
adversary is allowed to first observe H|[r] and then take its action for that round.
At the end of each round, all nodes in the network have a common view of the
public blocktree.

An important random variable is Y[r], which equals 1 when H[r] =1 and 0
otherwise. This is the indicator random variable for whether the rth round is a
uniquely successful round, i.e. a round in which only one block is mined by the
honest nodes [10]. Note that Y[r] has a Bernoulli distribution with parameter
(1— B)fAe~(1=AFA  Another important random variable is X [r], which equals
1 when H[r] > 1. We denote H|[ry, o] := Y12 | H[r], similarly for X, Y and
Z.

The location of the H|[r] honest blocks in the block data structure after the
rth round is protocol-dependent. In Bitcoin, for example, all honest blocks are

4 3 for bad.
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appended to the longest chain of the public blocktree from the previous round.
Adversarial blocks can instead be mined on any public or private block from the
previous round.

Following the Bitcoin backbone protocol model [10], we consider protocols
that execute for a finite number of rounds, r,., which we call the execution
horizon. We note that we do not consider cryptographic failure events, such
as insertion in the blockchain, since it has been demonstrated already in the
backbone protocol paper that for a polynomial number of rounds 7,5 in the
hash-length, these events have negligible probability.

3.2 Network model

To connect to the physical parameters of the network, we assume a very simple
network model. The network delay A is given by:

B
A= c + D, (5)
i.e. there is a processing delay of B/C followed by a propagation delay of D sec-
onds. This is the same model used in [29], based on empirical data in [7], as well
in [25]. However, here, we put an additional qualification: this expression is valid
only assuming the network is stable, i.e. the total workload of communicating
the blocks is less than the network capacity. In terms of our parameters:

fB<C. (6)

For a given block size, (6) imposes a physical constraint on the total mining
rate f. This stability constraint sets our model apart from prior work, which
has traditionally assumed infinite network capacity; in particular, this gives us
a foothold for quantifying physical limits on throughput and latency.

Note that the protocols discussed in this manuscript can be used in any
network setting. This simple network model is only used as a common baseline
to evaluate how well a particular protocol performs relative to the physical limits.
In particular, the delay model (5) ignores queuing delay due to randomness of
the times of the block transmission across the network.

4 Approaching physical limits: throughput

In this section, we study the optimal throughput A achievable under worst-
case adversarial behavior for a given adversarial power 8. The main results are
summarized in Figure 6, which show plots of A := \/C versus 3 for various
protocols. The metric A is the throughput as a fraction of the network capacity
and is a measure of the efficiency of a protocol. The plot shows upper bounds
on the efficiency of two baseline blockchain protocols, Bitcoin and GHOST (a
version of GHOST is used in Ethereum). Note that the throughput efficiency of
both protocols vanishes as 8 approaches 0.5. In contrast, we design a protocol,
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Prism 1.0, which attains a throughput efficiency of 1 — . This efficiency does
not vanish as g approaches 0.5 and is in fact the best possible if only honest
nodes are working. We will see that the difference between Prism 1.0 and the
two baseline protocols is that while the throughput of the two baseline protocols
are security-limited for large 5, the throughput of Prism 1.0 is only limited by
the physical network capacity for all 5 < 0.5.
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Fig.6: Throughput efficiency versus § tradeoff of baseline protocols and Prism
1.0 . The tradeoffs for the baseline protocols are upper bounds, while that for
Prism 1.0 is exact.

4.1 Baselines: Bitcoin and GHOST

We derive upper bounds on the achievable throughput under worst-case adver-
sarial behavior of two key baselines: Bitcoin and GHOST. Throughput can be
altered by tuning two parameters: the mining rate f and block size B. We are

interested in the maximum achievable throughput efficiency (A := %)z optimized
over B and f. To simplify notation, we suppress the dependence of A on §.

4.1.1 Bitcoin

The security and consensus properties of Bitcoin have been studied by Nakamoto
[18], and formally by [10] in the synchronous model, followed by the analysis of
[21] in the asynchronous model. These works and others (e.g., [29,13]) show that
choice of f and B in Nakamoto consensus has tradeoffs. As the mining rate
f grows, forking increases and the maximum tolerable adversarial fraction [
shrinks, Similarly, as the block size B grows, the network delay A also grows,
which causes forking.
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An upper bound on the worst case throughput (worst case over all adversary
actions) is the rate at which the longest chain grows when no adversary nodes
mine. The longest chain grows by one block in a round exactly when at least
one honest block is mined. Hence the rate of growth is simply P(H(r) > 0), i.e.

1 — e U=ASA blocks per round, (7)

Notice that (7) is monotonically increasing in f; hence to maximize throughput,
we should choose as high a mining rate as possible.

However, we are simultaneously constrained by security. For Bitcoin’s secu-
rity, [10] shows that the main chain must grow faster in expectation than any
adversarial chain, which can grow at rates up to SfA in expectation. Hence we
have the following (necessary) condition for security:

1—e U=AIA S BFA, (8)
Equation (8) gives the following upper bound on fA, the mining rate per round:

fA< ferc(B),

where fgrc(f) is the unique solution to the equation:
1—e=AT = g7, (9)

This yields an upper bound on the throughput, in transactions per second,
achieved by Bitcoin as:

ATc < [1 — 6_(1_B)f_BTC(B)]B/A
= Bfsrc(B)B/A, (10)

where the last equality follows from (9). Substituting in A = B/C + D and
optimizing for B, we get the following upper bound on the maximum efficiency
of Bitcoin :

Are < Bferc(B),

achieved when B > CD and A > D.

Another upper bound on the throughput is obtained by setting f at the
capacity limit: f = C/B (cf. (6)). Substituting into (7) and optimizing over B,
this yields

Aprc < 1—e71,

achieved when fA=1, B> CD and A > D.
Combining the above two bounds, we get:

Aprce < min {ﬂfBTC(ﬁ)v 1- eﬁil}

This is plotted in Figure 6. Note that for large values of 3, the first upper bound
is tighter; this is a security-limited regime, in which the throughput efficiency
goes to zero as § — 0.5. This is a manifestation of the (well-known) fact that
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to get a high degree of security, i.e. to tolerate 3 close to 0.5, the mining rate of
Bitcoin must be small, resulting in a low throughput. Bitcoin currently operates in
this regime, with the mining rate one block per 10 minutes; assuming a network
delay of 1 minute, this corresponds to a tolerable 3 value of 0.49 in our model.

For smaller 3, the second upper bound is tighter, i.e. this is the communication-
limited regime. The crossover point is the value of 8 such that

1—e~t =3,

i.e., B~ 0.43.

4.1.2 GHOST

The GHOST [29] protocol uses a different fork choice rule, which uses the heaviest-
weight subtree (where weight is defined as the number of blocks in the subtree),
to select the main chain. To analyze the throughput of GHOST, we first observe
that when there are no adversarial nodes working, the growth rate of the main
chain of GHOST is upper bounded by the growth rate of the main chain under
the longest chain rule. Hence, the worst-case throughput of GHOST, worst-case
over all adversary actions, is bounded by that of Bitcoin, i.e.

1— e (=AFA plocks per round, (11)

(cf. (7)). Notice that once again, this bound is monotonically increasing in f and
we would like to set f largest possible subject to security and network stability
constraints. The latter constraint gives the same upper bound as (12) for Bitcoin:

AchosT < 1—¢€7L. (12)

We now consider the security constraint on f. Whereas our security condi-
tion for Bitcoin throughput was determined by a Nakamoto private attack (in
which the adversary builds a longer chain than the honest party), a more severe
attack for GHOST is a balancing attack, analyzed in Appendix A. As shown in
that analysis, the balancing attack implies that a necessary condition on f for
robustness against an adversary with power 3 is given by:

E[|H:[r] — Holr][] > BfA, (13)

where H;[r], Hz[r] are two independent Poisson random variables each with mean
(1 — B)fA/2. Repeating the same analysis as we did for Bitcoin, we get the
following upper bound on the maximum efficiency of GHOST:

AcHosT < Bferost(8), (14)

where fohosT(3) is the value of fA such that (13) is satisfied with equality
instead of inequality.
Combining this expression with the network stability upper bound, we get:

AchosT < min {BfeHosT(B8),1— e’} (15)
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The throughput is plotted in Figure 6. As in Bitcoin, there are two regimes,
communication-limited for 8 small, and security-limited for S large. Interestingly,
the throughput of GHOST goes to zero as 3 approaches 0.5, just like Bitcoin. So
although GHOST was invented to improve the throughput-security tradeoff of
Bitcoin, the mining rate f still needs to vanish as 3 gets close to 0.5. The reason
is that although GHOST is indeed secure against Nakamoto private attacks for
any mining rate f [29], it is not secure against balancing attacks for f above a
threshold as a function of 5. When g is close to 0.5, this threshold goes to zero.

4.2  Prism 1.0: throughput-optimal protocol

We propose a protocol, Prism 1.0, that achieves optimal throughput efficiency
A = 1 — j3, which does not vanish as /3 approaches 0.5. We will build on Prism
1.0 in Section 5 to obtain our full protocol Prism.

Forking is the root cause of Bitcoin’s and GHOST’s inability to achieve optimal
throughput. In designing Prism 1.0, our key insight is that we can create a secure
blockchain by running Bitcoin at low mining rate with little forking, but incorpo-
rate additional transaction blocks, created via sortition, through reference links
from the Bitcoin tree (Figure 7). This allows us to decouple the throughput from
the mining rate f, and can increase the former without increasing the latter. In
the context of the overall deconstruction approach (Figure 4), this decoupling is
achieved by decoupling the transaction blocks from the core blockchain. Let us
call the blocks in the core Bitcoin blockchain core blocks. Later, when we discuss
latency, we will further split the functionalities of the core blocks into proposer
and voter blocks to build a more complex consensus protocol, but for now we
will just run Bitcoin as the basic consensus mechanism.

We now describe the structure of Prism 1.0.

1. There are two hash-threshold parameters a. and o4, such that a, < ay.
A node mines blocks using a nonce. If the hash is less than the stringent
threshold «., the block is a core block. If the hash is less than the relaxed
threshold a; but greater than a., the block is transaction block. This is a
sortition of blocks into two types of blocks, and the adversary does not know
which type of block it is mining until after the block has been mined.

2. The core blocks are used to determine the structure of the main chain. Each
core block will reference several transaction blocks, that are then assumed
to be incorporated into the ledger.

3. A block consists of the following data items.

(a) Public key for reward

(b) Transactions

(¢) The hash pointer to the current core block on which it is mining.

(d) Hash pointers (references) to transaction blocks that the miner knows of
and that have not been referenced in the current main chain.

(e) Nonce, which is mined by miners.
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Fig. 7: Prism 1.0. Decoupling the transaction blocks from the core blocks in the
Bitcoin blockchain.

If the block is a transaction block, then the hash-pointers to the current
core block as well as the hash-pointers to transaction blocks are not used. If
the block is a core block, then the list of transactions is not utilized. We note
that the structure of the block shown in Figure 7 allows us to only package the
information necessary for each type of block. The ordered list of transaction
blocks is produced by ordering the transaction blocks in the order in which they
are referenced by the core blocks in the main chain. For example, if the core
blocks are cy, .., ck, and R(c;) denotes the list of referenced transaction blocks
by ¢;, then the ordered list is given by R(c1),.., R(cx). From the ordered list
of blocks, we produce an ordered list of transactions. From this ordered list of
transactions, the ledger is produced by sanitizing this list to ensure that no
transaction appears twice, and for every double spend, only the first spend is
kept in the sanitized ledger.

Now that the key components of the protocol have been mentioned, we now
explain how the protocol is run by various nodes.

— Each new transaction is broadcast to all the nodes in the network.

— Each node maintains a queue of outstanding transactions. The input to the
queue is observed transactions. A transaction is cleared from the queue if
the node knows of a transaction block containing the transaction.

— Each node maintains a blocktree of observed core blocks and transaction
blocks.

— A node attempts to mine its new block(s) on top of the current longest chain
of core blocks in its local blocktree.
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1. The node includes in its block all transactions from its transaction queue
that are valid with respect to the ledger formed from the current longest
chain of the core blocktree.

2. The node gives reference links to all transaction blocks not currently
referenced by its core main chain.

— A node that hears of a block determines its validity by checking the hash.
Unlike in Bitcoin, there is no transaction validity check for a block, since the
ledger is sanitized later.

In the context of the round-by-round synchronous model, the H[r] honest
blocks mined in the rth round are now split into H¢[r] ~ Poiss((1—2) f.A) honest
core blocks and H![r] ~ Poiss((1 — 3)f;A) honest transaction blocks, where
fe+ ft = f. Similarly, the Z[r] adversarial blocks mined in the rth round are
split into Z¢[r] ~ Poiss(3f.A) adversarial core blocks and Z![r] ~ Poiss(3f;A)
adversarial transaction blocks. The parameters f. and f; can be specified by
choosing the appropriate value of the hash threshold a..

4.3 Analysis

We now analyze the proposed protocol in our network model. It is clear that the
security of the protocol is the same as the security of the Bitcoin core blockchain.
By setting f. to be appropriately small (depending on /), we know that we can
keep the core blockchain secure. More specifically, [10] gives one such sufficient
condition, obtained by requiring that the rate of arrival of uniquely successful
rounds exceeds the rate of work of the adversary:

1 1-p
feA< -5 In 3

Under this condition, [10] showed that the longest chain satisfies the common-
prefix property as well as has positive chain quality. Similar to the argument in
Conflux [16], the honest blocks in the longest chain can provide a total ordering
of all the blocks, not just the core blocks. Hence, the throughput is given by the
overall mining rate f = f. + f;. By choosing f; such that we are at the capacity
limit, i.e. f = C/B, we can get a total throughput of (1 — 5)C/B blocks per
second, or (1 — B)C transactions per second, assuming a worst case that only
honest blocks carry transactions.

This seems to give us the optimal throughput efficiency A = 1 — 3. However,
there is a catch: blocks that are mined in the same round may contain the same
transactions, since transactions are broadcasted to the entire network. In the
worst case, we have to assume that blocks mined at the same round contain an
identical set of transactions. In this case, mining more than one block per round
does not add to the (useful) throughput. Hence, the throughput, in terms of
number of non-redundant blocks, is simply:

(16)

P(H[r] >0) =1 — e~ (=AIA " plocks per second.
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Comparing to (7), we see that this is exactly the longest chain growth rate of
Bitcoin. Since Prism 1.0 can operate at f = C'/B, we are achieving exactly the
communication-limited throughput of Bitcoin (c.f. (12)), i.e.

