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Abstract
The recent progress in key derivation (Barak at al. CRYPTO’11, Dodis Yu TCC’2013) introduced
the concept of constrained profiles for attackers advantage, recognizing that security bounds can
be significantly improved (alternatively: lots of randomness can be saved) when the advantage, as
the function of the key, is bounded in mean or variance. This paper studies minimal requirements
for keys to achieve security under such restricted attackers.

We frame the problem as characterizing pseudorandomness against constrained distinguishers
and show that minimal assumptions are respectively (a) high smooth min-entropy and (b) high
smooth collision entropy. This matches the (folklore extension of) assumptions of previous works.

Besides providing lower bounds, we offer more insights into this key derivation problem and
elegant proof techniques of geometric flavor.

2012 ACM Subject Classification Security and privacy→Cryptography→Information-theoretic
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1 Introduction

1.1 Security games under weak keys
Security of many cryptographic objects is defined by security games where an attacker
A (limited by some resources) interacts with the challenger C (defined depending on the
application) and this interaction eventually determines if A has won the game or not; here
both A and C are probabilistic. Additional randomness r ∈ {0, 1}n is usually required by
C = C(r) to build the challenge task and fit its hardness to security needs; this randomness
is referred to as the key1. Now it makes sense to speak about the winning probability
Pr[A wins with C(r)] and the advantage conditioned on the key being r

AdvA(r) = Pr[A wins with C(r)]− c (1)

where c corresponds to the "trivial" winning probability and equals c = 1
2 for bit-guessing

games (e.g. encryption schemes) and c = 0 for so called unpredictability (search) games
where the challenge is to come up with a long bit string (e.g. one-way functions or message-
authentication codes). For good security the advantage should be small when averaged over
the key distribution R

Er∼RAdvA(r) 6 ε, (2)

this however depends on the quality of randomness R. In the ideal setup R is the uniform
distribution over n-bit strings U , for appropriate n. However, uniform randomness is rarely

1 For example, for a one-way function r sampled from {0, 1}n and the challenge is to find the preimage of
f(r). For ind-cpa secure encryption r is the secret key for encryption, retained by the challenger (which
makes encryption calls randomized).
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available in practice and needs to be extracted from imperfect but somewhat random sources.
Extraction of nearly uniform bit strings is possible but wastes lots of randomness, which is
a major drawback for entropy-limited settings like biometrics. Interestingly, in past years,
research on key derivation originated by Barak at al. [1] and finalized by Dodis at al. [3, 2]
has shown that several crypto applications tolerate "weak" keys, that is distributions R with
sufficiently small entropy deficiency (e.g. n = 128 and entropy bigger than k = 120). The
technical argument, quite simple and elegant, establishes first the inequalities

Er∼RD(r) 6 Er∼U [D(r)] · 2n−H∞(R), when D(·) > 0 (3)

Er∼RD(r) 6
√
Varr∼U [D(r))] ·

√
2n−H2(R) (4)

where D(r) = AdvA(r) is the advantage profile, H∞(R) = minr log 1
Pr[R=r] is the min-entropy

(basic notion for cryptography) and H2(R) = − log
∑
r Pr[R = r]2 is the Renyi entropy [5] of

order 2 (less restrictive). The advantage profile is usually not known explicitly (complicated
dependency on r). Nevertheless, we can constrain and control it effectively[1, 3]:
(a) for unpredictability applications, the first advantage moment Er∼U [D(r)] is small. Then

Equation (3) applies.
(b) for many indistinguishability applications, so called "square-friendly" (for example weak

PRFs, CPA and CCA-secure encryption) the advantage variance Varr∼U [D(r)] is small.
Then Equation (4) applies.

the first observation follows directly from security assumptions; the second one applies to
security games which, roughly speaking, allow a legitimate adversary to play "double-run"
(see [3] for a discussion).

1.2 Problem Statement
We are interested in further relaxing the notion of the weak key, which can be stated as

Problem: what are minimal requirements for the key R so that we have security
almost as for the ideal key

Er∼RD(r) ≈ Er∼UD(r)

against mean-bounded or variance-bounded advantage profiles D?

As discussed, previous works obtained good security assuming high entropy (Equations (3)
and (4)). We discuss complementary optimal (up to constant factors) characterizations of
weak keys.

1.3 Preliminaries
Unless said otherwise, all distinguishers and measures are defined on the key space {0, 1}n;
the uniform distribution is denoted by U .

