
PiLi: A Simple, Fast, and Robust Family of Blockchain Protocols∗

T-H. Hubert Chan Rafael Pass Elaine Shi

Abstract

In every epoch, an eligible proposer proposes a next block extending from the freshest no-
tarized chain it has seen. Everyone votes on the first proposal heard if 1) the proposed block
extends from a parent block that is not too “stale”, and 2) no conflicting notarizations have
been observed in the recent past. When a block collects majority votes, it becomes notarized
but not yet final. If a notarized chain ends at 13 consecutive epochs the trailing 8 blocks and the
prefix is final. If a block of the present epoch collects 3/4 fraction (and not just majority) votes,
a node may advance to the next epoch immediately. Otherwise a node sends a timeout message
when an epoch exipres and advances to the next epoch when majority timeout messages have
been heard.

This very simple protocol can achieve the following properties where n denotes the total
number of nodes: 1) during a period in which 3n/4 honest nodes remain online, we can confirm
transactions at raw network speed (i.e., asynchronously) as soon as we rotate to an honest
and online proposer; 2) if more than n/2 of honest nodes have online presence for sufficiently
long (w.r.t. the protocol’s confirmation delay), transactions get confirmed in expected constant
number of synchronous rounds; and 3) we guarantee consistency for all honest nodes — including
those who might have unstable network connections and drop offline every now and then — as
long as at any point of time the total number of offline and corrupt nodes is less than n/2.
In this sense, our protocol is strictly more robust than classical, synchronous honest-majority
consensus.

1 Introduction

At the core of decentralized cryptocurrencies is a beautiful abstraction called blockchain or state
machine replication. In a blockchain protocol, nodes seek to agree on an ever-growing, linearly
ordered log of transactions, such that two important security properties are satisfied: 1) consistency,
i.e., all honest nodes’ logs must be prefixes of each other and no node’s log should ever shrink; and
2) liveness, i.e., a transaction will appear in all honest nodes’ logs within a(n ideally small) bounded
amount of time.

1.1 A Tale of Synchronous Consensus

The classical synchronous model assumes that messages sent by honest nodes are delivered in at
most ∆ rounds, and this network delay upper bound ∆ must be pre-determined and hardwired in
the protocol. This very strong assumption has caused two significant “folklore” barriers towards
deploying synchronous consensus protocols in practice.

1. Slowness. With the exception of very recent works [18, 24], almost all existing synchronous
protocols’ confirmation delays are constrained by this pre-determined delay parameter ∆.

∗PiLi means the sound of thunder in Chinese, it also means fast, furious, and streamlined.

1

Even if in reality, the network actually makes progress much faster, a typical synchronous
protocol, unfortunately, is unable to reap the benefits. To make matters worse, the delay
parameter ∆ must be set conservatively to ensure that the assumptions needed for safety
are not violated. Partly for this reason, synchronous consensus is considered “slow” in the
folklore.

2. Lack of robustness. If an honest node has even a short-term outage, the classical synchronous
model immediately treats it as corrupt — at this point, a protocol proven secure in the classical
synchronous model is no longer obligated to provide consistency for this node, even if it comes
back online shortly afterwards and wishes to continue participating [13]. This mismatch
becomes even greater for long-running protocols like blockchains: no one can guarantee 100%
up-time (e.g., Gmail has outages every couple of years [1]), and thus in the course of a few
years, it could be that everyone has had an outage at some point.

This is not just a theoretical concern. A recent work [13] has demonstrated what seems to
be a serious flaw in a real-world blockchain protocol [24] being deployed by a cryptocurrency
company — despite the fact that the protocol was proven secure under classical synchrony!
Specifically, even when everyone is benign and a few nodes crash in a specific timing pattern,
confirmed transactions can become undone (see Guo et al. [13] for more details).

Partly due to the above reasons, until decentralized cryptocurrencies such as Bitcoin emerged,
synchronous consensus had remained (almost) only on paper. Decentralized cryptocurrencies such
as Bitcoin adopted synchronous consensus protocols in practice for the first time (since Nakamoto-
style consensus must set the expected block interval to be commensurate with the maximum network
delay for safety [12, 21, 23]) but their slowness is evident and in fact has become a pain point that
is most often debated among the cryptocurrency community.

What about partial synchrony/asynchrony? Both pain points (i.e., slowness and brittleness)
can be overcome by adopting partial synchrony [7, 11] or asynchrony [5, 6], where the consensus
protocol makes no assumptions about the network’s maximum delay. Unfortunately, it is well-
known that no partially synchronous (or asynchronous) consensus protocol can tolerate more than
1/3 corruptions [11] (c.f., synchronous protocols are not subject to such a lower bound). In decen-
tralized environments where players are mutually distrustful, a higher degree of resilience may be
important.

1.2 PiLi: A New Paradigm for Synchronous Consensus

We introduce PiLi, a new family of “dream” blockchain protocols that resist minority corrup-
tions. PiLi is not only conceptually extremely simple but also overcomes the aforementioned two
significant “folklore” barriers.

Our protocols follow a streamlined “propose-vote” paradigm with no special execution paths
for recovery (also called view change [7]). Finalization requires chopping off a few trailing blocks
from a qualifying notarized chain. We provide a slightly informal description of this paradigm:

• In every epoch, a proposer proposes a block extending the freshest notarized chain it has
seen, and everyone votes on the first valid proposal heard as long as 1) the proposed block
extends from a parent that is not too “stale”; and 2) no conflicting notarizations have been
seen recently.

• If a block gains votes from majority voters, it becomes notarized.

2

• If a notarized chain ends at X number of consecutive epochs, chop off the trailing Y < X
blocks and the prefix is final.

• If an epoch-e block gains votes from at least 3/4 fraction of the voters, an epoch-(e+ 1) block
may be immediately proposed and voted on (and the node enters epoch e + 1 immediately
too). Otherwise, a node sends a time-out message upon expiration of the present epoch, and
enters the next epoch upon receiving time-out messages from majority nodes.

We prove that this very simple protocol achieves the following properties where n denotes the
total number of nodes:

1. Optimistic responsiveness: whenever 3n/4 nodes are not only honest but also online for suf-
ficiently long, then (as soon as an honest proposer is elected) transactions get confirmed “re-
sponsively” at raw network speed and moreover in O(1) number of roundtrips — henceforth we
denote the optimistic conditions necessary for responsiveness as O.

2. Liveness during periods of synchrony: a synchronous notion of liveness is guaranteed whenever
sufficiently many honest nodes have online presence for sufficiently long (relative to the confir-
mation time). Concretely, in any period of time during which more than n/2 honest nodes can
deliver messages within ∆ delay, these nodes can make progress in expected constant number of
synchronous rounds — henceforth the set of conditions necessary for liveness is denoted S.

3. Consistency and best-possible partition tolerance: consistency is preserved as long as the network,
at any point of time, exhibits synchrony among more than n/2 honest nodes called the “honest
and online set” — importantly, here the honest and online set may even change rapidly over time
(and thus everyone’s online presence may be transient relative to the confirmation time). Since
consistency holds even for honest nodes who may be offline at times, our protocol is also said to
be best-possible partition tolerant [13]. Henceforth the conditions necessary for consistency are
denoted W.

It is not hard to see that O ⊂ S ⊂W, i.e., the conditions for responsiveness are the most strin-
gent and those for safety (i.e., consistency) are the weakest. In a practical deployment, the protocol
should almost always operate in the optimistic regime O and thus one could enjoy asynchronous,
fast performance. Yet we can resist the failures and node churns that are inevitable in practice (as
long as majority number of honest nodes do not fail at the same time); and the minority nodes
who are unstable at any point of time should never have to suffer from inconsistency.

1.3 Technical Contributions

For the first time, with an extremely simple paradigm, we overcome the two significant barriers
which we believe to have significantly hindered the practicality of “synchronous consensus” in the
past. Thus we hope that our work will pave the way for deploying “honest-majority” consensus
protocols in the real world. We now explain our technical contributions in light of most closely
related works.

Achieving optimistic responsiveness in a “streamlined-BFT” paradigm. The notion
of optimistic responsiveness in synchronous consensus was first proposed in the recent work of
Thunderella [24] and later extended by Loss and Moran [18] but in the context of single-shot
consensus. It is known that 3/4 honest and online is necessary for optimistic responsiveness for any
protocol that aims to resist upto minority corruptions [24].

3

First, even without the “best-possible partition tolerance” property, our work is the first pro-
tocol in a streamlined-BFT paradigm that ensures security under honest majority and achieves
optimistic responsiveness. In comparison, existing blockchain constructions that achieve optimistic
responsiveness [24] have a dedicated execution path (called the “fallback” mechanism) for switching
between the fast-path and the slow path. The fallback mechanism in existing works [24] is not only
complicated to implement in practice [24] but also requires re-posting all notarized but uncheck-
pointed transactions on the fast path again to the slow path and thus is not bandwidth-efficient.

