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Abstract

We give a simple proof that the decisional Learning With Errors (LWE) problem with binary
secrets (and an arbitrary polynomial number of samples) is at least as hard as the standard LWE
problem (with unrestricted, uniformly random secrets, and a bounded, quasi-linear number of
samples). This proves that the binary-secret LWE distribution is pseudorandom, under standard
worst-case complexity assumptions on lattice problems. Our results are similar to those proved
by (Brakerski, Langlois, Peikert, Regev and Stehlé, STOC 2013), but provide a shorter, more
direct proof, and a small improvement in the noise growth of the reduction.

1 Introduction

The Learning With Errors (LWE) problem [21, 22] plays a central role in lattice cryptography, its
secure instantiation, and its most advanced applications. The usefulness of LWE in cryptography
is due in large part to its pseudorandomness properties, captured by the standard decisional LWE
problem defined as follows. An LWE instance is described by a matrix A ∈ Zm×nq (chosen uniformly
at random) and a vector b ∈ Zmq which may be chosen either uniformly at random, or as b = As+e
(mod q), where s ∈ Znq is a random secret and e ∈ Zm is a “small” error vector, typically chosen
with independent discrete Gaussian entries of standard deviation σ ≈

√
n. The (Decisional) LWE

problem asks to distinguish between these two cases.
Several variants of LWE exist in the literature, depending on how s and e are chosen, all

motivated by specific cryptographic applications. In the most standard formulation of LWE, the
secret s ∈ Znq is chosen uniformly at random. But this is often undesirable in many cryptographic
applications, e.g., those making use of modulus-switching techniques, where large secrets result in
substantial ciphertext quality degradation. Ideally, it would be best to choose s ∈ {0, 1}n as a
vector with binary entries, as used for example in many Fully Homomorphic Encryption schemes
(e.g., see [9, 8]). This binary-secret LWE also plays a fundamental role in theoretical studies, like
the proof that LWE is leakage resilient [11], and the proof that LWE with polynomial modulus q
is at least as hard as worst-case lattice problems under classical (i.e., non-quantum) reductions [6].

This last work [6] is the best currently known hardness result for binary-secret LWE, and gives
a reduction from (standard) LWE with arbitrary secret in Znq , to LWE with secret in {0, 1}n log q,
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Army Research Office under the SafeWare program, and the National Science Foundation (NSF) under grant CNS-
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i.e., the secret can be restricted to binary vectors at the cost of increasing the dimension1 from
n to n log q. This reduction is a major part of the main result of [6] on the classical hardness of
LWE, and takes a good half of that paper, going through a careful hybrid argument involving some
technical (“first-is-errorless” and “extended-LWE”) problem variants.

In this paper we present a direct and substantially shorter proof of this important result. In fact,
while the proof of this result given in [6] is over 7 pages long, spanning multiple subsections, and
involving a number of intermediate problems, our proof has a more direct structure and it is much
shorter. A key insight leading to our simpler proof is the formulation of the binary LWE problem
(denoted LWE±) using secrets in {±1}n, rather than {0, 1}n. This is easily seen (for odd2 modulus
q) to be equivalent to the more common {0, 1} formulation via the affine transformation s 7→ (2s−1),
but has the technical advantage that all secrets have exactly the same Euclidean length, simplifying
the application of discrete Gaussian convolution theorems. Given the equivalence between the two
problems, we will keep referring to LWE± informally as the binary LWE problem. Other than
presenting a simpler and shorter proof, we do not claim any new results over previous work: our
results, and the range of parameters for which we reduce LWE to LWE±, are essentially the same
as in [6, Theorem 4.1], except possibly for reducing some constants, e.g., in our reduction the error
grows by a factor 2

√
n+ 1, while in [6, Theorem 4.1] it grows by

√
10n.

Given the important role played by binary LWE in many cryptographic applications, we hope
that our simplified treatment will make the theoretical hardness of this problem more easily acces-
sible, and stimulate further research.

Related work The LWE problem with small secret was first formally considered by Applebaum,
Cash, Peikert and Sahai in [3], who proved that, without loss of generality, one may assume that
the secret follows the same distribution as the LWE errors. This allows the secret coordinates to be
as small as

√
n, but not as small as {0, 1}. For a list of applications using LWE with small secrets

see [1].
Reducing LWE to have a binary secret was first considered by Goldwasser, Kalai, Peikert and

Vaikuntanathan in [11], motivated by questions in leakage-resilient cryptography, where the problem
is proved hard using “noise-flooding” techniques. A stronger reduction is given by Brakerski,
Langlois, Peikert, Regev and Stehlé in [6], in the context of proving classical hardness results for
LWE.

A different (and much harder) problem is that of proving that LWE is computationally hard
when the error (and not just the secret) follows the binary distribution [17, 7]. In fact, LWE with
small errors can be efficiently solved when sufficiently many samples are available [4, 2, 13]. In this
paper, we do not study LWE with binary errors.

Attacks against LWE with binary secret (and Gaussian errors) are considered in [1, 5]. The-
oretically, the secret can be assumed binary by increasing the LWE dimension to n log q [6], but
experimental results in [5] suggest that, heuristically, increasing the secret dimension by a log log n
factor may already be enough to counter the best known cryptanalytic attacks for common param-
eter settings.