It will be convenient to frame our problem using the notion of indistinguishability.
We say that X and Y are (D, ε)-close (indistinguishable) denoted by X ≈D,ε Y when
|Er∼XD(r) − Er∼Y D(r)| 6 ε for all D ∈ D. When X ≈D,ε U we say that X is (D, ε)-
pseudorandom.

The `p-distance, 1 6 p < ∞ of two measures Z1, Z2 is defined by dp(Z1, Z2) =
(
∑
r |Z1(r) − Z2(r)|p)1/p and d∞(Z1, Z2) = maxr |Z1(r) − Z2(r)|. When di 6 ε for i ∈

{1, 2,∞} we say that Z1 and Z2 are ε-close in di. Similarly, when di > ε for i ∈ {1, 2,∞} we
say that Z1 and Z2 are ε-far in di.
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The ε-smooth min-entropy [4] of (probabilistic measure) X is said to be at least k if
H∞(X ′) > k for some X ′ which is 2ε-close2 in d1 to X. The ε-smooth collision entropy of X
is said to be at least k if H2(X ′) > k for some X ′ which is 2ε-close in d1 to X.

When r is sampled from the uniform distribution we denote for shortness ED = ErD(r) and
VarD = VarrD(r). We use clip[a,b](x) = max(min(x, b), a) to denote the clipping operation.

2 Our Contribution

2.1 Man Result: Pseudorandom Keys
We start with the answer to the posted question.

I Corollary 1 (Optimal keys for unpredictability applications). Let 2−n < σ < 1
2 and

D = {D : D(r) ∈ [0, 1] for all r and ED 6 σ}

Then

X ≈D,ε U

if and only if

Hε′

∞(X) > n− log(1 +O(ε/σ)), ε′ = O(ε). (5)

The proof is given in Appendix A.3.

I Corollary 2 (Optimal keys for indistingishability applications). Let 2−n < σ < 1
2 and

D = {D : D(r) ∈ [−0.5, 0.5] for all r and VarD 6 σ}

Then

X ≈D,ε U

if and only if

Hε′

2 (X) > n− log(1 +O(ε2/σ)), ε′ = O(ε). (6)

We give the proof in Appendix A.5. In Table 1 we compare our results with previous works.
Since Equations (3) and (4) give multiplicative errors w.r.t. the uniform key, for additive
error we need to adapt arguments from [1, 3] bounds (see "sufficient" parts of the proofs.

application sufficient condition (adapted [1, 3]) optimal condition (this paper)
unpredictability H∞(X) > n− log(1 +O(ε/σ)) HO(ε)

∞ (X) > n− log(1 +O(ε/σ))
indistinguishability H2(X) > n− log(1 +O(ε2/σ)) HO(ε)

2 (X) > n− log(1 +O(ε2/σ))
Table 1 Our results vs previous works. Conditions for the key X to achieve a gap of at most

ε in the advantage, with respect to the uniform key. Distinguishers D are constrained by ED 6 σ,
D ∈ [0, 1] for unpredictability and VarD 6 σ, D ∈ [−0.5, 0.5] for indistinguishability.

2 In cryptography d1 is usually normalized by 1
2 , so called statistical distance, hence the term 2ε.



23:4 Pseudorandomness Against Mean and Variance Bounded Attackers

2.2 Best Advantage Profiles for Attackers
An important part of our analysis (which we state as the fact of independent interest) is a
characterization of theoretically optimal advantage profiles under a given key (measure) X,
for mean and variance-bounded attackers (corresponding to Equation (3) and Equation (4)).
Their shapes are related to the shape of the key distribution as illustrated in Figure 1 below.
The importance and usefulness is the elegant geometrical relation between shapes of optimal

(a) Mean-bounded attackers. The optimal pro-
file is the indicator of top heaviest weights
Lemma 1).

(b) Variance-bounded attackers. The optimal
profile is a clipped linear transformation of the
pmf (see Lemma 2).

Figure 1 Optimal advantage profiles.

attackers and keys: the constraints on (optimal) attackers imply constraints on keys. Based
on this, we will later obtain claimed characterizations (minimal requirements) for keys.
Detailed statements are given in the lemmas below.
I Lemma 1 (Explicit best mean-bounded distinguisher). For any non-negative measure X the
maximum advantage

max
D

∑
r

X(r)D(r)

over [0, 1]-valued distinguishers D with bounded mean ED 6 σ is achieved for D such that
D(r) = 1 when X(r) is within top b2nσc values of X(·), and D(r) = 2nσ − b2nσc if X(r) is
the b2nσc+ 1-th biggest value of X(·) and D(r) = 0 otherwise.