More importantly, our result is also a fundamental theoretical improvement over Thunderella [24]:
as pointed out in recent work [13], Thunderella’s safety property relies critically on full synchrony
which makes their protocol alarmingly flawed in practice.

How to use “best-possible partition tolerance” in practical blockchain design. To
overcome the brittleness of classical synchronous consensus, our work aims to prove safety under the
aforementioned conditions W — this modeling approach was recently proposed by Guo, Pass and
Shi [13] and they refer to such a network as a weakly synchronous network. In a weakly synchronous
network, roughly speaking, at any point of time we allow minority nodes to have unstable network
connections (or be corrupt); and these flaky nodes can rotate over time. Viewed from every single
node’s perspective, it could be that every node was at some point offline and thus the network may
have been asynchronous for every node! As mentioned, a protocol secure under weak synchrony is
also said to be best-possible partition tolerant.

Guo et al. [13] was the first to explore the theoretical feasibility of consensus protocols that are
best-possible partition tolerant. The protocols proposed in their work, however, are of theoretical
interest only and not recommended for implementation. In comparison, our work takes a practically
grounded approach, and in this sense we are the first to show how one might use the notion of “best-
possible partition tolerance” in the design of practical blockchain protocols. Since simplicity and
strong-enough practical security are our first-order concerns, we in fact introduce a new modeling
relaxation in comparison with Guo et al. [13]. Guo et al. [13]’s theoretical constructions achieve
liveness under the same set of conditions W as are needed for safety. More concretely, since
obviously liveness cannot be guaranteed for offline nodes for as long as they remain offline, Guo et
al. [13] ensure “best-effort liveness”, i.e., nodes should make progress as soon as they come online.
We observe that Guo et al. [13]’s notion of liveness is in fact even stronger than the liveness promised
by standard partially synchronous protocols [7,11] — the latter commonly promise liveness during
periods of synchrony in which a super-majority number of honest nodes are online and have good
network connectivity. Inspired by this observation, we introduce an analogous period of synchrony
notion in a weakly synchronous network. We aim to achieve worst-case liveness only during periods
of synchrony in which there exists a majority set of honest nodes which are online and have good
(i.e, ∆-respecting) network connectivity. We believe that this modeling relaxation could be of value
in future (especially practically minded) works too since insisting on an overly stringent liveness
notion may accidentally preclude practically useful protocols.

1.4 Additional Related Work

Byzantine agreement and blockchains. Byzantine Agreement (BA) is a form of single-
shot consensus and has been studied in the distributed computing literature for more than 30
years [16]. Blockchains [12] or state machine replication protocols [25] are closely related to BA, but
a blockchain protocol seeks to reach agreements repeatedly over time to establish an ever-growing,
linearly-ordered-log. Although (under common assumptions) blockchains can be constructed from
composition of (multi-valued) Byzantine Agreement, prior work has established the importance of

4

studying blockchains as a separate abstraction due to various reasons: 1) while BA cares mostly
about achieving consistency and liveness, additional practical security properties such as fairness
or censorship resistence may be additionally stated for blockchains [6, 9, 12, 20–22]; and 2) di-
rect constructions of blockchain protocols can sometimes be conceptually simpler and have better
asymptotical or concrete efficiency than composition of single-shot BA [7, 10, 12, 14, 15, 24] — for
this reason direct blockchain constructions are often more desirable in practical implementations
too.

Pipelined-BFT. PiLi is inspired by a beautiful idea which we call “pipelined-BFT”. This idea
first implicitly appeared in the elegant work Casper-FFG [26] where the authors considered how to
design a proof-of-stake finality gadget for Ethereum, and later was improved in works by others [3,8]
— all prior works considered instantiation of this idea only for the partially synchronous setting
and thus could only tolerate fewer than 1/3 corruptions.

At a high level, the “pipelined-BFT” idea is as follows. In classical BFT protocols, to confirm
every batch of transactions, nodes must vote perform two or more rounds of voting. For example,
in PBFT, the voting rounds are commonly referred to as “prepare” and “commit” (and for many
synchronous protocols [2, 19], a common pattern occurs). A beautiful idea is the following: why
don’t we piggyback the present block’s commit-round on the next block’s notarization?

Although we are inspired by the pipelined-BFT paradigm, unlike all prior work, we aim to
tolerate minority corruptions and meanwhile we would like to achieve a notion of robustness called
“best-possible partition tolerance” which has been shown to be crucial for practical cryptocurrency
systems [13]. We show that not only can we streamline the entire consensus protocol, we can also
seamlessly embed any implicit view change that might be necessary in a unified “propose-vote”
paradigm and thus the protocol does not have any special execution paths for recovery.

2 A Weakly Synchronous Execution Model

Earlier works [4, 13] have pointed out that the classical synchronous model is a mismatch for the
real-world concerns when deploying distributed protocols. Specifically, if an honest node has even
a short-term outage, the classical synchronous model immediately treats it as corrupt — at this
point, a protocol proven secure in the classical synchronous model is no longer obligated to provide
consistency for this node, even if it comes back online shortly afterwards and wishes to continue
participating. This mismatch becomes even greater for long-running protocols like blockchains: no
one can guarantee 100% up-time, and thus in the course of a few years, it could be that everyone
has had an outage at some point.

To overcome this mismatch and yet not subject ourselves to the strong 1/3-resilience lower
bounds pertaining to asynchrony and partial synchrony [11], Guo, Pass, and Shi [13] suggest a
new model called “weak synchrony”, which can be viewed as a relaxation of classical synchrony.
The weak synchrony model allows us to tease out exactly which subset of classical, synchronous
protocols enjoy the robustness properties that are important for practical deployment. A consensus
protocol secure in a weakly synchronous network provides “best-possible partition tolerance” as long
as the network has “sufficient, quantifiable” synchrony. More concretely, we want consistency for
all honest nodes, even those who might have unstable network connections, as long as at any point
of time, there are sufficiently many nodes that have good network connections — and this set of
nodes may even change rapidly over time.

Although Guo et al. [13] demonstrate the theoretical existence of best-possible partition tolerant
consensus protocols, their protocols are only of theoretical interest and are not recommended for

5

practical implementation. Guo et al. [13] also aim to achieve both consistency and liveness under
weak synchrony and as mentioned in Section 1.3, we observe that Guo et al. [13] liveness may be
unnecessarily strong for practice. Specifically, in a weakly synchronous network, obviously offline
nodes can get stuck for as long as they remain offline, and thus Guo et al. [13] require that honest
nodes make progress when are online and as soon as they come back online. Note that such a
notion of liveness is even stronger than standard partially synchronous protocols [7, 11]: standard
partially synchronous protocols typically provide liveness only during “periods of synchrony”, when
super-majority number of honest nodes are online and have good network connectivity.

In this section, we first review the weakly synchronous model by Guo et al. [13], we then
introduce a notion of global standardization time (GST) for weakly synchronous networks. Our
GST notion is inspired by the modeling approach of classical partial synchrony [7, 11]: roughly
speaking, we require progress only during a period of time in which a majority set of honest nodes
are online and have good network connectivity for sufficiently long (where sufficiently long is defined
relative to the protocol’s confirmation delay).

2.1 Execution Model

We directly adopt the definitions of Guo et al. [13]. A protocol execution is formally modeled as a
set of interactive Turing machines (ITMs). The execution proceeds in rounds, and is directed by a
non-uniform probabilistic polynomial-time (p.p.t.) environment denoted Z(1κ) parametrized by a
security parameter κ ∈ N. Henceforth we refer to ITMs participating in the protocol as nodes and
we number the nodes from 1 to n(κ) where n is chosen by Z and may be a polynomial function in
κ.

Modeling corruption and network communication. We assume that there is a non-uniform
p.p.t. adversary A(1κ) that may communicate with Z freely at any time during the execution. The
adversary A controls a subset of nodes that are said to be corrupt. All corrupt nodes are fully
within the control of A: A observes a node’s internal state the moment it becomes corrupt and
henceforth all the messages received by the corrupt node are forwarded to A; further, A decides
what messages corrupt nodes send in each round. In this paper, we assume that corruption is static,
i.e., the adversary A decides which nodes to corrupt prior to the start of the protocol execution.

Nodes that are not corrupt are said to be honest, and honest nodes faithfully follow the pre-
scribed protocol for as long as they remain honest. In each round, an honest node can either be
online or offline.

Definition 2.1 (Honest and online nodes). Throughout the paper, we shall use the notation Or
to denote the set of honest nodes that are online in round r. The set Or is also called the “honest
and online set” of round r. For i ∈ Or, we often say that i is honest and online in round r.