A=1-¢71  B€0,0.5).

The difference with the throughput-security tradeoff of Bitcoin is that Prism 1.0
is operating at the communication-limited regime for S all the way up to 0.5;
there is no security-limited regime anymore. This is because we have decoupled
transaction blocks from the core blockchain and the throughput is not security
limited. In particular, the throughput does not go to zero as 8 goes to 0.5. But
we are still not achieving the optimal throughput efficiency of \* =1 — 3.

4.4 Transaction scheduling

To achieve optimal throughput, one can minimize the transaction redundancy
in the blocks by scheduling different transactions to different blocks. Concretely,
one can split the transactions randomly into ¢ queues, and each honest block is
created from transactions drawn from one randomly chosen queue. Thinking of
each transaction queue as a color, we now have transaction blocks of ¢ different
colors.

We will only have honest blocks with redundant transactions if two or more
blocks of the same color are mined in the same round. The number of honest
blocks of the same color mined at the same round is distributed as Poisson with
mean (1 — 8)fA/q, and so the throughput of non-redundant blocks of a given
color is

1 — e~ (1=A)f4/4 plocks per round.

The total throughput of non-redundant honest blocks of all colors is
q [1 - e_(l_B)fA/q] blocks per round. (17)
For large ¢, this approaches
(1 —-pB)fA blocks per round,

which equals (1 — 8)C transactions per second when we set f = C'/B. Thus, we
achieve the optimal throughput efficiency

N=1-5.

This performance is shown in the upper plot in Figure 6.

Interestingly, this maximum throughput of Prism 1.0 can be achieved what-
ever the choice of the block size B. In contrast, the block size B has to be set
large compared to the bandwidth-delay product C'D to optimize the throughput
in both Bitcoin and GHOST. This extra degree of freedom in Prism 1.0 has signif-
icant implications on the tradeoff between throughput and transaction latency,
which we turn to next.
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4.5 Throughput-Latency tradeoff

So far we have focused on achieving the maximum throughput of Prism 1.0, with-
out regard to latency. But transaction latency is another important performance
metric. The overall latency experienced by a transaction in Prism 1.0 is the sum
of two components:

1. Processing latency 7,: the latency from the time the transaction enters
the transaction queue to the first time a block containing that transaction
is mined.

2. Confirmation latency 7: the latency from the time the transaction is first
mined to the time it is confirmed.

We will discuss in great depth the confirmation latency in Section 5, but for now
let us focus on the processing latency 7,. It turns out that there is a tradeoff
between the throughput A and the processing latency 7,.

We can calculate 7, by considering the dynamics of an individual transaction
queue. Let us make the simplifying assumption that transactions enter this queue
at a deterministic rate. For a given total throughput A and ¢, the number of
transaction queues, the arrival rate into this queue is A/g transactions per second.
For stability, these transactions must also be cleared at a rate of A/q. Thus it
takes time ¢B/\ seconds to clear a block of B transactions from the queue and
enters the blockchain. Hence,

B
=3 seconds. (18)

On the other hand, from (17), we see that the throughput A, at the capacity
limit, is given by

B
A=gq|1—e (1-ACA/(BY A transactions per second (19)

We see that increasing with the number of transaction queues ¢ increases the
throughput but also increases the processing latency , as the effective arrival rate
decreases. Hence tuning ¢ can effect a tradeoff between throughput and latency.
To see the tradeoff explicitly, we can eliminate ¢ from (18) and (17) and obtain:

1-p

- 1
Tp log <11>
p
where 7, 1= Z.

We see that as 7, goes to infinity, the throughput efficiency A approaches
1 — 3, the maximum throughput derived in previous section. This maximum
throughput does not depend on the choice of the block size B, and this fact is
consistent with our previous observation. However, for a given latency 7,, the
throughput achieved depends on the network delay A, which does depend on the
block size B. By choosing the block size B small such that B < CD, A achieves

A= 1< 7, < oo, (20)
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the minimum value of the propagation delay D, optimizing the tradeoff. Under
this choice of the block size B, (20) becomes a tradeoff between A, the throughput
as a fraction of network capacity, and 7,, the processing latency as a multiple
of the propagation delay (Figure 8). Thus Prism 1.0 is achieving throughput
and processing latency simultaneously near their physical limits. Note that Bit-
coin and GHOST are not only sub-optimal in their maximum throughput, their
throughput-latency tradeoff is also much worse. In particular, to achieve a non-
zero throughput efficiency, the block size of these protocols is much larger than
the bandwidth-delay product C'D, and as a consequence, the processing latency
of these protocols needs to be much larger than the propagation delay.

The remaining question is whether the confirmation latency can also be made
close to the propagation delay. This is not the case in Prism 1.0 since its confir-
mation latency is the same as that of Bitcoin. This latency scales with log1/e,
where ¢ is the confirmation error probability; this security parameter log1/e
can be many multiples of the network delay. The question is whether we can
improve upon Prism 1.0 to make the confirmation latency of the same order as
the processing latency. This will be addressed in Section 5.
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Fig. 8: Tradeoff between A\ and 7p for different values of 3. Throughput is nor-
malized as a fraction of the network capacity, and the processing latency is
normalized as a multiple of the speed-of-light propagation delay.

4.6 Discussions

We discuss the relationships of our protocol with several existing protocols.

1. Conflux[16] separates links into two types: main-chain links and reference
links, but all the blocks go into the same blocktree. As a result, the Conflux’s
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security is limited by GHOST, and because Conflux is not done in conjunc-
tion with transaction scheduling, its throughput-g tradeoff is exactly the
same as that of GHOST shown in Figure 6. In contrast, Prism 1.0 not only
separates links into two types but also separates blocks into two types: core
blocks, which go into the core blockchain, and transaction blocks, which are
referenced by the core blocks. This separation allows the protocol to have
high security and high throughput simultaneously.

2. Prism 1.0 can be viewed as similar to BitcoinNG [8] but avoiding the risk of
bribery attacks since the core block does not control which transactions to
put into the ledger. Moreover, the core blocks incorporate transaction blocks
from various nodes, thus increasing decentralization and fairness, unlike Bit-
coinNG where the leaders are entitled to propose blocks till a new leader
comes up.

3. Fruitchains [22] was designed as a mechanism to increase reward fairness
and Prism 1.0 is designed for a totally different purpose of maximizing
throughput, but the structure of Prism 1.0 has similarity to Fruitchains. The
transaction blocks are roughly analogous to fruits, though there are a few
differences. The fruits hang-off an earlier block in Fruitchains for short-term
reward equitability, but we do not need that for throughput optimality. The
2-for-1 mining protocol [10,22] used in Fruitchains is somewhat different
from our protocol. But more importantly, as we saw, transaction scheduling
is crucial for achieving optimal throughput but is not present in Fruitchains.

4. Our two-threshold protocol is also similar to the ones used in mining pools
[14]. Indeed, in mining-pools, partial Proof-of-Work using a higher hash
threshold is used by participants to prove that they have been working (since
they may be unable to generate full proof-of-work messages at regular inter-
vals).

5. Our protocol is reminiscent of an approach called subchains [25] or weak
blocks [3,31]. Both methods employ blocks with lower hash threshold (“weak
blocks”) along with regular blocks. However, unlike our protocol, these weak
blocks have to form a chain structure. Thus, if the PoW rate of weak blocks
is increased significantly, it will lead to high forking on the weak blocks, thus
leading to lower throughput.

6. We note that a version of transaction scheduling appears in Inclusive [15]
for incentive compatibility. In order to maximize the reward gained, selfish
users select a random subset of transactions to include in the ledger. In our
protocol, we show this is required to maximize transaction throughput, even
with altruistic users.

5 Near physical limits: latency and throughput

Prism 1.0 scales throughput to the network capacity limit by decoupling trans-
action blocks from the core blockchain, so that we can run Bitcoin on the core
blockchain for high security and simultaneously maximize throughput by having
many transaction blocks. However, the confirmation latency of Prism 1.0 is the
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same as Bitcoin, which is poor. In this section, our goal is to upgrade Prism 1.0
to design Prism, which has fast latency (on list ledger decoding and on honest
transactions) as well as high throughput. The key idea is to further decouple the
core blocks into proposer and voter blocks.

We start by describing the latency of Bitcoin, our baseline, in Section 5.1. In
Section 5.2, we specify the Prism protocol. There are two parts to the specifi-
cation: 1) the backbone (in the spirit of [10]), which specifies how the proposer
blocks and voter blocks are organized, 2) how the transactions are linked from
the proposer blocks. In Section 5.3, we provide a formal model for Prism based
on a refinement of the model in Section 3. In Section 5.4, we prove several key
properties of the Prism backbone, analogous to the common-prefix and chain-
quality properties of Bitcoin proved in [10], and use it to show that it can achieve
total ordering of all transactions and has optimal throughput. Finally in 5.5, we
show that Prism can achieve ledger list confirmation and honest transaction con-
firmation with fast latency.

5.1 Bitcoin latency

Bitcoin runs the longest chain protocol where each node mines blocks on the
longest chain. These blocks have two roles: proposing to become a leader and
voting on its ancestor blocks for them to be elected leaders. In this protocol, a
current main chain block remains in the future main-chain with probability 1 —¢
if on the order of log1/e successive blocks are mined over it. It can be shown
(Corollary 1) that at a mining rate of f, it takes on average:
E[r] = (10(22)210 log% seconds

to provide 1 — ¢ reliability to confirm blocks and the transactions in it. Since the
expected latency 7 is inversely proportional to the mining rate f, one might be-
lieve that increasing the mining rate will reduce latency. However, in the previous
sections we have seen that naively increasing the mining rate will also increase
forking, which reduces security in terms of 5. To be more precise, Equation (8)
limits the mining rate per round f := fA to satisfy:

1—e 0=A7 > gf.

For j close to 0.5, this leads to the following upper bound on f:

- 1-2p

f<—75.

(1-p)?
Therefore, this imposes a lower bound on the the expected latency of
0(1)AQ1 - p)?
(1-2p8)3

Recall that physical limits impose two lower bounds on the latency: (1) the
propagation delay D, and (2) 1/Clog1/e. The above lower bound on Bitcoin

1
E[r] > log - seconds. (21)
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latency is far from these physical limits, for two reasons. First, the network
delay A = B/C + D depends on the block size B as well as the propagation
delay. From the analysis of the throughput of Bitcoin, we know from (10) that
to have decent throughput, the block size B should be chosen to be significantly
larger than the bandwidth-delay product C'D. But this implies that the network
delay A is significantly larger than the propagation delay. Second, the Bitcoin
latency lower bound’s dependency on the security parameter is much larger than
1/Clog % This is because the mining rate f of Bitcoin is limited by security and
hence the voting rate is much less than what is allowed by the network capacity.
By decoupling transaction blocks from the blockchain, we learnt from our
analysis of Prism 1.0 that we can choose the block size B small to keep the
network delay near the speed-of-light propagation delay while achieving optimal
throughput. Prism inherits this property of Prism 1.0, which overcomes the first
reason why Bitcoin’s latency is far from the physical limit. The focus of the
remaining section is the design and analysis of a voting architecture to overcome
the second issue, i.e. to increase the voting rate to the physical capacity limit.

Prism-backbone

Longest chain protocol

(]

Proposer blocktree Voter blocktrees

Fig.9: Prism : Separating proposer and voter roles.

5.2 Prism

5.2.1 Prism: backbone

We begin by describing Prism’s backbone, or blockchain architecture; this archi-
tecture specifies how blocks relate to each other, and which blocks find a place in
the final ledger. We describe how individual blocks are packed with transactions
in Section 5.2.2. Each block in Bitcoin acts as both a proposer and a voter, and
this couples their proposing and voting functionalities. As a result, the security
requirements of the proposer role upper bounds the mining rate, which in turn
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upper bounds the voting rate. In the spirit of deconstructing the blockchain, we
decouple these roles as illustrated in Figure 9. The backbone of Prism has two
types of blocks: proposer and voter blocks. The role of the proposer block is to
propose an extension to the transaction ledger. The voter blocks elect a leader
block by voting among the proposer blocks at the same level. The sequence of
leader blocks on each level determine the ledger. The voter blocks are mined on
many independent blocktrees, each mined independently at a low mining rate.
The voter blocktrees follow the longest chain protocol to provide security to
the leader election procedure which in turn provides security to the transaction
ledger. We now state the Prism backbone protocol from a node’s local view:

Proposer blocktree Voter blocktree I Mined proposer block

@E To mine proposer block

C] Mined voter block

p———-

1
: 1 To mine voter block

N

A
A

T Parent Link

RN
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=
)
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Fig. 10: Prism: Honest users mine a proposer block pe, at a level one deeper
than the current deepest level—in this example, p,e,, has level 5. The voter block
Unew 18 mined on the longest chain. It votes (via reference links) to all proposer
block on level {3,4} because its ancestors have votes only till level 2. Since v;
is not part of the main chain, it’s vote will not be taken into account for leader
block election.

— Proposer blocks: Proposer blocks are mined on a proposer blocktree as shown
in Figure 9, using the longest-chain rule. The level of a proposer block is
defined as the length of its path from the genesis block. Each proposer block
includes a reference link to an existing proposer block to certify its level.

— Voter blocks: Voter blocks are mined independently on m separate voter
trees, as shown in Figure 9. Each of these blocktrees has its own genesis
block and nodes mine on the longest chain. Each voter block votes one or
more proposer blocks using reference links.