Although this claim is intuitive, we give the formal proof in Appendix A.1.
I Lemma 2 (Explicit best variance-bounded distinguisher). For any real measure X, and any3

interval [q0, q1], the maximum advantage

max
D

∑
r

X(r)D(r)

over [q0, q1]-valued distinguishers D with bounded variance VarD 6 σ is achieved for

D(r) = clip[q1,q2](X(r)/b+ a)

with some constant a, b. Moreover, if
∑
rX(r) = 0 then

we can assume that
∑
r D(r) = 0 and b > 0.

3 We require q0 < q1.



M. Skorski 23:5

the optimal solution satisfies VarD = σ, or it is of the simpler form D(r) = q0 when
X(r) < 0 and D(r) = q1 when X(r) > 0 and then

∑
rX(r)D(r) = q1−q0

2
∑
r |X(r)|.

The proof follows by standard convex optimization tools and is given in Appendix A.2.
We will apply this result for indistinguishability games with [q0, q1] = [−0.5, 0.5].

2.3 Comparable Security ⇔ Similar Key Shapes
One requires a good key to offer "almost same" security as the ideal (uniform) key. In this
work we solve a slightly more general problem:

If two keys guarantee similar security, how much are they similar?

The important conclusion is that for similar level of security (under mean or variance-bounded
attackers) the keys must have "similar" shapes. The results are derived from characterizations
of optimal advantage profiles (discussed previously) in the following manner: (a) from all
(constrained) profiles we choose the "extreme" attacker who achieves the biggest gap in
security (b) by our characterizations its shape is explicitly related to the key distribution, (c)
this eventually implies constraints on the key distribution itself. The precise meaning of this
"similarity" is explained by the theorems below.

I Theorem 1 (Secure keys for mean-bounded distiguishers). Suppose that two key distributions
X and Y give "comparable security", namely for the class D of all [0, 1]-valued distinguishers
D with bounded mean ED 6 σ it holds that

X ≈D,ε Y (7)

Then for any subset S of at most 2nσ elements, X and Y on S are ε′ 6 2ε close in `1-norm.
Conversely, if for any subset S of at most 2nσ elements, σ > 2−n, we have that X and Y on
S are ε′-close in `1-norm then Equation (7) holds true with ε 6 2ε′.

Note that the statement can be simplified slightly, if we take S to be the set of keys r
corresponding to the 2nσ-top values of |X(r) − Y (r)|. The claim is then illustrated in
Figure 2. This theorem implies

all keys: {0, 1}n

d1(X,Y |S) = O(ε) d∞(X,Y |Sc) = O (ε/2nσ)

S: σ-fraction of keys Sc

Figure 2 Illustration for Theorem 1.

I Theorem 2 (Optimal characterization of keys secure under variance-bounded distinguishers).
Suppose that two distributions X and Y give "comparable security", namely

X ≈D,ε Y (8)

where D contains all [−0.5, 0.5]-valued distinguishers D with bounded variance maxD Var(D) =
σ. Then there exists a subset of keys S ⊂ W such that

X and Y on S are ε′ = O(ε)-close in the `1-norm
X and Y on Sc are ε′′ = O(ε/

√
2nσ)-close in the `2-norm
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all keys: {0, 1}n

d1(X,Y |S) = O(ε) d2(X,Y |Sc) = O
(
ε/
√

2nσ
)

S Sc

Figure 3 Illustration for Theorem 2.

Conversely, if on some subset S the `1-distance is ε′ and on the complement Sc the `2-distance
equals ε′′ then Equation (8) holds with

ε = ε′ +
√

2nσε′′

for every distinguisher with variance at most σ. In particular if X and Y satisfy the two
conditions above then the bound in Equation (8) becomes O(ε).