1As remarked in [6], this increase seems unavoidable, as it preserves the bit-length of the secret.
2Hardness results for binary LWE with even modulus q are easily obtained by modulus switching, i.e., scaling and

(randomly) rounding each entry x ∈ Zq of A or b bx · ((q − 1)/q)e$ ∈ Zq−1. This increases the error roughly by an
additive term O(‖s‖), which is small because s is a binary secret.
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Paper organization In Section 2 we introduce the notation used in this paper, provide a formal
definition of the LWE problem, and present some background results, including a simple lemma on
the projection of discrete Gaussians (Lemma 6), and the construction of a gadget matrix needed in
our main reduction (Lemma 7). The proof that LWE with binary secrets is pseudorandom is given
in Section 3. Section 4 concludes with a discussion of open problems.

2 Preliminaries

We use bold lowercase letters a for vectors, and bold uppercase A for matrices. Probability dis-
tributions are denoted using calligraphic letters A. We write vectors as columns v ∈ Zn = Zn×1.
The transpose of a vector or matrix A is denoted At. We write [A1, . . . ,An] for the horizontal
concatenation of matrices Ai ∈ Zk×mi , and use transpose notation [A1, . . . ,An]t for the verti-
cal concatenation of At

1, . . . ,A
t
n. Let e1, . . . , en be the standard basis of Zn, I = [e1, . . . , en] the

n × n identity matrix, and u =
∑

i ei the all-ones vector. The Euclidean norm of a vector is

‖v‖ =
√∑

i x
2
i , and the max norm is ‖x‖∞ = maxi |xi|.

For any vector z = (z1, . . . , zn) ∈ Zn, we write diag(z) = [z1 · e1, . . . , zn · en] for the diagonal
matrix with the entries of z along the diagonal. So, for example, diag(u) = I. For any integer
matrix Q ∈ Zn×m and for any positive integer k ≤ m, we write Q[k] for the matrix consisting of
the first k columns of Q, and Q]k[ for the matrix obtained by removing the first k columns from

Q. So, Q = [Q[k],Q]k[] where Q[k] ∈ Zn×k and Q]k[ ∈ Zn×(m−k).
For any integer matrix Q ∈ Zk×m, we write ker(Q) = {x ∈ Zm: Qx = 0} for the kernel of

Q:Zm → Zk as an integer linear map. We say that a matrix Q ∈ Zk×m is primitive if QZm = Zk,
i.e., if Q:Zm → Zk is surjective. As a special case, a row vector wt ∈ Z1×k is primitive if and only
if the greatest common divisor of its entries equals gcd(w) = 1.

2.1 Probabilities and Asymptotics

We use standard asymptotic notation, O(·), Ω(·) and ω(·), and all asymptotics refer to a (possibly
implicit) integer variable n. For example, we may write nO(1) for an arbitrary polynomially bounded
function of n, and n−ω(1) for a negligible function. Other parameters defining the size of a problem
instance are always assumed to be polynomial in n. So, if A ∈ Zk×m is a matrix with integer entries,
the number of rows k = nO(1), the number of columns m = nO(1), and the bitsize maxi,j log |ai,j | =
nO(1) of the matrix entries are all assumed to be (at most) polynomial in n.

A probability ensemble is a sequence An of probability distributions over sets An, for n ∈ N =
{1, 2, . . .}. We always assume that all elements of An ⊆ {0, 1}`(n) can be represented by strings of
some fixed length `(n). We write x ← A for the operation of sampling an element x according to
distribution A, and Pr{x← A} for the probability of x under A. The uniform distribution over a
set A is denoted U(A).

The statistical distance between two distributions A,A′ over a set A is

∆(A,A′) =
1

2

∑
x∈A
|Pr{x← A} − Pr{x← A′}|.

Two distribution ensembles An,A′n are statistically close (written An ≈ A′n) if the statistical dis-
tance ∆(An,A′n) = n−ω(1) is negligible. Two ensembles An,A′n are computationally indistinguish-
able if for any efficient (probabilistic polynomial-time computable) predicate P, P(An) ≈ P(A′n).
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The gap ∆(P(An),P(A′n)) = |Pr{P(An)} − Pr{P(A′n)}| is called the advantage of P in distin-
guishing between the two distributions. An ensemble An over sets An is pseudorandom if it is
computationally indistinguishable from the uniform distributions U(An). If An ≈ U(An) are sta-
tistically close, then we say that An is almost uniform or statistically pseudorandom.

We typically leave the parameter n implicit, and talk about individual distributions A over
a single set A, but all asymptotic statements should be interpreted as referring to ensembles An
parameterized by an integer n in some obvious way. For example, we may say that a distribution
A over a set A is pseudorandom if no efficient algorithm can distinguish A from U(A) with better
than negligible advantage. More precisely, an efficiently sampleable ensemble {An}n>0 over the sets
{An}n>0 is pseudorandom if any predicate P computable in probabilistic polynomial time nO(1)

has at most negligible advantage |Pr{P(An)}−Pr{P(U(An))}| ≤ n−ω(1) in distinguishing An from
the uniform distribution U(An).

We write Z for the set of integers, and Zq = Z/(qZ) for the integers modulo q. We will need
the following version of the leftover hash lemma, and a bound on the probability that a random
vector is primitive modulo q.

Lemma 1 (Leftover Hash Lemma, [12]) For any odd integer q, positive real ε > 0 and integers
k and n ≥ log2(q

k/ε2), the distribution X = {(A,Az): A ← U(Zk×nq ), z ← U({±1}n)} is within

statistical distance ∆(X ,U) ≤ ε from the uniform distribution U = U(Zk×nq × Zkq ). In particular, if
n ≥ k log2(q) + ω(log n), then X ≈ U is (statistically) pseudorandom.

Lemma 2 (Primitive Vectors) For any positive integers q = 2n
O(1)

and k = ω(log n), if w ∈ Zkq
is chosen uniformly at random, then gcd(w, q) = 1 except with negligible probability.