We make the following assumption about network communication. — note that our protocol is
in the multicast model, i.e., every protocol message is sent to the set of all nodes:

Assumption 1 (Message delivery assumption). We assume that if someone in Or multicasts a
message m in round r, then everyone in Ot where t ≥ r + ∆ will have received m at the beginning
of round t.

In other words, an honest and online node is guaranteed to be able to deliver messages to the
honest and online set of nodes ∆ or more rounds later. The adversary A may delay or erase honest
messages arbitrarily as long as Assumption 1 is respected.

6

Remark 2.2 (Offline nodes’ network communication). Note that the above message delivery as-
sumption implies that messages sent by honest but offline nodes can be arbitrarily delayed or even
completely erased by the adversary. Further, the adversary can control which subset of honest mes-
sages each offline node receives in every round; it can omit an arbitrary subset of messages or even
all of them from the view of honest offline nodes for as long as they remain offline.

Remark 2.3. We stress that a node is not aware whether it is online or offline. This makes
protocol design in this model more challenging since the adversary can carefully choose a subset
of messages for an offline (honest) node to receive, such that the offline node’s view can appear
perfectly “normal” such that it is unable to infer that it is offline. Jumping ahead, a consensus
protocol secure in our model should guarantee that should an offline node make a decision while it
is offline, such decisions would nonetheless be safe and would not risk inconsistency with the rest
of the network.

Our protocol needs to be aware of the parameters ∆ and n. Throughout we shall assume that
∆ and n are polynomial functions in κ. Formally, we can imagine that Z inputs ∆ and n to all
honest nodes at the start of the execution. Throughout the paper, we always shall assume that
(A,Z) respects the following constraints:

Z always provides the parameters n and ∆ to honest nodes at the start of the execution such
that n is the total number of nodes spawned in the execution, and moreover, the adversary
A respects Assumption 1.

Schedule within a round. More precisely, in each round r, the following happens:

1. First, each honest node receives inputs from Z and receives incoming messages from the
network; note that at this moment, A’s decision on which set of incoming messages an honest
node receives will have bearings on whether this honest node can be included in Or.

2. Each honest node then performs polynomially bounded computation and decides what mes-
sages to send to other nodes — these messages are immediately revealed to A. Further, after
the computation each honest node may optionally send outputs to Z.

3. At this moment, A decides which nodes will belong to Or where r denotes the current round.
Note that A can decide the honest and online set Or of the present round after seeing what
messages honest nodes intend to send in this round.

4. A now decides what messages each corrupt node will send to each honest node. Note also
that A is rushing since it can see all the honest messages before deciding the corrupt nodes’
messages.

5. Honest nodes send messages over the network to other nodes (which may be delayed or erased
by A as long as Assumption 1 is satisfied).

Definition 2.4 (χ-weak-synchrony). We say that (A,Z) respects χ-weak-synchrony (or that A
respects χ-weak-synchrony), iff in every round r, |Or| ≥ bχ · nc+ 1.

To aid understanding, we make a couple of remarks regarding this definition. First, the set of
honest and online nodes need not be the same in every round. This allows us to model churns in the
network: nodes go offline and come online; and we wish to achieve consistency for all honest nodes,
regardless of whether they are online or offline, as long as sufficiently many nodes are online in each
round. Second, the requirement of χ-weak-synchrony also imposes the fraction of corrupted nodes.

7

As an example, consider the special case when χ = 0.5 and n is an even integer: if (A,Z) respects
0.5-weak-synchrony, it means that the adversary controls at most n/2− 1 nodes. It could be that
the adversary in fact controls fewer, say, n/3 number of nodes. In this case, up to n/2 − 1 − n/3
honest nodes may be offline in each round, and jumping ahead, in a consensus protocol we will
require that consistency hold for these honest but offline nodes as well.

Finally, note also that our weakly-synchronous model is a generalization of the classical syn-
chronous model: in the classical synchronous model, it is additionally required that for every r, Or
must be equal to the set of all nodes that remain honest till the end of round r (or later).

Notations for randomized executions. Throughout the paper, we use the notation view ←
EXECΠ(A,Z, κ) to denote the randomized experiment of running the protocol Π with A and Z,
invoked with the security parameter κ ∈ N. The randomness in the experiment comes from honest
nodes, A, and Z. Each sampling of EXECΠ(A,Z, κ) produces an execution (also referred to as an
execution trace) often denoted view. We would like that the fraction of executions that fail to
satisfy relevant security properties be negligibly small in the security parameter κ. A function negl(·)
is said to be negligible if for every polynomial p(·), there exists some κ0 such that negl(κ) ≤ 1/p(κ)
for every κ ≥ κ0.

2.2 Defining Global Standardization Time (GST)

We now formally define a notion of global standardization time (GST) to capture “periods of syn-
chrony” during which the protocol should make progress. Later when we formally define consensus
(see Section 2.3), we will require that liveness holds after the GST:

Definition 2.5 (Global Standardization Time). Fix an execution denoted view, GST(view) is de-
fined to be the first round after which all honest nodes are online, i.e., can communicate with each
other within at most ∆ delay.

At first sight, this might seem like an overly restrictive notion: in the real world, network
conditions can alternate between good (i.e., a period of synchrony) and mildly bad (i.e., weak
synchrony), and there may never be a round such that afterwards the network behaves perfectly
forever. Nonetheless, the notion of GST is without loss of generality — it implies that whenever
there is a period of synchrony that is sufficiently long (i.e., longer than the protocol’s confirmation
time), honest nodes are guaranteed to make progress during that good period. Note that a similar
notion of GST is adopted in the classical partially synchronous model [11].

Remark 2.6 (An alternative definition of GST). An alternative and arguably better way to define
GST is to require not that every honest node must be online afterwards, but rather, that there exist
more than n/2 honest nodes (denoted O) who must be persistently online afterwards. Under the
latter definition, we can ask for liveness for those in O after the GST. Our liveness proofs later
in fact directly hold for this alternate definition too, but for conceptual simplicity we adopt the
same GST notion as classical partial synchrony [11] (but we achieve better resilience than partial
synchrony).

2.3 Weakly Synchronous Blockchain Protocols

In a blockchain protocol (also called state machine replication), a set of nodes seek to agree on an
ever-growing log over time. In this section, we formally define the notion of a blockchain protocol
for a weakly synchronous network. Roughly speaking, as long as the network conditions respect 0.5-
weak-synchrony, we require consistency, i.e., all honest nodes’ logs agree with each other although

8

some nodes may progress faster than others. During periods of synchrony , we additionally require
liveness, i.e., transactions observed by honest nodes get confirmed in all honest nodes’ logs in a
bounded amount of time. We formalize the definitions below.

Syntax. In a blockchain protocol, at the beginning of every round, a node receives as input a set
of transactions txs from Z, and outputs a LOG collected thus far to Z at the end of the round.

Security. Let Tconfirm(κ, n,∆) be a polynomial function in the stated parameters. We say that a
blockchain protocol Π satisfies consistency (or Tconfirm-liveness resp.) w.r.t. (A,Z), iff there exists
a negligible function negl(·), such that for any κ ∈ N, except with negl(κ) probability over the choice
of view← EXECΠ(A,Z, λ), consistency (or Tconfirm-liveness resp.) is satisfied:

• Consistency: A view satisfies consistency iff the following holds:

– Common prefix. Suppose that in view, an honest node i ∈ [n] outputs LOG to Z in round t, and
an honest node j ∈ [n] outputs LOG′ to Z in round t′ (i and j may be the same or different),
it holds that either LOG � LOG′ or LOG′ � LOG. Here the relation � means “is a prefix of”.
By convention we assume that ∅ � x and x � x for any x.

– Self-consistency. Suppose that in view, an honest node i outputs LOG and LOG′ in rounds t
and t′ respectively where t ≤ t′, it holds that LOG � LOG′.

• Tconfirm-liveness: A view satisfies Tconfirm-liveness iff the following holds: if an honest node has
observed a transaction tx in or prior to some round t ≥ GST(view), then, for any honest node i
let LOG be its output log in some round t′ ≥ t+ Tconfirm(κ, n,∆), it holds that tx ∈ LOG.

Intuitively, liveness says that during periods of synchrony, every transaction observed by an
honest node appears in every honest nodes’ output logs within Tconfirm time.

We say that Π is a χ-weakly-synchronous blockchain protocol with Tconfirm confirmation time,
iff Π satisfies consistency and Tconfirm-liveness w.r.t. any non-uniform p.p.t. (A,Z) that respects
χ-weak-synchrony.

