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Abstract

Elliptic curve cryptography requires efficient arithmetic over the underlying field. In particular,
fast implementation of multiplication and squaring over the finite field is required for efficient pro-
jective coordinate based scalar multiplication as well as for inversion using Fermat’s little theorem.
In the present work we consider the problem of obtaining efficient algorithms for field multiplication
and squaring. From a theoretical point of view, we present a number of algorithms for multipli-
cation/squaring and reduction which are appropriate for different settings. Our algorithms collect
together and generalise ideas which are scattered across various papers and codes. At the same time,
we also introduce new ideas to improve upon existing works. A key theoretical feature of our work,
which is not present in previous works, is that we provide formal statements and detailed proofs of
correctness of the different reduction algorithms that we describe. On the implementation aspect, a
total of fourteen primes are considered, covering all previously proposed cryptographically relevant
(pseudo-)Mersenne prime order fields at various security levels. For each of these fields, we provide
64-bit assembly implementations of the relevant multiplication and squaring algorithms targeted to-
wards two different modern Intel architectures. We were able to find previous 64-bit implementations
for six of the fourteen primes considered in this work. On the Haswell and Skylake processors of Intel,
for all the six primes where previous implementations are available, our implementations outperform
such previous implementations.

Keywords: field multiplication, field squaring, reduction, inversion, constant-time computation,
Fermat’s little theorem, elliptic curve cryptography, scalar multiplication.

1 Introduction

Elliptic curve cryptography was independently introduced by Koblitz [16] and Miller [19], and later
cryptography based on hyper-elliptic curves was introduced by Koblitz [17]. Over the last three decades,
there has been a tremendous amount of research on various aspects of secure and efficient curve based
cryptography.

Presently, there are several different approaches for choosing a suitable curve. The basic task for all
such approaches is to choose the underlying finite field. This field can either have composite or prime
order. Further, for a prime order field, the prime may be a Mersenne or a pseudo-Mersenne prime.
Some well known examples are the Mersenne prime 2127 − 1 used in [12, 5, 8, 10], and the pseudo-
Mersenne primes 2255− 19 and 2256− 232− 977 [24] used in Curve25519 [3] and the Bitcoin [20] protocol
respectively. The NIST proposals [11], on the other hand, provide examples of unstructured primes and
efficient implementation of arithmetic using such primes have been studied in [14]. In this work, we will
focus only on Mersenne and pseudo-Mersenne prime order fields.

Two basic applications of curve-based cryptography are key agreement and signature schemes. Both
of these schemes require scalar multiplications. The computation consists of two steps. In the first step,
the scalar multiplication is computed using projective coordinates and in the second step, an inversion
in the underlying finite field is required to convert the output to affine coordinates.

Computing scalar multiplication using projective coordinates requires efficient algorithms for finite
field arithmetic, especially multiplication and squaring. For performing an inversion, there are two
approaches. Using Fermat’s little theorem (FLT), an inversion can be computed using an exponentiation
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which again requires efficient algorithms for multiplication and squaring. Alternatively, inversion can be
computed using Euclid’s algorithm which requires additions and subtractions.

Our Contributions

The core technical contribution of the present work is to carry out a comprehensive study of multiplication
and squaring algorithms over fields whose order is either a Mersenne or a pseudo-Mersenne prime.
We concentrate on single multiplication and squaring algorithms and so the aspect of simultaneous
multiplications using single instruction multiple data (SIMD) instructions is not considered in the present
work.

Field multiplication and squaring have two broad phases, namely, a multiplication phase and a
reduction phase. Of the two, the reduction phase is relatively more complex. Let the prime p = 2m − δ.
Elements of Fp fit within an m-bit string. Such an m-bit string is formatted into κ binary strings where
the first κ− 1 strings are each η bits long and the last string is ν bits long with 0 < ν ≤ η. Following the
usual convention, we call each of the individual κ binary strings to be limbs. For 64-bit arithmetic, each
limb fits into a 64-bit word. Two kinds of representations have been considered in the literature. In the
first kind of representation, η = 64, and so the limbs (except possibly for the last one) are packed tightly
into 64-bit words. In the second kind of representation, η < 64, and so the 64-bit words containing the
limbs have some free or redundant bits. We call the first kind of representation to be saturated limb
representation and the second kind to be unsaturated limb representation.

We provide various algorithms for multiplication/squaring and reduction using both the saturated
and the unsaturated limb representations. A brief summary of these contributions is as follows.

Multiplication/squaring for saturated limb representation: We describe two sets of algorithms
with each set consisting of an algorithm for multiplication and one for squaring. The first set of al-
gorithms (which we call mulSLDCC/sqrSLDCC) generalizes the multiplication/squaring algorithms
in the Intel white papers [23, 22] to work for 64i-bit integers for any i ≥ 2. These algorithms use
two independent carry chains and can be implemented in the newer generation of processors. The
second set of algorithms (which we call mulSLa/sqrSLa) do not use double carry chains and can be
implemented across all generation of processors. These algorithms combine an initial step of the
reduction with the multiplication. The idea behind mulSLa/sqrSLa have not appeared earlier in
the literature.

Multiplication/squaring for unsaturated limb representation: We describe two sets of algo-
rithms. The first set of algorithms (which we call mulUSL/sqrUSL) generalize the ideas used in [6]
for the prime 2255 − 19. These algorithms, however, lead to overflow for certain primes such as
the Bitcoin prime 2256 − 232 − 977. To handle such overflow issues, we describe a second set of
algorithms (which we call mulUSLa/sqrUSLa) which have not appeared earlier in the literature.

Reduction for saturated limb representation: We describe four reduction algorithms, namely,
reduceSLMP, reduceSLPMP, reduceSLPMPa and reduceSL. Algorithms reduceSLMP, reduceSLPMP
and reduceSLPMPa reduce the outputs of mulSLDCC/sqrSLDCC. Specifically, reduceSLMP works
for all Mersenne primes and is a generalization of the ideas used in [5] for the prime 2127 − 1.
Algorithm reduceSLPMP works for a large class of pseudo-Mersenne primes and has not appeared
earlier. Algorithm reduceSLPMPa works for a large class of pseudo-Mersenne primes and is a
generalization of the ideas for 4-limb representation used in [6] for the prime 2255 − 19. Algorithm
reduceSL reduces the output mulSLa/sqrSLa and has not appeared earlier in the literature.

Reduction for unsaturated limb representation: We describe three reduction algorithms, namely,
reduceUSL, reduceUSLA and reduceUSLB. Algorithm reduceUSL works for a large class of pseudo-
Mersenne primes and is a generalization of the ideas for 5-limb representation used in [9]1 for the
prime 2255 − 19. For certain primes, reduceUSLA is more efficient than reduceUSL and generalizes
ideas used in [6] for the prime 2255 − 19. For certain other primes, reduceUSLB is more efficient
than both reduceUSL and reduceUSLA. The idea behind reduceUSLB has not appeared earlier in
the literature.

In Table 1, for each algorithm presented in this work, we state whether it is new or, the earlier work that
it generalizes.

There are two key theoretical features of our work.

1See also https://github.com/floodyberry/supercop/tree/master/crypto_scalarmult/curve25519/amd64-51.
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1. While previous works have developed code for a single prime, we describe the algorithms in their
full generality.

2. For each reduction algorithm, we state precise theorems about their correctness and provide detailed
proofs of correctness. Such formal treatment of correctness of reduction algorithms does not appear
earlier in the literature.

The second aspect of our work is in the efficient implementation of the various multiplication and
squaring algorithms.

Assembly implementation: All the algorithms described in this paper, have been implemented in
64-bit assembly for Intel processors. The implementations are divided into two groups, namely maa
and maax. For implementations in the maa group, the only arithmetic instructions used are mul,

imul, add and adc, while for implementations in the maax group, the arithmetic instructions mulx,
adcx and adox are also used. These second set of instructions are available from the Broadwell
processor onwards.

Library for field-arithmetic: Through our efficient 64-bit assembly implementations, we provide a li-
brary of field multiplication and squarings in cryptographically relevant prime order fields targeting
the modern Intel processors. The efficient field arithmetic library can be used for the development
of fast projective coordinate based scalar multiplication over appropriate elliptic curves.

algorithm feature

mulSLDCC/sqrSLDCC generalizes [23, 22]

mulSLa/sqrSLa new

mulUSL/sqrUSL generalizes [6]

mulUSLa/sqrUSLa new

reduceSLMP generalizes [5]

reduceSLPMP new

reduceSLPMPa generalizes [6, 4-limb]

reduceSL new

reduceUSL generalizes [9, 5-limb]

reduceUSLA generalizes [6, 5-limb]

reduceUSLB new

Table 1: The various algorithms for multiplication/squaring and reduction described in this paper.

We have considered a total of fourteen primes which include all previously proposed cryptographically
relevant (pseudo-)Mersenne primes at various security levels. These primes are shown in Table 2. For
the prime 2255 − 19, we have found earlier implementations of both maa and maax types and for five of
the other primes, we have found implementations of maa type. So, for eight of the fourteen primes, we
provide the first maa type implementation and for thirteen of the fourteen primes, we provide the first
maax type implementations.

Timings of the field operations for the new implementations and the existing implementations have
been measured on the Haswell and Skylake processors. For each prime where a previous implementation
is available, our implementation improves upon such previous implementations. A summary of the
various speed-ups that were observed is as follows. Further details are provided later.

maa type implementations:

On Haswell: Speed-ups of about 10%, 3%, 4%, 36%, 2% and 18% were observed for the primes
2127 − 1, 2251 − 9, 2255 − 19, 2256 − 232 − 977, 2266 − 3 and 2521 − 1 respectively.

On Skylake: Speed-ups of about 10%, 12%, 4%, 28%, 8% and 16% were observed for the primes
2127 − 1, 2251 − 9, 2255 − 19, 2256 − 232 − 977, 2266 − 3 and 2521 − 1 respectively.

maax type implementations: On the Skylake processor, a speed-up of about 26% was observed for the
prime 2255 − 19.

The speed-ups obtained for 2255 − 19 and 2256 − 232 − 977 are particularly important. The prime
2255 − 19 defines the underlying field for the famous Curve25519 while the prime 2256 − 232 − 977
defines the underlying field for the curve secp256k1 which is used in the Bitcoin protocol. The above
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mentioned improvements arises from use of new reduction algorithms as well as hand optimisations of
the corresponding assembly codes.

Source codes for all our implementations are publicly available at the following link.

https://github.com/kn-cs/pmp-farith.

Structure of the Paper

For ease of reference, we provide a brief summary of the relevant Intel instructions in Section 2. The
background on representation of elements of Fp and the exponentiation based inversion algorithm are
covered in Section 3. An overview of the various algorithms presented in this paper is provided in
Section 4. Algorithms for integer multiplication and squaring using the saturated limb representation
and using double independent carry chains are given in Section 5. Corresponding reduction algorithms
along with formal statements of correctness are presented in Section 6. Multiplication using unsaturated
limb representation is considered in Section 7 and the corresponding reduction algorithms are described in
Section 8. Multiplication and reduction using saturated limb representation without using double carry
chains are described in Section 9. Detailed timing results of the field operations and their consequences
are presented in Section 10. Finally, Section 11 concludes the paper.

prime curve(s)

2127 − 1 Kummer2 [5], FourQ [10]

2221 − 3 M-221 [1]

2222 − 117 E-222 [1]

2251 − 9 Curve1174 [1], KL2519(81,20) [15]

2255 − 19 Curve25519 [3], KL25519(82,77) [15]

2256 − 232 − 977 secp256k1 [24]

2266 − 3 KL2663(260,139) [15]

2382 − 105 E-382 [1]

2383 − 187 M-383 [1]

2414 − 17 Curve41417 [4]

2511 − 187 M-511 [1]

2512 − 569 -

2521 − 1 P-521 [1], E-521 [1]

2607 − 1 -

Table 2: The primes considered in this work.

2 A Brief Summary of Relevant Intel Instructions

The 64-bit architecture of the Intel x86 processors has sixteen 64-bit registers, namely rax, rbx, rcx, rdx,
rsi, rdi, rsp, rbp, r8, r9, r10, r11, r12, r13, r14, r15. Except rsp (which is the stack pointer), all other
registers can be used for storing data and operating on them. There is a register named FLAGS, which
consists of various available flags. We note two of these flags. Bit 0 of FLAGS is the carry flag CF and
bit 11 of FLAGS is the overflow flag OF. Integer addition and multiplication affect the states of these two
flags and are relevant to our work.

The basic 64-bit arithmetic operations in the x86 processors are mul, imul, add and adc. From the
Broadwell processor onwards, Intel also provides another set of arithmetic instructions, namely, mulx,
adcx and adox. The structure of multiplication and addition instructions and their operations are as
follows.

mul src2; rdx : rax← src2 · rax.
imul src1, src2, dst; dst← lsb64(src1 · src2).
add src, dst; dst← src + dst.
adc src, dst; dst← src + dst + CF.
mulx src1, dst`, dsth; dsth : dst` ← src1 · rax.
adcx src, dst; dst← src + dst + CF.
adox src, dst; dst← src + dst + OF.

The operation mulx is available from the Haswell processor onwards; adcx and adox are available from
the Broadwell processor onwards. Processors previous to Haswell had only mul, imul, add and adc.
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The effect on the carry and the overflow flags for the above mentioned arithmetic operations are the
following.

• mul, imul, add and adc affect both CF and OF;
• mulx affects neither CF nor OF;
• adcx affects only CF but, not OF;
• adox affects only OF but, not CF.

Suppose there is an interleaved sequence of multiplications and additions to be performed. The additions
generate carries which need to be taken into consideration for subsequent additions. The mul and imul

instructions affect the carry flag and so the carry out of the previous addition gets lost. On the other
hand, a sequence of mulx and adc instructions can efficiently perform such an interleaved sequence of
multiplications and additions. The mulx instruction does not affect the carry flag and so the sequence
of adc instructions can carry out the instructions using a single carry chain.

The combination of mulx, adcx and adox provides a more powerful tool. As mentioned above, the
mulx instruction does not affect either CF or OF. A sequence of adcx instructions proceeds by using a
carry chain using only CF, while a sequence of adox instructions proceeds by using a carry chain using
only OF. So, in effect, it is possible to use two independent carry chains which we call double carry chain.
This greatly facilitates arithmetic computations as we will see later.

Remark: Let x be an `-bit number and η ≤ `. The operation x mod 2η returns lsbη(x), i.e., the η least
significant bits of x, whereas the operation bx/2ηc returns the `− η most significant bits of x. It will be
helpful to keep this simple observation in mind while going through the various algorithms given later.

3 Representation of Elements in Fp

Let η be a positive integer and θ = 2η. Consider a polynomial

h(θ) = h0 + h1θ + · · ·+ hk−1θ
k−1 (1)

where h0, h1, . . . , hk−1 are non-negative integers. The polynomial h(θ) is given by the vector of coefficients
(h0, h1, . . . , hk−1). We will call these coefficients to be the limbs of the polynomial. Note that we do
not insist that the coefficients are less than 2η; in fact, at intermediate steps, the coefficients will not
necessarily be less than 2η.

Given positive integers m and η, let κ and ν be positive integers such that

m = η(κ− 1) + ν with 0 < ν ≤ η. (2)

Given m and η, the values of κ and ν are uniquely determined. An integer in the range [0, . . . , 2m−1] can
be represented by an m-bit string. From (2), an m-bit string can be considered to be the concatenation
of κ strings, where the first κ− 1 strings are each η bits long while the last string is ν bits long. So, an
m-bit integer can be represented as h(θ) = h0 + h1θ + · · · + hκ−1θ

κ−1 where 0 ≤ h0, h1, . . . , hκ−1 < 2η

and 0 ≤ hκ−1 < 2ν . As mentioned above, each of the κ individual strings will be referred to as a limb.
Given an m-bit integer, by a (κ, η, ν)-representation we will mean a κ-limb representation, where the first
κ− 1 limbs are η bits long, the last limb is ν bits long and m = η(κ− 1) + ν.

Proposition 1. Let x and y be two m-bit integers both having a (κ, η, ν)-representation and let z = x ·y.
Then z has a (κ′, η, ν′)-representation where

κ′ = 2κ− 1, ν′ = 2ν if 0 < ν ≤ η/2; and κ′ = 2κ, ν′ = 2ν − η if η/2 < ν ≤ η.

Proof. We have m = η(κ − 1) + ν. The number of bits in z is at most 2m and we may write 2m =
η(2κ− 2) + 2ν. If 0 < ν ≤ η/2, then z has a (2κ− 1)-limb representation where the first 2κ− 2 limbs are
each η bits long and the last limb is ν′ = 2ν bits long. On the other hand, if η/2 < ν ≤ η, then we may
write 2m = η(2κ−1)+2ν−η and so z has a 2κ-limb representation where the first 2κ−1 limbs are each
η bits long and the last limb is 2ν − η bits long. (Note that η/2 < ν ≤ η implies 0 < 2ν − η ≤ η.)

Consider a (κ, η, ν)-representation of an m-bit integer w. Suppose that ω-bit arithmetic will be used
for implementation. Using ω-bit arithmetic, w will be represented by κ ω-bit words w0, . . . , wκ−1 such
that the binary representation of w is given by

lsbν(wκ−1)||lsbη(wκ−2)|| · · · ||lsbη(w0). (3)

Here lsbi(x) denotes the i least significant bits of the binary string x and 0 < ν ≤ η ≤ ω. Depending on
the value of η, we identify two kinds of representation.
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Saturated limb representation: In this case η = ω. So, each of the ω-bit words w0, w1, . . . , wκ−2

are “saturated” in the sense that there are no leading redundant bits in these words. The ω-bit
word wκ−1 is saturated or unsaturated depending on whether ν = η or ν < η respectively.