Proof: The probability that gcd(w, q) 6= 1 is at most∑
p|q

p−k ≤ (log q)/2k ≤ nO(1)/nω(1) = n−ω(1)

where the summation is over all prime factors of q. We used the fact that all prime factors are
at least p ≥ 2, and there are at most log2 q of them. Better bounds are possible, but this crude
estimate is more than enough for the purposes of this paper. �

2.2 Gaussian Distributions

Let ρ(x) = exp(−πx2) be the Gaussian function with total mass
∫
x∈R ρ(x) dx = 1, and ρσ(x) =

ρ(x/σ) its scaling by a factor σ > 0. For a set A, we write ρσ(A) as a shorthand for
∑

x∈A ρσ(A).
The discrete Gaussian distribution of parameter σ, denoted3 Dσ, picks each integer x ∈ Z with
probability proportional to ρσ(x), i.e., Pr{x ← Dσ} = ρσ(x)/ρσ(Z). The product distribution Dkσ
selects each x ∈ Zk with probability proportional to ρσ(x) = ρσ(‖x‖) =

∏
i ρσ(xi). If x and y are

orthogonal vectors (xty = 0), then by the Pythagorean theorem ρσ(x + y) = ρσ(x) · ρσ(y).
A rank-n integer lattice is the set Λ = BZn ⊆ Zd of all integer linear combinations of n linearly

independent vectors B = [b1, . . . ,bn] in Zd. The last successive minimum of a rank-n lattice Λ is

3In the literature, Dσ is often used for the continuous Gaussian distribution over the real numbers R, while the
discrete Gaussian is denoted DZ,σ. Since here we do not use continuous Gaussians, for brevity we use Dσ to denote
the discrete Gaussian distribution over the integers.
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the smallest positive real λn such that Λ contains n linearly independent vectors of length at most
λn. Another standard quantity associated to a lattice is the smoothing parameter ηε(Λ), which is
parameterized by a positive real ε > 0. In this paper, all we need to know about the smoothing
parameter are the following two bounds.

Lemma 3 (See [18, Lemma 4.1] and [10, Lemma 2.4]) For any lattice Λ, ε ∈ (0, 1), and vec-
tor c in the linear span of Λ, if σ > ηε(Λ), then ρσ(Λ + c) ∈ [(1− ε)/(1 + ε), 1] · ρσ(Λ).

Lemma 4 (Smoothing Parameter Bound, [18, Lemma 3.3]) For any rank-n lattice Λ and
positive real ε > 0, the smoothing parameter is at most

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ). (1)

In particular, for any ω(
√

log n) function there is a negligible function ε(n) = n−ω(1) such that
ηε(Λ) ≤ ω(

√
log n) · λn(Λ).

When the smoothing parameter η(Λ) is written without specifying the value of ε, it is assumed
that ε = n−ω(1) is an arbitrary negligible function of the asymptotic variable n. For example, the
smoothing parameter of the integer lattice is η(Z) ≤

√
ln(2(1 + 1/ε)/π) = ω(

√
log n). We will also

need the following convolution theorems for discrete Gaussians.

Lemma 5 (Convolution, [17, Theorem 3]) For any primitive vector v ∈ Zm and positive reals
σi ≥

√
2‖v‖∞η(Z), if yi ← Dσi for i = 1, . . . ,m, then the sum y =

∑
i vi · yi is statistically close to

Dσ, where σ =
√∑

i(viσi)
2

Lemma 6 (Gaussian Projection) For any primitive matrix T ∈ Zk×m, positive reals α, σ > 0,
and negligible ε = n−ω(1), if T ·Tt = α2 · I and η(ker(T)) ≤ σ, then T(Dmσ ) ≈ Dkασ.

Proof: Let y ∈ Zk be an arbitrary integer vector, and let x ∈ Zm be such that Tx = y. By
linearity, any other z ∈ Zm maps to Tz = y if and only if z ∈ x + ker(T). So, by definition, the
probability of y = Tx under T(Dmσ ) is proportional to ρσ(x+ker(T)). Let x1 = Tty/α2 ∈ Rm and
x0 = x−x1 ∈ Rm, so that x = x0 + x1, and x0 is orthogonal to the rows of T. It follows that x1 is
orthogonal to x0 and ker(T). Therefore, ρσ(x+ker(T)) = ρσ(x1)·ρσ(x0+ker(T)). Since x0 belongs
to the linear span of ker(T), and σ ≥ η(ker(T)), by Lemma 3 the Gaussian mass ρσ(x0 +ker(T)) is
essentially independent of x0, up to a negligible relative error. So, up to this error, the probability
of y is proportional to ρσ(x1). Finally, we observe that ‖x1‖2 = ytTTty/α4 = ‖y‖2/α2, and
therefore ρσ(x1) = ρσ(‖y‖/α) = ρασ(y). This proves that T(Dmσ ) is statistically close to the
discrete Gaussian distribution Dkασ. �

2.3 A Gadget Matrix Construction

Our main proof requires an integer matrix satisfying some special properties. In the following
lemma, we state the required properties and give a simple construction. We recall that notation
Q[n] (resp. Q]n[) stands for the matrix obtained by taking (resp. dropping) the first n columns of
a matrix Q. In particular, Q]1[ is the matrix Q without its first column.
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Lemma 7 There is an efficiently computable matrix Q ∈ Zn×(2n+3) such that Q[n] is invertible,
utQ[n] = et1, the vector vt = utQ]n[ has norm ‖v‖ = 2

√
n, ‖v‖∞ = 2, and the matrix T = Q]1[

satisfies T(D2n+2
σ ) ≈ Dn2σ for all σ ≥ ω(

√
log n).