This proof, among our results, is most challenging and is included in Section 3; what makes
it complicated is the clipping transform. The theorem is illustrated in Figure 3. The result
implies .
I Corollary 3 (Optimal keys for indistingishability applications). Suppose that 2−n < σ < 1

2 .
The sufficient and necessary condition for a key distribution X to satisfy

|Er∼XD(r)− Er∼Un
D(r)| 6 ε

for all D such that D ∈ [−0.5, 0.5] and VarD 6 σ, is

Hε′

2 (X) > n− log(1 +O(ε2/σ)), ε′ = O(ε). (9)

3 Proof of Theorem 2

Here we consider the necessary part, as the sufficient part follows easily by the Cauchy-Schwarz
inequality (we skip the proof).

If X and Y are O(ε)-close in `1 then we can just take S = {0, 1}n. From now on, we
therefore assume this is not the case. Define W = {0, 1}n as we will be working on several
subsets of {0, 1}n. Also suppose that the range is [−1, 1] for the sake of cleaner calculations
(the true range is [−0.5, 0.5] and the results can be transformed by scalling). Consider

maximize
∑
r

D(r)(X(r)− Y (r)) (10)

s.t.
{
VarD 6 σ2

D ∈ [−1, 1]

By Lemma 2 applied to X(r) := X(r)− Y (r) (note that
∑
r(X(r)− Y (r)) = 0 as X,Y are

probabilities) this is equivalent to

maximize D · (X − Y ) (11)

1
|W|

∑
r

D(r)2 6 σ∑
r

D(r) = 0

D ∈ [−1, 1]
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with the optimal solution given by

D∗(r) = clip
(
X(r)− Y (r)

b
+ a

)
. (12)

We can also assume that

VarD = σ (13)

as otherwise Lemma 2 implies that X and Y are O(ε)-close.

3.1 Bounding the clipped set
Consider now the optimal solution D∗. Let W+ = {w : D∗(r) = 1}. We have

∑
r(D∗(r))2 6

|W|σ by Equation (11), therefore in particular

|W+| =
∑
r∈W+

(D∗(r))2 6
∑
r∈W

(D∗(r))2 6 |W|σ. (14)

In the same way, defining W− = {w : D∗(r) = −1} we obtain

|W−| =
∑
r∈W−

(D∗(r))2 6
∑
r∈W

(D∗(r))2 6 |W|σ. (15)

This justifies the claim that we clip only at a small fraction of the domain.

3.2 Divergence on the clipped set
Consider the following distinguisher

D(r) = 1W+(r)− |W
+|

|W|
(16)

By definition we have
∑
r D(r) = 0, also

∑
r D(r)2 6 |W+|. To justify this inequality,

instead direct calculations, we can think of a random variable Z = 1W+(r) under uniformly
distributed w; then we have Z −EZ = D and our inequality follows from the probabilistic
inequality Var(Z) 6 EZ2). This discussion shows that D is feasible to Equation (11) and
therefore we have∑

r

D(r) · (X(r)− Y (r)) 6
∑
r

D∗(r) · (X(r)− Y (r)) 6 ε.

However, X and Y are probabilistic measures therefore
∑
rX(r) =

∑
r Y (r) = 1. Now using

the explict form of D we obtain∑
r

D(r) · (X(r)− Y (r)) =

∑
r

1W+(r) · (X(r)− Y (r)) + |W
+|

|W|
∑
r

(X(r)− Y (r))

=
∑
r∈W+

(X(r) − Y (r)) + 0
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This together with the previous inequality shows that
∑
r∈W+(X(r)− Y (r)) 6 ε. Repeating

the same reasoning with respect to −D in place of D (−D is also feasible), we obtain also∑
r∈W+(X(r)− Y (r)) > −ε which leads to the conclusion∣∣∣∣∣ ∑
r∈W+

(X(r)− Y (r))

∣∣∣∣∣ 6 ε. (17)

The same discussion for D(r) = 1W−(r)− |W
−|
|W| shows∣∣∣∣∣ ∑

r∈W−
(X(r)− Y (r))

∣∣∣∣∣ 6 ε. (18)

These are desired bounds for the probability mass at the clipped values.