— Vote Interpretation: Each voter blocktree votes only on one proposer block
at each level in the proposer blocktree. The vote of the voter blocktree is
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decided by the vote cast by the earliest voter block along its main chain.
Thus the proposer blocks on each level has m votes in total. A voter block
voting on multiple proposer blocks at the same level is invalid.
Voting rule: The ancestor blocks of a voter block are all the blocks on its
path to the genesis block. A voter block has to vote on a proposer block on
all the levels which have not been voted by its ancestors voter blocks.
Leader blocks: The proposer block that receives the most votes on each level
is the ) leader block for that level. The sequence of leader blocks across the
levels is called the leader sequence.
Sortition: A block is mined before knowing whether it will become a proposer
block or a voter block. In case it becomes a voter block, the miner will not
know a priori which voter tree it will be part of. This is enforced by using
a sortition scheme, similar to the sortition described earlier in Prism 1.0
between core and transaction blocks, except now the hash range is divided
into m + 1 instead of 2 intervals. This division is adjusted to ensure that
the proposer tree has proposer rate f, and each of the m voter trees have
block mining rate f,, with a total mining rate f = f, +mf,. By the security
property of the hash function, a miner cannot know which range it will land
in. This ensures that the adversarial power is uniformly distributed across
the different voter trees and hence we assume the adversarial hash power is
[ in each of the voter trees as well as the proposer chain.
Choice of parameters: Our protocol can operate with general settings of the
parameters, but for good performance we set some specific numbers here.
We set the block size B = 1 transaction, which as we discussed earlier is
a good choice both for latency and for throughput. Under the assumption
that CD > 1, the network delay A = D, the smallest possible. To minimize
latency, we want to maximize the vote generation rate, i.e. we set f = C, the
capacity limit. The mining rate f, := f, D on each voting tree is chosen such
that each voting tree is secure under the longest chain rule and according to
(16) it should satisfy

— 1 1-7

fo < 17Blog 5 (22)
We also set the proposer and voter mining rates to be the same, i.e. f, = f,.
This is not necessary but simplifies the notation in the sequel. This implies
that

7
(1-5)
" 1os(5)

i.e. the number of voting trees is at least proportional to the bandwidth-
delay product CD. This number is expected to be very large, which is a key
advantage of the protocol. The only degree of freedom left is the choice of
fo. We will return to this issue in Section 5.5 when we discussed the fast
confirmation latency of Prism.

1

m

.CD -1 (23)
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5.2.2 Prism: transaction structure

Pre-mining Block

(‘ Block header ‘\

Transactions

Sortition

Hash < ay,

ap < Hash < a,,

ay, < Hash < a,,

Algorithm Metadata

| L]

Merkle root hash

Voter metadata

Parent block

Votes on proposal blocks|

Proposer metadata

Certificate of level

Reference links
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Post-mining Role

Proposer block

Voter block (Blocktree 1)
Voter block (Blocktree 2)

Voter block (Blockiree m — 1)

Voter block (Blocktree m)

Fig. 11: Summary of the block structure and the sortition procedure.

Having presented the Prism backbone protocol, we now proceed to describe
how transactions are embedded into this backbone structure. We also give more
details on the content of the blocks. In Prism, the structure of the block has to
be fixed prior to determining whether the block will be a proposer-block or a
voter-block; therefore both blocks will have the same fundamental structure.

Block contents: Any block needs to contain the following data items:

. Hash of Voter / Proposal Metadata The block includes the hash of voter
metadata as well as the hash of proposal metadata. Once it is known which
type of block it becomes, then that particular metadata is attached to the
block.

. Transactions: Each block contains transactions that are not in the current
ledger, and furthermore are not included in any of the referred blocks. The
honest nodes utilize transaction scheduling given in Section 4.4 to choose a
random subset of transactions.

. Nonce: The nonce is a string discovered during PoW mining that seals the
block; a valid nonce ensures that the hash value of the block (concatenated
with the nonce) is less than a predetermined threshold. Our sortition mech-
anism uses the value of the hash to decide what type of block it becomes. In
particular, we produce a sortition as follows:
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— Hash < a;, = Block is a proposer.

— (i—1)aw +a, < Hash < i, + a, = Block belongs to voter blocktree 7 .

— The proposer PoW rate f, will be proportional to oy, and PoW rate on
any voter blocktree f, is proportional to a,.

Voter Block Metadata: The voter block meta-data needs to contain two items:
votes on the proposal blocks as well as where the parent block on the voter
blocktree where it needs to be attached.

1. Votes: The votes are of the form (¢,p,) for £ € {lmin, lmax} Where py is a
hash of a proposer-block on level £. The honest strategy is to vote on the
block on level ¢ that it heard about the earliest. Also, for honest nodes £y,
is the highest level that the node knows of, and £, is the smallest level for
which some blocktree has not yet voted.

2. Parent link: A voter block specifies one parent in each voter blocktree, b;, i =
1,2, ...,m. Honest nodes specify b; as the leaf node in the longest chain of
blocktree i. For efficiency, instead of storing all the m potential parents in
the block, these potential parents are specified in a Merkle tree and only the
root of the Merkle tree is specified in the block. If a block ultimately ends
up in voter blocktree ¢, then it provides a proof of membership of b; in the
Merkle tree and is attached to voter block b;.

Proposal Block Metadata: A proposal block needs to contain two metadata
items, described as follows.

1. Certificate of level: A block that wants to be proposed for level £ contains a
hash of a block in level £ — 1.

2. Reference links: A proposal block p contains a list of reference links R(p)
to other blocks. The honest strategy is to include a reference link to each
proposal and voter block that is a leaf in the DAG. Here, the directed acyclic
graph (DAG) is defined on the set of nodes equal to all the proposer and
voter blocks. The edges include reference links from the proposer blocks to
the voter blocks as well as the links from each voter block to its parent.

5.2.3 Generating the ledger

Given a sequence of proposer-blocks, pi, ..., p¢, the ledger is defined as follows
(our ledger construction procedure is similar to the one in Conflux [16]). Each
proposer-block p; defines an epoch; in that epoch is included all the blocks ref-
erenced from that proposer block p;, as well as all other blocks reachable from
p; but not included in the previous epochs. In each epoch the list of blocks is
sorted topologically (according to the DAG), and ties are broken deterministi-
cally based on the content of the block. The ledger comprises the list of blocks
ordered by epoch. Since the transactions in the reference blocks may have been
mined independently, there may be redundant transactions or double-spends in
the ledger of transactions. Any end-user can create a sanitized version of this
ledger by keeping only the first time a given transaction output is spent. We
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note that this approach decouples transaction validation from mining, unlike in
Bitcoin, where nodes only include valid transactions with respect to the current
ledger.

- Propose block

Referenced blocks|

-

" Reference Link

Epochs

Step 2

(TN

Leader Blocks + Referenced blocks All blocks Ledger
Total Ordering

Fig. 12: Prism: Generating the ledger. The proposer blocks for a given proposer
block sequence are highlighted in blue, and the referenced blocks are shown in
green. Each shade of grey corresponds to an epoch. In Step 1, all the blocks are
incorporated, and in Step 2, they are expanded out to give a list of transactions.

5.3 Prism: model

We provide a formal model of Prism based on a refinement of the round-by-round
synchronous model in Section 3.

Let H;[r] and Z;[r] be the number of voter blocks mined by the honest nodes
and by the adversarial nodes in round r on the i-th voting tree respectively, where
i =1,2,..,m. Note that by the sortition process, H;[r|, Z;[r] are Poisson random
variables with means (1 — ) f,A and f,A respectively, and are independent,
and independent across trees and across rounds. Similarly, H?[r|, ZP[r] are the
numbers of proposer blocks mined by the honest nodes and by the adversarial
nodes in round r respectively, they are also Poisson, with means (1 — §)f,A
and S f, A respectively. They are independent, and independent of all the other
random variables. We will define X;[r] (XP[r]), whichis 1if H;[r] > 1 (HP[r] > 1)
and zero otherwise. and define Y;[r] (Y?[r]), which is 1 if H;[r] =1 (HP[r] = 1)
and zero otherwise. We denote H;[ry,rs] := :2:“ 41 Hilr], similarly for Z;, X;
and Y;. The interval [rq,r2] denotes rounds {ry + 1,71 +2,--- ,ro — 1,72}.
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The adversary decides to release blocks (either kept in private or just mined)
in each tree (either the proposer tree or one of the voter trees) after observing
all the blocks mined by the honest nodes in all trees in that round. It can also
decide which proposal block each honest voter votes on (but it cannot remove
the vote or violate protocol, e.g., by changing the proposal block level of the
vote.) The adversary is powerful as it can observe what is happening in all
the trees to make a decision on its action in any individual tree. In particular,
this adversarial power means that the evolution of the trees are correlated even
though the mining processes on the different trees are independent because of
the sortition procedure. This fact makes the analysis of Prism more subtle, as
we need to prove some kind of law of large numbers across the voter trees, but
can no longer assume independence.

As in our basic model (which follows [10]), all the nodes have a common view
of the (public) trees at the end of each round.

5.4 Total transaction ordering at optimal throughput

In this subsection, we show that Prism can achieve total transaction ordering for
any (8 < 0.5. Following the framework of [10], we do so by first establishing two
backbone properties: common-prefix and quality of a certain leader sequence of
proposer blocks, analogous to the longest chain under Bitcoin.

The blockchain runs for rpy,x rounds, which we assume to be polynomial in
m i.e, Tmax = poly(m). Let P(r) denote the set of proposer blocks mined by
round r. Let Py(r) C P(r) denote the set of proposer blocks mined on level ¢ by
round r. Let the first proposer block on level £ be mined in round Ry. Let V()
denote the number of votes on proposer block p € P(r) at round r. Recall that
only votes from the main chains of the voting trees are counted. The leader block
on level £ at round 7, denoted by pj;(r), is the proposer block with maximum
number of votes in the set Py(r) i.e,

pp (1) = argmax Vp(r),
PEP(r)

where tie-breaking is done in a hash-dependent way.

A proposer sequence up to level £ at round r is given by [p1,pa2, - - , pe], where
pj € Pj(r). The leader sequence up to level £ at round r, denoted by LedSeq ,(r),
is a proposer sequence with p; = pj(r), in other words

LedSeq ,(r) := [p1(r), pa(r), -~ py (r)]. (24)

The leader sequence at the end of round 7.y, the end of the horizon, is the
final leader sequence, LedSeq ;(Tmax)-

The leader block pj(r) for a fixed level ¢ can change with round = due to
the adversary displacing some of the votes from their voter chains. However as
r increases, changing pj(r) is harder as the votes are embedded deeper in their
respective voter chains. The theorem below characterizes this phenomenon.
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Theorem 1 (Leader sequence common-prefix property). Suppose 8 <
0.5. For a fixed level £, we have

LedSeq ,(r) = LedSeq ;(Tmax) Vr > Ry +1(e) (25)
with probability 1 — e, where r(g) = T (11(1224[3)3 log #max - and Ry is the round in

which the first proposer block on level { was mined.
Proof. See Appendix C. O

Theorem 1 is similar in spirit to Theorem 15 of [10], which establishes the
common-prefix property of the longest chain under the Bitcoin backbone proto-
col. Hence, the leader sequence in Prism plays the same role as the longest chain
in Bitcoin. Note however that the leader sequence, unlike the longest chain, is
not determined by parent-link relationships between the leader blocks. Rather,
each leader block is individually determined by the (many) votes from the voter
chains.

The common-prefix property of Bitcoin’s longest chain guarantees consistency
of the ledger produced by the protocol. Similarly, the common-prefix property
of the leader sequence guarantees consistency of the ledger produced by Prism
. Ledger liveness of Bitcoin, on the other hand, is guaranteed by the chain-
quality property. The proposer block mining policy (Section 5.2.1) is to mine each
proposer block at the highest level available, with a reference link to a parent
block that certifies the new block’s level. If we define a tree with proposer blocks
and these reference links as the edges, then the users are in fact mining over the
longest proposer chain. Therefore, intuitively, the chain-quality guarantees of
Theorem 16 in [10] should hold for the leader sequence, resulting in the liveness
of the Prism ledger. This result is formalized below.

Theorem 2 (Liveness). Assume 3 < 0.5. Once a transaction enters into a
mined block, w.p 1 — e it will eventually be pointed to by a permanent leader
sequence block after a finite expected latency

Proof. See Appendix C. O

Together, Theorem 1 and Theorem 2 guarantee that Prism achieves a con-
sistent and live total ordering of all transactions, but requiring a confirmation
latency of order log 7 for a confirmation error probability of €. Just like the
longest chain in the core tree of Prism 1.0, the leader sequence blocks of Prism
orders all the transactions in the transaction blocks they refer to. In conjunc-
tion with transaction scheduling, Prism, just like Prism 1.0, achieves a worst-case
optimal throughput of (1 — 3)C transactions per second.

While being able to achieve a total ordering of transactions at optimal
throughput is an important property of a consensus protocol, this goal was
already accomplished in the simpler Prism 1.0, using the longest chain protocol
on the core tree. The use of a more sophisticated voting structure in Prism is to
meet a more ambitious goal: fast confirmation latency near physical limit. We
turn to this goal in the next subsection.
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5.5 Fast confirmation of ledger list and honest transactions

5.5.1 An example

Let us start with an example to get a feel for why we can confirm with latency
much shorter than Bitcoin latencies.

Suppose CD = 5000, D = 0.2 seconds and f, = 0.1 (corresponding to a
tolerable 5 = 0.49), so we have m =~ 5000/0.1 = 50,000 votes at each level and
votes are mined at rate 1 — e f* = 1 — ¢ 01 =~ 0.1 votes per round per voter
chain. Two proposer blocks are mined from genesis at round 1 and appear in
public at level 1. At the next round, on average, 0.1 - 50,000 = 5000 votes are
generated to vote on these two proposer blocks. At the round after that, only
the voter chains that have not voted in the last round can generate new votes,
and on the average 0.1- (50000 — 5000) = 4500 votes will be generated. The total
number of chains that have not voted after r rounds is:

m(l—0.1)",

decreasing exponentially with r. After 20 rounds, or 4 seconds, about 6000 chains
have not voted. That means at least one of the two proposer blocks has at least
(50,000 — 6000)/2 = 22,000 votes.

At this point:

1. If the adversary later presents a proposer block that it has mined in private
at this level, then it can gather at most 6000 votes and therefore not sufficient
to displace both these two public blocks and become a leader block. Thus,
no private attack is possible, and we are ensured that anytime in the future
one of the two proposer blocks already in public will be a leader block.

2. If one of the public proposer blocks has significantly more votes than the
other block, by much more than 6000, then we can already confirm that the
current leader block will remain the leader forever, because there are not
enough new votes to change the ordering.

Interestingly, when these events occur, an observer observing the public
blockchain knows that it occurs. Moreover, we know that the first event will
definitely occur after r rounds, where r is the smallest number of rounds such
that
m —m(l—0.1)"

1-0.1)"
m(l—0.1)" < 3 ,

i.e. r = 12 rounds.
The above analysis gives some evidence that fast confirmation is possible,
but the analysis is simplistic, due to three reasons:

1. 1 — e /v is the growth rate of each voter chain if every node follows the
protocol. However, some fraction of the voter blocks on the chains may belong
to adversarial nodes who decide not to vote on any pro poser block; in fact,
this fraction may be greater than 3 due to selfish mining [9,26,20]. Thus, the
number of outstanding votes calculated above may be on under-estimation.
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However, we do know that the longest chain’s quality is non-zero (Theorem
16 of [10]). Hence, the qualitative behavior of the voting dynamics remain
the same but the voting rate has to be reduced to account for adversarial
behavior.