Unsaturated limb representation: In this case η < ω. So, each of the ω-bit words w0, w1, . . . , wκ−1

are “unsaturated” in the sense that they contain some leading redundant bits. The word wκ−1

contains the same or more leading redundant bits according as whether ν = η or ν < η respectively.

Remark: In this work, we will consider 64-bit arithmetic and so ω = 64. The general ideas of the
algorithms apply to arbitrary values of ω. The actual value of ω = 64 is used at some places in the
(non-)overflow analysis of the correctness proofs.

The primes p that we consider are of the form

p = 2m − δ, (4)

where δ is sufficiently small. Given (κ, η, ν)-representation of m-bit integers, we have

2η(κ−1)+ν = 2m ≡ δ mod p. (5)

For future reference, we define

cp = 2η−νδ. (6)

The different values of m, δ, κ, η and ν for the various primes p considered in this work are given
in Table 3 2. For each prime, two sets of values of κ, η and ν are provided, one using saturated limb
representation and the other using unsaturated limb representation.

The main goal of obtaining a representation of m of the form (2) is to minimize the value of κ. As
the value of κ grows, so does the complexity of multiplication. Clearly the value of κ is minimized for
the saturated limb representations. An issue with the saturated limb representations is that each limb
has the maximum possible size and so handling overfull issues can be complex. It is for this reason that
one considers the unsaturated limb representations. For the unsaturated limb representations, in Table 3
there is a column labeled “type”. This column refers to the particular type of reduction algorithm which
applies best to the corresponding prime and will be explained in details later.

prime m δ
unsaturated limb saturated limb

κ η ν type κ η ν

2127 − 1 127 1 3 43 41 A 2 64 63

2221 − 3 221 3 4 56 53 A 4 64 29

2222 − 117 222 117 4 56 54 A 4 64 30

2251 − 9 251 9 5 51 47 A 4 64 59

2255 − 19 255 19 5 51 51 A 4 64 63

2256 − 232 − 977 256 232 + 977 5 52 48 A 4 64 64

2266 − 3 266 3 5 54 50 A 5 64 10

2382 − 105 382 105 7 55 52 B 6 64 62

2383 − 187 383 187 7 55 53 B 6 64 63

2414 − 17 414 17 8 52 50 A 7 64 30

2511 − 187 511 187 9 57 55 G 8 64 63

2512 − 569 512 569 9 57 56 G 8 64 64

2521 − 1 521 1 9 58 57 A 9 64 9

2607 − 1 607 1 10 61 58 G 10 64 31

Table 3: The primes considered in this work and their saturated and unsaturated limb representations.

Suppose m-bit integers have a (κ, η, ν)-representation and θ = 2η. The prime p = 2m−δ is represented
as the polynomial p(θ), defined as

p(θ) = p0 + p1θ + · · ·+ pκ−1θ
κ−1, (7)

where p0 = 2η − δ, p1 = p2 = · · · = pκ−2 = 2η − 1, and pκ−1 = 2ν − 1.

2For the prime 2414 − 17 an unsaturated limb representation with (κ = 7, η = 60, ν = 54) is also possible. The
corresponding multiplication, squaring and inversion algorithms are then mulUSLa, sqrUSLa and invUSLa respectively. We
discuss this idea in Section 7.1.
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An element in Fp is represented as a polynomial f(θ) of degree at most κ− 1, defined as

f(θ) = f0 + f1θ + · · ·+ fκ−1θ
κ−1, (8)

where 0 ≤ f0, f1, . . . , fκ−1 < 2η and 0 ≤ fκ−1 < 2ν .
It should be noted that the polynomials f(θ) are in one-one correspondence with the integers

0, 1, . . . , 2m − 1. This leads to a non-unique representation of δ elements in Fp, i.e., the elements
0, 1, . . . , δ − 1 are also represented as 2m − δ, 2m − δ + 1, . . . , 2m − 1. The non-unique representation
does not affect the correctness of the computations. At the end of the computation, the final result is
converted to a unique representation using a simple algorithm. This procedure is shown in Algorithm 1.

Algorithm 1 Converts to unique representation in Fp, where p = 2m − δ.

1: function makeUnique(h(0)(θ))

2: input: h(0)(θ) = h
(0)
0 +h

(0)
1 θ+· · ·+h(0)

κ−1θ
κ−1, where 0 ≤ h(0)

0 , h
(0)
1 , . . . , h

(0)
κ−2 < 2η and 0 ≤ h(0)

κ−1 < 2ν .

3: output: h(1)(θ) = h
(1)
0 +h

(1)
1 θ+· · ·+h(1)

κ−1θ
κ−1, where 0 ≤ h(1)

0 < 2η−δ, 0 ≤ h(1)
1 , h

(1)
2 , . . . , h

(1)
κ−2 < 2η,

0 ≤ h(0)
κ−1 < 2ν and h(1)(θ) ≡ h(0)(θ) mod p.

4: u← h
(0)
0 ≥ p0

5: for i← 1 to κ− 2 do
6: u← u & (h

(0)
i = 2η − 1)

7: end for
8: u← u & (h

(0)
κ−1 = pκ−1)

9: v ← −u; u← ¬v
10: h

(1)
0 ← (h

(0)
0 & u) | ((h

(0)
0 − p0) & v)

11: for i← 1 to κ− 1 do
12: h

(1)
i ← (h

(0)
i & u) | (0 & v)

13: end for
14: return h(1)(θ) = h

(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1

15: end function.

3.1 Inversion in Fp

Fermat’s little theorem states that for a prime p and any non-zero a ∈ Fp, ap−1 ≡ 1 mod p. So, ap−2 is
the inverse of a in Fp. Thus, the computation of inverse of any non-zero element in Fp reduces to the
problem of exponentiating a to the power p − 2. The standard way to compute this exponentiation is
to use the square-and-multiply algorithm. Since, the value p− 2 is fixed, the numbers of squarings and
multiplications are fixed and do not depend on the value of a. So, if squaring and multiplication in Fp
are constant time algorithms, then the exponentiation based inversion is also a constant time algorithm.

Till recently, FLT based inversion was considered to be the more efficient of the two methods for
inversion in (pseudo-)Mersenne prime order fields. On the face of it, this seems counter-intuitive since the
Fermat based approach uses multiplications and squarings, whereas the Euclid based approach uses only
additions and logical shifts. The reason for Fermat based approach being faster for (pseudo-)Mersenne
primes seems to be based on two factors, namely, the number of iterations in the Euclid based approach
is more and the availability of very fast multiplication instructions in modern processors. Defying this
reasoning, a recent work by Bernstein and Yang [2] showed that the Euclid based approach could indeed
be faster for (pseudo-)Mersenne primes.

Remark: In the rest of the paper, we will focus entirely on field multiplication and squaring. In
comparison, field addition, negation and subtraction are much faster. We note one important difference in
these operations which arises from the representation of the elements. For saturated limb representations,
field addition/negation/subtraction can be implemented using add/adc/sub/sbb. On the other hand,
for unsaturated limb representations, implementation of these operations also require shift operations.

4 Overview of the Algorithms

All algorithms in this work are described keeping 64-bit arithmetic in mind.
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Meanings of various abbreviations:

SL : saturated limb;
USL : unsaturated limb;
SCC : single carry chain;
DCC : double (independent) carry chains;
MP : Mersenne prime;
PMP : pseudo-Mersenne prime;
maa : algorithms implemented using only mul, imul, add and adc;
maax : algorithms which also use mulx, adcx and adox.

Brief descriptions of the tasks of the different algorithms that we consider are given below.

Algorithms for the saturated limb representation:

mulSCC: Multiply a word whose value is less than 264 to an integer given by a saturated limb represen-
tation using a single carry chain.

mulSLDCC: Multiply two integers given in saturated limb representations using double (independent)
carry chains.

sqrSLDCC: Square an integer given in saturated limb representation using double carry chains.

reduceSLMP: Reduction algorithm to be applied to the outputs of mulSLDCC or sqrSLDCC when the
underlying prime is a Mersenne prime.

reduceSLPMP: Reduction algorithm to be applied to the outputs of mulSLDCC or sqrSLDCC when the
underlying prime is a pseudo-Mersenne prime.

reduceSLPMPa: A partial reduction algorithm to be applied to the outputs of mulSLDCC or sqrSLDCC
when the underlying prime is a pseudo-Mersenne prime.

mulSLa: Multiply two integers given in saturated limb representations and perform an initial step of
the reduction.

sqrSLa: Square an integer given in saturated limb representation and perform an initial step of the
reduction.

reduceSL: A generic reduction algorithm to be applied to the outputs of mulSLa/sqrSLa.

farith-SLa: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulSLa, sqrSLa and reduceSL.

farith-SLMP: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulSL, sqrSL and reduceSLMP. See the remark below for mulSL and sqrSL.

farithx-SLMP: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulSLDCC, sqrSLDCC and reduceSLMP.

farithx-SLPMP: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulSLDCC, sqrSLDCC and reduceSLPMP.

Remark: The output of mulSLDCC is the product of the two integers and the output of sqrSLDCC is
the square of an integer. Algorithms mulSLDCC/sqrSLDCC utilize double carry chains to perform the
computations. The product of two integers in the saturated limb representation can also be performed
without using double carry chains and similarly, the square of an integer in the saturated limb representa-
tion can be performed without using double carry chains. For the prime 2255−19, the 4-limb algorithms
in [6] perform such computations. The 4-limb algorithms in [6] can be extended to work for arbitrary
limb representations. We will denote the resulting multiplication and squaring algorithms by mulSL and
sqrSL. Note that mulSL/sqrSL are different from mulSLa/sqrSLa since mulSLa/sqrSLa also perform an
initial step of reduction while this is not done by mulSL/sqrSL.
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Algorithms for the unsaturated limb representation:

mulUSL: Multiply two integers given in unsaturated limb representations and perform an initial step of
the reduction.

sqrUSL: Square an integer given in unsaturated limb representation and perform an initial step of the
reduction.

mulUSLa: Multiply two integers given in unsaturated limb representations and perform an initial step
of the reduction. This is a variant of mulUSL which is to be used when mulUSL leads to overflows.

sqrUSLa: Square an integer given in unsaturated limb representation and perform an initial step of the
reduction. This is a variant of sqrUSL which is to be used when sqrUSL leads to overflows.

reduceUSL: A generic reduction algorithm to be applied to the outputs of mulUSL/sqrUSL or mu-
lUSLa/sqrUSLa.

reduceUSLA: An algorithm to be applied to the outputs of mulUSL/sqrUSL or mulUSLa/sqrUSLa when
the prime is of type A. For such primes, reduceUSLA is more efficient than reduceUSL.

reduceUSLB: An algorithm to be applied to the outputs of mulUSL/sqrUSL or mulUSLa/sqrUSLa when
the prime is of type B. For such primes, reduceUSLB is more efficient than reduceUSL or reduceUSLA.

farith-USL: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulUSL, sqrUSL and reduceUSL.

farith-USLA: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulUSLA, sqrSLA and reduceUSLA.

farithx-USLB: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulUSLB, sqrUSLB and reduceUSLB.

farithx-USLa: Denotes the algorithm triplet which computes a field multiplication, squaring and inverse
using mulUSLa, sqrUSLa and reduceUSLA.

The implementations of the various algorithms are divided into two groups.

Algorithms in the maa setting: The algorithms farith-SLa, farith-USL, farith-USLA, farith-USLB and
farith-USLa have been implemented in assembly using only the instructions mul, imul, add and
adc to do arithmetic. These implementations are downward compatible with previous generations
of Intel processors.

Algorithms in the maax setting: The implementations of the algorithms farithx-SLMP and farithx-
SLPMP also use the instructions mulx, adcx and adox for doing arithmetic. These implementations
work on the Broadwell and later generation processors.

Descriptions of the algorithms. We describe a number of algorithms. The descriptions of the
algorithms are at a fairly high level. They are provided in a form which make it easy to understand
the algorithms and present the proofs of correctness. For the various reduction algorithms, the input is
considered to be a polynomial h(0)(θ), with θ = 2η, and the output is h(k)(θ) for some k ≥ 1, such that

h(0)(θ) ≡ h(1)(θ) ≡ · · · ≡ h(k)(θ) mod p.

Conceptually, the algorithm proceeds in stages where the i-th stage computes h(i)(θ) from h(i−1)(θ) for
i = 1, 2, . . . , k. The proofs of correctness show that h(i)(θ) ≡ h(i−1)(θ) mod p and also provide precise
bounds on the coefficients of h(i)(θ). In order to define the polynomials h(i)(θ), the algorithms use certain
statements which simply copy some of the coefficients of h(i−1)(θ) to h(i)(θ). Also, for ease of reference
in the proofs, certain temporary variables are indexed by the loop counter creating the impression that
a number of such variables are required, whereas in actual implementation one variable is sufficient.

For actual assembly implementation, it is desirable to use the registers as much as possible and also
to avoid using load/store instructions to the extent possible. As such, the strict distinction between the
various stages of the algorithm is not maintained so that some of the copy statements become redundant
and are not implemented. Also, the use of temporary variables are minimized as much as possible and
such variables are reused whenever feasible. Modulo such routine simplifications, the implementations
follow the general flow of the algorithms. For each of the algorithms, we provide efficient assembly
implementations for a number of primes. Studying the code together with the algorithm descriptions
will make the associations between them clear and lead to a better understanding of the code.
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5 Integer Multiplication/Squaring for Saturated Limb Representation Using
Independent Carry Chains

Let c be an η-bit constant, θ = 2η and f(θ) be a polynomial in θ of degree at most d−1 whose coefficients
are from Zθ. A basic step in the multiplication and squaring algorithms is the computation c · f(θ). The
result is a polynomial h(θ) of degree at most d and whose coefficients are from Zθ. Function mulSCC
given in Algorithm 2 performs this computation.

Algorithm 2 Multiply f(θ) with an η-bit constant c; θ = 2η, η = 64.

1: function mulSCC(f(θ), c)
2: input: f(θ) = f0 + f1θ + · · ·+ fd−1θ

d−1, c, where 0 ≤ c, f0, f1, . . . , fd−1 < 2η and d ≥ 1.
3: output: h(θ) = h0 + h1θ + · · ·+ hdθ

d = c · f , where 0 ≤ h0, h1, . . . , hd < 2η.
4: t← c · f0; h0 ← t mod 2η; h1 ← bt/2ηc
5: c← 0
6: for i← 1 to d− 1 do
7: t← c · fi; hi+1 ← bt/2ηc
8: t← hi + t mod 2η + c; hi ← t mod 2η; c← bt/2ηc
9: end for

10: hd ← hd + c
11: return h(θ) = h0 + h1θ + · · ·+ hdθ

d

12: end function.

The multiplication in Step 4 of mulSCC can be completed using a single mulx operation. The for
loop in Steps 6 to 9 uses an interleaved sequence of multiplications and additions. The additions involve
a carry propagation through the variable c. Step 4 can be completed using a single mulx instruction
while Step 5 can be completed using an adc instruction. The single bit value of the carry variable c is
carried through CF. Note that mulx does not affect CF and so it is possible to use adc instructions to
implement the carry chain. Since the mul instruction affects CF, using mul instead of mulx would not
have allowed an efficient implementation of the carry chain using adc instructions.

The single carry chain of mulSCC is pictorially depicted in Figure 1a. The horizontal rectangular
boxes denote the two η-bit quantities arising out of the multiplication shown at the left end of the
corresponding row. The vertical oval shape encapsulates the quantities that are added using the adc

instruction. These consist of two η-bit quantities and the carry c whose value is available in the CF flag.
In general, it is required to multiply two integers written as polynomials f(θ) and g(θ) having degrees

d and e respectively. This is performed using Function mulSLDCC given in Algorithm 3. The algorithm
is written in a manner so that there are two independent carry chains in action. This is illustrated in
Figure 1b.

Algorithm 3 Multiply f(θ) and g(θ); θ = 2η, η = 64.

1: function mulSLDCC(f(θ), g(θ))
2: input: f(θ) = f0 + f1θ + · · · + fd−1θ

d−1 and g(θ) = g0 + g1θ + · · · + ge−1θ
e−1, where 0 ≤

f0, f1, . . . , fd−1, g0, g1, . . . , ge−1 < 2η, and d ≥ e ≥ 2.
3: output: h(θ) = h0 + h1θ + · · ·+ hd+e−1θ

d+e−1 = f · g, where 0 ≤ h0, h1, . . . , hd+e−1 < 2η.
4: h0 + h1θ + · · ·+ hdθ

d ← mulSCC(f(θ), g0)
5: for i← 1 to e− 1 do
6: c1 ← 0; c2 ← 0
7: for j ← 0 to d− 1 do
8: t← gi · fj
9: r ← hi+j + (t mod 2η) + c1

10: s← hi+j+1 + bt/2ηc+ c2
11: hi+j ← r mod 2η; c1 ← br/2ηc
12: hi+j+1 ← s mod 2η; c2 ← bs/2ηc
13: end for
14: hi+j+1 ← hi+j+1 + c1
15: end for
16: return h(θ) = h0 + h1θ + · · ·+ hd+e−1θ

d+e−1

17: end function.

The multiplications in mulSLDCC are independent and can be performed simultaneously. The two
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(b) Two independent carry chains for mulSLDCC.