3.3 Bounding the linear transform
Let W0 = {w : −1 < D∗(r) < 1} be the set of arguments corresponding to not-clipped values.
By Equation (12) for some constants a and b > 0 we have

∀w ∈ W0 : D∗(r) = X(r)− Y (r)
b

+ a. (19)

We start by observing that the difference δ(r) = X(r) − Y (r) on W0 takes both positive
and negative values. Indeed, say that δ(r) > 0 for all w ∈ W0. Since δ and D∗ are
co-monotone by Equation (12), all the negative values of δ(·) are achieved on W−. In
particular

∣∣∣∑r:δ(r)<0 δ(r)
∣∣∣ 6 |∑r:∈W− δ(r)| 6 ε by Equation (18). Since

∑
r:δ(r)<0 δ(r) =

−
∑
r:δ(r)>0 δ(r), this implies d1(X,Y ) 6 2ε (which we already excluded). The same holds

true when δ(r) < 0 for all w ∈ W0. Therefore, if dTV(X,Y ) > ε the function δ on W0 takes
values of both signs. Recall that

∀w ∈ W0 a = D∗(r)− X(r)− Y (r)
b

= D∗(r)− δ(r)
b

Since b > 0 and D∗ is bounded between 1 and −1, by substituting w1, w2 such that
δ(w1) < 0 < δ(w2) in place of w, we conclude that

−1 < a < 1 (20)

We will now bound b. Recall that D∗(r) = X(r)−Y (r)
b +a > 1 for w ∈ W+ by the definition of

W+ and Equation (12). This implies X(r)− Y (r) > b(1− a) for w ∈ W+. By Equation (17)
we obtain

ε >
∑
r∈W+

(X(r)− Y (r)) > b(1− a)|W+| (21)

Similarly, we have D∗(r) = X(r)−Y (r)
b + a 6 −1 for w ∈ W−. Then X(r)− Y (r) 6 −b(1 + a)

for w ∈ W−. By Equation (18)

−b(1 + a)|W−| >
∑
r∈W−

(X(r)− Y (r)) > −ε (22)
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Combining the last two inequalites (and using Equation (20) to justify dividing inequalities
by positive numbers 1 + a and 1− a), we obtain the following bound

b 6 min
(

ε

(1− a)|W+|
,

ε

(1 + a)|W−|

)
. (23)

Define now

ε0 =
∑
r∈W0

D∗(r)(X(r)− Y (r))

Note that
∑
r∈W0 D∗(r) = −

∑
r∈W+∪W− D∗(r) = −|W+| + |W−| (by feasibility and the

definitions of W+,W−). Also,
∑
r∈W0(D∗(r))2 = |W|σ − |W+| − |W−|. Therefore, using

Equation (19), we obtain

ε0

b
= |W|σ − (1− a)|W+| − (1 + a)|W−| (24)

Note that by Equation (23) we have (1− a)|W+| 6 ε
b and (1 + a)|W−| 6 ε

b . Using this in
Equation (24) we get

ε0 + 2ε
b

> |W|σ = ε0

b
+ (1− a)|W+|+ (1 + a)|W−|. (25)

It remains to bound ε0. We have

ε0 =
∑
r∈W

D∗(r)(X(r)− Y (r))−
∑

r∈W−∪W+

D∗(r)(X(r)− Y (r))

=(a) ε−
∑

r∈W−∪W+

D∗(r)(X(r)− Y (r))

=(b) ε−
∑
r∈W+

(X(r)− Y (r)) +
∑
r∈W−

(X(r)− Y (r))

6(c) ε (26)

where (a) follows by the security assumption, (b) follows by definitions of W+,W−, and (c)
follows by Equation (21) and Equation (22) (note that a weaker bound of ε+2ε can be obtained
from Equation (17) and Equation (18)). Combining Equation (26) with Equation (24) we
finally obtain 3ε

b > |W|σ or equivalently

b 6
3ε
|W|σ

(27)

which completes the proof of the promised bound on b.

3.4 Divergence on the unclipped set
From Equation (19) it follows that∑

r∈W0

(X(r)− Y (r))2 =

b
∑
r∈W0

D∗(r)(X(r) − Y (r)) − ab
∑
r∈W0

(X(r) − Y (r))
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Since X and Y are probabilistic measures we have
∑
r∈W(X(r)− Y (r)) = 0 and therefore

we can rewrite the above equation as∑
r∈W0

(X(r)− Y (r))2 =

b
∑
r∈W0

D∗(r)(X(r) − Y (r)) + ab
∑

r∈W−∪W+

(X(r) − Y (r))

Note that the first sum equals ε0 (defined previously) and the second sum is at most 2ε by
Equations (17) and (18); in fact it is at most ε because contributions from W− are negative
as follows from Equation (22). Furthermore, ε0 is at most ε as shown in Equation (26). Thus∑

r∈W0

(X(r)− Y (r))2 6 bε+ abε.