2. The above analysis assumes that votes that have already been cast cannot be
reversed. That is not true because the adversary can grow private chains to
reverse some of the votes. However, because the adversary power is limited,
the fraction of such votes that can be reversed is also limited. Moreover,
as we wait longer, the fraction of votes that can be reversed in the future
also gets smaller because the votes get embedded deeper in their respective
chains. This needs to be accounted for, but again the qualitative picture from
the simplistic analysis remains unchanged: after waiting for a finite number
of rounds, one can be sure that the eternal leader block will be one of a list
of current public proposer blocks.

3. The simplistic analysis assumes the total number of votes that are mined at
each round is deterministic, at the mean value. In reality, the actual number
of votes mined at each round is random, fluctuating around the mean value.
However, due to a law of large numbers effect, which we will formally show,
the fluctuations will be very small, since there are large number of voting
chains. This justifies a deterministic view of the dynamics of the voting
process.

5.5.2 Fast list confirmation

We convert the intuition from the above example to a formal rule for fast con-
firming a list of proposer blocks, which then allows the confirmation of a list of
proposer sequences. The idea is to have confidence intervals around the number
of votes cast on each proposer block. Figure 13 gives an example where there are
5 proposal blocks in public at a given level, and we are currently at round r. The
confidence interval [V,, (1), V,,(r)] for the votes on proposer block p,, bounds the
maximum number of votes the block can lose or gain from votes not yet cast
and from the adversary reversing the votes already cast. In the running there is
also potentially a private hidden block, with an upper bound on the maximum
number of votes it can accumulate in the future. We can fast confirm a list of
proposal blocks whenever the upper confidence bound of the private block is
below the lower confidence bound of the public proposal block with the largest
lower confidence bound.

More formally: Let Pg(r) = {p1,p2...} be the set of proposer blocks at level
£ at round r. Let U(r) be the number of voter blocktrees which have not voted
for any proposer block in Py (r). Let V,¢(r) be the number of votes at depth d or
greater for proposer block p,, at round r. Let V¢ (r) be the the number of votes
at depth d or greater for a proposer blocks in the subset Py(r) — {p, }. Define:

5 1 1-28
=77 )
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I, (r) : Confirmed proposer list Vaul(r)
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Fig.13: In the above example, public proposer block p; has the largest lower
confidence bound, which is larger than the upper confidence bound of the pri-
vate block. So list confirmation is possible and the list confirmed is IT,(r) =

{p1.p2,p3}.

and

- d _
V., (r):= max (Vi(r) 2(5dm)Jr ,

Vou(r) =V, (r) + <V_n(r) — max (V_dn(r) — 25dm)+) +U(r),

d>0
Mprivate (T) = 0’

Vprivate(r) =m — Z Xn(r)

Pn€Pe (T)

Proposer list confirmation policy: If

max V,,(r) > Virivate (),

n

then we confirm the the list of proposer blocks IT,(r), where
II(r) == {pn : Vp(r) > max V,(r)}.

The following theorem shows that one can confirm proposer lists up to level
¢ with an expected latency independent of €; moreover the final leader sequence
is contained in the product of the confirmed lists.

Theorem 3 (List common-prefix property ). Suppose 8 < 0.5. Suppose the

(1—28)m
first proposer block at level ¢ appears at round Ry. Then w.p. 1 —r2, e T6lzm
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Fig. 14: A possible scenario by the final round.

we can confirm proposer lists II1(r), Ia(r), ..., II;(r) for all rounds r > Ry +
R;O”f, where

2808 50 256
]:E RCOn < _ 1 _ . 26
SO (1-28)°F, °(1—28) * (1 —2B3)6 fym? (26)
_(=28)m
Moreover, w.p. 1 —r2 e T6lzm
Dy (Tmax) € Iy (r) V¢ <l andr > R+ R;O"f,
Proof. See Appendix D. 0

Let us express the latency bound (26) in terms of physical parameters. If we
set the voting rate f, equal to the largest possible given the security constraint
(22):

- 1 1-06
v = lo ’
f=1-5'% 75
then according to (23), we have
1—
log( B )

With this choice of parameters, and in the regime where the bandwidth-delay
product C'D is large so that the second term in (26) can be neglected, the
expected latency for list confirmation is bounded by

c1(B)D  seconds,
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i.e. proportional to the propagation delay. Here,

2808(1 — ) 50

alf) =~ 28)7 log 152 log 725

and is positive for 8 < 0.5. The confirmation error probability is exponentially
small in C'D. This is the constant part of the latency versus security parameter
tradeoff of Prism in Figure 1.

Since C'D is very large in typical networks, a confirmation error probability
exponentially small in CD is already very small. To achieve an even smaller
error probability & we can reduce the voting rate f, smaller below the security
constraint (22) and increase the number of voting chains. More specifically, we
set

- CD

v — B 27

log 27
resulting in

1 1

m =log — — 1 =~ log —

€ €

yielding the desired security parameter. Indeed, the above equation for f, is
_¢Dpatp)
log 1;"

valid only if the security condition for f, is satisfied, i.e., when € < e
Again neglecting the second term in (26), the corresponding latency bound

1S 02(6>

1
——log — seconds,
€

C

where
2808 50

lo .
(1—25) (1 25)
This is the linearly increasing part of the tradeoff curve for Prism in Figure 1,

with slope inversely proportional to the network capacity C.
Some comments:

co(fB) =

— We have shown that latency and confirmation reliability can be traded off by
choosing different values of f,, and m. But these are protocol parameters. We
believe that one can achieve a similar tradeoff by changing the confirmation
rule while fixing these protocol parameters. This would allow the recipient
of a transaction to choose the level of security guarantee that they require
and wait accordingly. A detailed analysis of this adaptive confirmation rule
is left for future work.

— While the latency bounds exhibit the correct qualitative behavior, the con-
stants involved are rather large. This is due to two reasons. First, our proofs
are optimized for clarity rather than yielding the best constants. In partic-
ular, we structure the proofs to mirror as close as possible the backbone
protocol framework of [10]. Second, in our analysis, we give full power to the
adversary in choosing which proposer blocks the honest voter blocks vote
on. Thus the bounds need to account for the worst case, where the number
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of votes on the proposer blocks are very close. With a less crude model,
one can improve the bounds considerably. We expect the actual latency to
be much smaller than our bounds, but this conjecture is best validated by
experiments rather than more theory.

5.5.3 Fast confirmation of honest transactions

Transaction tx Round 7: tx is part of |Proposer block referring Leader block list at | All leader block lists up
is broadcast a transaction block |tx is mined at a level ¢ |level ¢ is confirmed |to level ¢ are confirmed

S S S

P Processing Latency

<

Confirmationj Latency 1

Confirmation Latency 2

< >

Fig. 15: Components of the latency: a) Processing latency is addressed in Sec-
tion 4.5, b) Confirmation latency 1 is analyzed in Theorem 4, and ¢) Confirma-
tion latency 2 is analyzed in Theorem 3.

In the previous subsection we have shown that one can fast confirm a list
of proposer block sequences which is guaranteed to contain the prefix of the fi-
nal totally ordered leader sequence. As discussed in Section 5.2.3, each of these
proposer block sequence creates an ordered ledger of transactions using the ref-
erence links to the transaction blocks. In each of these ledgers, double-spends
are removed to sanitize the ledger. If a transaction appears in all of the san-
itized ledgers in the list, then the transaction is guaranteed to be in the final
total ordered sanitized ledger, and the transaction can be fast confirmed. (See
Figure 5.) All honest transactions without double-spends eventually have this
list-liveness property; When only a single honest proposer block appears in a
level and becomes the leader, it will add any honest transactions that have not
already appeared in at least one of the ledgers in the list. Due to the positive
chain-quality of the leader sequence (Theorem 2, this event of “uniquely honest”
level eventually occurs. The latency of confirming honest transactions is there-
fore bounded by the sum of the latency of list confirmation in Theorem 3 plus
the latency of waiting for this event to occur(Figure 15. The latter is given by
the following theorem.

Theorem 4 (List-liveness). Assume § < 0.5. If a honest transaction with-

out double spends is mined in a transaction block in round r, then w.p. 1 —

rﬁlaxeflﬁl?g m it will appear in all of the ledgers corresponding to proposer block
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sequences after an expected latency no more than

2592 log 50
(1-=28)3f, ~(1—-2B)
Proof. Appendix E. O

rounds.

Figure 15 shows the various components of the overall latency we analyzed.
We can see that the confirmation latency from the time an honest transaction
enters a blocks to the time it is confirmed is bounded by the sum of the latencies
in Theorem 3 and 4. Repeating the analysis in the previous subsection, we see
that this latency is bounded by:

max{ai(8)D, azéﬂ) log é} seconds,
where
_5400(1 - B) 50
w(f) = g = (29)

1257 125

6 Discussions

6.1 Prism: incentives

Our discussion on Prism has mostly focussed on honest users and adversarial be-
havior. Here we briefly discuss rational behavior, and the accompanying reward
structure that incentivizes rational users to participate in the system without
deviating from the proposed protocol. There are straightforward approaches to
add a reward structure to Prism. Each block, whether a voter block or a proposal
block, that finds its place in the ledger is assigned a block reward. To allocate
transaction fees, we follow the method proposed in Fruitchains [22]. The transac-
tion fees are distributed among the past @ blocks, where @ is a design parameter.
In Prism, all blocks eventually find a place in the ledger, and thus the proportion
of blocks contributed by a miner to the ledger is proportional to the hash rate
of the miner. For large values of @), our design ensures that incentives are fairly
distributed and there is no gain in pursuing selfish-mining type attacks [26].

6.2 Prism: smart contracts

Most of our discussion on Prism has focused on transactions. However, we point
out here that Prism is not restricted to processing transactions and can be ex-
tended to process complex smart contracts. Smart contracts are pieces of code
which are executed based on the current state of the ledger. Importantly, they
can depend on the history of the ledger, including on the timing of various events
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recorded on the ledger. While many of the basic blockchain protocols such as
longest-chain consensus or GHOST protocol can accommodate smart contracts,
newer schemes such as Spectre and Avalanche are specific to transactions and
do not confirm smart contracts. We note that Prism is naturally able to confirm
the output and final-state of every smart contract at the e-dependent latency
since we get, total order. We also note that this is the behavior desired in hybrid
algorithms like Phantom+ Spectre .

We note that Prism has an additional attractive property for smart contracts
- the ability to confirm several smart contracts at a short latency (proportional
to propagation delay). Since Prism is able to confirm a list of ledgers within a
short latency, this can be exploited to confirm some smart contracts. If a smart
contract will execute to the same final state and output in all the ledgers in this
list, then this output and final state can be confirmed for the smart contract
even before confirming a unique ledger. We recall that Prism guarantees short
confirmation time for honest transactions. Analogous to the notion of honest
transactions, we can define a notion of uncontested smart contracts, where there
is no alternate view of how the events happened in any of the blocks. Such
uncontested smart contracts can then be shown to be confirmed within a short
e-independent latency proportional to the propagation delay - thus enhancing
the scope and utility of Prism beyond payment systems.

6.3 Prism: Proof-of-Stake

In this paper we have described Prism in the proof-of-work (PoW) setting that
scales the throughput by three orders of magnitude over Bitcoin . Despite this
significant increase, PoW is nevertheless energy inefficient (Bitcoin consumes as
much energy as medium sized countries [6]) and a leading alternative is the so-
called proof-of-stake (PoS) paradigm. PoS restricts involvement in the consensus
protocol to nodes who deposit a requisite amount of stake, or currency, into the
system. This stake is used as a security deposit in case the nodes misbehave
— for instance, by trying to unduly influence the outcome of consensus. PoS is
appealing for several reasons, including the fact that it can be much more energy-
efficient than PoW and also because it can be more incentive-compatible.

There are two key issues associated with designing a PoS version of Prism.
First, a cryptographically secure source of randomness, that is distributed and
verifiable, is needed to replace the source of randomness currently used in Prism
— this includes the various mining steps, transaction scheduling and sortition
operations. Second, PoS does not have the conservation of work that is implicit
in PoW and this allows adversaries to “mine” at no cost in parallel and only
report the outcomes that can be successfully verified — this exposes new security
vulnerabilities (popularly known as the “grinding” [1] and “nothing at stake”
attacks [17,12]) and a PoS design of Prism will have to contend with this attack.
Both these obstacles can be successfully surmounted and will be the topic of a
forthcoming paper [4].
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Appendices

A  An attack on GHOST

This attack is similar to the balancing attack in [19]. We would like to analyze
its constraint on the mining rate f which in turns constrains the throughput.

The adversary strategy is to divide the work of honest users by maintaining

two forks:

1.

B

Say two blocks by, bs are mined over the main chain block by in the first
round. Say the adversary mines b; and the honest nodes mine by. The ad-
versary will broadcast both these blocks (and all previous blocks) to all the
honest users. This is when the attack starts.

At this time instance (say » = 1) all the honest nodes have the same view of
the blocktree — which has two main chains ending at blocks b; and bs.

The honest users are divided into two equal groups G; and G5, mining over
by and bs respectively. These groups are mining at average rate (1 —3)fA/2
blocks per round each.

The adversary’s goal is to maintain the forking - make sure that G; chooses
block by in its main chain, whereas GGo chooses block by in its main chain.
To do this, it divides its own resources into two equal parts A; and As,
each with average mining rate fA/2 blocks per round. The first part Ay
mines only (direct) children of block b; and second part mines Ay (direct)
children of block by. Suppose at round r, Hy[r|, Ha[r] ~ Poiss(1 — 8) fA/2)
honest blocks are mined in subtree 1 (below b;) and subtree 2 (below b2)
respectively.

Attack Strategy:

— If Hy[r] = Hz[r], then the adversary does nothing.

— If say Hi[r] is larger, then adversary releases H;[r] — Ha[r] blocks that
it has mined in subtree 2 (either in private or just mined in this round).
Vice versa for the case when Hj[r| is larger. This (re)balances the weight
of the two subtrees and the honest work is again split in the next round.

Analysis: The expected number of blocks the adversary needs to release in
subtree 1 per round is E[(Hz[r] — H1[r])T]. So a necessary condition for this
attack to not be able to continue indefinitely with non-zero probability is

E[(Ha[r] — Hi[r])*] > BfA/2,
or equivalently:

E[|Hs[r] — Hi[r][] > BFA.