Proof: Define the matrix

X =

n−1∑
i=1

(ei+1 − ei) · eti =


−1

1
. . .
. . . −1

1

 ∈ Zn×(n−1)

The idea is to start with the square matrix Q̄ = Q̄[n] = [e1,X], which is unitriangular (i.e.,
triangular, with unit elements along the diagonal, and, therefore, invertible), and it satisfies utQ̄ =
et1. We would like to use Lemma 6 to analyze the distribution Q̄]1[(Dmσ ) = X(Dmσ ). However, X is
not primitive and does not satisfy the property XXt = α2I required by Lemma 6 because adjacent
rows of X have scalar product −1. Other pairs of rows are orthogonal, so XXt is tridiagonal (i.e.,
with nonzero entries only on or immediately next to the main diagonal), but not diagonal. To fix
this, we extend Q̄ to Q̃ = [Q̄,Y] = [e1,X,Y] with a block of (n− 1) coordinates

Y =

n−1∑
i=1

(ei+1 + ei) · eti =


1

1
. . .
. . . 1

1

 ∈ Zn×(n−1)

where adjacent rows have scalar product 1, and cancel out with X. This time Q̃]1[ = [X,Y] has
pairwise orthogonal rows, but the first and last rows have a different norm than the rest. So,
[X,Y][X,Y]t is diagonal, but it is still not a scalar matrix α2I. We complete the construction by
adding 4 more columns to make each row of Q]1[ contain precisely 4 nonzero ±1 entries. Our final
construction is

Q = [e1,X,−en,Y, en, e1, e1]

where the position and sign of the new columns have been chosen to highlight the (square) unitri-
angular blocks X̃ = [X,−en], Ỹ = [Y, en] ∈ Zn×n. Notice that Ỹ = X̃ + 2I, and therefore the two
blocks commute, i.e., X̃Ỹ = ỸX̃.

We already know that Q[n] = [e1,X] is invertible, utQ[n] = et1, and it is immediate to verify
that the vector vt = utQ]n[ satisfies ‖v‖ = 2

√
n and ‖v‖∞ = 2. It remains to analyze T(D2n+2

σ ),
where

T = Q]1[ = [X̃, Ỹ, e1, e1].

This matrix is primitive because it starts with a unitriangular block, and it satisfies TTt = 4I by
construction. In order to apply Lemma 6, and conclude that T(D2n+2

σ ) ≈ D2σ, we only need to
bound the smoothing parameter of Λ = ker(T). This lattice is defined by a system Tx = 0 of n
linearly independent equations in 2n + 2 variables. So, Λ is a rank-(n + 2) lattice. Moreover, it
contains (n+ 2) vectors of length 2 given by the columns of the matrix

V =


Ỹ e1
−X̃ −e1

1 1
1 −1

 ∈ Z(2n+2)×(n+2).
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The columns are linearly independent because the matrix

W =

 I I
1 1
1 −1

 ∈ Z(n+2)×(2n+2)

satisfies WV = 2I. So V has rank n+2. This proves that λn+2(Λ) ≤ 2, and therefore, by Lemma 4,
η(Λ) ≤ ω(

√
log n) ≤ σ. So, all hypotheses of Lemma 6 are satisfied and T(D2n+2

σ ) ≈ Dn2σ. �

2.4 Computational Problems and LWE

All computational problems considered in this paper are decision problems about pseudorandom
distributions. Specifically, for any distribution ensemble An over sets An, the An-assumption is
the assumption that An is pseudorandom, and the An-problem is the computational problem of
distinguishing An from the uniform distribution U(An) with non-negligible advantage. So, all
problems will be implicitly specified simply by defining an appropriate set of distributions An.

A reduction between (the decision problems associated to) two distributions An and A′n over
sets An and A′n (from An to A′n) is an efficient (probabilistic polynomial time) algorithm that solves
problem An (i.e., distinguishes An from the uniform distribution with non-negligible advantage)
given access to any oracle that solvesA′n with (possibly different, but still) non-negligible advantage.
In the simplest settings (e.g., see Lemmas 9 and 10) a reduction may be specified just by an efficient
(probabilistic polynomial-time computable) function ϕ such that ϕ(An) ≈ A′n and ϕ(U(An)) ≈
U(A′n). Most of our reductions are more complex, and make use of hybrid arguments (see Lemma 8)
that require oracle calls on distributions other than A′n or U(A′n).

In this paper, it is convenient to consider a version of the Learning With Errors (LWE) problem
where the secret is a matrix S, rather than a vector, defined as follows.

Definition 1 For any positive integers q, n, k,m and real σ, let LWE(q, n× k,m, σ) be the LWE
distribution with modulus q, number of samples m, secret dimension n× k, and error parameter σ,
i.e., the distribution of

[A,AS + E] ∈ Zm×(n+k)q

obtained by picking A ← U(Zm×nq ) and S ← U(Zn×kq ) uniformly at random, and E ← Dm×kσ with
discrete Gaussian distribution.

When k = 1, the secret is just a vector s ∈ Znq , and this is the standard version of LWE,
which we write LWE(q, n,m, σ) instead of LWE(q, n × 1,m, σ). The m rows of the LWE can
be viewed as random noisy labeled samples from a hard-to-learn linear function defined by the
secret S. Worst-case to average-case reductions [21, 19, 6, 20] support the conjecture that the LWE
problem is hard for an arbitrary (polynomially bounded) number of samples m = nO(1), and some
reductions require this extra flexibility. (E.g., the LWE search-to-decision reduction in [21], but see
also [16] for a sample-preserving reduction.) This version of the problem is denoted LWE(q, n, σ).
The modulus q is always assumed to have bit-size polynomial in n (i.e., log2 q ≤ nO(1)), but in most
cryptographic applications it is just a small polynomial (e.g., q ≤ n2), and integers modulo q are
represented with O(log n) bits.