Figure 1: Illustration of carry chains.

additions are also independent and can be performed simultaneously. The additions, however, depend
on the result of the previous multiplication. The mulx instruction is used to perform the multiplications.
This instruction does not affect either CF or OF. The two independent carry chains arising in Func-
tion mulSLDCC (and as illustrated in Figure 1b) are implemented using a sequence of adcx and adox

instructions. The adcx instruction uses CF to propagate the carry while the adox instruction uses OF to
propagate the carry.

Intel processors have multiple ALUs. So, the independent additions can be simultaneously executed
on two separate ALUs. Further, subject to availability, the independent multiplications can be scheduled
on separate ALUs and the multiplications and additions can be scheduled in a pipelined manner on
separate ALUs such that the time for addition does not cause any delay in the overall computation.

Squaring an integer of the form f(θ) can be performed by setting both inputs in mulSLDCC to be equal
to f(θ). On the other hand, it is possible to reduce the number of multiplications. Function sqrSLDCC
given in Algorithm 4 squares f(θ). It consists of three phases. In the first phase, the cross product terms
are computed; in the second phase, these are multiplied by 2 (which is a doubling operation); and in the
third phase, the squares of the coefficients of f(θ) are computed. Multiplications are performed in the
first and the third phase. In the first phase, two independent carry chains arise in a manner similar to
that of mulSLDCC. These two chains are implemented using the instructions mulx, adcx and adox. In
the third phase, there is a single carry chain which is implemented using the instructions mulx and adc

in a manner similar to that used in mulSCC.

6 Reduction in Fp Using Saturated Limb Representation

For p = 2m − δ, elements of Fp are m-bit integers and have a (κ, η, ν)-representation. In this section, we
consider saturated limb representation and so η = 64. As mentioned earlier, a multiplication/squaring
in Fp consists of an integer multiplication/squaring followed by a reduction. The integer multiplication
and squaring operations are respectively performed by the functions mulSLDCC and sqrSLDCC described
in Section 5. In both cases, two m-bit integers having (κ, η, ν)-representations are multiplied and the
product is a 2m-bit integer having (κ′, η, ν′)-representation where the values of κ′ and ν′ are given by
Proposition 1. The task of the reduction is to reduce the product modulo p to an m-bit integer which
again has a (κ, η, ν)-representation.

We provide two reduction algorithms using the saturated limb representation, namely reduceSLMP
which works for Mersenne primes and reduceSLPMP which works for pseudo-Mersenne primes. A
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Algorithm 4 Square f(θ); θ = 2η, η = 64.

1: function sqrSLDCC(f(θ))
2: input: f(θ) = f0 + f1θ + · · ·+ fd−1θ

d−1 such that 0 ≤ f0, f1, . . . , fd−1 < 2η.
3: output: h = h0 + h1θ + · · ·+ h2d−1θ

2d−1 = f2 such that 0 ≤ h0, h1, . . . , h2d−1 < 2η.
4: h1 + h2θ + · · ·+ hdθ

d ← mulSCC(f1 + f2θ + · · ·+ fd−1θ
d−2, f0)

5: for i← 1 to d− 3 do hd+i ← 0 end for
6: for i← 1 to d− 3 do
7: c1 ← 0; c2 ← 0
8: for j ← i+ 1 to d− 1 do
9: t← fi · fj

10: r ← hi+j + (t mod 2η) + c1; s← hi+j+1 + bt/2ηc+ c2
11: hi+j ← r mod 2η; c1 ← br/2ηc
12: hi+j+1 ← s mod 2η; c2 ← bs/2ηc
13: end for
14: hi+j+1 ← hi+j+1 + c1
15: end for
16: t← fd−1 · fd−2

17: r ← h2d−3 + (t mod 2η); h2d−3 ← r mod 2η

18: c← br/2ηc; h2d−2 ← bt/2ηc+ c
19: h2d−1 ← bh2d−2/2

η−1c
20: for i← 2d− 1 down to 2 do hi ← (2hi mod 2η) + bhi−1/2

η−1c end for
21: h1 ← 2h1 mod 2η

22: t← f0 · f0

23: h0 ← t mod 2η; t← h1 + bt/2ηc
24: h1 ← t mod 2η; c← bt/2ηc
25: for i← 1 to d− 1 do
26: t← fi · fi
27: r ← h2i + (t mod 2η) + c; h2i ← r mod 2η; c← br/2ηc
28: r ← h2i+1 + bt/2ηc+ c; h2i+1 ← r mod 2η; c← br/2ηc
29: end for
30: return h(θ) = h0 + h1θ + . . .+ h2d−1θ

2d−1

31: end function.

Algorithm 5 Reduction for saturated limb representation. Performs reduction modulo p, where p =
2m − 1 is a Mersenne prime; θ = 2η.

1: function reduceSLMP(h(0)(θ))
2: Input: h(0)(θ).
3: Output: h(3)(θ).
4: for i← 2κ− 1 down to κ do
5: h

(1)
i ← (2η−νh

(0)
i ) mod 2η + bh(0)

i−1/2
νc; h(1)

i−κ ← h
(0)
i−κ

6: end for
7: h

(1)
κ−1 ← h

(0)
κ−1 mod 2ν

8: t← h
(1)
0 + h

(1)
κ ; h

(2)
0 ← t mod 2η; c← bt/2ηc

9: for i← 1 to κ− 2 do
10: t← h

(1)
i + h

(1)
κ+i + c; h

(2)
i ← t mod 2η; c← bt/2ηc

11: end for
12: h

(2)
κ−1 ← h

(1)
κ−1 + h

(1)
2κ−1 + c

13: t← h
(2)
0 + bh(2)

κ−1/2
νc; h(3)

0 ← t mod 2η; c← bt/2ηc
14: for i← 1 to κ− 2 do
15: t← h

(2)
i + c; h

(3)
i ← t mod 2η; c← bt/2ηc

16: end for
17: h

(3)
κ−1 ← h

(2)
κ−1 mod 2ν + c

18: Full Reduction: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1

19: end function.

Mersenne prime is also a pseudo-Mersenne prime and so reduceSLPMP also works for Mersenne primes,
but, for such primes it will be slower than reduceSLMP. On the other hand, reduceSLMP does not work
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for pseudo-Mersenne primes.

6.1 Mersenne Primes

Let p = 2m − 1 and suppose m-bit integers have a (κ, η, ν)-representation. Function reduceSLMP given
in Algorithm 5 takes as input the output of either mulSLDCC or sqrSLDCC and outputs an m-bit integer
in an (κ, η, ν)-representation, which is congruent to the input modulo p.

The following result states the correctness of reduceSLMP

Theorem 2. Let p = 2m − 1 be a Mersenne prime and let κ ≥ 2, η and ν be such that, m-bit integers
have a (κ, η, ν)-representation. Suppose that the input h(0)(θ) to reduceSLMP is the output of either
mulSLDCC(f(θ), g(θ)) or sqrSLDCC(f(θ)) where f(θ) and g(θ) represent m-bit integers having (κ, η, ν)-
representations. Then the output h(3)(θ) of reduceSLMP has a (κ, η, ν)-representation and h(3)(θ) ≡
h(0)(θ) mod p.

Proof. Since m-bit integers have a (κ, η, ν)-representation, we have m = η(κ− 1) + ν with 0 < ν ≤ η. If
ν = η, then m = κη and so p = 2m − 1 = 2κη − 1 = (2κ)η − 1, which has a factor 2κ − 1 contradicting
that p is a prime. So, if p is a Mersenne prime, then it necessarily follows that ν < η.

The input h(0)(θ) to reduceSLMP is the product of two m-bit integers each having a (κ, η, ν)-
representation. From Proposition 1, the 2m-bit integer h(0)(θ) has a (κ′, η, ν′)-representation where
the values of κ′ and ν′ are given by Proposition 1. Using these values, we have the following bounds on
the coefficients of h(0)(θ).

0 ≤ h(0)
0 , h

(0)
1 , . . . , h

(0)
2κ−3 < 2η; and

0 ≤ h(0)
2κ−2 < 22ν , h

(0)
2κ−1 = 0 if 0 < ν ≤ η/2;

0 ≤ h(0)
2κ−2 < 2η, 0 ≤ h(0)

2κ−1 < 22ν−η if η/2 < ν < η.

(9)

The input h(0)(θ) can be written as

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1 + h(0)
κ θκ + h

(0)
κ+1θ

κ+1 + · · ·+ h
(0)
2κ−1θ

2κ−1,

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1) + (h(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1)θκ,

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1) + (h(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1)2η−ν mod p, (10)

since using (5) and δ = 1, we have θκ = 2κη = 2(κ−1)η+ν · 2η−ν = 2m · 2η−ν ≡ 2η−ν mod p. For
j = κ− 1, κ, . . . , 2κ− 2, define

h
(0)
j = h

(0)
j,0 + h

(0)
j,12ν , where h

(0)
j,0 = h

(0)
j mod 2ν , and h

(0)
j,1 = bh(0)

j /2νc. (11)

Using (9), we have the following bounds on h
(0)
j,0 and h

(0)
j,1 .

Claim 1. 0 ≤ h
(0)
j,0 < 2ν for j = κ − 1, κ, . . . , 2κ − 2; 0 ≤ h

(0)
j,1 < 2η−ν for j = κ − 1, κ, . . . , 2κ − 3; and

0 ≤ h(0)
2κ−2,1 < 2ν if 0 < ν ≤ η/2; 0 ≤ h(0)

2κ−2,1 < 2η−ν if η/2 < ν < η.

Substituting (11) into (10) we obtain

h(0)(θ)

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−2θ

κ−2 + (h
(0)
κ−1,0 + h

(0)
κ−1,12ν)θκ−1) +

((h
(0)
κ,0 + h

(0)
κ,12ν) + (h

(0)
κ+1,0 + h

(0)
κ+1,12ν)θ + · · ·+ (h

(0)
2κ−2,0 + h

(0)
2κ−2,12ν)θκ−2 +

h
(0)
2κ−1θ

κ−1)2η−ν mod p

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−2θ

κ−2 + h
(0)
κ−1,0θ

κ−1) +

(h
(0)
κ−1,12((κ−1)η+ν) + h

(0)
κ,02η−ν + h

(0)
κ,12η + h

(0)
κ+1,022η−ν + h

(0)
κ+1,122η + · · ·+ (12)

h
(0)
2κ−2,02(κ−1)η−ν + h

(0)
2κ−2,12(κ−1)η + h

(0)
2κ−12κη−ν) [using θ = 2η] (13)

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−2θ

κ−2 + h
(0)
κ−1,0θ

κ−1) +

(h
(0)
κ−1,1 + 2η−νh

(0)
κ,0) + (h

(0)
κ,1 + 2η−νh

(0)
κ+1,0)θ + (h

(0)
κ+1,1 + 2η−νh

(0)
κ+2,0)θ2 + · · ·+

(h
(0)
2κ−3,1 + 2η−νh

(0)
2κ−2,0)θκ−2 + (h

(0)
2κ−2,1 + 2η−νh

(0)
2κ−1)θκ−1 mod p [using (5) and δ = 1].

(14)
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In reduceSLMP, Steps 4 to 7 perform the computations in (14), giving us

h(0)(θ) ≡ (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1) + (h(1)
κ + h

(1)
κ+1θ + · · ·+ h

(1)
2κ−1θ

κ−1)︸ ︷︷ ︸
through Steps 4 to 7

= h(1)(θ), (15)

where h
(1)
j = h

(0)
j for j = 1, 2, . . . , κ− 2, h

(1)
κ−1 = h

(0)
κ−1,0,

h
(1)
j = 2η−νh

(0)
j,0 + h

(0)
j−1,1 for j = κ, κ+ 1, . . . , 2κ− 2, and h

(1)
2κ−1 = 2η−νh

(0)
2κ−1 + h

(0)
2κ−2,1.

In (15), it directly follows that 0 ≤ h
(1)
0 , h

(1)
1 , . . . , h

(1)
κ−2 < 2η and h

(1)
κ−1 < 2ν . The bounds on

h
(1)
κ , h

(1)
κ+1, . . . , h

(1)
2κ−1 are given in the following result.

Claim 2. 0 ≤ h(1)
κ , h

(1)
κ+1, . . . , h

(1)
2κ−2 < 2η and 0 ≤ h(1)

2κ−1 < 2ν .

Proof. Using Claim 1, for j = κ, κ+ 1, . . . , 2κ− 2 we have

0 ≤ h(1)
j = bh(0)

j−1/2
νc+ (2η−νh

(0)
j ) mod 2η

= h
(0)
j−1,1 + (2η−νh

(0)
j,0 + 2ηh

(0)
j,1) mod 2η

= h
(0)
j−1,1 + 2η−νh

(0)
j,0 ,

which implies 0 ≤ h
(1)
j < 2η−ν + 2η−ν(2ν − 1) = 2η. The argument for the bounds on h

(1)
2κ−1 is in two

cases.

Case 1: 0 < ν ≤ η/2. From (9) and Claim 1, h
(1)
2κ−1 = 2η−νh

(0)
2κ−1 + h

(0)
2κ−2,1 < 2ν .

Case 2: η/2 < ν < η. From (9) and Claim 1, h
(1)
2κ−1 = 2η−νh

(0)
2κ−1 +h

(0)
2κ−2,1 < 2η−ν(22ν−η−1)+2η−ν =

2ν .

In Steps 8 to 12, we pairwise add the coefficients of θ0, θ1, . . . , θκ−1 sequentially in (15) by forwarding
the 1-bit carry to the subsequent pair to get an intermediate κ-limb polynomial h(2) as

h(1)(θ) = (h
(1)
0 + h(1)

κ ) + (h
(1)
1 + h

(1)
κ+1)θ + · · ·+ (h

(1)
κ−1 + h

(1)
2κ−1)θκ−1,

= h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1︸ ︷︷ ︸
through Steps 8 to 12

= h(2)(θ). (16)

From the computation done in the Steps 8 to 11 it follows that

0 ≤ h(2)
0 , h

(2)
1 , . . . , h

(2)
κ−2 < 2η. (17)

Also, since 0 ≤ h(1)
κ−1, h

(1)
2κ−1 ≤ 2ν − 1 and 0 ≤ c ≤ 1, we have

0 ≤ h(2)
κ−1 = h

(1)
κ−1 + h

(1)
2κ−1 + c ≤ 2ν+1 − 1 (18)

≤ 2η − 1 (using ν < η). (19)

From (15), (16), (17) and (18), we have h(2)(θ) ≡ h(0)(θ) mod p and h(2)(θ) has a (κ, η, ν+1)-representation.
Equation (19) proves that Step 12 does not lead to an overflow. Define

h
(2)
κ−1 = h

(2)
κ−1,0 + h

(2)
κ−1,12ν , where h

(2)
κ−1,0 = h

(2)
κ−1 mod 2ν and h

(2)
κ−1,1 = bh(2)

κ−1/2
νc. (20)

From (18), it follows that that 0 ≤ h(2)
κ−1,0 < 2ν and 0 ≤ h(2)

κ−1,1 ≤ 1. We write

h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−2θ

κ−2 + (h
(2)
κ−1,0 + h

(2)
κ−1,12ν)θκ−1

= h
(2)
0 + h1θ + · · ·+ h

(2)
κ−2θ

κ−2 + h
(2)
κ−1,0θ

κ−1 + h
(2)
κ−1,12(κ−1)η+ν

≡ (h
(2)
0 + h

(2)
κ−1,1) + h

(2)
1 θ + · · ·+ h

(2)
κ−2θ

κ−2 + h
(2)
κ−1,0θ

κ−1 mod p [using (5) and δ = 1]. (21)

The following result is crucial in arguing that the carry will be absorbed at some point in the computation.
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Claim 3. If h
(2)
κ−1,1 = 1, then it is impossible to simultaneously have h

(2)
0 = h

(2)
1 = · · · = h

(2)
κ−2 = 2η − 1

and h
(2)
κ−1,0 = 2ν − 1.

Proof. Suppose h
(2)
κ−1,1 = 1 and let if possible, h

(2)
0 = h

(2)
1 = · · · = h

(2)
κ−2 = 2η − 1, h

(2)
κ−1,0 = 2ν − 1. So,

from (20), we have h
(2)
κ−1 = h

(2)
κ−1,0 + h

(2)
κ−1,12ν = 2ν+1− 1. In this case, the polynomial h(2)(θ) is given as

follows.

h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1,

= (2η − 1) + (2η − 1)2η + · · ·+ (2ν+1 − 1)2(κ−1)η,

= 2(κ−1)η+ν+1 − 1,

= 2m+1 − 1 [using (5)]. (22)

From (16), h(2)(θ) is obtained by adding the polynomials (h
(1)
0 + h

(1)
1 θ + · · · + h

(1)
κ−1θ

κ−1) and (h
(1)
κ +

h
(1)
κ+1θ+ · · ·+ h

(1)
2κ−1θ

κ−1), where 0 ≤ h(1)
0 , h

(1)
1 , . . . , h

(1)
κ−2, h

(1)
κ , . . . , h

(1)
2κ−2 < 2η and 0 ≤ h(1)

κ−1, h
(1)
2κ−1 < 2ν .

So, the maximum possible value of each of the polynomials is 2m − 1 and hence the bounds of h(2)(θ)
should be 0 ≤ h(2)(θ) < 2m+1 − 1, which contradicts what is obtained in (22). Hence the result.