Bitcoin backbone properties revisited

[10] defines three important properties of the Bitcoin backbone: common-prefix,
chain-quality and chain-growth. It was shown that, under a certain typical exe-
cution of the mining process, these properties hold, and the properties are then
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used to prove the persistence and liveness of the Bitcoin transaction ledger. These
three properties, as well as the notion of a typical execution, were global, and
defined over the entire time horizon. While this is appropriate when averaging
over time to achieve reliable confirmation, as for Bitcoin, it turns out that for
the analysis of fast latency of Prism, where the averaging is over voter chains, we
need to formulate finer-grained, local versions of these properties, localized at a
particular round. Correspondingly, the event under which these local backbone
properties are proved is also local, in contrast to the event of typical execution.

In this section, we will focus on a single Bitcoin blocktree, with a mining rate
of f per round, and we will use the model and notations introduced in Section 3.
In addition, we will use the following notation from [10]: if C is a chain of blocks,
then C* is the k-deep prefix of C, i.e. the chain of blocks of C with the last k
blocks removed. Additionally, given two chains C and C’, we say that C < C’ if
C is a prefiz of chain C'.

Definition 1 (Common-prefix property). The k-deep common-prefix prop-
erty holds at round r if the k-deep prefix of the longest chain at round r remains
a prefix of any longest chain in any future round.

Note that while the common-prefix property in [10] is parameterized by a
single parameter k, the property defined here is parameterized by two parameters
k and r. It is a property that the prefix of the main chain at round r remains
permanently in the main chain in the future.

Definition 2 (Chain-quality property). The (u,k)-chain-quality property
holds at round r if at most u fraction of the last k consecutive blocks on the
longest chain C at round r are mined by the adversary.

The chain-quality property in [10] is parameterized by two parameters p and
k, however, the property defined here is parameterized by three parameters p,
k and r.

Definition 3 (Chain-growth property). The chain-growth property with pa-
rameters ¢ and s states that for any s rounds there are at least ¢s blocks added
to the main chain during this time interval.

We will now show that these three properties hold regardless of adversar-
ial action, provided that certain events on the honest and adversarial mining
processes hold. Let ' = 2%. Define the following events:

|~

2

hil

Ey[r—1',r]:= ﬂ {Y[r—r’—a,r—i—b] —Zr—7r"—a,r+b] > A -28)k _82B)k}
a,b>0

{X[r—r'r]+Z[r—1",r] <k}

Eo [r—7/,7]:
Es[r—r' 7] ::{X[T—T/,r] S lg}

E[r—r',r] :==Eifr — o', 7] NEa[r — 7', 7] NEg[r — ', 7]. (30)
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As defined in Section 3, X [r —+/,r] and Y [r —r/,r] are the number of suc-
cessful and uniquely successful rounds respectively in the interval [r — /1],
and Z[r —7/,r] is the number of blocks mined by adversary in the interval
[r — ', r]. Note that the honest users mine at least one block in a successful
round and mine exactly one block in a uniquely successful round. Therefore, the
event E; [r — /,r] implies that the number of uniquely successful rounds exceed
the total blocks mined by the adversary by =28k hlocks for all the intervals
containing the interval [r —7/,7]. Event Es[r —’,r] implies that the number
successful rounds plus the total number of blocks mined by the adversary in the
interval [r — 7/, r] is less than k. Event Eg [r — /,r] implies that the number of
successful rounds in the interval [r — 7/, r] at least %.

To prove the common-prefix, chain-quality and chain-growth properties, we
need the following two lemmas from [10]:

Lemma 1 (Lemma 6 [10]). Suppose the k-th block, b, of a longest chain C
was mined by a honest node in a uniquely successful round. Then the k-th block
of a longest chain C', at possibly a different round, is either b or has been mined
by the adversary.

Lemma 2 (Lemma 7 [10]). Suppose that at round ry the longest chain is of
length n. Then by round ro > 11, the longest chain is of length of least n +
X|[r1,7a].

Lemma 3. Under the event E[r — v’ r], the last k consecutive blocks of the
longest chain C at round r are mined in at least v’ consecutive rounds.

Proof. By definition we know that Ex[r — v/, 7] D E[r — 7/, r]. Event Ea[r — 1/, 7]
implies that the total number of blocks mined in interval [r — ¢/, 7] is less than k.
Therefore, the k-th deep block of chain C was mined on or before round r—r/. [

The chain-growth lemma stated below is the localized version of Theorem 13
from [10] and the proof is similar.

k

Lemma 4 (Chain-growth). Under event E[r—r', r], wherer’ = 27 the longest

chain grows by at least % blocks in the interval [r — v/, 7].

Proof. From Lemma 2, we know that the main chain grows by at least X [r—r', 7]
in the interval [r —r’,r]. Since Eg[r —r/,r] D E[r — 1/, r] implies X[r — 1/, 7] > &
and this completes the proof. O

We modify the proofs of Lemma 14 and Theorem 15 of [10] by localizing it to a
particular round in order to prove our common-prefix property.

|~

Lemma 5 (Common-prefix). Under the event Elry — v/, r1], where r' = 2%,

2

i

the k-deep common-prefiz property holds at round ry.
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Last common
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b*, mined at round r*
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Fig.16: Round r is the first round that the k-deep prefix of the longest chain is
changed. (This is a slight modification of Figure 3 from [10].)

Proof. Consider a longest chain C; in the current round r; and a longest chain Cy
in a future round 72, which violates the common-prefix property, i.e., Cl[k £ Cs.
Let r be the smallest round r; < r < 79 such that there is a longest chain C}
such that C1“c 2 Ch. If r = rq, define C] = Cy; otherwise, define Cj to be a longest

chain at round r — 1. Note that Cl(k =< (. Observe that by our assumptions
such an r is well-defined (since e.g., r3 is such a round, albeit not necessarily the
smallest one); refer to Figure 16 for an illustration. Consider the last block b*
on the common prefix of C; and C} that was mined by an honest node and let r*
be the round in which it was mined (if no such block exists let 7* = 0). Define
the set of rounds S = {i : 7* < i < r}. We claim

Zlr*, vl > Y[r*,rl. (31)

We show this by pairing each uniquely successful round in S with an ad-
versarial block mined in S. For a uniquely successful round u € S, let j, be
the position of the corresponding block i.e., its distance from the genesis block.
Consider the set

J :={ju : u is a uniquely successful round in S}.

Note that len(C{) > maxJ, because the honest node that mined the chain cor-
responding to max J position will broadcast it. Since Cj is adopted at round r,
it should be at least as long as Cf, i.e., len(C5) > len(C). As a result, for every
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j € J, there is a block in position j of either chain. We now argue that for every
j € J there is an adversarial block in the j-th position either in C{ or in C}
mined after round r* because C{ and C} contains block b* which is mined by
the honest users: if j lies on the common prefix of C; and C} it is adversarial by
the definition of 7*; if not, the argument follows from Lemma 1.

We assume the event E[r; — 7/, 7] occurs and under Ep[rqy — r/,r1] D E[r; —
r’,r1], from Lemma 3, the k-deep block of the chain C; was mined on or before
round r; — 7’ and this implies 7* < r; — 7’. Under the event Fi[r; — r’,r1] we
know that Y[r1 — ' —a,m1 +b] > Z[r1 — 7' — a,r1 + b] for all a,b > 0. Since
r* <ry —1r, Y[r*,r] > Z[r*,r], which contradicts Equation (31). O

We again modify the proof of Theorem 16 of [10] by localizing it to a particular
round in order to prove our chain-quality property.

Lemma 6 (Chain-quality). Under the event Elr — v/ r], where r' = 2%—, the
(1, k)-chain quality property holds at round r for p = %.

Proof. Let C be the longest chain at round r and denote the last k blocks in
the chain C by C[—k] := [bg,bg—1,--- ,b2,b1]. Now define N > k as the the
least number of consecutive blocks C[—N] := [by,by—1," - , b2, b1] s.t block by
was mined by an honest user. Let block by be mined in round r*. If no such
block exists then by is the genesis block and r* = 0. Now consider the interval
S ={i:r" <i<r}=[r*r]. Let H be the number of blocks mined by
honest users in the interval [r*,r] and say H < (1 — p)k. Then the number
of blocks mined by the adversary in the same interval is at least N — 1 — H.
This implies Z[r*,r] > N — 1 — H, so from the chain-growth Lemma 2, we have
N — 1> X[r*,r]. Putting the last two statements together, we have

Zlr*,r] > X[r*,r] — (1 — p)k. (32)

We assume the event E[r —r/, 7] = Ey[r — ¢/, 7] NEz[r — ', 7] NE3[r — ', r] occurs.
Under Ep[r — /,r], from Lemma 3, the k-deep block of the chain C, by, was
mined before round r — r’, and since block by was mined before block by, we
have r* < r — /. Under the event Eq[r — r/, r], we know that

—28)k

1
Y[r—r'—a,r+b]>Z[7"_7“/—a77"+b]+( 3 va,b > 0.

Since r* <r —¢" and X[r*,r] > Y[r*, r|, we obtain

Xppo] > 2l o] + 208

and this contradicts Equation (32) for u = %. Therefore in the interval [r*, r],

at least (1 — p)k blocks on C[—N + 1] were mined by honest users. These blocks
must be in C[—k] by definition of N. O
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Since the common-prefix, chain-quality and chain-growth properties are all
proved assuming the event E[r — 7/, 7] occurs, a natural question is how likely
is its occurrence? The next lemma shows that the probability of it occurring
approaches 1 exponentially as 7’ increases. This lemma will be heavily used in
our analysis of security and fast confirmation.

Lemma 7. Let f < w.s For any r, P(E°[r—1r',7]) < 477" where

r’ = 2% and v = 55(1 — 2B)%.
Proof. The event E°[r — 7/, 7] is a union of three events. We will upper bound
the probability each of these events separately and then use union bound.

(1-2p)2Fr'
—a-2p)7 i

Lemma 8. For any r, P(ES[r—1r',r]) < 2e . Here v’ =

Sl

Proof. Let us restate the event E; [r — 7/, r] by substituting k = 2r' f:

u29)f,

Ei[r—1',r]:= m {Y[r—r’—a,r—l—b]—Z[T—r'—a,r—&-b}> 1

a,b>0

Observe that the random variable Y [r — ' —a,r +b] — Z [r — ' — a,r + b] can
be interpreted the position of a 1-d random walk (starting at the origin) after
"+ a+ b steps. Here Y [r —r' —a,r+b], Z[r — 1" —a,r + b] are the number
of steps taken in right and left direction respectively. The value of f is chosen
s.t the random variables Y [r — ' —a,r +b] ~ Bin(r' + a + b, %) and as seen

before Z [r — ' — a,r + b] ~ Poiss((r’ 4+ a + b) f3); the random walk has M

positive bias per step. In this random walk analogy, event Ey [r — 7/, 7] implies
that the random walk is to the right of the point % after first v’ steps and
remains to the right of that point in all the future steps. We analyze this event
by breaking in into two events.

Define a new event D[r — v/, 7] = {Y [r — ', 7] = Z [r — ', 7] < 2(1-28)fr'}.
In our random walk analogy, this event corresponds to a random walk which
starts at the origin and is to the left of the point (1 —28) fr’ after r’ steps. We
upper bound the probability of the event D [r — »/, r]:

PD[r—r'r]) =PV [r—r'r]=Z[r—r'r] < %(1 —2B)fr')
:]P’(Y [r—r' v = Z[r—1",r] - %(1 —28)fr' < —%(1 - 25)f1"’>
(a)

<e I (33)

The inequality (a) follows by applying Chernoff bound and the value of 7 is
35 (1 —28). We will now use the event D [r — 1/, 7] to calculate the probability of

® We will assume this constraint in all our results without stating it explicitly.
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the event E§ [r — ', r]:

PE[r—7r',r]) =PE [r =+, 7]ND[r—7',r]) + P(ES [r —¢',7] N D°[r — 7', 7])
P(D[r—7',r]) +P(ES [r — 1, 7] |Dc[r—r’,r])

IAS IA

e~ el

< 2e ", (34)
In our random walk analogy, the event {Ef[r—1r',7] (| D°[r —r/,r] } corre-
sponds to a positive biased random walk Y [r —r',r] — Z [r — 1/, ] starting to
the right of the point éf(l —28)r" and hitting the point if(l —26)r" in a future

round. This event is analyzed in Lemma 29 and using this lemma we obtain
inequality (a) with y =7, = %(1 —28)2. O

Lemma 9. For any r, P(E[r —1',7]) < e /". Here k =1'f.

Proof. Let us restate the event Ey [r — 7/, r] by substituting k = 2r' f:
Ex[r—r',r]:={X[r—r r]+Z[r—7' 1] <2fr'}.

As defined in Section 3, the total number of block mined by the honest users in

interval [r — 1/, 7] is H[r — ', 7] ~ Poiss((1 — 3) f,r’) and we have H[r —r', 7] >
X|[r —r',r]. Using this we have

PES[r—r,r)=P(X[r—r r]+Zr—1r" 1] >2fr)
<SP(H[r—r'r]+Zr—1"r] >2fr)
=P (Poiss((1 — B) fr') + Poiss(3fr") > 2fr')
=P (P0|ss fr')) > 2fr )
<e"
The last inequality follows from Chernoff bound®. O
Lemma 10. For anyr, P(Ej[r—1',7]) <e™ 3 5. Here 1’ 2%

Proof. Let us restate the event E3 [r — 7/, r] by substituting k = 2r' f:

Es[r—r',r]:= {X[r—r’,r] > fgl}

5 https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master /poissonconcentration.pdf
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We know that Y [r — /7] < X [r —+/,r] and Y [r — ¢/, r] ~ Bin(+, g) Thus we
have

P (ES [r — ', 7]) P(X[rr’,r] < f;)

<]P’<Y[r—7"'7r] < f;)

P (Bin(r'7 5) < f;)

The last inequality also follows from Chernoff bound. O
Combining Lemmas 8, 9 and 10, we obtain

PE[r—7",r]) <PE[r—7",r) +PES[r—7r",7]) +PE[r—1,7])

—fr _ i
+e +e 36

(1—28)2fr!
36

< 2e”

_a-28)%f
< e 36

C Total ordering for Prism: proofs of Theorems 1 and 2

In Appendix B, we proved three chain properties — chain-growth, common-prefix
and chain-quality — for the Bitcoin backbone under events defined in Equation
(30). The voter blocktrees in Prism also follow the longest chain protocol, hence
these three chain properties will directly hold for each of the m voter blocktree
under the corresponding events:

Eij[r—r'r]:= ﬂ {Yj[r—r’—a,r—l—b]—Zj[r—r’—a,r—i—b] > 2

a,b>0
Eoj[r—r',r] ={X;[r—r,r]+Z;[r—r',r] <k}

|

E; [r—1',r] :==Ey j[r— 7, r]NEo [r — ', 7] NEs ;[r — 7', 7]. (35)

O—Wf}

<

Egj[r—r'r]:= {Xj [r—7r",r] >

(=N

Note the similarity between the above events and events defined in Equation (30).
From definitions in Section 5.3, X [r —¢/,r] and Y; [r —/,r] are the number
successful and uniquely successful rounds respectively in the interval [r — ', 7]
on the blocktree j. Along the same lines, Z; [r — 1/, r] is the number of voter
blocks mined by the adversary on the blocktree j in the interval [r—1r’, r]. Events
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Ey[r—7r',r],Eq; [r —r',r] and Ez ; [r — 7/, 7] have corresponding interpretation
of the events Eq [r — 7/, 7], Eo [r — 7/, 7] and E3 [r — 1/, 7].
Typical event: For a given 7/, define the following event:

= () Elr—#rl. (36)

P21 0<r<rumax

Lemma 11. For any j, P (E(r')) < a2 e where 4 = (1 —28)2

Proof. Use Lemma 7 and apply union bound. O

Let the first proposer block at level ¢ appear in round R,. We will now prove
common-prefix and chain-quality for the leader block sequence defined in Equa-
tion (24).