Remark 2.7. Looking ahead, later in our protocol, the output log is actually structured as a se-
quence of blocks. Each block will be of the format (e,TXs, h−1) where e and h−1 are metadata
relevant to the consensus protocol and TXs denotes the application-specific payload. Without loss of
generality, we may assume that TXs is a set of transactions where each transaction tx is a string
of fixed (polynomial) length. When LOG is a sequence of such blocks, tx ∈ LOG means that tx is
contained in the TXs field of some block in LOG.

We additionally define a notion of progress called chain growth that is slightly weaker than the
liveness notion above but sometimes easier to work with. Indeed, in the technical sections later, we
will first prove chain growth (Sections 3 and 4). We then show a small modification (Section 5.2)
that can lift the protocol to the liveness notion defined above.

Definition 2.8 (Chain growth). Let T (κ, n,∆) be a polynomial function in κ, n, and ∆. Formally,
we say that a blockchain protocol satisfies T -growth w.r.t. (A,Z), iff for every κ ∈ N, there
exists a negligible function negl(·) such that except with negl(κ) probability over the choice of
view ← EXECΠ(A,Z, κ), the following holds: let t1 − T (κ, n,∆) ≥ t0 ≥ GST(view), then every
honest node’s output LOG in round t1 is longer than its output LOG in round t0.

9

Intuitively, chain growth requires that honest nodes’ output logs grow at a steady pace during
periods of synchrony, but it does not impose any requirements on the quality of the blocks (e.g.,
blocks produced should not selectively censor any transactions). To go from chain growth to
liveness, we additionally need to ensure an appropriate notion of “block quality”, i.e., the blocks
confirmed do not censor any outstanding transaction.

3 The PiLi Family of Blockchain Protocols

3.1 Intuition

3.1.1 Warmup: Basic PiLi for Classical Synchrony

We present a brief warmup: an extremely simple blockchain protocol that satisfies consistency and
liveness under honest majority, in a classical, fully-synchronous network. This warmup protocol
is not really much simpler than our final construction (Section 3); it is nonetheless interesting to
contrast our final construction with this warmup protocol to tease out how we achieve best-possible
partition tolerance.

Warmup protocol PiLi. We assume the existence of a public-key infrastructure. Nodes sign
every protocol message before sending it and moreover, any message is tagged with a purported
sender. Upon receiving a message whose signature does not verify, the message is discarded im-
mediately. For simplicity we also assume that a node always echoes (i.e., multicasts) every fresh
message it has observed and thus if an honest node observes some information m in round r, all
honest nodes will observe it in round r + 1 (if not earlier).

The protocol proceeds in epochs and every epoch contains two synchronous rounds called “pro-
pose” and “vote” respectively. For the time being, simply assume that in each epoch e, node
(e mod n) + 1 is the eligible proposer (we will discuss other proposer election policies later in
Section 6.2). We use the convention that a smaller epoch e is older and a larger one is fresher.

• Propose. At the beginning of each epoch e, an eligible proposer proposes a block of the form
(e,TXs, h−1) extending the freshest notarized chain it has seen so far, where TXs denotes the
transactions to be confirmed, and h−1 denotes the parent chain’s hash.

As we shall see in the next step, nodes send votes on blocks; if a block receives at least votes
from a majority of nodes, it is said to be notarized.

• Vote. Upon receiving a valid epoch-e proposal, a node i votes on the block (e,TXs, h−1) iff 1)
i has seen a parent chain whose hash matches h−1 as well as the parent block’s notarization;
and 2) the parent block’s epoch is not older than the freshest notarized chain i has seen at
the beginning of the previous epoch e− 1.

If a node observes any notarized that ends with 6 blocks at consecutive epochs, chop off the
trailing 5 blocks and the prefix is considered final.

Proof of security. In Section C, we give a more formal description of the above protocol, and
prove that it satisfies consistency and liveness in a classical synchronous model assuming honest
majority.

10

3.1.2 Making it Optimistically Responsive and Best-Possible Partition Tolerant

The above warmup protocol is not optimistically responsive since nodes must wait for epochs to
timeout to make progress even when in reality, the network delivers messages much faster. The
warmup protocol is also not best-possible partition tolerant: in particular, it could be that there
exist two notarized blocks B and B′ at the same epoch; but since offline nodes may be receiving
an arbitrary subset of messages selected by the adversary, some offline nodes see B notarized and
others see B′ notarized; and thus they can reach different decisions each thinking there is no conflict.

Fortunately, a couple simple modifications can fix the above problems. First, for optimistic
responsiveness, we allow a node to advance to the next epoch e + 1 immediately without waiting
for the current epoch e to timeout, iff the node has observed not just majority, but 3/4 fraction
of nodes’ votes on an epoch-e block. Second, to achieve best-possible partition tolerance, we need
that nodes rely on not just their own view in the protocol to decide “no-conflict”; instead, they
should only believe in “no-conflict” if majority number of nodes confirm this belief. Thus our final
protocol, referred to as PiLi?, works as follows:

• Normal and skip blocks. In a valid blockchain, we allow only two types of blocks, normal
blocks and skip blocks. A normal block’s epoch number must be the parent’s epoch number
plus 1, and a skip block’s epoch number must be a multiple of 16 and moreover must be at
least 16 epochs apart from the parent’s epoch.

• Propose. At the beginning of every epoch e, an eligible proposer proposes a block denoted
(e,TXs, h−1) extending the freshest notarized chain it has seen (if this does not violate
the blockchain validity rule). Henceforth for simplicity we assume that a valid proposal
(e,TXs, h−1) must carry the following information: 1) the parent chain whose hash must
match h−1; and 2) the parent’s notarization N with the proposal.

• Vote. In every epoch e, a node votes on the first valid proposal from an eligible proposer as
long as 1) the proposed block extends from a parent block whose epoch is not older than the
freshest notarized chain the node has seen at the beginning of the previous epoch; and 2)
either the proposed block is a skip block itself or else no conflicting notarizations have been
seen since the last skip block in the parent chain (that the proposed block extends from).

• Notarization and finalization. If a block gains votes from majority voters, it becomes nota-
rized. If a notarized chain ends at 13 number of consecutive epochs, chop off the trailing 8
blocks and the prefix is final.

• Epoch advancement. Normally, a node sends a time-out message denoted clock(e+ 1) upon
expiration of the present epoch e, and enters the next epoch upon receiving clock(e + 1)
messages from majority nodes. However, if an epoch-e block gains votes from, not just the
majority, but 3/4 fraction of the voters, an epoch-(e+ 1) block may be immediately proposed
and voted on (and the corresponding proposer or voter enters epoch e+ 1 immediately).

We stress that in the new protocol, nodes check conflicts during voting rather than at the time of
finalization (like in the warmup protocol) and this is important for achieving best-possible partition
tolerance. By voting on an epoch-e block, the node is simultaneously attesting to the fact that it
has not seen any recent conflicts. Thus a notarization on a block vouches for the fact that many
nodes have not seen a recent conflict.

However, with this modification, we need to additionally defend against a potential DoS attack:
if corrupt nodes start to double vote, they can cause honest nodes to stop voting due to seeing
conflicting notarizations. We thus patch this problem by introducing skip blocks: this allows honest

11

nodes to “complain” by refusing to vote; and even though chain growth will temporarily halt at
this point, progress will ensue at the next opportunity when an honest node proposes a skip block
(during a period of synchrony).

3.2 Formal Description of PiLi?

3.2.1 Additional Preliminaries

Echo mechanism and stronger network delivery assumption. For convenience, we will
make a slightly stronger assumption on the network — but in fact this stronger assumption can be
realized from Assumption 1 described earlier.

Assumption 2 (Strong message delivery assumption). If i ∈ Or and i has multicast or received a
message m before the end of round r, then everyone in Ot where t ≥ r + ∆ will have received m at
the beginning of round t.

A brute-force way to realize Assumption 2 from Assumption 1 is to have every node echo (i.e.,
multicast) all messages they have seen so far in every round. Later in Section B, we will describe a
more efficient echo mechanism that realizes Assumption 2 from Assumption 1 — roughly speaking,
nodes continue to echo each message until they have heard majority nodes echo it [13]. We note
that if we adopt a peer-to-peer diffusion mechanism like the network layer of Bitcoin or Ethereum,
then the network layer should already handle the necessary retries for the stronger Assumption 2
to hold.

Setup assumptions. We assume that a hash function H is randomly chosen from a collision-
resistant family a-priori. Further, depending on the proposer-eligibility policy, we may also choose
a random oracle H∗ a-priori for electing random proposers. We also assume the existence of a PKI
and denote each node i’s public/secret key pair as (pki, ski). The hash function, the random oracle,
and the PKI are chosen after the adversary submits the choice of who to corrput.

3.2.2 Protocol

Blocks and blockchains are defined in the most natural manner.