The computation h
(3)
0 = (h

(2)
0 + bh(2)

κ−1/2
νc) mod 2η in (21) is performed in Step 13, and the 1-bit c

is forwarded to the subsequent terms for addition, which are performed in Steps 14 to 17 producing the

values of h
(3)
1 , h

(3)
2 , . . . , h

(3)
κ−1. Hence, (21) can be written as

h(2)(θ) ≡ h(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1︸ ︷︷ ︸
through Steps 14 to 17

mod p = h(3)(θ).
(23)

We now argue that either the c out of Step 13 is 0 or it is absorbed in one of the subsequent additions in

Steps 15 or in the addition in Step 17. If h
(2)
κ−1,1 = 0, then the c out of Step 13 itself is 0. So, suppose that

h
(2)
κ−1,1 = 1. From Claim 3, it follows that either there is a j ∈ {0, 1, . . . , κ − 2} such that h

(2)
j < 2η − 1

or h
(2)
κ−1,0 < 2ν − 1. In the former case, the c is absorbed by one of the additions in Step 15; if this does

not happen, then the later case arises and the carry is absorbed by the addition in Step 17.
This shows that the algorithm terminates without any overflow and at the end of the algorithm we

have 0 ≤ h
(3)
0 , h

(3)
1 , . . . , h

(3)
κ−2 < 2η and 0 ≤ h

(3)
κ−1 < 2ν and so h(3)(θ) has a (κ, η, ν)-representation.

Further, By combining (15), (16), (21) and (23) we have h(3)(θ) ≡ h(0)(θ) mod p, which proves the
statement of the theorem on full reduction.

6.2 Pseudo-Mersenne Primes

Let p = 2m− δ and suppose m-bit integers have a (κ, η, ν)-representation. Function reduceSLPMP given
in Algorithm 6 takes as input the output of either mulSLDCC or sqrSLDCC and outputs an m-bit integer
in an (κ, η, ν)-representation which is congruent to the input modulo p.

As in the case of reduceSLMP, for the correctness of reduceSLPMP, it is not required to have η = 64.
The value of η = 64 is used for 64-bit implementation and the algorithm can equally well be used with
η-bit arithmetic for any value of η (say η = 32 or η = 128).

We note that reduceSLMP does not work if δ > 1. This may not be immediately obvious from the
description of reduceSLMP. To see that reduceSLMP does not work when δ > 1, one needs to consider
the proof of correctness of the algorithm. In the proof of Theorem 2, the step from (13) to (14) uses
2(κ−1)η+ν = 2m ≡ δ mod p. In the case of Mersenne primes, δ = 1 and so the step from (13) to (14)
works; for δ > 1, this step does not work. Instead, we consider a multiplication of the upper half of
the input by cp = 2η−νδ at the very beginning and then the resulting polynomial is reduced in several
steps. Due to this multiplication, the number of iterations required to obtain the complete reduction in
reduceSLPMP is one more than that required in reduceSLMP. Also, the termination argument (that after
a certain stage there is no carry) is more complicated.

Remark: The boolean condition in Step 22 of reduceSLPMP does not depend on the input h(0)(θ) and
is determined entirely by η, ν and α. So, once the prime and the values of η and ν are fixed, either the
‘then’ part of the ‘if’ statement will be required or, the ‘else’ part of the ‘if’ statement will be required.
Among the primes considered in Table 3, the ‘else’ part is required only for the prime 2256 − 232 − 977.

We state a simple result which will be useful in arguing about the termination of reduceSLPMP.
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Algorithm 6 Reduction for saturated limb representation. Performs reduction modulo p, where p =
2m − δ is a pseudo-Mersenne prime; cp = 2η−νδ, 2α−1 ≤ δ < 2α, ν′ = 2(1− bν/ηc) and θ = 2η.

1: function reduceSLPMP(h
(0)
0 (θ))

2: input: h(0)(θ).
3: output: h(3)(θ) or h(4)(θ).

4: for i← 0 to κ− 1 do h
(1)
i ← h

(0)
i end for

5: h
(1)
κ + h

(1)
κ+1θ + · · ·+ h

(1)
2κ θ

κ ← mulSCC(h
(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1, cp)

6: t← h
(1)
0 + h

(1)
κ ; h

(2)
0 ← t mod 2η; c← bt/2ηc

7: for i← 1 to κ− 1 do
8: t← h

(1)
i + h

(1)
κ+i + c; h

(2)
i ← t mod 2η; c← bt/2ηc

9: end for
10: h

(2)
κ ← h

(1)
2κ + c

11: r ← 2η−νh
(2)
κ + bh(2)

κ−1/2
νc; h(2)

κ−1 ← h
(2)
κ−1 mod 2ν

12: u← h
(2)
0 + δr; h

(3)
0 ← u mod 2η; q ← bu/2ηc

13: v ← h
(2)
1 + q; h

(3)
1 ← v mod 2η; c← bv/2ηc

14: for i← 2 to κ− 2 do
15: t← h

(2)
i + c; h

(3)
i ← t mod 2η; c← bt/2ηc

16: end for
17: h

(3)
κ−1 ← h

(2)
κ−1 + c

18: Partial Reduction for ν < η: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1

19: t← h
(3)
κ−1; h

(3)
κ−1 ← t mod 2η; c← bt/2ηc; h(3)

κ ← c

20: s← 2η−νh
(3)
κ + bh(3)

κ−1/2
νc; h(3)

κ−1 ← h
(3)
κ−1 mod 2ν

21: z = h
(3)
0 + δs

22: if max(2η−ν+α, 22α+ν′) + 2η−ν+α − 2α ≤ 2η−1 then

23: h
(4)
0 ← z; h

(4)
1 ← h

(3)
1

24: else
25: h

(4)
0 ← z mod 2η; c← bz/2ηc; h(4)

1 = h
(3)
1 + c

26: end if
27: for i← 2 to κ− 1 do h

(4)
i ← h

(3)
i end for

28: Full Reduction: return h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
κ−1θ

κ−1

29: end function.

Lemma 3. Let x, y1 and y2 be two integers such that 0 ≤ x < 2η and 0 ≤ y1, y2 ≤ 2η−1. Then either
x+ y1 < 2η or y2 + (x+ y1 mod 2η) < 2η.

Proof. If 0 ≤ x < 2η − y1, then x + y1 < 2η and so the result holds. Otherwise, assume that 2η − y1 ≤
x < 2η. In this case, 2η ≤ x + y1 < 2η + y1. So, 0 ≤ x + y1 mod 2η < y1 ≤ 2η−1. Consequently,
y2 ≤ y2 + (x+ y1 mod 2η) < y2 + 2η−1 ≤ 2η, which proves the result.

The following result states the correctness of reduceSLPMP

Theorem 4. Let p = 2m−δ be a prime and let κ ≥ 2, η and ν be such that, m-bit integers have a (κ, η, ν)-
representation. Let α be such that 2α−1 ≤ δ < 2α and α < min (ν + 1, η − 2(1− bν/ηc)). Suppose that
the input h(0)(θ) to reduceSLPMP is the output of either mulSLDCC(f(θ), g(θ)) or sqrSLDCC(f(θ)) where

� f(θ) and g(θ) are m-bit integers having (κ, η, ν)-representations, if ν = η;

� f(θ) and g(θ) are (m+ 1)-bit integers having (κ, η, ν + 1)-representations, if ν < η.

Then the following holds.

1. In the case of partial reduction for ν < η, the output h(3)(θ) of reduceSLPMP has a (κ, η, ν + 1)-
representation and h(3)(θ) ≡ h(0)(θ) mod p.

2. In the case of full reduction, the output h(4)(θ) of reduceSLPMP has a (κ, η, ν)-representation and
h(4)(θ) ≡ h(0)(θ) mod p.
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Proof. Note that since p = 2m − δ is a prime, for δ > 1, δ cannot be a power of 2. Let ν′ = 2(1− bν/ηc)
and so ν′ = 0 if ν = η and ν′ = 2 for 0 < ν < η. From α < min (ν + 1, η − ν′), we have

α ≤ α+ ν′ ≤ η − 1. (24)

Also, since δ < 2α and α ≤ ν, we have δ < 2ν . Using 2α−1 ≤ δ < 2α,

2η−ν+α−1 ≤ cp = 2η−νδ < 2η−ν+α (25)

≤ 2η (since α ≤ ν).

So, cp < 2η and hence can be considered to be an η-bit word.
The input h(0)(θ) is the product of two m-bit integers each having a (κ, η, ν)-representation. As in

the proof of Theorem 2, using Proposition 1 we have the following bounds on the coefficients of h(0)(θ).

Case 1: ν < η.

0 ≤ h(0)
0 , h

(0)
1 , . . . , h

(0)
2κ−3 < 2η; and

0 ≤ h(0)
2κ−2 < 22(ν+1), h

(0)
2κ−1 = 0 if 1 < ν + 1 ≤ η/2;

0 ≤ h(0)
2κ−2 < 2η, 0 ≤ h(0)

2κ−1 < 22(ν+1)−η if η/2 < ν + 1 ≤ η.

Case 2: ν = η.

0 ≤ h(0)
0 , h

(0)
1 , . . . , h

(0)
2κ−1 < 2η.

For the case 0 < ν + 1 ≤ η/2, we have 0 ≤ h(0)
2κ−2 < 22ν+2 ≤ 2η. The above cases can be merged and the

following bounds can be stated for all 0 < ν ≤ η.

0 ≤ h(0)
0 , h

(0)
1 , . . . , h

(0)
2κ−3, h

(0)
2κ−2 < 2η and 0 ≤ h(0)

2κ−1 < max(1, 22ν−η+ν′). (26)

Using θ = 2η and p = 2m − δ we have

θκ = 2κη = 2(κ−1)η+ν · 2η−ν = 2m · 2η−ν ≡ 2η−νδ mod p = cp. (27)

The input h(0) to reduceSLPMP can be written as

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1 + h(0)
κ θκ + h

(0)
κ+1θ

(κ+1) + · · ·+ h
(0)
2κ−1θ

(2κ−1)

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1) + (h(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1)θκ

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1) + (h(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1)cp. (28)

Step 5 computes the product (h
(0)
κ +h

(0)
κ+1θ+ · · ·+h

(0)
2κ−1θ

κ−1)cp of (28) using mulSCC, obtaining the

output as (h
(1)
κ +h

(1)
κ+1θ+· · ·+h(1)

2κ θ
κ). Step 4 simply copies the values of h

(0)
i to h

(1)
i , for i = 0, 1, . . . , κ−1.

This defines the polynomial h(1)(θ) and from (28) we have

h(0)(θ) ≡ (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1)︸ ︷︷ ︸
through Step 4

+ (h(1)
κ + h

(1)
κ+1θ + · · ·+ h

(1)
2κ θ

κ)︸ ︷︷ ︸
through Step 5

mod p

= h(1)(θ). (29)

Limb bounds of h(1)(θ): The bounds on h
(0)
j are given in (26). So, by Step 4, 0 ≤ h

(1)
j < 2η, j =

0, 1, . . . , κ − 1. Let X(θ) = h
(0)
κ + h

(0)
κ+1θ + · · · + h

(0)
2κ−1θ

κ−1 and Y (θ) = h
(1)
κ + h

(1)
κ+1θ + · · · + h

(1)
2κ θ

κ.
Using (26), the size of the integer represented by X(θ) is at most (κ− 1)η+ 2ν− η+ ν′ bits. The integer
represented by Y (θ) is obtained by multiplying X(θ) by the constant cp. From (25), the size of cp is at
most (η − ν + α) bits. Hence, the number of bits in the integer represented by Y (θ) is at most

(κ− 1)η + 2ν − η + ν′ + (η − ν + α) = (κ− 1)η + ν + α+ ν′.

If ν + α+ ν′ ≤ η, then Y (θ) has a (κ, η, ν + α+ ν′)-representation. Suppose that ν + α+ ν′ > η. Since
0 < ν ≤ η and from (24), α+ ν′ < η we have α+ ν′ < ν+α+ ν′ < 2η. Writing (κ− 1)η+ (ν+α+ ν′) =
κη+ (ν+α+ν′−η), in this case, Y (θ) has a (κ+ 1, η, ν+α+ν′−η)-representation. Combining the two
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cases, the limb bounds for Y (θ) = (h
(1)
κ + h

(1)
κ+1θ+ · · ·+ h

(1)
2κ θ

κ) are 0 ≤ h(1)
j < 2η, j = κ, κ+ 1, . . . 2κ− 1,

0 ≤ h(1)
2κ < max(1, 2ν+α+ν′−η). Hence, the limb bounds of h(1)(θ) can be stated as

0 ≤ h(1)
j < 2η for j = 0, 1, . . . , 2κ− 1, and 0 ≤ h(1)

2κ < max(1, 2ν+α+ν′−η). (30)

Through Steps 6 to 10, we pairwise add the coefficients of θ0, θ1, . . . , θκ−1 given in (29) sequentially

by forwarding the 1-bit carry, and in Step 10 we add the last carry to h
(1)
2κ producing the (κ + 1)-limb

polynomial h(2)(θ). Hence, from (29) we have

h(1)(θ) = (h
(1)
0 + h(1)

κ ) + (h
(1)
1 + h

(1)
κ+1)θ + · · ·+ (h

(1)
κ−1 + h

(1)
2κ−1)θκ−1 + h

(1)
2κ θ

κ,

= h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1 + h(2)
κ θκ︸ ︷︷ ︸

through Steps 6 to 10

= h(2)(θ). (31)

Limb bounds of h(2)(θ): Using the bounds in (30), the bounds on the limbs of h(2)(θ) defined in (31)
are given by

0 ≤ h(2)
j < 2η for j = 0, 1, . . . , κ− 1, and 0 ≤ h(2)

κ ≤ max(1, 2ν+α+ν′−η). (32)

In Step 11, r = 2η−νh
(2)
κ + bh(2)

κ−1/2
νc is computed and the product δr is used in Step 12. The bounds

on r and δr are obtained as follows.

Bounds on r and δr: From (32), we have 0 ≤ h(2)
κ−1 < 2η and so bh(2)

κ−1/2
νc < 2η−ν i.e., bh(2)

κ−1/2
νc ≤

2η−ν − 1. Also, from (32), we have 0 ≤ h(2)
κ ≤ max(1, 2ν+α+ν′−η). From the definition of r, we obtain

0 ≤ r ≤ max(2η−ν , 2α+ν′) + 2η−ν − 1

⇒ 0 ≤ δr < max(2η−ν+α, 22α+ν′) + 2η−ν+α − 2α [since δ < 2α]. (33)

If the boolean condition in Step 22 holds, then

0 ≤ δr < 2η−1. (34)

Otherwise, a bound on δr is obtained by continuing the computation of (33) as follows.

⇒ 0 ≤ δr < max(22η−ν−1, 22η−2) + 22η−ν−1 − 2η−1 [from (24) α, α+ ν′ ≤ η − 1]

⇒ 0 ≤ δr < 22η−2 + 22η−ν−1 − 2η−1 [since ν ≥ 1]

⇒ 0 ≤ δr < 22η−1 − 2η−1 [again since ν ≥ 1]. (35)

So, (35) holds irrespective of whether the boolean condition in Step 22 holds or not. The variable u is
defined in Step 12. From (32) and (35) an upper bound on u is as follows.

u = h
(2)
0 + δr < 2η − 1 + 22η−1 − 2η−1. (36)

Write h
(2)
κ−1 = h

(2)
κ−1,0 + h

(2)
κ−1,12ν where h

(2)
κ−1,0 = h

(2)
κ−1 mod 2ν and h

(2)
κ−1,1 = bh(2)

κ−1/2
νc. Then

h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1 + h(2)
κ θκ

= h
(2)
0 + h

(2)
1 θ + · · ·+ (h

(2)
κ−1,0 + h

(2)
κ−1,12ν)θκ−1 + h(2)

κ θκ

= h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 + h
(2)
κ−1,12η(κ−1)+ν + h(2)

κ θκ

= h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 + h
(2)
κ−1,12m + h(2)

κ θκ

≡ h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 + h
(2)
κ−1,1δ + h(2)

κ cp [using 2m ≡ δ mod p and (25)]

= h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 + (h
(2)
κ−1,1 + h(2)

κ 2η−ν)δ [using (25)]

= (rδ + h
(2)
0 ) + h

(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 [from Step 11]

= u+ h
(2)
1 θ + · · ·+ h

(2)
κ−1,0θ

κ−1 [from Step 12] (37)

≡ h
(3)
0 + h

(3)
1 θ + · · ·+ h(3)

κ θκ︸ ︷︷ ︸
through Steps 12 to 19

mod p = h(3)(θ). (38)

The analysis of the rest of the algorithm, i.e., Steps 12 to 27 is divided into two cases depending on
whether u < 2η or u ≥ 2η.
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Case 1: u < 2η. In this case, q = bu/2ηc = 0, and so from Steps 13 to 16 we have 0 ≤ h
(3)
j = h

(2)
j <

2η for j = 1, 2, . . . , κ − 2. Also, 0 ≤ h
(3)
κ−1 = h

(2)
κ−1 < 2ν , because in Step 11 we have already updated

h
(2)
κ−1 by h

(2)
κ−1 mod 2ν . By Step 12, we have h

(3)
0 = u mod 2η < 2η, and Step 19 gives h

(3)
κ = 0. So, in this

case, h(3)(θ) returned at Step 18 has a (κ, η, ν)-representation irrespective of whether ν < η or ν = η.
By (29), (31) and (38) we have h(3)(θ) ≡ h(0)(θ) mod p. This proves the statement of the theorem on
partial reduction for Case 1.