Bitcoin backbone | Common Prefix (CP) Chain Quality (CQ)

TN,

CP: Leader sequence

Voter blocktrees

Proposer blocktree

Fig. 17: Dependencies of properties required to prove the common-prefix property
of the leader sequence.

Common prefix property: The common-prefix property of the leader se-
quence gives us the confirmation policy. We derive this property using the com-
mon prefix and the chain-quality properties of the voter blocks. Refer Figure
17.

Lemma 12 (Common-prefix). At round r > Ry, if every voter blocktree has
a voter block mined by the honest users after round Ry which is at least k-deep,
then w.p 1 — ey, the leader block sequence up to level £ is permanent i.e,

LedSeq ,(r) = LedSeq ;(Tmax)-
Here ey, < 4mr2, e "%/ and v = 3 (1—2p)2.

Proof. Fix a voter blocktree j and denote its k-deep voter block in round r by
b;. From the definition in Equation (36) and common-prefix Lemma 5 we know

for under the event E;(r’), for ' = 5 f , the k-deep voter block and its ancestors
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permanently remain on the main chain of voter blocktree j. From Lemma 11
we know that P (E;‘T(r’ )) < %:. Therefore, the k-deep voter block on the voter
blocktree j is permanent w.p 1 — 2£. On applying union bound we conclude all
the k-deep voter block on the m voter blocktrees are permanent w.p 1 — &g.
Each of these voter blocks, b;’s, are mined by the honest users after round R,.
Therefore, by the voter mining policy defined in Section 5.2.2, the main chain
of the voter blocktree j until voter block b; has votes on proposer blocks on all
the levels ¢/ < ¢ and all these votes are permanent w.p 1 — €. Therefore, for
each level £ < ¢ has m permanent votes and this implies that the leader block
at level ¢/ is also permanent w.p 1 — &. O

Therefore, to confirm leader blocks with 1 — ¢ security, votes on all the m
voter blocktrees should be at least k = %log 4"”"% deep. The natural question
is: how long does it take to have (at least) k-deep votes on all m voter blocktrees?
The next lemma answers this question.

Lemma 13. By round R;+ry, wp 1—¢},, all the voter blocktrees have an honest
voter block mined after round Ry and is at least k-deep, where rj, < % and
&), < Bmrd e

Proof. Fix a blocktree j. Using the chain growth Lemma 4 under the event
E; (7%), we know that the main chain of voter blocktree j grows by ki > %

voter blocks. Next, using the chain-quality Lemma 6 under the second event

8
by the honest users and the earliest of these voter block, say b;, is at least ko-
> =28k~ (1=28)fyrs
= 8 = 24

E; (2’“71), we know that at least 1=22 fraction of these k; voter blocks are mined

deep, where ko := k. It is important to note that the
depth ko is observable by all the users. The probability of failure of either of
these two events is

e (5 00Uz (57)) <o) +2 (3 (57))
< P(E(ry)) + P (EJ (%))

(37)

From Lemma 11, we see that as v’ decreases, P (E;(r' )) increases, and because

2’“}% > % we have the inequality (a). The inequality (b) also follows by the same
logic. The last inequality (c¢) is given by Lemma 11. Now applying union bound

on Equation (37) over m blocktree gives us the required result. O

Proof of Theorem 1:



Deconstructing the Blockchain to Approach Physical Limits 57

Proof. From Lemma 13 we know that by round Ry+7(¢), all the voter blocktrees
2
will have a k-deep honest voter blocks wp at least 1 — 57 for k > %log er%.

Now applying Lemma 12 for k > %1og %, we obtain that all these honest

€

voter blocks are permanent w.p 1 — 5. On combining these two, we obtain that
by round Ry + r(e) the leader block sequence up to level ¢ is permanent w.p

1—c. O

Worst Case vs Average Case: The confirmation policy in Lemma 13 is stated
for the worst case adversarial attack: when there are two (or more) proposer
blocks at a given level have equal number of votes. Consider an ‘average case’
scenario with two proposer blocks at a level, where the first block has 2m/3
votes and the second block as m/3 votes. In this scenario one can intuitively see
that we don’t need to guarantee permanence of all the m votes but a weaker
guarantee suffices: permanence of m/6 of the 2m/3 votes of first block. This
weaker guarantee can be achieved within a few rounds and translates to short
latency in Prism.

Corollary 1. Bitcoin’s latency is the time required to mine a single honest %—
2304 87 ax
F.(1-28 108

deep block on a wvoter chain of Prism and it is lesser than =
rounds to provide 1 — e reliability to confirm blocks and the transactions in it.

Definition 4 (Leader-sequence-quality ). The (u, k)-leader-sequence-quality
property holds at round r if at most u fraction of the last k consecutive leader
blocks on the proposer blocktree at round r are mined by the adversary.

Let us define the following events on the proposer blocktree:

EV [r—r',r] = ﬂ {Yp[rr'a,rer]Zp[rr’a,rer] >
a,b>0
Eb[r—r'r] :={XP[r—7',r]+ 2P [r — 1" 7] < k}

1 —826)k}

k
EX[r—r',r] = {Xp [r—1",r] > 6}
EP [r—r' r] :==E[r — o', r)NES[r — ¢/ 7] NER[r — ', 7] (38)

From definitions in Section 5.3, X? [r — r/,r] and Y? [r —/,r] are the number
of users in successful and uniquely successful rounds respectively in the interval
[r—7', 7] on proposer blocktree, and Z? [r — 7/, 7] is the number of proposer blocks
mined by adversary in the interval [r — 1/, r]. These events have corresponding
interpretation of the events defined in Equations (30) and (35).

Lemma 14 (Leader-sequence-quality). The (u, k)-leader-sequence-quality prop-

erty holds at round r for u = % w.p at least 1 — 47"1211%67(1725)%/72'

2
8m Trnax

_afw 64 8 8
2 = log 2 -2
T 8mrl,e & viu(i-28) e = 8mrjaxe 128

2
m Tl"ﬂ ax
€

log <

M
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Adversarial Honest leader
leader block block
Round r* Round r
Level ¢* Level £ —k+1 Level ¢
J ! P
Leader
blocks
L I J
Y Y
H' honest leader blocks and H honest leader blocks

H' adversarial proposer blocks

Y
£ — ¢ —1— H — H' adversarial leader blocks.

Fig. 18: The leader blocks in levels [¢*, /].

Proof. Unlike the longest chain in Bitcoin, the leader sequence in Prism does not
form a chain. Therefore, one cannot directly use Lemma 6 and we need to adapt
its proof to prove the required property here.

Let r be the current round and £ be the last level on the proposer blocktree
which has proposer blocks at round r. Consider the k consecutive leader blocks
on levels [{ — k,¢] :=={¢ —k+1,---,{} on the leader sequence LedSeq,(r) and
define:

£ := max (!7 <{—k+1 s.t the honest users mined the first proposer block on level Z)

Let r* be the round in which the first proposer block was mined on level £* and
define the interval S := {r : r* < i < r} = [r*,r]. From the definition of ¢* we
have the following two observations:

1. The adversary has mined at least one proposer block on all levels in [¢*, ¢ —
k+1].

2. All the proposer blocks on levels [¢*,¢] are mined in the interval S because
there are no proposer blocks on level ¢* before round r* and hence no user
can mine a proposer block on a level greater than ¢* before round r*.

Let H be the number of honest leader blocks on the levels [¢ — k, £] and say
H < (1-pk. (39)

Let H' be the number of honest leader blocks on the levels [¢*,¢ — k]. The
adversary has mined ¢ — ¢* — 1 — H — H’ leader blocks in the interval S. From
our first observation, we know that the number of proposer blocks mined by the
adversary on the levels [¢*, ¢ — k] which are not leader blocks is at least H', and
from our second observation, these proposer blocks are mined in the interval S.
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Therefore, the number of proposer blocks mined by the adversary in the interval
S satisfies

ZPlr*r| > (-0 —H—-H —-1)+ H'
>(—0"—-1-H
(From Equation (39)) > ¢ —¢* —1— (1 — p)k. (40)

Refer Figure 18 for an illustration. From the chain growth Lemma 4, we know
that £ — ¢* —1 > XP[r*,r] and combining this with Equation (40) gives us
ZP[r*,r] > XP[r*,r] — (1 — p)k. (41)
Let ' := % Define an event EP(1') := ﬂFZT' ﬂrgrmax EP [r — 7, r] and as-
sume the event E?(r’) occurs. Under the event EV[r — 7/, r] D EP(r'), we know
that

1-208)k
Yp[r—r’—a,r+b]>Zp[r—r’—a,r+b]+7( 8ﬁ)

Ya,b > 0.

The first proposer block on the level £ is mined before round r. Under the event
ER[r —7’,r] 2 EP(r’), from Lemma 3, the first proposer block on level £ — k + 1
was mined before round r — r/, and hence r* < r — r’. This combined with
XP[r*,r] > YP[r*,r], gives us

(1-28)k

XPlr*,r] > ZP[r*,r] + S ,

and this contradicts Equation (41) for u = %. Therefore on the levels [¢—k, ¢,

at least % fraction of the leader blocks are mined by honest users. From

Lemma 11, we know that the event EP(r’) occurs w.p 1 — 4r2_ e~ 7%/2 where
v = 3—16(1 —2f3)2, and this completes the proof. O

The leader sequence quality defined in 4 is parameterized by two parameters
r and k, whereas its counterpart definition of chain quality in [10], is parame-
terized only by a single parameter k. Even though our definition of ‘quality’ is
a weaker, we show that it is suffices to ensure liveness.

Proof of Theorem 2:

Proof. Let k = (1270515)3 log(#2™max ) and ky = %. Using Lemma 14 we
know that w.p at least 1 — £/4, the last k; leader blocks have at least k hon-
est leader blocks. From Lemma 3 and 11, w.p at least 1 — ¢/4, the deepest
of these k honest leader block was proposed before the round r — -%-. Here

2fo
k. _ 1024 32mrmax 3 i
35 = (=20, log(==™fm=x) and now using Theorem 1, this deepest honest

leader block is permanent w.p 1 —&/4. Therefore, the honest transaction will be
permanently added to the blockchain after ki proposer blocks are mined. Using
chain growth Lemma 4, we know that the k; proposer blocks will be mined in
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Fig. 19

no more than 3£ rounds w.p 1 — /4. Therefore, w.p 1 — ¢, the transaction will
be part of the permanent leader sequence in

3k 3 x 2M 32MTmax

o (—28)PF, °

rounds. (42)

Refer Figure 19 for an illustration. Note that the constants in Equation (42)

have not be optimized for the sake of readability. The scaling w.r.t 1 — 283, f,
and log% is the main take away. O

D Fast list confirmation for Prism: Proof of Theorem 3

D.1 Voter chain properties

In Appendix C, we proved the common-prefix and the leader-sequence-quality
properties by requiring the typical event defined in Equation (36) to hold for
every voting chain, i.e. at the microscopic scale. The typicality of each such event
was obtained by averaging over rounds and as a consequence the confirmation of
leader blocks with 1—e guarantee required averaging over O(log %) rounds. In this
section we obtain faster confirmation time by relaxing the notion of typicality to
a notion of macroscopic typicality, one which concerns the mining processes of
a large fraction of the voter chains. This event guarantees macroscopic versions
of the chain-growth, common-prefix and chain-quality properties. That is, these
properties are guaranteed to be satisfied by a large fraction of the voter chains,
but not all. These macroscopic properties of the voting chains turn out to be
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sufficient to allow fast confirmation. For this section, we will define:

1

= —(1-28)°
7= 51— 26)
1= 2/
T T
200
Tmin ‘= QIOgJ
vfv
4 200
kmin = 10g -
Y e
L C1 (1 — 25)01
pPrr = Max —
14+4f,r"" 1+ 32logm

0 1= max @ (1—28)c)
e 1+ 2k’ 1+ 32logm

(1—28)cym

Em =12, 0 ZFeilorm (43)

Lemma 15 (Macroscopic Typicality). The macroscopic typical event T de-
fined below occurs with probability 1 — €, .