Block. Each block is of the format (e,TXs, h−1) where e ∈ N denotes an epoch number, TXs ∈
{0, 1}∗ denotes the block’s payload (e.g., a batch of transactions to confirm), and h−1 ∈ {0, 1}κ
denotes the parent hash, i.e., hash of the blockchain the block extends from.

Valid blockchain. A valid blockchain denoted chain is a sequence of blocks where for 1 ≤ i ≤
|chain|, chain[i] denotes the i-th block in chain. We often use the following useful blockchain notation:

• chain[−1] denotes the last block in chain; chain[: i] denotes the first i blocks of chain; and
chain[i :] denotes the suffix of chain starting at the i-th block;

• assume that a block of epoch e exists in chain, we use chain〈e〉 to denote this block at epoch
e in chain; and use chain〈: e〉 to denote the prefix of chain ending at the block chain〈e〉.

For a blockchain chain to be valid, the following must be respected:

1. Strictly increasing epochs. For all 1 ≤ i < j ≤ |chain|, chain[i].e < chain[j].e; and

12

2. Valid parent hash. It must be that chain[1].h−1 = ⊥, and for every 2 ≤ i ≤ |chain|,
chain[i].h−1 = H(chain[: i− 1]) where H is randomly sampled from a collision-resistant hash
family1.

3. For every 2 ≤ i ≤ |chain|, chain[i] must either be a normal block, or a skip block, i.e., it must
satisfy one of the following two rules:

• either chain[i].e = chain[i− 1].e+ 1 — in this case we say that chain[i] is a normal block; or

• chain[i].e ≥ chain[i − 1].e + 16 and chain[i].e is a multiple of 16 — in this case we say that
chain[i] is a skip block.

Without loss of generality, we may assume that every valid blockchain denoted chain is prefaced
by an imaginary genesis block denoted chain[0] := (e = 0,⊥,⊥).

Vote and notarization. A pair (h, σ) from a purported voter i ∈ [n] is said to be a valid vote
for some chain, iff h = H(chain) and moreover Σ.Verifypki(h, σ) = 1.

A collection of at least 3n
4 valid votes for chain from distinct voters (i.e., nodes) is said to be a

strong notarization for chain. A collection of striclty more than n
2 valid votes for chain from distinct

voters is said to be a notarization for chain. Clearly, a strong notarization is also a notarization2

for chain from distinct voters is said to be a notarization for chain.

Remark 3.1. Note that since our blockchain validity definition requires that each block specifies
the parent hash, assuming no hash collision, a block may be considered an alias for a chain. Thus,
we often use the term “a vote or (strong) notarization for chain” and the term “a vote or (strong)
notarization for the block B := chain[−1]” interchangeably.

“Fresher than” relation. We say that chain is an epoch-e chain iff chain[−1].e = e. A chain is
said to be fresher than another chain′ iff chain[−1].e > chain′[−1].e.

Stability-favoring proposer eligibility. For concreteness, we will first describe a stability-
favoring proposer election policy, i.e., we only switch proposer if the current one stops working.
Such a policy might be somewhat more suited for a permissioned deployment environment. Later
in Section 6.2, we describe other policies, e.g., a democracy-favoring policy that seems suitable for
a decentralized, proof-of-stake setting.

Consinder the following stability-favoring proposer eligibility policy: we say that a node i ∈ [n]
is an eligible proposer for chain (or equivalently, the last block in chain) iff the following holds: let
chain[`] be the last skip block in chain, it must be that i = (H∗(chain[`].e) mod n) + 1 where H∗

is a hash function (modeled as a random oracle) used for proposer election.

Protocol. The formal description of our protocol is in Figure 1. For conceptual simplicity, in
Figure 1 we require that a proposer always include the parent chain and its notarization in any
proposal it makes. Equivalently, the proposer need not explicitly attach the parent chain and its
notarization, and a node could request/receive these from anyone — a proposal is regarded as
complete only when a node has seen the parent chain and its notarization.

1In practice, H should be incrementally evaluated using a base hash function H0: let H(chain) := H0(H(chain[:
−1])||chain[−1]) if |chain| > 1; and let H(chain) := H0(chain[1]) if |chain| = 1.

2In practice, we can employ an aggregate signature to compress the signatures.

13

PiLi?

Epoch advancement. If a node has been in an epoch e for 5∆ rounds, multicast a signed
clock(e+ 1) message. A node currently in epoch e advances to epoch e+ 1 as soon as either of
the following conditions occurs:

1. fast-forward:

• either the node is ready to propose epoch-(e+ 1) block extending from a strongly notarized
epoch-e block (i.e., it has seen a strong notarization for an epoch-e chain and the node is an
eligible proposer for proposing an epoch-(e+ 1) block extending from chain), or

• it has seen a valid epoch-(e+ 1) proposal extending from a strongly notarized epoch-e block.

2. timeout: the node has observed strictly more than n/2 valid clock(e+1) messages from distinct
nodes.

Henceforth we may assume that an honest node always invokes the above epoch advancement
procedure at the beginning of a round immediately after receiving incoming messages and before
taking other actions. Note that at the beginning of a round, a node may advance multiple epochs.

Propose. Upon entering epoch e, let TXs be the outstanding pool of unconfirmed transactions;
let chain be the node’s current freshest notarized chain (pick a strongly-notarized chain for tie-
breaking); and let B := (e,TXs, H(chain)). If chain||B forms a valid chain and moreover the node
is eligible for proposing chain||B, multicast the proposal (B, σ) where σ is the node’s signature on
B, tagged with (chain,N) where N is the set of all votes the proposer has seen for the parent
chain. Henceforth, a proposal (B, σ) tagged with (chain,N) is said to be valid if it is signed by an
eligible proposer, chain matches the parent hash in B, N is a correct notarization for chain, and
finally chain||B satisfies blockchain validity rules.

Vote. If the node fast-forwarded to the current epoch e, vote on the proposal that triggered the
fast forward. Else, perform the following: let B := ((e,TXs, h−1), σ) tagged with (chain,N) be
the first valid epoch-e proposal that was observed, vote on the proposal if the following conditions
are satisfied:

1. parent not too stale: unless the current epoch e = 1, the aforementioned parent chain must
be at least as fresh as the freshest notarized chain in the node’s view at the beginning of
the previous epoch;

2. no recent conflicts: if the proposed block (e,TXs, h−1) is not a skip block, then the following
must hold: let chain[`] be the last skip block (or the imaginary genesis block) in the afore-
mentioned parent chain, then for every block in chain[` :], the node must not have observed
a notarization for a conflicting block with the same epoch number.

To vote on B := (e,TXs, h−1), let chain be the parent chain matching h−1: sign h := H(chain||B)
to obtain the signature σ, and multicast (h, σ).

Finalize. At any time, a node outputs the freshest chain that is considered final where finality is
defined below: if a node observes a notarized chain that ends at 13 consecutive epochs, chop off
the trailing 8 blocks and the prefix is considered final.

Figure 1: The PiLi? protocol.

14

In Section 4, we shall prove that the PiLi? protocol (Figure 1) satisfies consistency under 0.5-
weak-synchrony and a weaker notion of liveness called chain growth during periods of synchrony.
Then, in Section 5.2, we propose simple transformation that allows us to achieve the stronger notion
of liveness defined in Section 5.2. Specifically, as mentioned earlier in Section 2.3, chain growth
guarantees that during periods of synchrony, honest nodes’ output logs grow at a steady pace, but
does not guarantee that the blocks confirmed have good quality (e.g., do not selectively censor
transactions). To achieve the stronger liveness notion defined in Section 5.2, in Section 5.2 we need
a simple technique for ensuring block quality: basically, honest nodes will simply refuse to vote if
they believe that the current proposer is proposing bad blocks (e.g., censoring certain transactions);
this will effectively choke the current proposer and the proposer re-election mechanism will then be
triggered to re-elect the proposer.

Theorem 3.2 (PiLi? blockchain). Suppose that the digital signature scheme employed is secure
and that the hash family satisfies collision resistance. Let λ be any super-logarithmic function in κ.
The PiLi? protocol in Figure 1 satisfies consistency and λ∆-growth w.r.t. any non-uniform (A,Z)
that respects 0.5-weak-synchrony.

Our PiLi? protocol also satisfies optimistic responsiveness: roughly speaking as long as 3/4
fraction of nodes are honest, then transaction confirmation time depends only on the actual network
delay δ (but not on the a-priori upper-bound ∆) as soon as an honest proposer takes over after the
GST. We will formally state this property and prove it in Section 4.

4 Proofs

In all of our theorem and lemma statements below, we by default assume that (A,Z) is non-uniform
p.p.t. and moreover respects 0.5-weak-synchrony.