Further, we have s = 0 by Step 20, and so by the remaining steps of the algorithm we have 0 ≤ h(4)
j =

h
(3)
j < 2η for j = 0, 1, . . . , κ − 2 and 0 ≤ h

(4)
κ−1 = h

(3)
κ−1 < 2ν , i.e., h(4)(θ) has a (κ, η, ν)-representation.

It follows that h(4)(θ) = h(3)(θ) and using (29), (31) and (38), we have h(4)(θ) ≡ h(0)(θ) mod p which
proves the statement of the theorem on full reduction for Case 1.

Case 2: u ≥ 2η. Step 12 defines q to be q = bu/2ηc. Since in this case u ≥ 2η, the bounds on q are
the following.

1 ≤ q ≤
⌊

2η − 1 + 22η−1 − 2η−1

2η

⌋
[using (36)]

⇒ 1 ≤ q ≤
⌊

1− 1

2η
+ 2η−1 − 1

2

⌋
⇒ 1 ≤ q ≤ 2η−1 +

⌊
1

2
− 1

2η

⌋
⇒ 1 ≤ q ≤ 2η−1 < 2η − 1. (39)

In Step 13, the algorithm computes v = h
(2)
1 + q. There are two sub cases to consider depending on

whether v < 2η or v ≥ 2η.

Subcase 2a: v < 2η. Step 13 defines c = bv/2ηc and so c = 0 at this step. This simplifies the analysis
and the rest of the proof is similar to that of Case 1.

Subcase 2b: v ≥ 2η. This is the non-trivial case and it is required to argue that there are no overflows.
In this case, using (32) and (39), we have

2η ≤ v = h
(2)
1 + q < 2η + 2η − 1 = 2η+1 − 1. (40)

So, 2η ≤ v ≤ 2η+1 − 2 = 2η + 2η − 2 implying v mod 2η ≤ 2η − 2 < 2η − 1. After Step 13,

h
(3)
1 = v mod 2η < 2η − 1 and 0 ≤ c ≤ 1.

Consider h(3)(θ) as given in (38).

� By Step 12, we have 0 ≤ h(3)
0 < 2η.

� Since c ≤ 1, considering Step 15 for i = 2, 3, . . . , κ− 2, shows 0 ≤ h(3)
j < 2η for j = 2, 3, . . . , κ− 2.

� Recall that h
(2)
κ−1,0 = h

(2)
κ−1 mod 2ν ≤ 2ν − 1 and consider Step 15 for i = κ − 1. Since c ≤ 1, we

have h
(3)
κ−1 ≤ 2ν and so h

(3)
κ−1 is a (ν + 1)-bit integer.

Consequently, if ν < η, then h(3)(θ) has a (κ, η, ν + 1)-representation and by (29), (31) and (38) we have
h(3)(θ) ≡ h(0)(θ) mod p. This proves the statement of the theorem on partial reduction for Subcase 2b.

On the other hand, if ν = η, then h
(3)
κ−1 will be an (η + 1)-bit string (equivalently, h(3)(θ) will be an

(m + 1)-bit integer) and further reduction is required to ensure that the number of limbs in the final
result is κ. So, for ν = η, partial reduction is not useful. The general analysis for obtaining the final
reduction irrespective of whether ν < η or ν = η is given below.
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In Steps 20 and 21, the algorithm computes s = 2η−νh
(3)
κ + bh(3)

κ−1/2
νc and z = h

(3)
0 + δs respectively.

Write h
(3)
κ−1 = h

(3)
κ−1,0 + h

(3)
κ−1,12ν where h

(3)
κ−1,0 = h

(3)
κ−1 mod 2ν and h

(3)
κ−1,1 = bh(3)

κ−1/2
νc. Then

h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1 + h(3)
κ θκ

= h
(3)
0 + h

(3)
1 θ + · · ·+ (h

(3)
κ−1,0 + h

(3)
κ−1,12ν)θκ−1 + h(3)

κ θκ

= h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 + h
(3)
κ−1,12η(κ−1)+ν + h(3)

κ θκ

= h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 + h
(3)
κ−1,12m + h(3)

κ θκ

≡ h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 + h
(3)
κ−1,1δ + h(3)

κ cp mod p [using (5) and (25)]

= h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 + (h
(3)
κ−1,1 + h(3)

κ 2η−ν)δ [using (27)]

= (sδ + h
(3)
0 ) + h

(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 [from Step 20]

= z + h
(3)
1 θ + · · ·+ h

(3)
κ−1,0θ

κ−1 [from Step 21]. (41)

Claim 4. The value of s computed in Step 20 is at most 1.

Proof. The value of s is 2η−νh
(3)
κ + bh(3)

κ−1/2
νc.

In Step 11, h
(2)
κ−1 is set to h

(2)
κ−1 mod 2ν and so after this step 0 ≤ h

(2)
κ−1 < 2ν . Consider Steps 17

and 19. We have 0 ≤ h(2)
κ−1 < 2ν and so the value of t at Step 19 is at most 2ν .

� The value of h
(3)
κ−1 is set to be equal to t mod 2η. So, if ν < η then 0 ≤ h

(3)
κ−1 ≤ 2ν , while if ν = η

then 0 ≤ h(3)
κ−1 < 2η.

� The updated value of c is bt/2ηc and this can be equal to 1 only if ν = η. This value of c is assigned

to h
(3)
κ in Step 19. So, h

(3)
κ = 1 only if ν = η.

If ν < η, then h
(3)
κ = 0 and bh(3)

κ−1/2
νc ≤ 1 implying that s ≤ 1. On the other hand, if ν = η, then

2η−νh
(3)
κ = h

(3)
κ ≤ 1 and bh(3)

κ−1/2
νc = bh(3)

κ−1/2
ηc = 0 again implying that s ≤ 1.

If s = 0, then z = h
(3)
0 , implying h

(4)
0 = h

(3)
0 and c at Step 25 is 0. So, h

(4)
0 = h

(3)
0 and h

(4)
1 = h

(3)
1

hold for both branches of the ‘if’ statement in Step 22. From Step 27 it follows that h(4)(θ) = h(3)(θ).

If s = 1, then z = h
(3)
0 + δ. The termination arguments for the two branches of the ‘if’ statement at

Step 22 are different.
First suppose that the boolean condition of the ‘if’ statement evaluates to true. We apply Lemma 3

with x = h
(2)
0 , y1 = δr and y2 = δ. From (34), we have 0 ≤ δr < 2η−1 which also implies 0 < δ < 2η−1.

In Step 12, u is computed as u = h
(2)
0 + δr = x+ y1 and h

(3)
0 = u mod 2η = x+ y1 mod 2η. In Step 23,

h
(0)
4 = z = h

(3)
0 + δ = y2 + (x+ y1 mod 2η). In Case 2, u ≥ 2η, i.e., x+ y1 ≥ 2η. Then from Lemma 3,

we have h
(0)
4 = y2 + (x+ y1 mod 2η) < 2η. So, the procedure terminates.

Now consider the case that the boolean condition of the ‘if’ statement evaluates to false. By Step 20

we have 0 ≤ h
(3)
κ−1 < 2ν and 0 ≤ h

(4)
0 < 2η by Step 25. The value of c in Step 25 can be at most 1, and

since the bound of h
(3)
1 is 0 ≤ h(3)

1 < 2η − 1, hence after Step 25 we have 0 ≤ h(4)
1 < 2η.

So, after both branches of the ‘if’ statement in Step 22, the limb bounds of h(4)(θ) are 0 ≤ h
(4)
j <

2η for j = 0, 1, . . . , κ− 2, and 0 ≤ h(4)
κ−1 < 2ν . From (41) we can write

h(3)(θ) ≡ h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
κ−1θ

κ︸ ︷︷ ︸
through Steps 20 to 27

mod p = h(4)(θ). (42)

Combining (29), (31), (38) and (42) we have h(4)(θ) ≡ h(0)(θ) mod p, which proves the statement of
the theorem on full reduction for Subcase 2b.

Usefulness of partial reduction: The statement of Theorem 4 identifies two cases. If ν < η, then
the input to reduceSLPMP is considered to be a (2m+ 2)-bit integer, whereas if ν = η, then the input to
reduceSLPMP is considered to be a 2m-bit integer. This is the consequence of whether partial reduction
is used or not. In the case of ν < η, a partial reduction strategy is used whereas for ν = η, such a
strategy is not used. For the partial reduction strategy, the output h(3)(θ) returned by reduceSLPMP is
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an (m+1)-bit integer. So, if partial reduction strategy is used throughout, then the inputs to mulSLDCC
and sqrSLDCC will also be (m + 1)-bit integers and so their outputs will be (2m + 2)-bit integers.
Subsequent applications of reduceSLPMP will have to handle (2m + 2)-bit integers. This is the reason
why the statement of Theorem 4 specifies the input to reduceSLPMP to be a (2m + 2)-bit integer for
the case ν < η. On the other hand, for ν = η, partial reduction is not used and so the output h(4)(θ)
of reduceSLPMP is an m-bit integer and consequently, the outputs of mulSLDCC and sqrSLDCC will be
2m-bit integers.

Partial reduction is useful since it avoids the computation required to reduce h(3)(θ) to h(4)(θ). All
intermediate computations are performed using partially reduced results and the full reduction is invoked
only once at the end. This strategy leads to substantial savings in the number of operations and hence
on the consequent speed of computation.

There does not seem to be an efficient way in which the partial reduction strategy can be made
to work for Mersenne primes. A possible partially reduced result in reduceSLMP would be h(2)(θ). It
can be shown that when the input to reduceSLMP is the product of two m-bit integers each having
(κ, η, ν)-representation, then h(2)(θ) has a (κ, η, ν + 1)-representation, i.e., it is an (m + 1)-bit integer.
So, mulSLDCC and sqrSLDCC will produce as output (2m + 2)-bit integers. Feeding such an integer as
the input of reduceSLMP results in h(2)(θ) having a (κ, η, ν + 3)-representation. In other words, the size
of the last limb grows. This can be brought down, but, doing this requires additional computation and
results in the partial reduction being less efficient than the full reduction that we have described. In the
case of pseudo-Mersenne primes, the partial result returned by reduceSLPMP avoids such growth of the
last limb.

Remark: Step 5 of reduceSLPMP performs a mulSCC call. As described in Section 5, this call can
be implemented using a single carry chain by using the mulx and adc instructions. In reduceSLPMP,
Steps 6 to 9 add the output of mulSCC to the initial κ limbs of the input h(0). It is possible to consider
a strategy whereby the multiplications and the additions within mulSCC are done simultaneously with
the additions in Steps 6 to 9. It is possible to organise the code such that two independent carry chains
arise so that one of the addition chains is implemented using adcx and the other using adox. We have
implemented this strategy, but, the gain in speed is not significant and so we do not describe the details.

A variant of reduceSLPMP: Bernstein et al. [6] have used an algorithm for partial reduction using a
4-limb representation of 2255 − 19. Function reduceSLPMPa in Algorithm 7 provides a generalization of
this algorithm which works for a large class of pseudo-Mersenne primes.

Similar to reduceSLPMP, the boolean condition in Step 19 of reduceSLPMPa does not depend on the
input h(0)(θ) and is determined entirely by η, ν and α. So, either the ‘then’ part of the ‘if’ statement
will be required or, the ‘else’ part of the ‘if’ statement will be required. Among the primes considered
in Table 3, the ‘else’ part is required only for the prime 2256 − 232 − 977.

The following result states the correctness of reduceSLPMPa

Theorem 5. Let p = 2m−δ be a prime and let κ ≥ 2, η and ν be such that, m-bit integers have a (κ, η, ν)-
representation. Let α be such that 2α−1 ≤ δ < 2α. Suppose that the input h(0)(θ) to reduceSLPMPa is
the output of either mulSLDCC(f(θ), g(θ)) or sqrSLDCC(f(θ)) where f(θ) and g(θ) are κη-bit integers
having (κ, η, η)-representations. Then the output h(4)(θ) of reduceSLPMPa has a (κ, η, η)-representation
and h(4)(θ) ≡ h(0)(θ) mod p.

Proof. The proof is similar to the proof of Theorem 4. The inputs to reduceSLPMP and reduceSLPMPa
are of different sizes. On the other hand, Steps 4 to 10 of reduceSLPMPa is exactly the same as that of
reduceSLPMP. So, the bounds on the limbs of h(2)(θ) can be derived in a manner similar to the bounds

obtained in (32) and are as follows: 0 ≤ h(2)
j < 2η for j = 0, 1, . . . , κ− 1, and 0 ≤ h(2)

κ ≤ max(1, 2ν+α−η).

Since r is computed as r = h
(2)
κ · cp = h

(2)
κ · 2η−νδ < 2η−ν+α, we have 0 ≤ r ≤ max(2η−ν+α, 22α). The

upper bound on r gives rise to the boolean condition in Step 19. The rest of the argument proceeds along
the same lines as that of Theorem 4 and is in fact a bit simpler. The ‘if’ statement in Step 19 determines
whether the last addition takes place at limb number 0 (which is the ‘then’ part), or, whether it takes
place at limb number 1 (which is the ‘else’ part). The ‘else’ part is required only if the addition to limb
number 0 can produce a carry. This part of the argument is similar to the argument for termination
corresponding to s = 1 in the proof of Theorem 4.

Comparison of reduceSLPMP and reduceSLPMPa: We note the following points.
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Algorithm 7 Partial reduction for saturated limb representation. Performs reduction modulo p, where
p = 2m − δ is a pseudo-Mersenne prime; cp = 2η−νδ and θ = 2η.

1: function reduceSLPMPa(h
(0)
0 (θ))

2: input: h(0)(θ).
3: output: h(4)(θ).

4: for i← 0 to κ− 1 do h
(1)
i ← h

(0)
i end for

5: h
(1)
κ + h

(1)
κ+1θ + · · ·+ h

(1)
2κ θ

κ ← mulSCC(h
(0)
κ + h

(0)
κ+1θ + · · ·+ h

(0)
2κ−1θ

κ−1, cp)

6: t← h
(1)
0 + h

(1)
κ ; h

(2)
0 ← t mod 2η; c← bt/2ηc

7: for i← 1 to κ− 1 do
8: t← h

(1)
i + h

(1)
κ+i + c; h

(2)
i ← t mod 2η; c← bt/2ηc

9: end for
10: h

(2)
κ ← h

(1)
2κ + c

11: r ← h
(2)
κ · cp

12: u← h
(2)
0 + r; h

(3)
0 ← u mod 2η; c← bu/2ηc

13: for i← 1 to κ− 1 do
14: t← h

(2)
i + c; h

(3)
i ← t mod 2η; c← bt/2ηc

15: end for
16: h

(3)
κ ← c

17: s← h
(3)
κ · cp

18: z = h
(3)
0 + s;

19: if max(2η−ν+α, 22α+ν′) ≤ 2η−1 then

20: h
(4)
0 ← z; h

(4)
1 ← h

(3)
1

21: else
22: h

(4)
0 ← z mod 2η; c← bz/2ηc; h(4)

1 = h
(3)
1 + c

23: end if
24: for i← 2 to κ− 1 do h

(4)
i ← h

(3)
i end for

25: Partial Reduction: return h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
κ−1θ

κ−1

26: end function.

1. Full reduction can be obtained using reduceSLPMP, but, reduceSLPMPa always performs partial
reduction. So, if reduceSLPMPa is used, then the last reduction is to be done by reduceSLPMP, or,
the final output of reduceSLPMPa is to be further reduced using some other method. On the other
hand, if ν < η and reduceSLPMP is used, then partial reduction will be done for all but the last
invocation, and the last invocation will perform full reduction. No other code is required to ensure
full reduction.

2. The computation of r in reduceSLPMP is slightly more expensive than the computation of r in
reduceSLPMPa. Using partial reduction for reduceSLPMP avoids generating h(4)(θ) from h(3)(θ)
saving a few instructions. Compared to reduceSLPMPa, saving these instructions more or less
balances the extra cost of generating r.

3. We have implemented both reduceSLPMP and reduceSLPMPa as part of the various inversion algo-
rithms. It has been found that the assembly implementations using reduceSLPMP performs better
than the assembly implementations using reduceSLPMPa in Skylake and Kaby Lake architectures.

Remark: Theorems 2, 4 and 5 also hold if the algorithms mulSL and sqrSL are used instead of
mulSLDCC and sqrSLDCC respectively.

7 Multiplication Using Unsaturated Limb Representation

The unsaturated limb representation has been very effectively used in the various implementations of
Curve25519 [3, 7, 6, 9].

In the case of saturated limb representation, the tasks of integer multiplication/squaring and reduc-
tion are completely separate, i.e., the integer multiplication step simply multiplies two integers while the
integer squaring step simply squares an integer without any reference to the prime which will be used to
perform the reduction step. In the case of unsaturated limb representation, the multiplication/squaring
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step is not simply an integer multiplication/squaring. It uses the underlying prime to return an inter-
mediate reduced result which is then provided as input to the reduction algorithm. Two strategies are
described below. The first strategy is a generalization to arbitrary pseudo-Mersenne primes of a strategy
used for Curve25519 [6]. For some primes, however, this strategy leads to overflow in the intermediate
result. To handle such cases, we describe a modified strategy which works for a larger class of primes.
To the best of our knowledge, this modified strategy has not appeared earlier in the literature either in
its general form or, for any particular prime.