T[’I“—?"/,?”] = —Zl(Ej[T—TI,T])Zl_ék

T:= ﬂ mir —1',r],

0<r<Tmax;"" 2Tmin
where v’ = % Note that 0y = pyr.
v

Proof. For a fixed r,r’, the indicator random variables 1 (Ej [r—r7, r]) are identical
and independent Vj € [m]. The mean of the random variable l(Ej [r—7/,r]) is

u, and it is at most 4e=rfor’ by Lemma 7. Using Chernoff bound® for Bernoulli
random variables, Va > 0, we have

m
Zl(Ej[r —rr]) > p+a} < o

m B ma
;»p{% SOU(ES — o, ]) > 4T 4 a) < wrme

j=1
@P{% ; L(ES[r —1',7]) > (6 + 1)4677f7’”ﬂ/} < gmdme o s (44)

8 http://math.mit.edu/~goemans/18310515/chernoff-notes.pdf
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Step (1) follows because p < 4e=/*"" and step (2) is obtained by substituting
a = 64e= """ For v > rmin’, we have %e“*fv’” prr > 10. On substituting § =

ie“’f’”,pw — 1 in Equation (44), for all values of 7’ > ryin, we get
1 — 52
P(T[r — 1, r]) = P{— Z L(ES[r —1',7]) > p} < e "G
m
i=1

(%) e—mpr/2

(®) _a-28em
< e 2+6dlogm

The inequality (a) follows from because 6 > 9 and inequality (b) follows because
(1-2B)c

Pr > TT3Togm

of at most r2

max

. Since 7,7’ can take at most ry., values, the event T¢ is a union

T¢[r — /,r] events. Using union bound we prove that the event
_(1-28)cym . . .
T¢ occurs w.p at most &, = 72, e~ 2r6ilam and this combined with d; = p,/

proves the required result. O

Lemma 16 (Macroscopic Chain-growth). Under the event T, for k > kmin
andr' = %, the longest chain grows by at least % blocks in the interval [r—r', 7]
on at least 1 — & fraction of voter blocktrees.

Proof. From the typicality Lemma 15, we know that under the event T[r—r',r] D
T,

Zl(Ej[r—r’,r]) >1—§.

Jj=1

1
m

Applying Lemma 4 on events E;[r — 7/,r] for j € [m] gives us the required
result. O

Lemma 17 (Macroscopic Common-prefix). Under the event T, for k >

kmin and 17’ = %, the k-deep common-prefix property holds at round r for at

least 1 — Oy, fmctz’?m of voter blocktrees.

Proof. From the typicality Lemma 15, we know that under the event T[r—r',r] 2
T,

m

Zl(Ej[r—r',r]) >1— 0y

1
m
J=1

Applying Lemma 5 on events E;[r — r/,r] for j € [m] gives us the required

result. O

Lemma 18 (Macroscopic Chain-quality). Under the event T, for k > kmin
and r' = %, the (u, k)-chain quality property holds at round r for u = % for
at least 1 — Oy, fraction of voter blocktrees.

9 The value of rmin was precisely chosen to satisfy this inequality.
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Proof. From the typicality Lemma 15, we know that under the event T[r—r',r] 2
T

)
m

Zl(Ej[r =7 r]) = 1= 6.

Jj=1

1
m

Applying Lemma 4 on events E;[r — r/,r] for j € [m] gives us the required
result. O

In Appendix C, we used microscopic properties of each voter chain to obtain
the common-prefix and the leader sequence quality properties for the block-
tree. The voter chains require long interval of rounds to individually satisfy the
microscopic properties and that results in large latency. Here we change use a
different strategy: we use macroscopic properties of the voter chains to obtain
the common-prefix and the leader sequence quality properties. The voter chains
satisfy macroscopic properties for short interval of rounds and this directly trans-
lates to short latency.

D.2 Fast list confirmation policy

We repeat the definitions from Section 5.5.2. Py(r) = {p1,p2...} is the set of
proposer blocks at level ¢ at round r. Let Uy (1) be the number of voter blocktrees
which have not voted for any proposer block in the set P, (r). Let V,*(r) be the
number of votes at depth k or greater for proposer block p, in round r. Let
VE (r) be the number of votes at depth k or greater for proposer blocks in the
subset Py(r) — {p,}. Note that V,*(r) and V*, (r) are observable quantities. The
following lemma bounds the future number of votes on a proposer block.

Lemma 19. With probability at least 1 — €,,, the number of votes on any pro-
poser block p,, in any future round ry > r, V,(rf), satisfies

Vo (r) < Valrp) < Va(r),
where

V() = max (VEG) = ). (15)

Vou(r) == Vu(r) + (Vn(r) - krznlgin(an(r) — 6km)+) + Up(r). (46)

Proof. From the typicality Lemma 15, we know that the typical event T occurs
w.p 1 —&p,. We will use this to prove V,,(ry) > (V,¥(r) — dxm) 4 for all values of
k > kmin. For a fixed k, let ' = % Under the event T', from Lemma 17, we
know that the k-deep common-prefix property holds for at least 1 —dy, fraction of
voter blocktrees. Therefore V,, () is at least (V,¥(r)—8ym); for all 74 > r . Since
this holds for all values of k > kuyin, we have V, (1) := maxy>r,.,., (V. (r)—dpm) 1.

Following the same line of reasoning, V_, (r) := maxg>,,,, (V4 (r) — dem) +
is a lower bound on V_,,(r"). Therefore, at most (V_,,(r) —V_,,(r)) votes can be
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removed from proposer blocks in the set Py(r) — {p,} and added to the proposer
block p,,. Also the Uy(r) voter blocktrees which have not yet voted could also
vote on block p,,. Combining these both gives us the upper bound on V,,(ry). O

Any private block pprivate & Pe(r) by definition has zero votes at round r.
The future number of votes on the proposer block pprivate W.p 1 — €4, satisfies

Vprivate (Tf) < Vprivate (T) =m = Z yn (T) v”"f >, (47)
)

PnE€Pe(r

because each proposer block p, has V,(r) permanent votes w.p 1 — &, and
Dprivate could potentially get the rest of the votes.

Fast list confirmation policy: If max, V,,(r) > Vprivate(r), confirm the
following proposer block list at level £:

I(r) == {p;i : Vi(r) > mwz?xﬁn(r)}. (48)

Figures 13 and 14 illustrate one such example. The definition of IT,(r) is
precisely designed to prevent private proposer blocks from becoming the leader
blocks in the future rounds.

Lemma 20. If the proposer lists are confirmed for all levels ¢! < { by round r,
then w.p 1 — e,,, the final leader sequence up to level { satisfies

Do (Tmax) € (1) VO <AL

Proof. We prove by contradiction. Say the final leader block at level ¢/ < / is
Pp ("max) = b; and b; & I (). Without loss of generality, let us assume proposer
block p; has the largest V, () in round r. We have

(a) b (c)
Vitry) € Vi) C VL) S Vilry)  Vrp 2 (49)

The inequality (b) is by definition of IIy(r), and the inequalities (a) and (c)
are due to confidence intervals from Lemma 19. Equation (49) gives us V;(ry) <
Vi(r'), and therefore the proposer block b; cannot be the leader block in any
future rounds ry > r, which includes the final round rp,,x. Therefore, we have
P (Tmax) € Iy (r) V€ < £ and this proves the required result. O

Lemma 20 proves that the proposer lists obtained via the fast list confirma-
tion policy contains the final leader blocks. The natural question is: how long
does it take to satisfy the constraint for the fast list confirmation? We answer
this question next.

D.3 Latency

The first proposer block at level £ appears in round R,. For ease of calculations

we assume that the proposer blocktree mining rate f, = f,. Define Ay := 112%"2‘5‘



Deconstructing the Blockchain to Approach Physical Limits 65

Lemma 21. By round r = Ry+ A, for A, > Ay, wp l—ey,, at least 1 —4pa,
fraction of the voter blocktrees have an honest voter block which is mined after

(1_2B)qu'r~
24

round Ry and is at least k-deep on the main chain. Here k > and 1s

also greater than kuyin.

Proof. From the typicality Lemma 15, we know that the event T' occurs w.p
1 —&,,. Using the chain-growth Lemma 16 under the event T', we know that by
round r, 1 —pa, fraction of the voter blocktree’s main chain grows by k; > %
voter blocks. Let ' = 2’%
T, we know that for at least 1 — dx, fraction of voter blocktrees, the deepest

of these honest voter blocks, mined after round Ry, is at least k-deep, where
k > (1*2ﬁ)k1 > (lfzﬂ)va7
= 8 24

. Next, using chain-quality Lemma 18 under the event

-. Therefore, at least 1 — pa, — Jg, fraction of the
blocktrees have an honest voter block mined after round R, which is at least
k-deep on the main chain. The constants satisfy dz, = par < 3pa, and this
completes the proof. It is important to note that the depth of votes on all the

m voter blocktree are observable by the users. O
Define random variable Ny(r) := |P;(r)| as the number of proposer blocks on
level £ at round r and let ¢; = 1;?5 and cg := ﬁ.

Lemma 22. The proposer list at level £ can be confirmed w.p 1 — €, in round
r=Ry+ A, for for A, > Ay if

Case 1. Ny(Rj+ A,)+1< :—1, (50)
A,

Or Case 2. A, = com.

Proof. Let us first consider Case 1. All the events here are 1 — g, probability
events. From Lemma 21, we know that by round r = Ry + A,, at least 1 —4pa,
fraction of voter blocktrees have k-deep votes on proposer blocks in P, (r) where
k> %. This implies >
19, we have

o €Py (1) VE(r) > m(1 —4pa,) and from Lemma

Y Vu(r) = m(l—4pa, —by), (51)
pnG'Pe(T)

where the constant J; satisfies J < (112f 2A,§) . Without loss of generality we assume

V,(r) > V,(r) Vp; € Pe(r), and therefore from Equation (51), we have

m 16pa, \ 1
Vi) > s (11255 ) (52

10 Note that this inequality is extremely weak.
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On the other hand, the upper bound on the votes on a private proposer block,
Pprivate, Dy Equation (47) is :

Vprivate(r) <m — Z Mn (’I")

Pr€Pe(r)
(@ (1-28)pa,
< 16 , (53)

where the inequality (a) follows from from Equation (51). From Equations (52)
and (53), it is easy to see that

Ny (T‘) +1< - Xl (T) > Vprivate(r)v

16
(1=28)pa,
and therefore, the proposer list at level ¢ can be confirmed by round r. This
proves the claim in Case 1. Now let us consider Case 2. From the proof of
Theorem 1, we know that all the m votes are permanent w.p 1 — ¢ for

() 1024 | 8Mrmax
r(e) = = o .

T.(1—283 87 ¢
Substituting € = &5, in the above equation, we conclude that for r(em) = cam,
the upper bound on the number of votes on private block, V private(r) = 0 and
Vi(Ri+k)>1>Viivate(Re + k) wp 1 — &,

O

We now use the above Lemma 22 to calculate the expected number of rounds
to confirm the proposer block list at level £. For Case 1 (50) let us define the
random variable:

RP = min A, > Ag st Ny(Re+ A,) +1 < —1. (54)
PA,
Note that R}'" = oo if the inequality condition in Equation (54) is not satisfied
for any A,. From Lemma 22, the proposer list at level ¢ can be confirmed in
min(R5P, cgm) rounds and the next lemma calculates its expectation.

Lemma 23. The proposer list at level £ can be confirmed by round Ry-+min(RS™?, com)
and we have
13 " 48
Tmin 3 .
(1—-28) fo(1=28)3m?
Proof. The honest users do not mine new proposer blocks on level ¢ after round
Ry, however, the adversary could potentially mine new proposer blocks on level
¢ after round Ry. Therefore, the random variable Ny(Ry + A,.) satisfies

E[min(R;*?, com)] <

Ne(Re+ A,) < HP[R)) 4+ W] (Re) + Z)[Ry, Re + A,].

1. HP[Ry] corresponds to the number of proposer blocks mined by the honest
users on level ¢. From Section 3, we know that HP[R,] ~ Poiss((1 — 3)f,).
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C1

/_ Pa,
_ / ------ E[Ny(Re + Ay) + 1]

— Case 1
2>Ng(R4 + AT) +1

Case

AO Rzonf Amax AT‘

Fig.20: Sample paths of rv N¢(R; + A;) + 1 falling under Case 1 and Case
2 in Lemma 22. The values of ﬁ = min (1 +4va7.,1+3210gm), Ay =

12
ﬁrmina Amax - 810g m.

2. W/ (Ry) denotes the upper bound on number of proposer blocks at level ¢
in store by the adversary by round Ry. It is shown in Appendix F.1 that
W} (R¢) ~ Geometric(1 — 203).

3. Z}J[Ry, Ry + A,] denotes the number of proposer blocks mined by the adver-
sary at level £ in the interval [Ry, Ry + A,]. From Section 3, we know that
ZV[Re, Ry + A, ~ Poiss(f,84,).

The mean of random variable Ny(R; + A,) is affine in A,., and le is also affine

in A, with a higher slope (by design). Therefore, intuitively the erxpected value
of R5*P defined in Equation (54) should be constant which depends only on 8.
Two examples are illustrated in Figure 20. We now formalize this intuition. Let
us define A ax = %. We will calculate P( thop > A,) separately for three
intervals: [0, Ag], (Ao, Amax)s [Amax, 00).

1. Interval [0, Ap): Since R3"" > Ag by definition, we have
PR > A,) =1 VA, < A,. (55)

2. Interval [Apmaz, o0): For A, > Apax, we have

(R > A= {N@(Re +x)4+1> Cl}
2<A, PA,.

C
g m NZ(R€+Amax)+1 > ! }
ZSAmax pAmax

= {R}"P > Apax}. (56)
This implies
P{R;"" > A} <P{RS"® > Apar} VApax < A, (57)
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3. Interval (Ag, Amas): Using Equation (43), we have

D14 4,A YA, < A (58)
pA,

For Ag < A, < Apnax, we bound the tail event:

{thop > AT} = m {NZ(RZ +$L’) +1> 01}
2<A, pA,

CINe(Ry+A,)+1> Cl}

PA,

C S HP[R)+ W/ (Re) + Z)[Re, Ry + Ay ] +1 > pcl}
A’V‘

(HP[R) — BIHP[R(]]) + W' (Re) + (Z] [Re, Re + Ay — E[Z][Ry, Re + Ar]])

— N

>pCA1T_(1+E[HP[RL,H+E[Z§'[R@,Rz+ﬂr”)}

(@ { (H?[R¢] — E[HP[Ry)]) + WE(Re) + (ZV[Re, Re + A, — E[ZY[Re, Re + A,]))

>1 + 4vaT - (]- + (1 - B)fv + ﬁvar)}
c { (HP[Re] — E[HP[R,]]) + W{ (Re) + (Z][Re, Re + Ap] = EB[Z7[Re, Ry + A,]])

>m&+hm+hmﬁ
= {R)" > A,} CF; UFy UFs3, (59)
where the events are:
Fy:= {HP[R/] — E[HP[R/]] > fuAr}
Fy = {W/(Re) > [, A}
F3:={Z}[Ry, Re + A,] — E[ZV[Re, Re + AL]) > fo A}

The equality (a) follows from Equation (58). Using Chernoff bounds, we
upper bound the probabilities of events the Fy, Fy and Fj:

_fvAr

P(F1) <e "2 0
B(Fy) < (28)747 < =T (61)
P(F3) < e’f“zﬂ_ o)

From Equations (59), (60), (61) and (62), for Ag < A, < Apax, we have
) <

fvAr _(=28)fy Ay _fwar
2 J'_ e 2 _|_ e 2

PR > A,}) <e

_ (=28 fvAr
2 .