Using bounds on a and b developed in Equation (20) and Equation (27) we finally obtain∑
r∈W0

(X(r)− Y (r))2 6 2bε 6 6ε2

|W|σ
. (28)

4 Conclusion

By techniques of geometric flavor, we have shown optimal security bounds for games with
mean and variance-bounded attackers. The obtained results are complementary to [3, 1] and
show that the notion of weak keys as defined there cannot be much relaxed.

References

[1] Boaz Barak et al. “Leftover Hash Lemma, Revisited”. In: Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings. 2011, pp. 1–20. doi: doi:10.1007/978-3-642-22792-9_1.
url: http://dx.doi.org/10.1007/978-3-642-22792-9_1.

[2] Yevgeniy Dodis, Krzysztof Pietrzak and Daniel Wichs. “Key Derivation without Entropy
Waste”. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings. 2014, pp. 93–110. doi: doi:10.1007/978-3-
642-55220-5_6. url: http://dx.doi.org/10.1007/978-3-642-55220-5_6.

[3] Yevgeniy Dodis and Yu Yu. “Overcoming Weak Expectations”. In: Theory of Crypto-
graphy - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March
3-6, 2013. Proceedings. 2013, pp. 1–22. doi: doi:10.1007/978-3-642-36594-2_1. url:
http://dx.doi.org/10.1007/978-3-642-36594-2_1.

[4] Renato Renner and Stefan Wolf. “Simple and Tight Bounds for Information Reconcili-
ation and Privacy Amplification”. In: Advances in Cryptology - ASIACRYPT 2005, 11th
International Conference on the Theory and Application of Cryptology and Information
Security, Chennai, India, December 4-8, 2005, Proceedings. 2005, pp. 199–216. doi:
10.1007/11593447_11. url: https://doi.org/10.1007/11593447_11.

[5] Alfréd Rényi. “On Measures of Entropy and Information”. In: Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions
to the Theory of Statistics. Berkeley, Calif.: University of California Press, 1961, pp. 547–
561. url: https://projecteuclid.org/euclid.bsmsp/1200512181.

https://doi.org/doi:10.1007/978-3-642-22792-9_1
http://dx.doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/doi:10.1007/978-3-642-55220-5_6
https://doi.org/doi:10.1007/978-3-642-55220-5_6
http://dx.doi.org/10.1007/978-3-642-55220-5_6
https://doi.org/doi:10.1007/978-3-642-36594-2_1
http://dx.doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/11593447_11
https://doi.org/10.1007/11593447_11
https://projecteuclid.org/euclid.bsmsp/1200512181


REFERENCES 23:11

A Proofs

A.1 Proof of Lemma 1
Since X is non-negative we can assume ED = σ, because increasing D(r) for any r can only
increase the objective

∑
rX(r)D(r). Next, we can assume that X and D are co-monotone, in

other words X(r1) > X(r2) implies D(r1) > D(r2) (otherwise swapping values of D(r1) and
D(r2) doesn’t decrease the objective). Finally, when X(r1) > X(r2) then either D(r1) = 1 or
D(r2) = 0; otherwise we have 1 > D(r1) > D(r2) > 0 and we can modify D(r1)← D(r1) + δ,
D(r2) = D(r2) − δ for small δ, so that D(r1),D(r2) ∈ [0, 1] and the objective changes by
X(r1)δ − X(r2)δ > 0. The last observation implies that D(r) takes values 0 or 1 for all
but possibly one r. Since ED = σ we conclude that D(r) = 1 for b2nσc values of r and
D(r) = 2nσ − b2nσc for some r. Since D and X are co-monotone, these r correspond
respectively to b2nσc top values of X(r) and the (b2nσc+ 1)-th top value of X(r).

A.2 Proof of Lemma 2
Consider the problem of maximizing

∑
rX(r)D(r) subjected to the constraints q0 6 D(r) 6 q1

for all r and Var(D) = 2−n
∑
r D(r)2 − (2−n

∑
r D(r))2 6 σ. We form the lagrangian

L(λ, λ3(·), λ4(·)) =
∑
r

X(r)D(r)− λ ·

2−n
∑
r

D(r)2 −

(
2−n

∑
r

D(r)
)2

− σ


− λ3(r) · (q0 − D(r)) − λ4(r) · (D(r) − q1)

with non-negative λ, λ3(·), λ4(·) satisfying the complementary conditions

−λ3(r) · (q0 − D(r)) = 0, λ4(r) · (D(r)− q1) = 0.