As in Section 3, let p = 2m − δ, θ = 2η, and cp = 2η−νδ. Since we are working with the unsaturated
limb representation, η < 64. Let f(θ) and g(θ) be two elements of Fp written as

f(θ) = f0 + f1θ + · · ·+ fκ−1θ
κ−1,

g(θ) = g0 + g1θ + · · ·+ gκ−1θ
κ−1,

where 0 ≤ fi, gi < 2η for i = 0, 1, . . . , κ − 2, and 0 ≤ fκ−1, gκ−1 < 2ν . The product of f(θ) and g(θ)
modulo p can be written as the polynomial h(θ) = h0 + h1θ + · · ·+ hκ−1θ

κ−1 where

h0 = f0g0 + cp(f1gκ−1 + f2gκ−2 + · · ·+ fκ−2g2 + fκ−1g1),

h1 = f0g1 + f1g0 + cp(f2gκ−1 + · · ·+ cpfκ−2g3 + fκ−1g2),

· · · · · · · · · · · · · · · · · · · · · · · · (43)

hκ−2 = f0gκ−2 + f1gκ−3 + f2gκ−4 + · · ·+ fκ−2g0 + cpfκ−1gκ−1,

hκ−1 = f0gκ−1 + f1gκ−2 + f2gκ−3 + · · ·+ fκ−2g1 + fκ−1g0.

Substituting g = f , we get similar equations for squaring and during the squaring computation, each
cross-product term is computed only once. We have

hmax = max(h0, h1, . . . , hκ−1). (44)

If hmax < 2128, then each of the coefficients hi, i = 0, 1, . . . , κ − 1 fit in two 64-bit words. In such
cases, the above strategy for multiplication/squaring is feasible. We denote the resulting algorithm
for multiplication (resp. squaring) as mulUSL (resp. sqrUSL). We note that for many primes, hmax is
significantly below 2128 and this plays a role in the efficient implementation of the subsequent reduction
algorithm.

7.1 Modified Multiplication Strategy

In the case where hmax ≥ 2128, the coefficients in (43) do not fit within two 64-bit words. This happens
when the value of cp = 2η−νδ is a bit large. One example of such a prime is 2256 − 232 − 977 for which
δ = 232 + 977, κ = 5, η = 52 and ν = 48 so that cp = 16(232 + 977) is a 37-bit integer. To handle such
primes, we describe a simple modification of the previous strategy. Define

u0 = f1gκ−1 + f2gκ−2 + · · ·+ fκ−2g2 + fκ−1g1,

u1 = f2gκ−1 + · · ·+ fκ−2g3 + fκ−1g2,

· · · · · · · · · · · · · · · · · · · · · · · · (45)

uκ−2 = fκ−1gκ−1,

where max(u0, u1, . . . , uκ−2) = u0 ≤ umax with umax = (2η − 1)
2

(κ− 1) . For i = 0, 1, . . . , κ− 2, define

ui,0 = ui mod 2η, uj,1 = buj/2ηc so that uj = uj,0 + 2ηuj,1 = uj,0 + uj,1θ. (46)

Then for f(θ) · g(θ) = h(θ) = h0 + h1θ+ · · ·+ hκ−1θ
κ−1 such that the coefficients h0, . . . , hκ−1 are given

by (43), we have h(θ) = h′(θ) = h′0 + h′1θ + · · ·+ h′κ−1θ where

h′0 = f0g0 + cpu0,0,

h′1 = f0g1 + f1g0 + cp(u1,0 + u0,1),

· · · · · · · · · · · · · · · · · · · · · · · · (47)

h′κ−2 = f0gκ−2 + f1gκ−3 + · · ·+ fκ−2g0 + cp(uκ−2,0 + uκ−1,1),

h′κ−1 = f0gκ−1 + f1gκ−2 + · · ·+ fκ−1g0 + cpuκ−2,1.

Let

h′max = max(h′0, h
′
1, . . . , h

′
κ−1). (48)
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If umax < 2128 and h′max < 2128, then each of the coefficients ui, i = 0, 1, . . . , κ − 2 and also each of the
coefficients hj , j = 0, 1, . . . , κ − 1 fit in two 64-bit words. So, even if some coefficient of h(θ) is greater
than or equal to 2128, it is still feasible to compute h′(θ) using 64-bit arithmetic without any overflow.
We denote the resulting multiplication and squaring algorithms by mulUSLa and sqrUSLa respectively.

Remarks:

1. The rationale for obtaining h′0, h
′
1, . . . , h

′
κ−1 is that h0, h1, . . . , hκ−1 are not 128-bit quantities. For

certain primes, it may happen that there is an i ∈ {0, 1, . . . , κ − 1} such that h0, h1, . . . , hi are
greater than 2128 − 1 while hi+1, hi+2 . . . , hκ−1 are each at most 2128 − 1. In such cases, it would
be sufficient to use h′0, h

′
1 . . . , h

′
i, hi+1, . . . , hκ−1.

2. In [15], a different strategy was used to tackle the situation when hmax ≥ 2128. This strategy
consists of ‘expanding’ u0, u1, . . . , uκ−2 to κ, η-bit quantities u0, u1, . . . , uκ−2 and then adding cpu0

to f0g0; cpu1 to f0g1 +f1g0 and so on. In the present case, this strategy turns out to be less efficient
than the strategy used to obtain h′0, h

′
1, . . . , h

′
κ−1.

7.2 Dovetailing with Reduction Algorithms

The outputs of the multiplication/squaring algorithms are fed as inputs into the reduction algorithms
and the outputs of the reduction algorithms are fed as inputs to the multiplication/squaring algorithms.
In the (κ, η, ν)-representation of an m-bit integer, each of the first κ − 1 limbs is η bits long and the
last limb is ν bits long. So, one may consider the goal of the reduction algorithms to ensure that the
output indeed has a (κ, η, ν)-representation. It is, however, more efficient to obtain a partial reduction,
where some of the coefficients of the output of the reduction algorithms may have one extra bit. Such a
strategy is feasible, if the multiplication/squaring algorithms applied to such inputs do not lead to any
overflow. Based on such criterion, we describe three reduction algorithms.

Let f(θ) = f0 + f1θ + · · ·+ fκ−1θ
κ−1 and g(θ) = g0 + g1θ + · · ·+ gκ−1θ

κ−1.

General reduction algorithm: Let f(θ) = f0 + f1θ + · · · + fκ−1θ
κ−1. Define a predicate genCond(f)

to be true if and only if

0 ≤ f0, f2, . . . , fκ−2 < 2η;
0 ≤ f1 < 2η+1;
0 ≤ fκ−1 < 2ν .

(49)

Consider the following conditions.

1. The inputs f(θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy genCond(f) and genCond(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f(θ) and g(θ) be h(θ) or h′(θ)
respectively. Suppose that hmax < 2127 or h′max < 2127 as the case may be.

3. κ ≥ 3.

If the above conditions hold, then we describe the reduction algorithm reduceUSL which takes as input
either h(θ) or h′(θ) as the case may be and produces an output for which (49) holds.

Reduction algorithm for primes of Type A: Let f(θ) = f0+f1θ+· · ·+fκ−1θ
κ−1. Define a predicate

condA(f) to be true if and only if

0 ≤ f1, f2, . . . , fκ−2 < 2η;
0 ≤ f0 < 2η+1;
0 ≤ fκ−1 < 2ν .

(50)

Consider the following conditions.

1. The inputs f(θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy condA(f) and condA(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f(θ) and g(θ) be h(θ) or h′(θ)
respectively. Suppose that hmax < 2` or h′max < 2` as the case may be and ` < 63 + ν.

3. κ ≥ 3.

If the above three conditions hold, then we describe the reduction algorithm reduceUSLA which takes as
input either h(θ) or h′(θ) as the case may be and produces an output for which (50) holds. The primes
for which reduceUSLA applies have been identified as type A in Table 3.
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Reduction algorithm for primes of Type B: Let f(θ) = f0 +f1θ+· · ·+fκ−1θ
κ−1. Define a predicate

condB(f) to be true if and only if

0 ≤ f0, f1, . . . , fκ−2 < 2η+1;
0 ≤ fκ−1 < 2ν+1.

(51)

Consider the following conditions.

1. The inputs f(θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy condA(f) and condA(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f(θ) and g(θ) be h(θ) or h′(θ)
respectively. Suppose that hmax < 2` or h′max < 2` as the case may be and 64 + ν < ` ≤ 128.

3. κ ≥ 3.

If the above three conditions hold, then we describe the reduction algorithm reduceUSLB which takes as
input either h(θ) or h′(θ) as the case may be and produces an output for which (51) holds. The primes
for which reduceUSLB applies have been identified as type B in Table 3. There are two such primes. Note
that the condition ` < 63 + ν used to identify type A primes and the condition 64 + ν < ` ≤ 128 used to
identify type B primes are non-exhaustive. They do not cover the values of ` = 63 + η and ` = 64 + η.
None of the primes in Table 3 correspond to such values of ` and so this is not an issue.

For the three primes identified as type G in Table 3, the conditions required to apply either re-
duceUSLA or reduceUSLB do not hold. It is possible to consider further conditions to develop an al-
gorithm for the type G primes and we have indeed implemented such an algorithm. This algorithm,
however, turns out to be slower than the generic reduceUSL and so we do not describe the details of it.

8 Reduction in Fp Using Unsaturated Limb Representation

In this section, we describe several reduction algorithms which works with the unsaturated limb repre-
sentation. The first of this is Function reduceUSL and is shown in Algorithm 8.

Algorithm 8 Reduction for unsaturated limb representation. Performs reduction modulo p = 2m − δ;
m-bit integers have a (κ, η, ν)-representation with η < 64; θ = 2η.

1: function reduceUSL(h(0)(θ))
2: input: h(0)(θ).
3: output: h(1)(θ) or h(2)(θ).

4: u← h
(0)
0 mod 2η; r0 ← bh(0)

0 /2ηc
5: t1 ← h

(0)
1 + r0; v ← t1 mod 2η; r1 ← bt1/2ηc

6: for i← 2 to κ− 2 do
7: ti ← h

(0)
i + ri−1; h

(1)
i ← ti mod 2η; ri ← bti/2ηc

8: end for
9: tκ−1 ← h

(0)
κ−1 + rκ−2; h

(1)
κ−1 ← tκ−1 mod 2ν ; rκ−1 ← btκ−1/2

νc
10: t← u + δrκ−1; h

(1)
0 ← t mod 2η; r0 ← bt/2ηc

11: h
(1)
1 ← v + r0

12: Partial Reduction: return h(1)(θ) = h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1

13: w ← h
(1)
1 mod 2η; c1 ← bh(1)

1 /2ηc
14: for i← 2 to κ− 2 do
15: t← h

(1)
i + ci−1; h

(2)
i ← t mod 2η; ci ← bt/2ηc

16: end for
17: t← h

(1)
κ−1 + cκ−2; h

(2)
κ−1 ← t mod 2ν ; cκ−1 ← bt/2νc

18: t← h
(1)
0 + δcκ−1; h

(2)
0 ← t mod 2η; c0 ← bt/2ηc

19: t← w + c0; h
(2)
1 ← t mod 2η; c← bt/2ηc

20: h
(2)
2 ← h

(2)
2 + c

21: Full Reduction: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1

22: end function.

Theorem 6 below states the correctness of reduceUSL The correctness is based on two assumptions
both of which are valid for all the primes considered in this work.
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Theorem 6. Let p = 2m − δ and m be such that m-bit integers have (κ, η, ν)-representation with κ ≥ 3

and δ < 22η+ν−129. Suppose the input h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1 to reduceUSL is such that

0 ≤ h(0)
i < 2128 − 2128−η for i = 0, 1, . . . , κ− 1.

1. For partial reduction, the output of reduceUSL is h(1)(θ) = h
(1)
0 +h

(1)
1 θ+ · · ·+h

(1)
κ−1θ

κ−1, where 0 ≤
h

(1)
1 < 2η+1, 0 ≤ h(1)

0 , h
(1)
2 , . . . , h

(1)
κ−2 < 2η and 0 ≤ h(1)

κ−1 < 2ν satisfying h(1)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output h(2)(θ) of reduceUSL has a (κ, η, ν)-representation and h(2)(θ) ≡
h(0)(θ) mod p.

Proof. Since 0 ≤ h
(0)
0 < 2128 − 2128−η, after Step 4, the bounds on u and r0 are 0 ≤ u < 2η and

0 ≤ r0 < 2128−η respectively. In Step 5, t is set to h
(0)
1 + r0 implying 0 ≤ t < 2128. Consequently,

0 ≤ v < 2η and 0 ≤ r1 < 2128−η respectively. After Steps 4-5, h(0)(θ) can be written as

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1

= (u+ r0θ) + h
(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1

= u+ (h
(0)
1 + r0)θ + · · ·+ h

(0)
κ−1θ

κ−1

= u+ t1θ + h
(0)
2 θ2 + · · ·+ h

(0)
κ−1θ

κ−1

= u+ (v + r1θ)θ + h
(0)
2 θ2 + · · ·+ h

(0)
κ−1θ

κ−1

= u+ vθ + (h
(0)
2 + r1)θ2 + · · ·+ h

(0)
κ−1θ

κ−1. (52)

The coefficients h
(1)
2 , h

(1)
3 . . . , h

(1)
κ−1 are computed in Steps 6 to 9 as follows.

h
(1)
j = (h

(0)
j + rj−1) mod 2η, rj = b(h(0)

j + rj−1)/2ηc, j = 2, 3, . . . , κ− 2,

h
(1)
κ−1 = (h

(0)
κ−1 + rκ−2) mod 2ν , rκ−1 = b(h(0)

κ−1 + rκ−2)/2νc
(53)

where 0 ≤ rj < 2128−η and 0 ≤ rκ−1 < 2128−ν . Starting from (52) and using (53), the effect of Steps 6
to 9 can be written in the following manner.

h(0)(θ) = u+ vθ + (h
(0)
2 + r1)θ2 + · · ·+ h

(0)
κ−1θ

κ−1

= u+ vθ + t1θ
2 + h

(0)
3 θ3 + · · ·+ h

(0)
κ−1θ

κ−1

= u+ vθ + (h
(1)
2 + r2θ)θ

2 + h
(0)
3 θ3 + · · ·+ h

(0)
κ−1θ

κ−1

= u+ vθ + h
(1)
2 θ2 + (h

(0)
3 + r2)θ3 + · · ·+ h

(0)
κ−1θ

κ−1

· · · · · · · · · · · · · · · · · · · · ·
= u+ vθ + h

(1)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + (h
(0)
κ−1 + rκ−2)θκ−1

= u+ vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + tκ−1θ
κ−1

= u+ vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + (h
(1)
κ−1 + rκ−12ν)θκ−1

= u+ vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 + rκ−12(κ−1)η+ν [since θ = 2η]

≡ u+ vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 + rκ−1δ mod p [using (5)] (54)

where 0 ≤ u, v, h
(1)
2 , h

(1)
3 , . . . , h

(1)
κ−2 < 2η and 0 ≤ h

(1)
κ−1 < 2ν . The bounds on δrκ−1 are 0 ≤ δrκ−1 <

22η+ν−129 · 2128−ν = 22η−1. In Step 10, t is assigned to u+ δrκ−1 and so 0 ≤ t < 22η. By the remaining

two instructions of Step 10, we get 0 ≤ h(1)
0 < 2η and 0 ≤ r0 < 2η. By Step 11 we have, 0 ≤ h(1)

1 < 2η+1.
Hence, from (54), through Steps 10 and 11 we obtain

h(0)(θ) ≡ (u+ δrκ−1) + vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 mod p

= t+ vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1

= (t mod 2η + bt/2ηcθ) + vθ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 [since θ = 2η]

= h
(1)
0 + (v + r0)θ + h

(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1

= h
(1)
0 + h

(1)
1 θ + h

(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 = h(1)(θ),
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where 0 ≤ h
(1)
1 < 2η+1, 0 ≤ h

(1)
0 , h

(1)
2 , . . . , h

(1)
κ−2 < 2η, and h

(1)
κ−1 < 2ν . From (55) we have h(1)(θ) ≡

h(0)(θ) mod p which proves the statement on partial reduction.
To ensure full reduction another pass over the limbs is required. This is performed in Steps 13 to 20.

First assume that h
(2)
2 computed in Step 20 satisfies 0 ≤ h

(2)
2 < 2η. Then, it is routine to argue in

a manner similar to above that the final computed h(2)(θ) is such that h(2)(θ) ≡ h(0)(θ) mod p and

0 ≤ h(2)
i < 2η for i = 0, 1, . . . , κ− 2 and 0 ≤ h(2)

κ−1 < 2ν .

We now show that h
(2)
2 computed in Step 20 satisfies 0 ≤ h

(2)
2 < 2η. Since h

(1)
1 < 2η+1, this implies

c1 ≤ 1. In the first iteration of the loop in Steps 14 to 17, c1 is added to h
(1)
2 to obtain t. From this t,

h
(2)
2 is obtained as t mod 2η and c2 is obtained as c = bt/2ηc. So, c2 ≤ 1. Since h

(1)
2 < 2η, c2 = 1 if and

only if h
(1)
2 = 2η − 1 and in this case, h

(2)
2 = 0. The following observations can be noted.

1. ci, c ≤ 1 for i = 0, 1, . . . , κ− 1.

2. If c2 = 0, then ci = 0 for i = 3, 4, . . . , κ− 1 and c0 = c = 0.

So, if c2 = 0, then c = 0 and so the value of h
(2)
2 computed in Step 20 is equal to the value of h

(2)
2

computed in Step 15. Since the value of h
(2)
2 computed in this step satisfies 0 ≤ h

(2)
2 < 2η so does the

value of h
(2)
2 computed in Step 20. On the other hand, if c2 = 1, then the value of h

(2)
2 computed in

Step 15 is 0 and so, the value of h
(2)
2 computed in Step 20 is equal to c ≤ 1. So, in both cases, the bounds

0 ≤ h(2)
2 < 2η hold.