IN

3e (63)
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From Equations (55), (57) and (63), we have
1 Ar < AO
PR > A,) < { 3e= 302 Ag < Ay < Apax (64)
go— U200 u Sma A < A,
A
P (Rzgonf > Ar) - - - Actual Value
—— Upper bound
1f
\
\
\
\
\
\
\
N\
\\
A() Amax
L I ) J
Y Y Y
Interval 1 Interval 2 Interval 3
Fig. 21
Using the above expression, the expectation of maX(thOP, cam) is given by
Amax
E[min(R;"P, com)] = Y P(Ry™ > A,) + comP(Ry > Apay)
A,=0
Amax
< Ag+ Z P(R}P > A,) + 3come™(1728) foAmax/2
A=A
< AQ n Z (36_ (17252)qu1~) + 302me—410gm
A=A
_(1-28)fuag 3c
—Ag+— 272
"t A=y, w
< 12 L 6 n 3co
S o5 Mmin T e )
(1-2p) (1-28)f, m?
sto 13 48
Emin(R;"?, cam)] < ————Tmin + = (65)

(1—-2p) fo(1=28)%m?
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Lemma 23 upper bounds the expected number of rounds to confirm the proposer
block list at level £. However, our goal in Lemma 20 is to conform proposer list
for all the levels ¢/ < £. From Lemma 22, we know that the proposer list at level
¢ is confirmed by round Ry + min(R}'°P, com). Therefore, all the proposer list

up to level ¢ are confirmed in the following number of rounds:

ROt — max (R + min(R;,°", cam) — Ry)

= max (min(R}°P, com) — Dy ), (66)

where Dy y = R; — Ry. Expression (66) is a maximum of random variables
associated with each level up to level £. It turns out max is dominated by random
variable associated with level ¢ and in fact it’s expectation, calculated in the
next lemma, is very close to expectation of min(R}"P, com). We now calculate

the expectation of the random variable in expression (66).

Lemma 24. All the proposer lists up to level £ will get confirmed in the following
number of rounds in expectation:

13 256

Tmin 0 5)6 fym?

< 2808 _log 50 n 256 _ .
=287, ®0-25) (1200 ,m?

BRI < )

Proof. Let us define

F({De/,e}z/g) =E {Rﬁonf‘{pf’l}wge}
= {Ien%)e( (min(Ry”, cam) — Df'l)HDf’vf}z/d}
<230+ B [y (min(RE® — 20,c2m) = D) Do

<Ag+ 3B [(min(R}P — Ao, com) = Dps) , [Deve] - (67)
<

We bound each term in the summation the Equation (67) similar to steps used
to Equations (65).
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E {(min(szop — Ag,com) = Dgre) HDZ’J}Z/SZ] (68)
Amax
= > PR > ANDei}, o)+ (cam — Do o) PR > A { Dot} o)
AT:D[/‘(+A(]
@ Amax
= > P(RYP > An) + (com — Dy ) {P(RE > Apay)
Ar=Dyr ,+2Ag
> (1=28)fvA
< > (36_ 2 ) +3(cam — Dy g) e tlo8™
Ar:D[/j
(1-28)fu Dy,
e~ =z 3(02m — Dg/’g)+

e Ty A (69)

The inequality (a) follows because the random variable R},°” is independent of
proposer block mining on levels other than ¢ and depends only on the mining
on voting blocktrees and proposer blocks on level ¢'. Using Equation (69) in
Equation (67) we get

_ (1—2/3)qu[/,£

6e z 3(com — Dy g)+
F({Dedpee) S804 3 Smgg—t = ()

Intuitively, if the first proposer block on every level is mined by the honest users
@ i.e, linear in £ — ¢'.
2(4=2")

then Dy 4 is a geometric random variable with mean

Taking expectation on Equation (70) and substituting Dy, with — would
give us a finite bound. However this intuition is incorrect because the adversary
could present proposer blocks on multiple levels in the same round and thus the
value of Dy o, depends on the adversarial strategy. We overcome this problem
by showing that irrespective of the adversary’s strategy, the honest users will

propose the first proposer blocks for sufficient number of levels.

Let levels {L1,La,---,L;,-+-, Ly} be the levels lesser than ¢ on which the
honest users presented the first proposer block. Let L,.1 = ¢. Here L;’s are a
random variables and the first proposer block at level L; is produced in round
Ry,,. If the adversary produces the first proposer block at level ¢/ for L; < ¢ <
Lit1, then from the monotonicity of the growth of the proposer blocktree, we
have the following constraint Ry, < Ry < Rp,,,. Let us use this in Equation
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(70).

F ({Dw}wg)
6 _(=28)fuDy 4 3( D )
ot com — Dy ¢)+
<A F o
< 0+;§:@ 1285 m

(1-20)FuDyr

_D,
e T | Yeam = Doy

- 4
i€[n] Li<€/'<Lit1 (]‘ 2ﬂ)fv m

(1*25)vaLn+1,L

(a) 6e~ T 3(com — D,y L)t
< Ao+ Y (Liy1— Li) = R
i€[n] (1 - Qﬁ)f’u m

(71)

The inequality (a) follows because Ry» < Ry, . Let G be i.i.d random variables
s.t G; ~ Geometric(f,). Since the levels L; and L;y; are mined by the honest
users, we have Dr, | 1, > ZJL:*LI Gjand D, 1, = Z]L:HEH G;. Using this in
Equation (71), we get

_ L
(1-28)Fy =, 1

i=Litq 99 Lnt1
6e~ 2 3(C2m - Z]:Ll G])Jr
F({Dve}yep) € Ao+ Y (Lisa—Li) a-20f T

i€[n]
We now take expectation over G;’s gives us

1 2(Lnp1—Ligr)

E[F ({Dee}yep) {Em] < A0+ Z[:](Li+1 = L,»)<(1 _2/% (1 (1 25)) .

3(02m _ Lnya—Lips )+>

fo
+ A
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Since the honest user have 1 — f fraction of mining power, we have (L; 11— L;) ~
Geometric(1 — ) and on taking expectation over L;’s we get:

E [R{™] =E {F ({Df’l}wgz)}

1 6 1 o (em = OF),
SA0+1—5i (1—2B)fu<1+(1—2/5>)

S

> %, (em—3)
§A0+1i3;((1zg)fv(u(ll—zﬁ))f T +)

m4
2 6 128
S (1 - 25)701111“ * 2<(1 - 25)2.]?1) * (1 - Qﬂ)e'fvm2>
1B 256
T (1-28) " (1-2B)5 fym?
2808 50 256

S —2ppf, %028 " (1-20)fm?’

E Fast confirmation for honest transactions: proof of
Theorem 4

This section uses ideas from the proof of Lemma 14. Let the transaction ¢tz enters
the system'! in round r and let £ be the last level on the proposer blocktree which
has proposer blocks at round r. Define

£ := max (Z </ s.t the honest users mined the first proposer block on level E)

Let r* be the round in which the first proposer block was mined on level £*.
From the definition of ¢* we have the following two observations:

1. All the proposer blocks on levels greater or equal to £* are mined on or after
round 7* because by definition there are no proposer blocks on level £* before
round 7* and hence no user can mine a proposer block on a level greater than
0* before round 7*.

2. The adversary has mined at least one proposer block on all levels in [¢*, £].

Define Aq := 1121755‘ For vy > 7, let us define the following event:

Arf = {YP[T*,Tf—Ao]—Zp[T*,Tf] >O}. (72)

Lemma 25. If event A, occurs, then the transactions tx is included in a block
b which is proposed in round r(b) < ry — Ay and confirmed as a leader block by
round 7.

11 As a part of a transaction block.
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Proof. From our first observation, YP[r*,ry — Ag] < ZP[r*,r] implies that by
round ry there exists a level [ > ¢* which has only one honest proposer block
proposed in interval [r*, 7y — Ap]. Our second observation says that the adversary
has mined a proposer block on all levels in [¢*,¢] and therefore, we have (>4
From Lemma 23, the single proposer block at level £ is confirmed as a final leader
block of its level w.p 1 — &, by round r¢. Since this proposer block was mined
after round r, it will include the transaction tz. O

Let us define the following random variable:

Ry :=minry >r st A, occurs.

Lemma 26.

24(1 — B)Tmin 2592 50
ERy —r] < < —lo . 73
R ) (T Ml () (%)
Proof. Consider the following random walk
er = Yp[T*+A(],Tf]—Zp[T*,Tf—Ao]. (74)

and a random variable V ~ Bin(4y, f,/2) which is independent of W, ;o It s
easy to see that YP[r* + Ag,ry| — ZP[r*,ry — Ag] 4 W, — V in distribution.
Therefore, event A,., implies W;., >V and we have

Ry =minry >r st er >V occurs.

The random walk W,., has a positive drift of % For a fixed value of V,
the conditional expectation is

o 2V
B[Ry —1°|V] = 4o+ 7557

Taking expectation on V', we get
AO - 24(1 — ﬁ)"’min

1-25 (1-28)

< 24(1=B)rmin

< S Therefore, the transaction tz

is included in all the ledgers in less than y‘gtigg’;;“ rounds in expectation.

]E[Rf — 7’*] = Ao+

(75)
Since r* < r, we have E[Ry — r]

Substituting i, from (43) give us the required result. O

From Lemma 25 and 26, we conclude that a transaction, which is part of a

transaction block mined in round r, is referred by a proposer block at level (say)

£ and the leader block at this level confirmed before round r+ (1f25§)23 7 log (153 )

in expectation. This proves the main claim of Theorem 4.
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A
. Reference link

Round R, ;
honest I to certify levels

—_

~ Honest Propose blocks

| | » .
Adversarial Propose blocks : L Y[Ry pese T 11 Re]
—
Z° [Ry,,.... + 1:R,]
J

Round R,

Reserve blocks : Z0 (R,)

Fig. 22: Number of reserved blocks by the adversary on level £ in round R,.

F Others

F.1 Reserve proposer blocks by the adversary

Say the honest users mine the first proposer block at level £ in round Ry. Let
W/ (R¢) denote that the number of hidden proposal blocks blocks on level ¢ by
the adversary. In order to maximize W} (Ry), all these hidden proposer blocks
should have a common honest parent proposer block at level (say) £ponest linked
via private proposal blocks as shown in the Figure 22. The total number of
reserve blocks is given by

W{(Re) = max ZP[Ry,,,... +1,Re] —YP[Ry,,.... +1,R]+1.  (76)

honest <L

The random variable YP[Ry, ., Ri — ZP[Ry,.....,, B¢ is a random walk in

the variable £opese With a net drift of % The ratio of left drift to the
right drift is 23 and from [2], we have

P(W/(R) > k) =P( max_ZP[Ry,,,...+1, R = Y?[Ry,,..., +1,Rd] > k)

Lhonest <t
= (268)".
Therefore W' (R;) ~ Geometric(1 — 24).

F.2 Random walk proofs

Consider the following event from Equation (30)

Ey[r—r,r] = () {Y[r—r’—a,r—i—b]—Z[r—r’—a,r+b] > d-25)k _82'6)k},
a,b>0
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for 7' = . The random variable W[r —v',7] = Y[r —',7] — Z[r —1',7] is a

2fy
random walk with drift %

Lemma 27. If W([r —r',r| > c1k, for c2 < ¢1 we have
P(Wr—1',r+a] > c2kVa>0)=1-(28) 2k
=1— 610g(25)(01—(12)k’.
Proof. Refer [2]. 0

If the random walk is to the right of cik after r’ steps, the above lemma
calculates the probability of that the random walk remains to the right of cok
in all future rounds.

Lemma 28. If W[r —r',7] > c1k, for ca < c1, then we have
P(Wlr—1r"—b,7] > c2kVb>0)=1- (28)(c1—e2)k
= 1 — eloe2B)(ci—c2)k
Proof. Refer [2]. -

The above lemma is mathematically characterizing the same event as Lemma
27.

Lemma 29. If W[r — v/ r] > c1k,then for c3 < ¢1, then we have

P(Wir—1" —b,r+a] > czkVa>0)>1—2(28) k2
-1 2€log(2[3)(01—03)k/2
(@)

Z 1 _ 26—(1—25)(C1—63)k/2.

Proof. Using ¢a = (¢ — ¢3)/2 in the above two Lemmas 27 and 28, we get the
required result. The inequality (a) uses log25 < 26 — 1 for g > 0. O



	1 Introduction
	1.1 Performance measures
	1.2 Physical limits
	1.3 Main contribution
	1.4 Approach
	1.5 Outline of paper

	2 Related work
	2.1 High-forking protocols
	2.2 Decoupled consensus
	2.3 Hybrid blockchain-BFT consensus 

	3 Model
	3.1 Mining and communication model
	3.2 Network model

	4 Approaching physical limits: throughput
	4.1 Baselines: Bitcoin and GHOST 
	4.1.1 Bitcoin 
	4.1.2 GHOST 

	4.2 Prism 1.0: throughput-optimal protocol
	4.3 Analysis
	4.4 Transaction scheduling 
	4.5 Throughput-Latency tradeoff
	4.6 Discussions

	5 Near physical limits: latency and throughput
	5.1 Bitcoin latency
	5.2 Prism 
	5.2.1 Prism: backbone
	5.2.2 Prism: transaction structure
	5.2.3 Generating the ledger

	5.3 Prism : model
	5.4 Total transaction ordering at optimal throughput
	5.5 Fast confirmation of ledger list and honest transactions
	5.5.1 An example
	5.5.2 Fast list confirmation
	5.5.3 Fast confirmation of honest transactions


	6 Discussions
	6.1 Prism: incentives
	6.2 Prism: smart contracts
	6.3 Prism: Proof-of-Stake

	A An attack on GHOST 
	B Bitcoin backbone properties revisited
	C Total ordering for Prism : proofs of Theorems 1 and 2
	D Fast list confirmation for Prism : Proof of Theorem 3
	D.1 Voter chain properties
	D.2 Fast list confirmation policy
	D.3 Latency

	E Fast confirmation for honest transactions: proof of Theorem 4
	F Others
	F.1 Reserve proposer blocks by the adversary
	F.2 Random walk proofs