The vector and matrix variants of LWE are easily seen to be equivalent via a standard hybrid
argument.
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Lemma 8 There is a polynomial-time reduction from LWE(q, n,m, σ) to LWE(q, n× k,m, σ).

Proof: The intuition behind the proof is that the LWE distribution with secret matrix S ∈ Zn×kq

may be regarded as k copies of the standard LWE distribution with secret vectors given by the
columns of S, all using the same public random A. More technically, the reduction considers the
sequence of hybrid distributions Ai = (A, [ASi + Ei,Bi]) where A ← U(Zm×nq ), Si ← U(Zn×iq ),

Ei ← Dm×iσ and Bi ← U(Zm×(k−i)q ), for i = 0, . . . , k. Each pair of neighboring hybrids Ai,Ai+1 can
be generated by starting from an LWE(q, n,m, σ) challenge sample (A,b), and then computing

A = (A, [AS + E,b,B]) where S ← U(Zn×iq ), E ← Dm×iσ and B ← U(Zm×(k−i−1)q ). The resulting
distribution equals A = Ai if b is random, and A = Ai+1 if b = As + e is pseudorandom. So,
any distinguisher with advantage ε against LWE(q, n× k,m, σ) will achieve advantage ε/k against
LWE(q, n,m, σ). �

Definition 2 The LWE0,1(q, n,m, σ) distribution (and associated decision problem and pseudo-
randomness assumption) is defined just like LWE(q, n,m, σ), except that the secret s← U({0, 1}n)
is chosen with random binary entries.

Definition 3 The LWE±(q, n,m, σ) distribution (and associated decision problem and pseudoran-
domness assumption) is defined just like LWE(q, n,m, σ), except that the secret s ← U({±1}n) is
chosen with random unit entries.

We remark that LWE0,1 and LWE± could also be generalized to secret matrices S, and proved
equivalent to the single-vector version exactly as in Lemma 8. But this is not used in this paper,
so, for simplicity, we only define the secret-vector version of the problems. The next two lemmas
show that LWE0,1 and LWE± are essentially the same problem. We remark that the lemmas are
even more general than stated, and they apply to LWE problems with arbitrary error distribution,
not just discrete Gaussians. All parameters (including the number of samples, and the exact error
distribution) are preserved by the reductions, showing that the two problems are equivalent in a
very strong sense.

Lemma 9 For any odd integer q, there is a polynomial-time reduction from the LWE0,1(q, n,m, σ)
problem to the LWE±(q, n,m, σ) problem.

Proof: On input an LWE0,1 instance (A,b), the reduction outputs ϕ(A,b) = (A/2,b′ = b −
(A/2)u) where A/2 is computed modulo q, and u = (1, . . . , 1) ∈ Znq . Notice that, since q is odd,
the factor 2 is invertible modulo q, and A/2 is uniformly distributed. If b is uniform, then b′ is also
uniform. On the other hand, if b = As + e, then b′ = (A/2)s′ + e where s′ = 2s− u is uniformly
random in {±1}n. �

Lemma 10 For any odd integer q, there is a polynomial-time reduction from the LWE±(q, n,m, σ)
problem to the LWE0,1(q, n,m, σ) problem.

Proof: On input an LWE± instance (A,b), the reduction outputs ϕ(A,b) = (2A,b′ = b + Au)
where u ∈ {1}n is the all-ones vector. Notice that, since q is odd, the factor 2 is invertible modulo
q, and 2A is uniformly distributed. If b is uniform, then b′ is also uniform. On the other hand, if
b = As + e, then b′ = (2A)s′ + e where s′ = (s + u)/2 is uniformly random in {0, 1}n. �
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3 Pseudorandomness of Binary LWE

In this section we present a proof that the binary-secret LWE distribution LWE± is pseudorandom.
The idea is to define a simple (efficiently computable) randomized transformation ϕ with the
following properties:

• If the input to ϕ is uniformly distributed, then the output ϕ(U) equals (or is statistically
close to) the binary LWE distribution LWE±(q, n,m, σ̂) for some σ̂.

• There are two pseudorandom distributions B, B̂ such that ϕ(B) equals (or is statistically close
to) B̂.

Since ϕ is efficiently computable, the pseudorandomness of B implies that ϕ(U) ≈ LWE±(q, n,m, σ̂)
is computationally indistinguishable from ϕ(B) ≈ B̂. By transitivity, since B̂ is pseudorandom, it
follows that LWE±(q, n,m, σ̂) is also pseudorandom.

As our aim is to give a reduction from the standard LWE problem to binary LWE, we set B
and B̂ to two pseudorandom distributions related to LWE. Specifically, we use the distributions

B = {(AS + E)t | A← U(Z(n−1)×k
q ), S← U(Zk×mq ), E← D(n−1)×m

σ }

B̂ = {(ÂŜ + Ê)t | Â← U(Z(n+1)×(k+1)
q ), Ŝ← U(Z(k+1)×m

q ), Ê← D(n+1)×m
2σ }

for some σ related to σ̂. In other words B and B̂ are the (transposed) “label” component of the
LWE distributions LWE(q, k ×m,n− 1, σ) and LWE(q, (k + 1)×m,n + 1, 2σ). Notice that any
distinguisher between B and the uniform distribution can be immediately transformed into an
LWE distinguisher that on input (A,B = AS + E) simply discards A, and then runs the original
distinguishing procedure on Bt. So, B is pseudorandom under the standard LWE assumption, and
similarly for B̂.