An important implementation issue: In Steps 4, 5, 7, 9 and 10, the operations w mod 2τ and
bw/2τc are performed on a 128-bit quantity w where τ is either η or ν. The operation bw/2τc heavily
influences the overall performance of the algorithm. We describe the implementation of the operations
w mod 2τ and bw/2τc in more details. The 128-bit quantity w is stored in two 64-bit words w0 and w1

such that w = w0 + w1264. There are two cases to consider.

Case 1: 0 ≤ w < 2128−τ . In this case, 0 ≤ w1 < 264−τ , i.e., w1 is at most a (64 − τ)-bit word. So, it
is possible to left shift w1 by τ bits and at the same time move in the τ most significant bits of w0 into
the τ least significant bits of w1. The assembly level Intel instruction for doing this is shld and the two
operations w mod 2τ and bw/2τc are executed as follows.

shld 64− τ , w0, w1

and 2τ − 1, w0.

After executing these two steps, w1 stores bw/2τc and w0 stores w mod 2τ .

Case 2: w ≥ 2128−τ . In this case, 0 ≤ w1 < 264−τ and the length of w1 in bits is more than 64 − τ
bits. So, left shifting w1 by τ bits will result in loss of information and the strategy of Case 1 does not
work. Further, the result of bw/2τc is more than 64 bits in length and requires two 64-bit words to be
stored. The strategy in this case is the following. First copy w0 to another 64-bit location x0. Right
shift τ bits of w0 while moving in τ least significant bits of w1 into the most significant bits of w0. (The
Intel instruction for doing this is shld.) Then, right shift w1 by τ bits. The two operations w mod 2τ

and bw/2τc are executed as follows.

mov w0, x0

and 2τ − 1, x0

shrd τ , w1, w0

shr τ , w1.

After executing the above steps, x0 stores w mod 2τ ; w0 stores the 64 least significant bits of bw/2τc
and the (64− τ) least significant bits of w1 stores the (64− τ) most significant bits of bw/2τc.

Clearly Case 2 is more time consuming than Case 1. The applicability of Case 1 and Case 2 to the
primes that we have considered are as follows.

1. For primes identified as type A in Table 3, Case 1 can be applied, except for the prime 2222 − 117
where Case 2 needs to be applied only for Step 4 of reduceUSL.

2. For primes identified as type B in Table 3, Case 2 needs to be applied.
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A computational bottleneck: The various computations b·/2τc in reduceUSL are strictly sequential.
Correspondingly, the operations shld or shrd as the case may be, are not independent and have to be
executed in sequence. These are relatively high latency operations and so the strict sequential execution
of these operations have a negative impact on the overall performance of the algorithm.

We next describe two other reduction algorithms. The main motivation of these algorithms is to try
and ensure that the operations shld or shrd are independent. Achieving such independence comes at
the cost of increasing the total number of operations. Even then, for certain primes, the independence
of these operations result in an overall faster algorithm.

Remark: Steps 13 to 19 also use the operation b·/2τc, but, these are on 64-bit quantities and can be
efficiently implemented using the shr instruction.

8.1 Improved Reduction for Type A Primes

Function reduceUSLA in Algorithm 9 describes a reduction algorithm which improves upon reduceUSL
for primes identified as type A in Table 3.

Algorithm 9 Improved reduction algorithm for primes identified as type A in Table 3 using unsatu-
rated limb representation. Performs reduction modulo p = 2m − δ and m-bit integers have a (κ, η, ν)-
representation with η < 64; θ = 2η.

1: function reduceUSLA(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(3)(θ).

4: r ← h
(0)
0 mod 2η

5: for i← 1 to κ− 2 do
6: h

(1)
i ← h

(0)
i mod 2η + bh(0)

i−1/2
ηc

7: end for
8: h

(1)
κ−1 ← h

(0)
κ−1 mod 2ν + bh(0)

κ−2/2
ηc

9: s← bh(0)
κ−1/2

νc; h(1)
0 ← r + δs

10: u← h
(1)
0 mod 2η; r0 ← bh(1)

0 /2ηc
11: for i← 1 to κ− 2 do
12: ti ← h

(1)
i + ri−1; h

(2)
i ← ti mod 2η; ri ← bti/2ηc

13: end for
14: tκ−1 ← h

(1)
κ−1 + rκ−2; h

(2)
κ−1 ← tκ−1 mod 2ν ; rκ−1 ← btκ−1/2

νc
15: h

(2)
0 ← u+ δrκ−1

16: Partial Reduction: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1

17: v ← h
(2)
0 mod 2η; c0 ← bh(2)

0 /2ηc
18: for i← 1 to κ− 2 do
19: t← h

(2)
i + ci−1; h

(3)
i ← t mod 2η; ci ← bt/2ηc

20: end for
21: t← h

(2)
κ−1 + cκ−2; h

(3)
κ−1 ← t mod 2ν ; cκ−1 ← bt/2νc

22: t← v + δcκ−1; h
(3)
0 ← t mod 2η; c← bt/2ηc

23: h
(3)
1 ← h

(3)
1 + c

24: Full Reduction: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1

25: end function.

The following result states the correctness of reduceUSLA

Theorem 7. Let p = 2m − δ be a type A prime as identified in Table 3; m be such that m-bit integers

have (κ, η, ν)-representation; and δ < 22η+ν−130. Suppose the input h(0)(θ) = h
(0)
0 +h

(0)
1 θ+· · ·+h(0)

κ−1θ
κ−1

to reduceUSLA is such that 0 ≤ h(0)
i < 2` for i = 0, 1, . . . , κ− 1 where ` < 63 + ν.

1. For partial reduction, the output of reduceUSLA is h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
κ−1θ

κ−1, where

0 ≤ h(2)
0 < 2η+1, 0 ≤ h(2)

1 , . . . , h
(2)
κ−2 < 2η and 0 ≤ h(2)

κ−1 < 2ν satisfying h(2)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output h(3)(θ) of reduceUSLA has a (κ, η, ν)-representation and h(3)(θ) ≡
h(0)(θ) mod p.
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Proof. Note that for all the primes identified as type A in Table 3, we have η < 62, Steps 4 to 9 convert
the h(0)(θ) to h(1)(θ) ensuring h(1)(θ) ≡ h(0)(θ) mod p and Steps 10 to 15 convert h(1)(θ) to h(2)(θ)
ensuring h(2)(θ) ≡ h(1)(θ) mod p. Write

h
(0)
j = h

(0)
j,0 + h

(0)
j,12η where h

(0)
j,0 = h

(0)
j mod 2η, h

(0)
j,1 = bh(0)

j /2ηc,
for j = 0, 1, . . . , κ− 2; and

h
(0)
κ−1 = h

(0)
κ−1,0 + h

(0)
κ−1,12ν where h

(0)
κ−1,0 = h

(0)
κ−1 mod 2ν , h

(0)
κ−1,1 = bh(0)

κ−1/2
νc.

(55)

Clearly, 0 ≤ h
(0)
j,0 < 2η < 262 and 0 ≤ h

(0)
j,1 < 2`−η for j = 0, 1 . . . , κ − 2; 0 ≤ h

(0)
κ−1,0 < 2ν and

0 ≤ h(0)
κ−1,1 < 2`−ν . Using ` < 63 + ν and η ≥ ν, we have 0 ≤ h(0)

j,1 < 262 for j = 0, 1, . . . , κ− 1.

In Step 4, r is assigned the value h
(0)
0,0; for i = 1, 2, . . . , κ− 2, the i-th iteration of the loop in Steps 5

to 7 assigns the value (h
(0)
i,0 + h

(0)
i−1,1) to h

(1)
i ; Step 8 assigns the value (h

(0)
κ−1,0 + h

(0)
κ−2,1) to h

(1)
κ−1; Step 9

assigns the value h
(0)
κ−1,1 to s. So, 0 ≤ r < 2η, 0 ≤ s < 2`−ν . Note that 2(κ−1)η+ν = 2m ≡ δ mod p and

so 0 ≤ δs < 22η+`−130 < 22η−2 since ` < 128. Step 9 assigns the value r + δs to h
(1)
0 . The bounds on

h
(1)
i are

0 ≤ h(1)
0 < 22η−1 and 0 ≤ h(1)

i < 263 for i = 1, 2, . . . , κ− 1. (56)

Using θ = 2η, we can write h(0)(θ) as

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1

= (h
(0)
0,0 + h

(0)
0,1θ) + (h

(0)
1,0 + h

(0)
1,1θ)θ + · · ·+ (h

(0)
κ−1,0 + h

(0)
κ−1,12ν)θκ−1

= h
(0)
0,0 + (h

(0)
0,1 + h

(0)
1,0)θ + · · ·+ (h

(0)
κ−2,1 + h

(0)
κ−1,0)θκ−1 + h

(0)
κ−1,12(κ−1)η+ν

≡ (r + δs) + h
(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1 mod p [using (5)]

= h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1 = h(1)(θ). (57)

The argument that Steps 10-14 computes h(2)(θ) such that h(2)(θ) ≡ h(1)(θ) mod p and the limbs of
h(2)(θ) satisfy the stated bounds for partial reduction is similar to the proof of Theorem 6. The points
to be noted are the following.

1. Since 0 ≤ h
(1)
0 < 22η−1, the value of u and r0 computed in Step 10 satisfies 0 ≤ u < 2η and

0 ≤ r0 < 2η−1 respectively.

2. Since 0 ≤ h
(1)
i < 263 for i = 1, 2, . . . , κ − 2, and η < 64, in Step 12 we have 0 ≤ ti < 264,

0 ≤ h(2)
i < 2η and 0 ≤ ri < 264−η for i = 1, 2, . . . , κ− 2.

3. Since 0 ≤ h(1)
κ−1 < 263, in Step 14 we have 0 ≤ tκ−1 < 264, 0 ≤ h(2)

κ−1 < 2ν and 0 ≤ rκ−1 < 264−ν .

4. Since 0 ≤ δ < 22η+ν−130 and 0 ≤ r
(1)
κ−1 < 264−ν , in Step 15 we have 0 ≤ δrκ−1 < 22η−66 < 2η for

all the primes identified as type A in Table 3. This, along with 0 ≤ u < 2η implies 0 ≤ h(2)
0 < 2η+1

in Step 15.
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The effect of Steps 10 to 15 on h
(1)
1 (θ) can be written as

h(1)(θ) = h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1

= (u+ r0θ) + h
(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1

= u+ (h
(1)
1 + r0)θ + · · ·+ h

(1)
κ−1θ

κ−1

= u+ t1θ + h
(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1

= u+ (h
(2)
1 + r1θ)θ + h

(1)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1

= u+ h
(2)
1 θ + (h

(1)
2 + r1)θ2 + · · ·+ h

(1)
κ−1θ

κ−1

· · · · · · · · · · · · · · · · · · · · ·
= u+ h

(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + (h
(0)
κ−1 + rκ−2)θκ−1

= u+ h
(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + tκ−1θ
κ−1

= u+ h
(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−2θ

κ−2 + (h
(1)
κ−1 + rκ−12ν)θκ−1

= u+ h
(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 + rκ−12(κ−1)η+ν [since θ = 2η]

≡ (u+ rκ−1δ) + h
(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 mod p [using (5)]

= h
(2)
0 + h

(2)
1 θ + h

(2)
2 θ2 + · · ·+ h

(1)
κ−1θ

κ−1 = h(2)(θ). (58)

Using the points 1-4 mentioned before, we have the desired bounds on the limbs of h(2)(θ) as 0 ≤
h

(2)
0 < 2η+1, 0 ≤ h

(2)
1 , h

(2)
2 , . . . , h

(2)
κ−2 < 2η and 0 ≤ h

(2)
κ−1 < 2ν . Combining (57) and (58) we have

h(2)(θ) ≡ h(0)(θ) mod p which proves the statement of partial reduction.
The statement on full reduction is proved in a manner which is very similar to that of Theorem 6.

Function reduceUSLA makes two passes over the limbs compared to reduceUSL which makes a single
pass over the limbs. So, the total number of operations required by reduceUSLA is more than that of
reduceUSL. Even then, for primes of type A, it turns out that reduceUSLA is faster than reduceUSL. The
reason is explained below.

Independent double word shifts: The computations b·/2ηc in Steps 6 and 8 are on `-bit quantities
with ` < 63 + η. This computation falls under Case 1 discussed after the proof of Theorem 6 and can be
completed using a single shld instruction. The important difference between reduceUSL and reduceUSLA
is that in the later case, the shld instructions are independent. So, these can be appropriately pipelined
and may also be simultaneously scheduled on separate ALUs. It is this feature that leads to the speed up
of reduceUSLA over reduceUSL. For example, on the Intel Skylake processor, for p = 2255−19, reduceUSLA
takes 25 cycles whereas reduceUSL takes 37 cycles.

Function reduceUSLA has another set of shift operations in Step 14. These operations are on 64-bit
words and hence can be computed using the shr instruction. This is true for all the primes except for
2222− 117 for which the first two limbs of h(1)(θ) have more than 64 bits and hence the shld instruction
has to be applied to extract the required leading bits of these limbs. The latency of shr instruction
is much smaller than the latency of shld instruction. The independence of the shld instructions in
reduceUSLA more than compensates for the extra shr operations.

It is possible to avoid shld instruction and instead implement the desired functionality with the four
instructions shl, mov, shr and or. We have implemented this strategy to try and speed up reduceUSL,
but, the resulting speed is still slower than that of reduceUSLA.

8.2 Improved Reduction for Type B Primes

There are two primes identified as type B in Table 3. If reduceUSLA is applied to these two primes,
then the sizes of all the coefficients of h(1)(θ) will be more than 64 bits. So, the subsequent steps of
reduceUSLA will require application of shld instead of shr. Further, these shld instructions would not
be independent. To avoid this situation, it is possible to make an extra pass over the limbs as in Steps 4
to 9 of reduceUSLA. This results in Function reduceUSLB which is given in Algorithm 10. Each limb of
the partially reduced output of reduceUSLB has an extra bit. As mentioned in Section 7.2, only those
primes are identified as type B for which this does not lead to an overflow in the multiplication and
squaring algorithms.

The following result states the correctness of reduceUSLB
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Algorithm 10 Improved reduction algorithm for primes identified as type B in Table 3 using unsatu-
rated limb representation. Performs reduction modulo p = 2m − δ and m-bit integers have a (κ, η, ν)-
representation with η < 64; θ = 2η.

1: function reduceUSLB(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(4)(θ).
4: for λ← 0 to 1 do
5: r ← h

(λ)
0 mod 2η

6: for i← 1 to κ− 2 do
7: h

(λ+1)
i ← h

(λ)
i mod 2η + bh(λ)

i−1/2
ηc

8: end for
9: h

(λ+1)
κ−1 ← h

(λ)
κ−1 mod 2ν + bh(λ)

κ−2/2
ηc

10: s← bh(λ)
κ−1/2

νc; h(λ+1)
0 ← r + δs

11: end for

12: Partial Reduction: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1

13: for λ← 2 to 3 do
14: h

(λ+1)
0 ← h

(λ)
0 mod 2η; c← bh(λ)

0 /2ηc
15: for i← 1 to κ− 2 do
16: t← h

(λ)
i + c; h

(λ+1)
i ← t mod 2η; c← bt/2ηc

17: end for
18: t← h

(λ)
κ−1 + c; h

(λ+1)
κ−1 ← t mod 2ν ; c← bt/2νc

19: h
(λ+1)
0 ← h

(λ+1)
0 + δc

20: end for
21: t← h

(4)
0 ; h

(4)
0 ← t mod 2η; c← bt/2ηc

22: h
(4)
1 ← h

(4)
1 + c

23: Full Reduction: return h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
κ−1θ

κ−1

24: end function.

Theorem 8. Let p = 2m−δ be a type B prime as identified in Table 3; m be such that m-bit integers have

(κ, η, ν)-representation; and δ < 22η+ν−130. Suppose the input h(0)(θ) = h
(0)
0 + h

(0)
1 θ+ · · ·+ h

(0)
κ−1θ

κ−1 to

reduceUSLA is such that 0 ≤ h(0)
i < 2128 for i = 0, 1, . . . , κ− 1.

1. For partial reduction, the output of reduceUSLB is h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
κ−1θ

κ−1, where

0 ≤ h(2)
0 , h

(2)
1 , . . . , h

(2)
κ−2 < 2η+1 and 0 ≤ h(2)

κ−1 < 2ν+1 satisfying h(2)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output h(4)(θ) of reduceUSLB has a (κ, η, ν)-representation and h(4)(θ) ≡
h(0)(θ) mod p.

Proof. The first iteration of the loop in Steps 4 to 11 converts h(0)(θ) to h(1)(θ). The correctness of this
conversion can be argued in a manner similar to the first part of the proof of Theorem 7. In particular,
we obtain

h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
κ−1θ

κ−1

≡ h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1︸ ︷︷ ︸
through first iteration of Steps 4 to 11

mod p = h(1)(θ).

Proceeding in a manner similar to the first part of the proof of Theorem 7, it can be shown that

0 ≤ h(1)
0 < 22η−1 and 0 ≤ h(1)

1 , h
(1)
2 , . . . , h

(1)
κ−1 < 2129−η.

The second iteration of the loop in Steps 4 to 11 converts h(1)(θ) to h(2)(θ). The correctness of this
argument is also similar to the first part of the proof of Theorem 7. The only thing required is to argue
that the coefficients of h(2)(θ) satisfy the stated bounds.