We note that the Slater constraint qualification holds with D(r) = (q0 + q1)/2, as then
inequality constraints are strict: q0 < D(r) < q1 and VarD = 0 < σ, and the program is
convex. By the first order KKT conditions ∂L

∂D(r) = 0. Since

∂L

∂D(r) = X(r)− c1 · D(r) + λ3(r)− λ4(r) (29)

for c1 = 2λ · 2−n > 0, the first order conditions imply the claim if we can show that c1 6= 0
(the clipping part comes from λ3 and λ4 which are active only when D(r) = q0 and D(r) = q1
respectively). Note that when

∑
rX(r) = 0 we can shift D(r) := D(r) − 2−n

∑
r′ D(r′)

not changing the objective neither violating constraints (the variance doesn’t change). In
particular we can assume

∑
r D(r) = 0. The lagrangian then gets an extra term −λ′

∑
r D(r)

so that

∂L

∂D(r) = X(r)− c1 · D(r)− c2 + λ3(r)− λ4(r) (30)

Since λ > 0 we have c1 > 0 and b > 0.
It remains to consider c1 = 0. Consider only Equation (30) as Equation (29) is a special

case of it. For every r we either have X(r) = c2 or one of the multipliers λ3(r),λ4(r) is not
zero and then D(r) = q0 when X(r) = c2−λ3(r) and D(r) = q1 when X(r) = c2 +λ4(r). On
the set {r : X(r) = c2} we can replace all the values of D(r) by their average, not changing
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the objective; also the variance can only decrease. Thus we have D(r) = c3 when X(r) = c2
for some constant c3. But then we can write

D(r) = clip[q0,q1] (c3 + (X(r)− c2)/b)

for some sufficently small b > 0 which gives us again the desired formula.
Finally, let’s consider whether the constraint VarD 6 σ is binding or not. If VarD < σ

then λ = 0 and c1 = 0 in Equation (29). Then for every r we have X(r) = −λ3(r) or
X(r) = λ4(r). In particular, when X(r) < 0 then D(r) = q0 and when X(r) > 0 then
D(r) = q1. If

∑
rX(r) = 0 we obtain∑

r

X(r)D(r) = q1
∑

r:X(r)>0

X(r)− q0
∑

r:X(r)<0

X(r) = (q1 − q0) · 1
2
∑
r

|X(r)|.

A.3 Proof of Theorem 1
To see how Section 2.3 follows from Theorem 1 consider the set S of keys r corresponding to
the b2nσc heaviest values X(r) and r0 be such that X(r0) is the top b2nσc+ 1 value. We
have

X(r0) 6 |S|−1
∑
r∈S

X(r)

6 2−n + 2
2nσ

∑
r∈S

(
X(r)− 2−n

)
6 2−n + 2−n+2ε/σ

where in the first inequality we used the definition of r0 and S, the second is because we know
the size of S and the last inequality follows from Theorem 1. Consider shifting the probability
mass from S as follows X ′(r) = min(X(r), 2−n) + 2−nδ for r ∈ S and X ′(r) = X(r) + 2−nδ
for r ∈ Sc where δ =

∑
r∈S(X(r)−min(X(r), 2−n)) and δ = O(ε) by Theorem 1. Then X ′

and X are ε′ = δ far in `1. Moreover for every r we have

X(r) 6 max(2−n + 2−nδ, 2−n + 2−n+2ε/σ + 2−nδ)

which is 2−n(1 +O(ε/δ)). Thus X ′ has min-entropy of H∞(X ′) = n− log(1 +O(ε/σ).
Conversely, if X is O(ε)-close in `1 to a distribution with min-entropy k we have

|Er∼XD(r)− Er∼Un
D(r)| 6 O(ε) + (2n−k − 1)σ

because |X(r)− 2−n| 6 2−k − 2−n and
∑
r D(r) 6 2nσ. If k > n− log(1 +O(ε/σ) then we

can bound it by O(ε).