4.1 Additional Definitions and Useful Facts

Good executions. Henceforth we ignore the negligible fraction of bad executions where honest
nodes’ signatures are forged or where a hash collision is found. Most of our theorems and lemmas
below hold only for “good executions” where honest nodes’ signatures are not forged and hash
collisions do not exist in the union of honest nodes’ views.

Additional terminology. We introduce some additional useful terminology:

• We say that a message m is in honest view in some execution if some honest node observes m
in some round during the execution. We say that a notarized chain chain is in honest view in
some execution if there exists some round in which some honest node observes not only chain
but also a notarization for chain.

• We say that in some execution, a message m is in “honest and online view” in some round r
iff everyone in Ot where t ≥ r must have observed the message m by the end of round t.

• chain � chain′ means chain is a prefix of chain′; by convention, chain � chain.

• When the execution trace we are referring to is clear from the context, we shall use the notation
R(<e) or equivalently R(≤e−1) to denote the last round in which every honest and online node
is in an epoch strictly smaller than e; and we use the notation R(>e) or equivalently R(≥e+1)

to denote the first round in which every honest and online node is in an epoch greater than

15

e. Here we measure the which epoch the node is in some round after the node processes all
the incoming possibly clock messages at the beginning of the round — recall that we assume
that a node always processes incoming clock messages first before taking any other action in
a round.

• Henceforth, for simplicity, a collection of signed clock(e) messages from more than n/2
distinct nodes is also said to be notarized clock(e) message.

Fact 4.1. If in some round r, an honest and online node is in epoch e, then in round r + ∆, all
nodes honest and online must have entered epoch e or greater. A direct corollary is the following:
for any e, it must be that R(≥e) −R(<e) ≤ ∆ + 1.

Proof. Follows directly from Assumption 2.

Fact 4.2. Consider any good execution, it must be that for any e, in round R(<e), no honest (online
or offline) node is in epoch e+ 1 or greater.

Proof. For an honest node to be in epoch e + 1 or greater, it must have heard either an epoch
e′-notarization for e′ ≥ e, or a notarized clock(e′′) message for e′′ ≥ e + 1. Note that the honest
and online nodes in round R(<e) cannot have sent an epoch-e′ vote or clock(e′′) message. Thus
such an epoch e′-notarization or a clock(e′′) message cannot have gained notarization in honest
view.

Fact 4.3. Consider some good execution: if chain is a notarized chain in honest view at the be-
ginning of round r, then every prefix of chain must be a notarized chain in honest view too at the
beginning of round r.

Proof. For a block to obtain notarization in honest view, some honest node must have voted for
it, and this node will only vote for it if it has seen the parent block’s notarization. The proof then
follows by inductively applying this argument to every block in the prefix.

Fact 4.4. In a good execution, only chains that satisfy our blockchain validity rules can gain
notarization in honest view.

Proof. Straightforward by observing that no honest node will vote for a chain that breaks blockchain
validity rules.

4.2 Consistency

Lemma 4.5 (Uniqueness of strong notarization). Consider some good execution and let chain
and chain′ be two strongly notarized chains ending at epoch e in honest view . Then it must be
chain = chain′.

Proof. By honest protocol definition, each honest node will only vote for at most one epoch-e block;
and each corrupt node can vote for both chain and chain′. Let f < n/2 denote the number of corrupt
nodes; thus the total number of distinct votes for chain and chain′ is less than n− f + 2f = n+ f <
3n/2 (note that if the same node signs two signatures for the same block it is counted only once).
Suppose for contradiction that chain 6= chain′ but both blocks gained a strong notarization (i.e., at
least 3n/4 votes from distinct nodes) in honest view. This means that the number of distinct votes
for chain and chain′ is at least 3n/2 and thus we have reached a contradiction.

16

Lemma 4.6. Consider a good execution: suppose that chain is a notarized chain in honest view
containing three blocks at epochs e, e + 1, and e + 2 respectively; then a notarization for chain〈e〉
must be in honest and online view by the beginning of round R(>e+2) + ∆.

Proof. By Fact 4.3 every block in chain must have notarization in honest view. We consider only
good executions in our argument below. Let r be the first round in which a notarization for
chain〈e+ 1〉 appeared in honest view. By the end of round r, some honest node who has voted for
chain〈e+ 1〉 must have been online in or after the round in which it voted for chain〈e+ 1〉 — since
if every honest node that voted for chain〈e+ 1〉 voted for the block when it is offline and moreover
has remained offline since, there cannot be a notarization for chain〈e + 1〉 in honest view. Recall
that an honest node only votes for a block after observing a valid notarization for the parent block,
therefore a notarization for chain〈e〉 must be in honest view in round r+ ∆ by our strong message
delivery assumption (Assumption 2).

It suffices to prove that r ≤ R(>e+2). Suppose not, we now reach a contradiction below. Recall
that in any round t ≥ R(>e+2), everyone in Ot must be in epoch e + 3 or greater. Thus no node
in OR(>e+2) will vote for any block at epoch e + 2 or smaller in or after round R(>e+2). Note also
that chain〈e + 2〉 cannot have gained a notarization in honest view before chain〈e + 1〉 gained a
notarization in honest view. Thus if r > R(>e+2) we reach the conclusion that chain〈e+ 2〉 cannot
gain notarization in honest view which contradicts our assumption.

Lemma 4.7 (Non-skipping condition). Consider a good execution: suppose that chain is a notarized
chain in honest view containing three blocks at epochs e, e+ 1, and e+ 2 respectively, suppose also
that chain′ is also a notarized chain in honest view ending at an epoch e′ ≥ e. Then, chain′ cannot
skip all of the epochs e, e+ 1, e+ 2, e+ 3, e+ 4, and e+ 5.

Proof. It suffices to prove that if chain′ ends at an epoch e′ ≥ e + 6, chain′ cannot skip all of e to
e+ 5. Suppose for the sake of contradiction that indeed chain′ skips all epochs from e to e+ 5. Let
e1 be the smallest epoch contained in chain′ that is e + 6 or greater. For chain′〈e1〉 to ever gain a
notarization in honest view, someone i∗ ∈ OR(<e+5) must vote for chain′〈e1〉 after round R(<e+5).

By Lemma 4.6, it suffices to prove that R(<e+5) ≥ R(>e+2) + ∆ since in this case when i∗ enters
epoch e + 5 it must have observed a notarization for chain〈e〉 and therefore i∗ will not vote for
chain′〈e1〉 and this leads to a contradiction. Below we focus on proving the following claim — this
claim, combined with the following simple fact would complete the proof: some honest node in
OR(≥e+5) must vote for chain′〈e1〉 at some point, and this honest node cannot have entered epoch
e+ 5 through fast-forwarding.

Claim 4.8. Consider a good execution: suppose that some honest node in OR(≥e+5) did not enter
epoch e+ 5 through fast-forwarding, then it must hold that R(<e+5) ≥ R(>e+2) + ∆.

Proof. On one hand, due to Fact 4.1, we have that

R(>e+2) + ∆ = R(≥e+3) + ∆ ≤ ∆ + 1 +R(<e+3) + ∆ = 2∆ + 1 +R(<e+3)

On the other hand, due to Fact 4.2, we have that in round R(<e+3), no honest node is in epoch
e+ 4 or greater. Moreover, since some honest node in OR(≥e+5) did not enter epoch e+ 5 through
fast-forwarding, at least 5∆ rounds must have elapsed between round R(<e+3) and R(≥e+5). We
now have that

R(>e+2) + ∆ ≤ 2∆ + 1 +R(<e+3) ≤ 2∆ + 1 +R(≥e+5)− 5∆ ≤ −3∆ + 1 +R(<e+5) + ∆ + 1 ≤ R(<e+5)

where the last but second inequality is again by Fact 4.1.

17

Theorem 4.9 (Consistency). Consider a good execution: suppose that chain is a notarized chain
in honest view ending at 13 consecutive epochs denoted e − 5, e − 4, e − 3, . . . , e + 7, and suppose
that chain′ is also a notarized chain in honest view ending at an epoch e′ ≥ e+ 7. Then, it must be
that chain〈e〉 � chain′.

Proof. Due to Lemma 4.7, chain′ must contain one block denoted chain′〈e0〉 whose epoch e0 ∈
{e− 5, e− 4, . . . , e} and one block denoted chain′〈e1〉 whose epoch e1 ∈ {e+ 5, e+ 6, . . . , e+ 10}.

By blockchain validity rule, in chain′, there must be consecutive normal blocks at every epoch
number e0 + 1, e0 + 2, . . . , e1. In particular, this means that epochs e, e+ 1, . . . , e+ 5 must belong
to chain′.

For the sake of contradiction, suppose that chain〈e〉 is not a prefix of chain′. This means that all
the blocks in chain′ whose epochs are between e, e+1, . . . , e+5 are not part of chain. By Lemma 4.5,
for each of e ∈ {e, e+ 1, . . . , e + 5}, it must be that that either chain〈e〉 or chain′〈e〉 does not have
a strong notarization in honest view.