Step 5 of the second iteration provides r satisfying 0 ≤ r < 2η. We have bh(1)
i−1/2

ηc < 2129−2η,

h
(1)
i mod 2η < 2η for i = 1, 2, . . . , κ − 2, and h

(1)
κ−1 mod 2ν < 2ν < 2η. The following three observations

hold for both the primes identified as type B in Table 3. Their consequences are also mentioned.

1. 129− 2η = 129− 2 · 55 = 129− 110 = 19 < ν < η. Consequently, after Steps 6 to 9 of the second

iteration are 0 ≤ h(2)
1 , h

(2)
2 , . . . , h

(2)
κ−2 < 2η+1 and 0 ≤ h(2)

κ−1 < 2ν+1.
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2. δ < 28. Consequently, after Step 10, δs < 28 · 2129−2ν = 2137−2ν .

3. 137− 2ν ≤ 137− 2 · 52 = 137− 104 = 33 < η. Consequently, after Step 10, 0 ≤ h(2)
0 < 2η+1.

So, we have

h(1)(θ) = h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
κ−1θ

κ−1

≡ h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1︸ ︷︷ ︸
through second iteration of Steps 4 to 11

mod p = h(2)(θ),

where 0 ≤ h(2)
0 , h

(2)
1 , . . . , h

(2)
κ−2 < 2η+1 and 0 ≤ h(2)

κ−1 < 2ν+1. Combining (59) and (59) we have h(2)(θ) ≡
h(0)(θ) mod p, which proves the statement on partial reduction.

The statement on full reduction is proved routinely. The only point to be noted is that a single pass
over the limbs is not sufficient to ensure termination and instead two passes are required.

9 Saturated Limb Computation Without Double Carry Chains

In Section 5, we have described how the saturated limb representation can be exploited in combination
with two independent carry chains to obtain fast squaring and multiplication algorithms. Implementation
of these algorithms require the use of the instructions mulx, adcx and adox. For processors which do
not provide these instructions, the algorithms in Section 5 cannot be implemented. In this section, we
describe algorithms for saturated limb representation which do not use double carry chains and can be
implemented on previous generation processors. In Section 7, we have already described algorithms using
the unsaturated limb representation which do not use double carry chains. For the prime 2256−232−977,
it turns out that the implementation using saturated limb representation without double carry chains is
more efficient than the implementation using unsaturated limb representation.

As before, let p = 2m − δ where m-bit integers have (κ, η, ν)-representation. Since we consider the
saturated limb representation, we have η = 64. As before, θ = 2η and cp = 2η−νδ. Let f(θ) and g(θ) be
two m-bit integers written as follows.

f(θ) = f0 + f1θ + · · ·+ fκ−1θ
κ−1,

g(θ) = g0 + g1θ + · · ·+ gκ−1θ
κ−1,

where 0 ≤ fi, gi < 2η, i = 0, 1, . . . , κ − 2, and 0 ≤ fκ−1, gκ−1 < 2ν . The schoolbook product of f(θ)
and g(θ) modulo p can be written as h(θ) = h0 +h1θ+ · · ·+hκ−1θ

κ−1 where the coefficients hi are given
by (43). Since we are working with η = 64, the coefficients hi are not guaranteed to fit within 128 bits.
We show how to tackle this problem. Define

fi · gj = ui,j + vi,j2
η = ui,j + vi,jθ for i, j = 0, 1, . . . , κ− 1. (59)

Using θκ = 2κη ≡ 2η−νδ mod p = cp and (59) in (43), we have h(θ) ≡ z(θ) mod p where z(θ) =
z0 + z1θ + · · ·+ zκ−1θ

κ−1 and

z0 = u0,0 + cp(u1,κ−1 + u2,κ−2 + · · ·+ cpuκ−2,2 + uκ−1,1

+v0,κ−1 + v1,κ−2 + v2,κ−3 + · · ·+ vκ−2,1 + vκ−1,0),
z1 = u0,1 + u1,0 + v0,0 + cp(u2,κ−1 + · · ·+ uκ−2,3 + uκ−1,2

+v1,κ−1 + v2,κ−2 + · · ·+ vκ−2,2 + vκ−1,1),
z2 = u0,2 + u1,1 + u2,0 + · · ·+ v0,1 + v1,0

+cp(uκ−2,4 + uκ−1,3 + v2,κ−1 + · · ·+ vκ−2,3 + vκ−1,2),
· · · · · · · · · · · · · · · · · · · · · · · ·

zκ−3 = u0,κ−3 + u1,κ−4 + u2,κ−5 + · · ·+ v0,κ−4 + u1,κ−5

+cp(uκ−2,κ−1 + uκ−1,κ−2 + · · ·+ vκ−3,κ−1 + vκ−2,κ−2 + vκ−1,κ−3),
zκ−2 = u0,κ−2 + u1,κ−3 + u2,κ−4 + · · ·+ uκ−2,0 + v0,κ−3

+ v1,κ−4 + v2,κ−5 + cp(uκ−1,κ−1 + · · ·+ vκ−2,κ−1 + vκ−1,κ−2),
zκ−1 = u0,κ−1 + u1,κ−2 + u2,κ−3 + · · ·+ uκ−2,1 + uκ−1,0

+v0,κ−2 + v1,κ−3 + v2,κ−4 + · · ·+ vκ−2,0 + cpvκ−1,κ−1.

(60)

For all the primes in Table 3, it can be ensured that 0 ≤ z0, z1, . . . , zκ−1 < 2127. Substituting g = f ,
we get similar equations for squaring. Denote the resulting multiplication and squaring algorithms by
mulSLa and sqrSLa respectively.
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Algorithm 11 Generic reduction algorithm using saturated limb representation for the primes in Table 3.
Performs reduction modulo p = 2m − δ and m-bit integers have a (κ, η, ν)-representation with η = 64;
θ = 2η.

1: function reduceSL(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(3)(θ).

4: h
(1)
0 ← h

(0)
0 mod 2η; r0 ← bh(0)

0 /2ηc
5: for i← 1 to κ− 2 do
6: ti ← h

(0)
i + ri−1; h

(1)
i ← ti mod 2η; ri ← bti/2ηc

7: end for
8: tκ−1 ← h

(0)
κ−1 + rκ−2; h

(1)
κ−1 ← tκ−1 mod 2ν ; rκ−1 ← btκ−1/2

νc
9: t← h

(1)
0 + δrκ−1; h

(2)
0 ← t mod 2η; c0 ← bt/2ηc

10: for i← 1 to κ− 2 do
11: t← h

(1)
i + ci−1; h

(2)
i ← t mod 2η; ci ← bt/2ηc

12: end for
13: h

(2)
κ−1 ← h

(1)
κ−1 + cκ−2

14: Partial Reduction for ν < η: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
κ−1θ

κ−1

15: h
(3)
κ−1 ← h

(2)
κ−1 mod 2ν ; cκ−1 ← bh(2)

κ−1/2
νc

16: t← h
(2)
0 + δcκ−1; h

(3)
0 ← t mod 2η; c0 ← bt/2ηc

17: h
(3)
1 ← h

(2)
1 + c0

18: for i← 2 to κ− 2 do h
(3)
i ← h

(2)
i end for

19: Full Reduction: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
κ−1θ

κ−1

20: end function.

Next we describe how to reduce z(θ). Function reduceSL in Algorithm 11 performs the required
computation. The following results states the correctness of reduceSL. The proof is similar to the proofs
of the previous results and hence we skip the proof.

Theorem 9. Let p = 2m − δ be a prime in Table 3 and m be such that m-bit integers have (κ, η, ν)-

representation where η = 64. Suppose the input h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · · + h

(0)
κ−1θ

κ−1 to reduceSL is

such that 0 ≤ h(0)
i < 2128 for i = 0, 1, . . . , κ− 1.

1. For partial reduction, the output h(2)(θ) of reduceSL has a (κ, η, ν+1)-representation and h(2)(θ) ≡
h(0)(θ) mod p.

2. For full reduction, the output h(3)(θ) of reduceSL has a (κ, η, ν)-representation and h(3)(θ) ≡
h(0)(θ) mod p.

Remark: The squaring algorithm has some disadvantages using the above strategy. For the primes
satisfying ν < η−1, the doubling involved in the squaring operation can take advantage while computing
the terms 2fκ−1 ·fj for j = 0, 1, . . . , κ−1, by first computing 2fκ−1, through a shift and then multiplying
to fj . For reduction, we can opt for partial reduction, keeping an extra bit in the last limb, but, then
we cannot take the advantage in the doubling operation. For the primes satisfying ν = η, we do not get
any advantage with the doubling operation in the squaring algorithm and also full reduction is required.

10 Implementations and Timings

All the implementations of this work have been developed in the Intel x86 64-bit assembly language.
The timing experiments were carried out on a single core of Haswell and Skylake processors. During
measurement of the cpu-cycles, turbo-boost and hyper-threading features were turned off. An initial
cache warming was done with 25000 iterations and then the median of 100000 iterations was recorded.
The time stamp counter TSC was read from the CPU to RAX and RDX registers by RDTSC instruction.

Platform specifications: The details of the hardware and software tools used in our software imple-
mentations are as follows.
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Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the
source code was compiled using GCC version 7.3.0.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

Recall from Section 4 that maa denotes implementations where arithmetic is performed using only
mul, imul, add and adc, while maax denotes implementations which also use the instructions mulx,

adcx and adox. For the meanings of the various algorithms, we again refer to Section 4.

field
implementation type - maa

previous this work algorithm sup

F2127−1 (32, 32, 2797) [5] (32, 30, 2503) farith-SLMP (0, 10.3, 10.5)

F2221−3 -
(54, 45, 8082) farith-USLA

-
(57, 56, 9957) farith-USL

F2222−117 -
(58, 46, 8385) farith-USLA

-
(64, 55, 10798) farith-USL

F2251−9 (72, 55, 12202) [15]
(52, 46, 11245) farith-SLa

(27.8, 16.35, 7.8)
(78, 55, 11803) farith-USLA

F2255−19

(72, 51, 12359) [6, 5-limb] (71, 50, 11854) farith-USLA
(1.4, 2.0, 4.1)

(77, 64, 15880) [6, 4-limb] (62, 54, 12393) farith-SLa

F2256−232−977 (86, 62, 20209) [18]
(55, 51, 12809) farith-SLa

(36.0, 17.7, 36.6)
(70, 63, 17202) farith-USL

F2266−3 (72, 52, 12705) [15]
(71, 51, 12413) farith-USLA

(1.4, 2.0, 2.3)
(85, 50, 14892) farith-USL

F2382−105 -
(119, 100, 33437) farith-USLB

-
(127, 102, 39722) farith-USL

F2383−187 -
(119, 101, 33699) farith-USLB

-
(127, 102, 39825) farith-USL

F2414−17 -
(161, 117, 43218) farith-USLA

-
(130, 109, 44239) farith-USLa

F2511−187 - (199, 144, 72804) farith-USL -

F2512−569 - (199, 144, 73771) farith-USL -

F2521−1 (210, 166, 76298) [13]
(177, 129, 62244) farith-USLA

(15.7, 22.3, 18.4)
(178, 132, 71546) farith-USL

F2607−1 -
(230, 156, 94149) farith-USL -

Table 4: Comparison of timings of various field arithmetic algorithms on Haswell.

Timings on Haswell and Skylake are shown in Tables 4, 5 and 6 respectively. The timings in the
tables are the numbers of cycles. For comparison, we provide the timings of the most efficient (to the
best of our knowledge) and publicly available previous implementations. The timings of the previous
implementations were obtained by downloading the relevant software and measuring the required cycles
on the same platforms where the present implementations have been measured. A ‘-’ in the columns
headed ‘previous’ indicates that we were unable to find a (reasonably efficient) previous implementation
of arithmetic in the corresponding field. The triplet values in the columns headed ‘previous’ and ‘this
work’ correspond to the measured cpu-cycles for field multiplication, squaring and inverse. The columns
headed ‘sup’ provide the speed-up percentage as a triplet for the three operations. These have been
computed using the following formula.

sup = 100× (previous cycle count− present cycle count)

previous cycle count
.

For the maa implementations, all applicable algorithms have been implemented and timings recorded.
To simplify the presentation, we provide timings for farith-USL. If the algorithm invUSL of farith-USL is
not the fastest, then the timing of the triplet is provided which has the fastest time for inversion. The
speed-up percentage corresponds to the faster of the two timings.

For the prime 2127 − 1, the maa type implementation is done using farith-SLMP. This is basically an
optimized version of the implementation by Bernstein et al. [5].

Based on Tables 4 to 6, we make the following observations.

1. Among the primes considered in this work, only the prime 2255 − 19 has a previous maax type
implementation. For the other primes, we provide the first maax type implementations.

2. For each prime, where a previous maa implementation is available, we report a faster maa imple-
mentation. On both processors, the speed-up percentage varies from 2% to about 36%.
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3. In comparison to previous work, we provide the fastest implementations for all the primes that
are considered in this work. The speed-up is significant for some important primes. For the latest
processors, the maax type implementations are faster than maa type implementations. Apart from
the prime 2255 − 19, for all the other primes we provide the first maax type implementations.

field
implementation type - maa

previous this work algorithm sup

F2127−1 (27, 26, 2505) [5] (26, 24, 2263) farith-SLMP (3.7, 7.7, 9.7)

F2221−3 -
(58, 41, 7949) farith-USLA

-
(60, 43, 8936) farith-USL

F2222−117 -
(55, 42, 8033) farith-USLA

-
(60, 44, 10067) farith-USL

F2251−9 (66, 65, 13632) [15]
(50, 46, 11783) farith-SLa

(24.2, 29.2, 13.6)
(65, 52, 12415) farith-USLA

F2255−19

(67, 48, 13223) [6, 5-limb] (65, 47, 12671) farith-USLA
(3.0, 2.1, 4.2)

(67, 58, 13901) [6, 4-limb] (57, 52, 12906) farith-SLa

F2256−232−977 (74, 54, 18391) [18]
(52, 49, 13242) farith-SLa

(29.7, 9.3, 28.0)
(74, 63, 15565) farith-USLa

F2266−3 (66, 50, 14472) [15]
(65, 48, 13350) farith-USLA

(1.51, 4.0, 7.8)
(71, 48, 14651) farith-USL

F2382−105 -
(107, 92, 30419) farith-USLB

-
(115, 93, 35465) farith-USL

F2383−187 -
(107, 92, 30680) farith-USLB

-
(115, 93, 35552) farith-USL

F2414−17 -
(127, 98, 38096) farith-USLA

-
(126, 97, 39371) farith-USLa

F2511−187 - (179, 131, 66039) farith-USL -

F2512−569 - (179, 131, 66808) farith-USL -

F2521−1 (184, 142, 64924) [13]
(150, 116, 54790) farith-USLA

(18.5, 18.3, 15.6)
(162, 121, 63938) farith-USL

F2607−1 -
(202, 137, 83587) farith-USL -

Table 5: Comparison of maa-timings of various field arithmetic algorithms on Skylake.

field
implementation type - maax

previous this work algorithm sup

F2127−1 - (26, 24, 2154) farithx-SLMP -

F2221−3 - (62, 43, 7728) farithx-SLPMP -

F2222−117 - (64, 40, 7967) farithx-SLPMP -

F2251−9 - (54, 47, 8784) farithx-SLPMP -

F2255−19 (62, 49, 12170) [21] (54, 42, 9301) farithx-SPLMP (12.9, 14.3, 23.6)

F2256−232−977 - (65, 53, 11501) farithx-SLPMP -

F2266−3 - (65, 53, 12938) farithx-SLPMP -

F2382−105 - (81, 69, 24549) farithx-SLPMP -

F2383−187 - (81, 69, 24628) farithx-SLPMP -

F2414−17 - (97, 80, 30972) farithx-SLPMP -

F2511−187 - (118, 101, 47062) farithx-SLPMP -

F2512−569 - (125, 106, 49713) farithx-SLPMP -

F2521−1 - (128, 108, 53828) farithx-SLMP -

F2607−1 - (159, 129, 74442) farithx-SLMP -

Table 6: Comparison of maax-timings of various field arithmetic algorithms on Skylake.

11 Conclusion

In this paper, we have considered efficient algorithms for multiplication and squaring over (pseudo-
)Mersenne prime order fields. Our contributions have been two fold. On the theoretical side, we provide
various algorithms for multiplication/squaring and reduction. The correctness of the reduction algo-
rithms have been rigorously proven. On the practical side, we provide efficient assembly implementation
of the various algorithms for modern Intel processors. For well known primes our implementations are
faster than the previous works. We have made all our source codes publicly available so that they can
be used to replace the field arithmetic routines in existing softwares.
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[8] Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. Fast cryptography in genus 2. J.
Cryptology, 29(1):28–60, 2016.

[9] Tung Chou. Sandy2x: New curve25519 speed records. In Orr Dunkelman and Liam Keliher, editors, Selected
Areas in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14,
2015, Revised Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages 145–160. Springer,
2015. Code available at https://tungchou.github.io/sandy2x/.

[10] Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions on a Q-curve over the mersenne
prime. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452 of Lecture Notes in
Computer Science, pages 214–235. Springer, 2015. Code available at https://www.microsoft.com/en-us/

download/details.aspx?id=52310.

[11] NIST Curves. Recommended elliptic curves for federal government use. http://csrc.nist.gov/groups/

ST/toolkit/documents/dss/NISTReCur.pdf, 1999.
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