A.4 Proof of Theorem 1
Proof. Consider two non-negative measures Z+(r) = max(X(r) − Y (r), 0) and Z−(r) =
−min(X(r)− Y (r), 0). We have

Er∼XD(r)− Er∼Y D(r) =
∑
r

Z+(r)D(r)−
∑
r

Z−(r)D(r) (31)

Let D be the distiguisher obtained from Lemma 1 applied to the measure Z+ (and same σ).
It follows that for any at most b2nσc-element subset S∑

r∈S
Z+(r) 6

∑
r

D(r)Z+(r)
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Lemma 1 ensures ED = σ, but we can put D(r) ← 0 whenever Z+(r) = 0 so that the
above inequality still holds true (then ED 6 σ). Then we have

∑
z Z
−(r)D(r) = 0 because

Z−(r) > 0 implies Z+(r) = 0. Thus∑
r∈S

Z+(r) =
∑
r

D(r)Z+(r)−
∑
r

Z−(r)D(r) 6 ε

where the second inequality follows by the assumption (D is feasible: ED 6 σ and D(r) ∈ [0, 1]
by construction). Thus we have shown that for any at most 2nσ-element subset S∑

r∈S
max(X(r)− Y (r), 0) 6 ε

and by swapping the roles of X and Y (which doesn’t change the assumptions!)∑
r∈S

max(Y (r)−X(r), 0) 6 ε.

The last two inequalities imply that∑
r∈S
|X(r)− Y (r)| 6 2ε (32)

which finishes the proof of the first part. For the converse part we reconsider Equation (31).
By Lemma 1 applied to the measure Z+ and our assumptions∑

r

Z+(r)D(r) 6
∑

r∈S∪{r′}

Z+(r)

where S is the set of r corresponding to the top b2nσc values of Z+(r) and r′ corresponds
to the top b2nσc+ 1-th value of Z+(r). By the defimition of r′ and our assumption with
respect ot S we finally obtain∑

r

Z+(r)D(r) 6
∑
r∈S

Z+(r) + 1
b2nσc

∑
r∈S

Z+(r) 6 ε ·′ (1 + 1/b2nσc) (33)

which is at most 2ε′. We have bounded the non-negative part in Equation (31) and thus

Er∼XD(r)− Er∼Y D(r) 6 2ε′ (34)

for all feasible D′. Swapping the roles of X and Y we obtain also the lower bound −2ε′,
which completes the proof of the converse part. J

A.5 Proof of Corollary 3
Proof. Consider first the "necessary" part. Let Y be uniform and let S be as in Theorem 2.
Let X ′(r) = X(r) for r ∈ Sc and X ′(r) = Y (r) where r ∈ S. Define X ′′(r) = X ′(r) + 2−nδ
where δ =

∑
r∈S(X(r)− Y (r)) (the probability mass where X(r) differs from X ′(r)). Then

X ′′ is probabilistic and∑
r

X ′′(r)2 =
∑
r

X ′(r)2 + 2 · 2−nδ
∑
r

X ′(r) + 2−nδ2
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We also have∑
r

X ′(r)2 =
∑
r

(X ′(r)− Y (r))2 + 2 · 2−n
∑
r

X ′(r)− 2−n

and thus∑
r

X ′′(r)2 =
∑
r

(X ′(r)− Y (r))2 + 2 · 2−n(1 + δ)
∑
r

X ′(r)− 2−n(1− δ2)

Note that δ =
∑
r∈S(X(r) − Y (r)) =

∑
r(X(r) −X ′(r)) and therefore

∑
rX
′(r) = 1 − δ.

We obtain∑
r

X ′′(r)2 =
∑
r

(X ′(r)− Y (r))2 + 2−n(1− δ2).

By Theorem 2 we have δ = O(ε) and
∑
r∈Sc(X ′(r)− Y (r))2 = O(2−nε2σ−1) and therefore∑

r

X ′′(r)2 = 2−n · (1 +O(ε2σ−1)).

To prove the opposite part, observe that

Er∼XD(r)− Er∼Un
D(r) = O(ε′) + Er∼X′D(r)− Er∼Un

D(r)

and by the Cauchy-Schwarz inequality

|Er∼X′D(r)− Er∼Un
D(r)| 6

(∑
r

|X ′(r)− 2−n|2
)1/2

· (2nVarD)1/2
.

note that
∑
r |X ′(r)−2−n|2 =

∑
r(X ′(r)−2−n)2 =

∑
rX
′(r)2−2−n which, by the assumption

on entropy, equals O
(
2−nε2/σ

)
. Since VarD 6 σ we obtain the bound O(ε). J
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