Before getting into the details of the transformation, notice the difference between the high
level structure of the proof presented here, and a typical reduction between variants of LWE. A
typical reduction would map standard LWE samples to binary LWE samples, and uniform samples
to uniform samples. Here, instead, on the one hand the standard LWE distribution is mapped
again to a standard LWE distribution (with slightly different parameters). On the other hand, the
uniform distribution is mapped to binary LWE.

Our randomized transformation ϕ is shown in Figure 1. The transformation uses, as random-
ness, both a uniform secret vector s and a binary secret vector z. Informally, the intuition is that
by simultaneously multiplying by s (on the left) and by z (on the right), the same transformation
is able to produce (depending on how the input B was chosen) either

• a binary LWE distribution with secret z (when B is uniform), or

• a (transposed4) standard LWE distribution with secret [s,St]t (when B = (AS + E)t).

Intuitively, one may think of ϕ as mapping B to [B,Bz + e]. So, when B is uniformly random,
ϕ outputs the binary LWE distribution by construction. On the other hand, if B = (AS + E)t =
StAt + Et, the transformation outputs [B,Bz + e] = St[At,Atz] + [Et,Etz + e], which looks like
a standard (transposed) LWE label matrix. In fact, by the Leftover Hash Lemma, one may argue

4The LWE distributions B and B̂ are transposed to allow for the multiplication of the uniform secret s on the left.
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Transformation ϕ(B; z, s,a, e,G):
Input: B

x = s + e
Y = [s, s · at + B]
X = [Y,G]Qt · diag(z)

Output [X,x]

Randomness:
z← U({±1}n)
s← U(Zmq )

a← U(Zn−1q )

e← Dm2σ
G← Dm×(n+3)

σ

Dimensions:

B ∈ Zm×(n−1)q

x ∈ Zmq
Q ∈ Zn×(2n+3)

q

Y ∈ Zm×nq

X ∈ Zm×nq

Figure 1: Transformation proving the pseudorandomness of binary LWE, where Q is the matrix
specified in Lemma 7.

that [At,Atz] is statistically close to a uniformly distributed matrix. Unfortunately, the error
matrix [Et,Etz + e] does not follow the Gaussian distribution5 required by LWE. So, in order to
address this and other technical difficulties, the actual transformation ϕ is a bit more complex. The
details of the transformation are somewhat technical, and they are primarily motivated by all the
cancellations needed for the proof to work and obtain the proper LWE Gaussian error distribution.

One way to gain additional insight into the construction is to notice that the transformation
ϕ(B) always outputs a pair [X,x] such that Xz = s + Gv ≈ s + e = x. (See proof of Claim 1 for
details.) So, distribution B̂ = ϕ(B) will also satisfy this property with high probability: there must
be a small vector ẑ ∈ {±1}n+1 such that (ÂŜ + Ê)tẑ ≈ 0. This shows that the pseudorandom
matrix B̂ = (ÂŜ + Ê)t is already somehow close to a binary LWE instance because there is a ±1
combination of the first n columns of B̂ that is close to the last column. In fact, something very
similar can be proved directly, without using ϕ: matrix Ât maps a set {0, 1}n+1 of size 2n > qk+1

to a set Zk+1
q of size qk+1. So, by the pigeon-hole principle, there exist two binary inputs such that

Âtẑ0 = Âtẑ1, or, equivalently, a small vector ẑ = ẑ0− ẑ1 (with ‖z‖∞ = 1) such that B̂ẑ = Êtẑ ≈ 0.
An informal interpretation of this argument (which, in fact, is closely related to the proof that LWE
is robust with respect to the secret distribution [11]) is that matrix Ât hashes the binary secret
ẑ to an almost uniform (smaller dimensional) secret Âtẑ with entries in Zq. But, as before, the
problem with this intuitive approach is that the error distribution Êtẑ is not Gaussian, and it is
correlated with the secret ẑ.

Our theorem below solves these technical problems using a carefully designed gadget matrix Q
(described in Lemma 7) which efficiently adjusts the error distribution using some extra randomness
G. Notice how, in the process of transforming LWE into binary LWE, the number of samples n−1
in the presumed hard LWE(q, k×m,n− 1, σ) instance becomes the size n of the secret in the final
binary LWE instance LWE±(q, n,m, σ̂). Similarly, the number of columns m (i.e., the number of
parallel LWE instances) in the presumed hard LWE(q, (k+ 1)×m,n+ 1, 2σ) instance becomes the
number of samples in the final binary LWE instance.

Theorem 1 Assume the distributions LWE(q, k×m,n− 1, σ) and LWE(q, (k+ 1)×m,n+ 1, 2σ)

are pseudorandom. If q ≤ 2n
O(1)

, σ ≥ ω(
√

log n), k ≥ ω(log n), and n ≥ (k+ 1) · log2(q) +ω(log n),

5In particular, the second part of the error matrix Etz+e will typically have much larger entries than Ê, and also
be somehow correlated to the first part Et. One may try to address the error imbalance by noise flooding techniques
(i.e., by adding a large perturbation term to the first part of the output B), but this would result in much larger
noise and still not remove correlations.
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then the distribution LWE±(q, n,m, σ̂) is also pseudorandom for σ̂ = 2σ
√
n+ 1.