By Lemma 4.6, a notarization for chain〈e〉 and a notarization for chain′〈e〉 must be in honest
view by the beginning of round R(>e+2) +∆. Since either chain〈e+4〉 or chain′〈e+4〉 does not have
a strong notarization in honest view, without loss of generality, we assume that chain〈e + 4〉 does
not have a strong notarization in honest view (otherwise a symmetric argument could be made).
For chain〈e + 5〉 to gain a notarization in honest view, it must be that some node i∗ in OR(<e+5)

must vote for chain〈e+ 5〉 after round R(<e+5).
Now by Claim 4.8, we can prove that R(<e+5) ≥ R(>e+2) +∆, since here we also have that some

honest node inOR(≥e+5) must vote for chain〈e+5〉 (whose parent does not have a strong notarization)
at some point, and this honest node cannot have entered epoch e+ 5 through fast-forwarding.

Therefore, we may conclude that i∗ cannot have voted on chain〈e+5〉 since it must have observed
conflicting notarizations for epoch e in round R(<e+5). Thus we have reached a contradiction.

Corollary 4.10. The PiLi? protocol (Figure 1) satisfies consistency w.r.t. any non-uniform p.p.t.
(A,Z) that respects 0.5-weak-synchrony.

Proof. Straightforward from the finalization rule and Theorem C.6.

4.3 Chain Growth

Fact 4.11 (Epoch advancement does not stop). Let t0 be at least 3∆ rounds after GST in a good
execution, and let e0 be the largest epoch that any honest node is in during round t0. Let e ≥ e0,
we have that R(≥e) ≤ t0 + ∆ + 6∆(e− e0).

Proof. By the beginning of round t0 + ∆, every honest node will be in epoch e0 or greater; then by
the beginning of round t0 + ∆ + 5∆ = t0 + 6∆ every honest node will either be in round e0 + 1 or
greater or will have sent clock(e0 + 1); thus by the beginning of round t0 + 6∆ + ∆, every honest
node will be in round e0 + 1 or greater; and the rest of the proof can be completed inductively in
this manner.

Lemma 4.12. Let t0 be at least 3∆ rounds after the GST in a good execution, and suppose that
R(<16j−1) ≥ t0. Moreover, suppose that there is no epoch-(16j − 1) notarized block ever in honest
view, and that an honest node proposed an epoch-16j block. Then, it must be that in round
R(≤16j+13) + 2∆, some honest node will have output a final chain that includes some epoch that is
16j or greater.

18

Proof. We first prove the following simple fact:

Fact 4.13. Let t0 be at least 3∆ rounds after the GST in a good execution, and suppose that
R(<16j−1) ≥ t0. For any e ≥ 16j − 1, if there is no epoch-e notarization in honest view, it must be
that R(≤e) −R(≥e) ≥ 2∆.

Proof. Recall that R(≥e) is the first round in which all honest nodes enter epoch e or greater,
therefore before round R(≥e) − ∆, no honest node must have entered epoch e or greater yet. In
round R(≤e) +1, some honest node would have entered epoch e+1 or greater. However, since there
is no epoch-e notarization in honest view, no honest node can enter epoch e + 1 until 5∆ rounds
after the first honest node enters epoch e.

If there is no epoch-(16j − 1) notarized block ever in honest view, by our blockchain validity
rule, only a skip block can be proposed for epoch 16j. Thus there can only be a single honest node
(denoted i∗) and no corrupt node eligible for proposing an epoch-16j block. Node i∗ must propose
this epoch-16j block in the round it first enters epoch 16j — and let t∗ be this round. We will now
argue that all honest nodes will vote on this proposal when the receive it:

• Parent not too stale. First, due to Fact 4.13, t∗ ≥ R(≤16j−1) ≥ R(≥16j−1) + 2∆. Thus if an
honest node sees a message at the beginning of epoch 16j − 1, the honest proposer i∗ must
have seen it in round t∗. Thus the proposal will not be rejected due to the parent being too
stale.

• No recent conflicts. This trivially holds because the proposed block is a skip block itself.

Observe also that at the beginning of round t∗ + ∆, all honest nodes will have seen the proposal
as well as the parent chain and its notarization; further, all honest nodes will have entered epoch e
(or greater). Note also that no node can have sent any clock(e′) message for any e′ ≥ 16j + 1 by
round t∗+ 2∆ — this is because that in round t∗, no honest node must have been in epoch 16j for
more than 3∆ rounds. Thus, all honest nodes will have cast a vote for the epoch-(16j) proposal
by the end of the round t∗ + ∆. Moreover, at the beginning of the round t∗ + 2∆, all honest nodes
would have received a notarization for the epoch-(16j) proposal made by i∗.

Now, when node i∗ enters epoch e = 16j + 1, say, in round t∗1:

• either i∗ entered this epoch by fast-forwarding in which case it proposes an epoch-e block ex-
tending from a strongly notarized epoch-(e− 1) parent in round t∗1 or

• it entered epoch e by collecting a notarized clock(e) message — in this case it is not hard to
see that t∗1 ≥ t∗+ 2∆ and thus i∗ will have seen an epoch-(e− 1) notarized block in round t∗1; in
this case i∗ will propose an epoch-e block extending from an epoch-(e− 1) parent in round t∗1.

Repeating the same argument as above, and additionally observing that there cannot be any con-
flicts since the last skip block which is the block at epoch 16j since there is a unique honest proposer,
we may conclude that in round t∗1 + 2∆, every honest node must have observed a notarization for
the proposed block at epoch e.

At this moment, we can inductively show that for every k > 0, for epoch e = 16j + k, let t∗k be
the round in which node i∗ first enters epoch e. It must be that 1) node i∗ will propose an epoch-e
block extending from an epoch-(e− 1) parent in round t∗k, and 2) every honest node has observed
a notarization for the proposed block at epoch e in round t∗k + 2∆.

Thus by the round R(≤16j+13) + 2∆, there is a notarized chain in honest view containing every
epoch e ∈ {16j, . . . , 16j+13}, this is sufficient to conclude our proof due to the protocol’s finalization
rule.

19

Theorem 4.14 (Chain growth during periods of synchrony). Let λ = ω(log κ) be a super-logarithmic
function in the security parameter κ. Except for a negl(κ) fraction of the executions, the following
must hold: suppose that t0 is at least 3∆ round after the GST and t1 − t0 ≥ λ∆. Then, by the end
of round t1, some honest node must have output a new block B which did not gain notarization in
honest view yet by the end of round t0.

Proof. Let e0 be the largest epoch that any honest node is in during round t0. It is also not hard
to see that in round t0 there is no epoch-e notarization in honest view for any e > e0. Let 16j
be the first epoch that is greater than e0 + 16. First, suppose that there is a notarization for an
epoch-(16j − 1) block in honest view by the end of round t1, then due to our blockchain validity
rules and the finalization rule, the conclusion stated in the theorem holds as long as this is a
good execution. Below we focus on the case where there is no notarization for an epoch-(16j − 1)
block in honest view by the end of round t1. In this case, we claim that if the proposer denoted
i0 for proposing an epoch-(16j) skip block is honest and the proposer denoted i1 for proposing an
epoch-(16(j + 1)) skip block is also honest, then one of i0 and i1 must successfully propose a block
of epoch 16j or 16(j + 1) respectively. To see this, suppose that the proposer i0 did not propose a
block of epoch 16j. Since there is no notarization for epoch-(16j − 1) in honest view, there cannot
be a valid normal block proposed at epoch 16j either. Thus no honest node can observe any valid
proposal at epoch 16j and no block of epoch 16j can gain notarization in honest view. This implies
that no block of epoch 16j+ 1, . . . , 16(j+ 1)−1 can gain notarization in honest view. Now when i1
first enters epoch 16(j + 1), it will obviously succeed in proposing a skip block at epoch 16(j + 1).
Thus if the proposer for proposing an epoch-(16j) skip block and the proposer for proposing an
epoch-(16(j + 1)) skip block are both honest, by Lemma 4.12, it must be that either the execution
is bad or by round R(≤16(j+1)+13), some honest node must have output a new block that had not
gained notarization yet by the end of round t0.

Repeating the above argument, we can prove that for every j′ ≥ j such that R(≤16(j′+1)+13) ≤ t1,
if the proposer for proposing an epoch-(16j′) skip block and the proposer for proposing an epoch-
(16(j′+ 1)) skip block are both honest, then either the execution is bad or some honest node must
have output a new block that had not gained notarization yet by the end of round t0.

The proof now concludes by observing that due to Fact 4.11 and the fact that t1−t0 ≥ ω(log κ)∆,
such a j′ must exist except with negligible in κ probability.