Proof: We use Z as a shorthand for the diagonal matrix diag(z). We first show that the transfor-
mation ϕ maps the uniform distribution to the binary LWE distribution.

Claim 1 If B← U(Zm×(n−1)q ) is chosen uniformly at random, then ϕ(B) ∈ Zm×nq × Zmq is statis-
tically close to the LWE±(q, n,m, σ̂) distribution.

Proof: We show that for any fixed values of a ∈ Zn−1q and z ∈ {±1}n, the output of the transfor-
mation [X,x] = ϕ(B) is statistically close to the LWE± distribution with secret z, i.e., X ∈ Zm×nq

is uniformly random, and the conditional distribution of the noise vector ê = x−Xz (given X and
z) is statistically close to Dmσ̂ . All this is over the probability space defined by the random choice
of B, s, e,G. The claim follows by averaging over a and z.

Let Q = [Q[n],Q]n[] be the matrix defined in Lemma 7, and recall that Q[n] ∈ Zn×n is invertible,
utQ[n] = et1, and the vector vt = utQ]n[ ∈ Zn+3 has norm ‖v‖ = 2

√
n, ‖v‖∞ ≤ 2. Since s and B

are uniformly random, the matrix Y is also uniformly distributed, and independent of e and G.
Since Qt

[n] and Z are invertible, the matrix

X = [Y,G][Q[n],Q]n[]
tZ = Y(Qt

[n]Z) + (GQt
]n[Z)

is also uniformly distributed, independently of G, e. It remains to analyze the conditional dis-
tribution of the error vector ê = x − Xz. Using Z · z = u and YQt

[n]u = Ye1 = s, we get

Xz = YQt
[n]u + GQt

]n[u = s + Gv. So, the error vector equals ê = (s + e) − Xz = e − Gv.

Since the entries of G and e are independent discrete Gaussians of parameter σ and 2σ (respec-
tively), the coordinates of ê are independent identically distributed random variables, each follow-
ing the distribution D2σ −

∑
i viDσ. By Lemma 5, this distribution is statistically close to Dσ̂ for

σ̂ =
√

(2σ)2 +
∑

i(viσ)2 = σ
√

4 + ‖v‖2 = 2σ
√
n+ 1. �

Next, consider the output [X,x] when B follows distribution B.

Claim 2 The distribution ϕ(B) is statistically close to B̂.

Proof: Let B = (AS + E)t for A← U(Z(n−1)×k
q ), S← U(Zk×mq ) and E← D(n−1)×m

σ . By linearity,
we can write Y = [s, sat + B] = Ys + Ye as the sum of two matrices

Ys = [s, sat + StAt] and Ye = [0,Et].

Similarly, we can also decompose ϕ(B) = [X,x] = [Xs, s] + [Xe, e] as a sum where

Xs = YsQ
t
[n]Z and Xe = [Ye,G]QtZ = [Et,G]Qt

]1[Z.

Our goal is to show that [Xs, s]t = ÂŜ and [Xe, e]t = Ê for Â, Ŝ, Ê distributed as in the definition
of B̂.

We first look at the distribution of the error matrix Êt = [Xe, e]. The last column e is a discrete

Gaussian of parameter 2σ by construction. Since [Et,G] has Gaussian distribution Dm×(2n+2)
σ , the

rest of the matrix is distributed according to

Xt
e ← ZtQ]1[(D(2n+2)×m

σ ) ≈ Z(Dn×m2σ ) = Dn×m2σ ,
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for any fixed value of z, where we have used the property Q]1[(D2n+2
σ ) ≈ Dn2σ from Lemma 7, and

the symmetry ZDn2σ = Dn2σ. This proves that Ê has Gaussian distribution of parameter 2σ, and it
depends only on E,G and e.

We now look at the distribution of [Xs, s] = (ÂŜ)t over the random choice of a, s, z,A and S.

The idea is to set Ŝ = [s,St]t, so that Ŝ is distributed uniformly at random over Z(k+1)×m
q . But, in

order to properly randomize Â, we define

Ŝ = W−1
[

st

S

]
where W is a uniformly random invertible matrix in Z(k+1)×(k+1)

q . Since W is invertible, Ŝ is still
uniformly distributed, and independent of W. Next, define

Â =

[
I
zt

]
ZQ[n]HW ∈ Z(n+1)×(k+1)

q where H =

[
1 0t

a A

]
∈ Zn×(k+1)

q .

Using the identities ztZQ[n] = utQ[n] = et1 and HWŜ = H[s,St]t = Yt
s, we see that our choice of

Â, Ŝ satisfies (ÂŜ)t = [Xs, s] as desired. All that is left to do is to prove that Â is statistically
close to uniform, independently of Ŝ. We first look at HW. Let wt be the first row of W. That’s
also the first row of HW. The remaining rows of HW are [a,A]W. The first row wt is distributed
uniformly at random among all primitive vectors in Zk+1

q , i.e., all vectors such that gcd(w, q) = 1.
So, by Lemma 2, the vector w is within negligible statistical distance from the uniform distribution
over Zk+1

q . Finally, since [a,A] is uniform by construction, and W is invertible, the bottom rows
([a,A]W) of HW are uniform too, and independent of w. So, HW is statistically close to uniform

over Zn×(k+1)
q . The matrix Ǎ = (ZQ[n]HW)t is also statistically close to uniform (and independent

of z) because Q[n] and Z are invertible. Finally, using the Leftover Hash Lemma (Lemma 1) and

the assumption n ≥ (k+1) log2(q)+ω(log n), we see that Ât = Ǎ[I, z] = [Ǎ, Ǎz] is also statistically
close to uniform. This concludes the proof that ϕ(B) = (ÂŜ + Ê)t where Â, Ŝ and Ê follow the
LWE distribution as in the definition of B̂. �

We are now ready to prove the theorem. It follows from pseudorandomness of the LWE(q, k×
m,n−1, σ) that the distribution B is computationally indistinguishable from the uniform distribu-

tion U over Zm×(n−1)q . Since ϕ is efficiently computable, the distributions ϕ(B) and ϕ(U) are also
computationally indistinguishable. By Claim 1, ϕ(U) is statistically close to LWE±(q, n×1,m, σ̂).
Similarly, by Claim 2, ϕ(B) is statistically close to B̂. So, LWE±(q, n× 1,m, σ̂) is computationally
indistinguishable from B̂. Finally, from the pseudorandomness of LWE(q, (k + 1)×m,n+ 1, 2σ),
we know that the distribution B̂ is computationally indistinguishable from the uniform distribution

over Zm×(n+1)
q . It follows by transitivity that the binary LWE distribution LWE±(q, n,m, σ̂) is com-

putationally indistinguishable from the uniform distribution over Zm×(n+1)
q , i.e., LWE±(q, n,m, σ̂)

is pseudorandom. �

The statement in the above theorem can be simplified using Lemma 8 to rephrase it in terms
of the basic LWE problem, and by noticing that LWE(q, k, n, σ) does not get any easier when k
and σ grow, or when n gets smaller.
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Corollary 1 Assume the distribution LWE(q, k, n + 1, σ) is pseudorandom for some q ≤ 2n
O(1)

,
σ ≥ ω(

√
log n), k ≥ ω(log n), and (n + 1) ≥ (k + 1) · (log2(q) + 1). Then the distribution

LWE±(q, n, nO(1), σ̂) is also pseudorandom for σ̂ = 2σ
√
n+ 1.

Proof: Notice that, under the assumptions in the corollary statement,

n ≥ (k + 1) log2 q + k ≥ (k + 1) log2 q + ω(log n)

as required by Theorem 1. In order to invoke the theorem, we also need to verify the pseudorandom-
ness conditions. Assume LWE(q, k, n + 1, σ) is pseudorandom. Dropping the last two rows from
the samples [A,b] ← LWE(q, k, n + 1, σ) shows that LWE(q, k, n − 1, σ) is also pseudorandom.
The samples [A,b] can also be mapped to LWE(q, k + 1, n + 1, 2σ) by performing the following
two operations:

• Add an extra Gaussian error term e ← Dn+1√
3σ

to b. By Lemma 5, this has the effect of

increasing the error rate to
√
σ2 + 3σ2 = 2σ.

• Append an extra column a to A and add a random multiple a · s to b. This has the effect of
extending the secret with an extra coordinate s.

Since this transformation also preserves the uniform distribution, it provides a reduction from
LWE(q, k, n+ 1, σ) to LWE(q, k + 1, n+ 1, 2σ), and proves that LWE(q, k + 1, n+ 1, 2σ) is pseu-
dorandom. Finally, by Lemma 8, LWE(q, k ×m,n− 1, σ) and LWE(q, (k + 1)×m,n+ 1, 2σ) are
also pseudorandom, as required by Theorem 1. �

Notice how Corollary 1 establishes the pseudorandomness of LWE± for any polynomial number
of samples m = nO(1), using, as an assumption, only the pseudorandomness of LWE for a fixed
number (n + 1 ≈ k log q) of samples. (This property is also implicit in [6].) We remark that we
phrased Theorem 1 and Corollary 1 asymptotically (in terms of polynomial-time distinguishers
achieving at most negligible advantage ε = n−ω(1)) only for simplicity. All statements and proofs
are easily adapted to other settings, e.g., to prove hardness of binary LWE against adversaries
running in subexponential time.

4 Conclusion

We presented a simple proof that the LWE problem with binary secret of size n = O(k log2 q) is as
hard as LWE with uniformly random secret in Zkq . More specifically, if LWE with secrets in Zkq and
n ≈ k log q samples is pseudorandom, then LWE with secrets in {0, 1}n or {±1}n (and an arbitrary
polynomial number of samples nO(1)) is also pseudorandom. As already observed in [6], the growth
in the dimension of the secret is seemingly optimal, because it approximately preserves the bit-size
of the secret, and the cost of a brute force attack. Starting from LWE with a fixed number of
samples m ≈ k log q = O(k log k) (for typical modulus q = kO(1) polynomial in the LWE secret
dimension k) is potentially useful for cryptanalysis, as it allows to generate and publish fixed-size
random challenges for any value of k. (By contrast, the general LWE problem would require to
give to the adversary access to an LWE sampling oracle that can be called an arbitrary number of
times.) An interesting question is whether a reduction can be given starting from LWE with an
even smaller number of samples, e.g., m = O(k) linear in the secret dimension.
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An important open problem is whether similar results can be proved for the structured variants
of LWE based on algebraic lattices [15, 14]. The use of structured lattices is of primary importance
to make lattice cryptography efficient in practice, and the use of LWE with binary secrets plays an
important role in some applications, like Fully Homomorphic Encryption schemes [9, 8], to control
the noise growth when computing on encrypted data. We remark that the use of binary secrets
and errors does not seem to pose any difficulty in the setting of one-way hash functions based on
structured lattices [15]. However, for LWE [21, 14], it is unclear how to adapt the proof in this
paper to the algebraic lattice setting. We hope our simple proof for unstructured lattices will bring
more attention to this problem, and serve as a possible starting point to establish similar results
for ring LWE.
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