Corollary 4.15 (Chain growth during periods of synchrony). Let λ = ω(log κ) be any super-
logarithmic function in κ. Our PiLi? protocol satisfies λ∆-growth w.r.t. any non-uniform p.p.t.
(A,Z) that respects 0.5-weak-synchrony.

Proof. Straightforward from Theorem 4.14 and the fact that if some honest node observes B (see the
statement of Theorem 4.14) after GST, then all honest nodes will see it in another ∆ rounds.

4.4 Optimistic Responsiveness

We say that an honest proposer i takes over in round t in some execution iff i proposes a skip block
in round t. Our PiLi? protocol achieves optimistic responsiveness as soon as 1) an honest proposer
takes over after the GST; and 2) at least 3n/4 of the nodes are honest.

More specifically, we can show the following:

Theorem 4.16 (Optimistic responsiveness under good conditions). Suppose that in some good
execution, an honest proposer i takes over in some round t that is at least 3∆ rounds after the
GST; and moreover, at least 3n/4 number of nodes are honest. Let δ ≤ ∆ be the actual maximum

20

honest message delay after the GST in this execution. Then, suppose that i proposes an epoch-e
block in round t′ ≥ t, we have the following:

• the proposed block obtains notarization in every honest node’s view by the beginning of round
t′ + 2δ;

• by the beginning of round t′ + 2δ, every honest node will have fast-forwarded to epoch e + 1
or greater;

• i will successfully propose a block at epoch e+ 1 extending from a strongly notarized parent of
epoch e.

Proof. Deferred to the Supplemental Materials (Section A).

5 Extensions: Reconfigurability and Block Quality

5.1 Reconfigurable PiLi?

We consider how to live-reconfigure of the set of consensus nodes and propose a reconfigurable
version of PiLi?. During the operational life-cycle of the consensus protocol, reconfigurability is
typically needed due to maintenance reasons as well as key updates. Reconfigurability is also im-
portant in a decentralized, proof-of-stake setting where the consensus committee must be reelected
periodically as stake switches hands. Later in Section 6.2, we will discuss more how to use our
“reconfigurable PiLi?” in such a decentralized proof-of-stake environment.

It is quite easy to support reconfiguration in our PiLi? protocol. Imagine that we use the
blockchain itself to encode the decision to reconfigure. In general, let Comm(chain) be a function
that outputs a set of public keys given the prefix of some blockchain denoted chain. Thus the
function Comm(chain) can be used to signal that a reconfiguration is needed and to establish
common knowledge of the new consensus committee. If Comm(chain[: `]) 6= Comm(chain[: ` − 1]),
we say that the block chain[`] is a reconfiguration-signaling block.

In the following, we focus on describing the consensus mechanism that enables such reconfigu-
ration for general choices of Comm. How to design the function Comm is an orthogonal problem,
and has been discussed extensively in prior work [9,10]. Our idea is simply to terminate the current
consensus instance and spawn a new one whenever a reconfiguration-signaling block becomes part
of the finalized log. Since now there can be many consensus instances, nodes would output the
sequential concatenation of the logs output by all instances spawned so far. Below we describe this
idea more formally.

Notations. We use a session identifier sid ∈ {1, 2, 3, . . . , } to identify instances of the PiLi?

protocol a node spawns sequentially over time. When a specific instance identified by sid terminates,
the finalized chain it outputs is called the instance’s concluding chain henceforth denoted CCsid .
We use the shorthand CC1..sid to denote the the concatenation:

CC1..sid := CC1||CC2|| . . . ||CCsid

Supporting reconfiguration. More formally, we use the following mechanism to support re-
configuration.

21

• At any time, let sid denote a node’s present instance; the node outputs the following finalized
chain where chainsid is the output thus-far of the present instance sid :

CC1..sid−1||chainsid

• Let sid be a node’s present instance and let chainsid denote a blockchain in the present instance
sid . We say that chainsid [`] is a reconfiguration-signaling block iff

Comm
(
CC1..sid−1||chainsid [: `]

)
6= Comm

(
CC1..sid−1

)
• If the present instance sid outputs a blockchain chainsid that contains a reconfiguration-

signaling block and let chainsid [`] be the first such block, then the concluding chain of the
present instance CCsid is defined as CCsid := chainsid [: `].

• Whenever a node observes a reconfiguration-signaling block in the output chain of the present
instance sid , then terminate instance sid and spawn a new instance sid + 1. The set of
consensus node for instance sid + 1 is defined as Comm

(
CC1..sid

)
.

• Finally, recall that all protocol messages are signed by the sender. For standard compositional
reasons [17], we assume that whenever a node signs a message in instance sid , it prefaces the
message with sid before signing; and correspondingly the verification algorithm would also
preface the message with sid . We may also assume that if a node receives a message pertaining
to an instance that has not yet been spawned, the message will be queued in a buffer and
delivered when that instance is spawned.

5.2 Quality of the Confirmed Blockchain

In Section 4, we showed that our basic protocol achieves a weaker notion of liveness called chain
growth. Chain growth requires that during periods of synchrony, honest nodes’ output logs grow at
a steady pace; but it does not impose any block quality requirement. To attain the liveness notion
defined in Section 2.3, we would like to make sure that only blocks with good quality can become
notarized during periods of synchrony. Roughly speaking, a block is of good quality iff it includes
all unconfirmed transactions that have been pending in honest view for sufficiently long.

To achieve this goal, we now describe a very simple modification to our basic PiLi? protocol:
we add an additional voting rule as follows (the voting rules described in Figure 2 still apply):

A node will vote for a proposal B only if either B or its parent chain contains all transactions the
node has observed 2∆ or more rounds ago.

Intuitively, this additional voting rule has the following effect: if the current proposer is corrupt
and censoring pending transactions, honest nodes will refuse to vote and choke the current proposer.
This will trigger proposer re-election until some well-behaved proposer is found. We now prove that
our PiLi? protocol with the above modification satisfies the liveness notion defined in Section 2.3.

Corollary 5.1. Let λ = ω(log κ) be any super-logarithmic function in κ. Then, our PiLi? protocol
with the above modification satisfies consistency and λ∆-liveness w.r.t. any non-uniform p.p.t.
(A,Z) that respects 0.5-weak-synchrony.

Proof. It is not difficult to verify that consistency (i.e., Corollary 4.10) still holds and its proof is
unaffected by this modification.

22

Below we focus on proving liveness. First, it is not difficult to verify that Lemma 4.12 and
Theorem 4.14 still hold — specifically in the proof of Lemma 4.12, we need to observe that honest
nodes will not refuse to vote on i∗’s proposal due to detection of censoring.

We now continue with the proof assuming that Lemma 4.12 and Theorem 4.14 hold. Suppose
that 2λ′+6 = λ — note that λ′ is super-logarithmic too. Henceforth we ignore the negligible fraction
of bad executions in which signature forgeries or hash collisions occur, or in which Theorem 4.14
fails for the parameter λ′ (in lieu of λ in Theorem 4.14).

Let r be any round that is at least (2λ′ + 5)∆ rounds after the GST. By Theorem 4.14, at the
end of round r, some honest node has output a block B that has not gained notarization in honest
view yet by the end of round r1 := r − λ′∆. Applying Theorem 4.14 again, by the end of round
r1, some honest node has output a block B1 that has not gained notarization in honest view yet by
the end of round r2 := r − 2λ′∆. By consistency, B1 must be an ancestor to the block B. Thus no
honest vote for the block B can be cast in round r2 or earlier, since by honest protocol definition
and Fact 4.3, an honest vote may be cast for B only when there is a notarization for B1 in honest
view.

Since an honest node (henceforth denoted i∗) casts a vote for B in some round after r2, by
honest protocol definition, this block B or its parent chain must include all transactions i∗ has
observed at the beginning of round r2 − 2∆.

Thus, the block B or its parent chain must include all transactions some honest node (not
necessarily i∗) has observed at the beginning of round r2−3∆. Note that in round r+∆, all honest
nodes will have output B.

In summary, we have shown that for any round r∗ that is at least (2λ′ + 6)∆ rounds after the
GST, all honest nodes must have output a block B that includes all transactions some honest node
has observed at the beginning of round r∗ − (2λ′ + 4)∆. The above corollary then follows in a
straightforward manner.

6 Practical Considerations

PiLi? is suitable for both permissioned blockchains or in decentralized proof-of-stake applications.
In this section, we discuss how to use PiLi? in these settings.

6.1 Performance Considerations in a Permissioned Environment

To achieve high performance in a permissioned deployment environment, one approach would be
to separate the proposers and the voters. This way, the proposer nodes can be better provisioned
than the voters and can serve as dedicated infrastructure to accelerate the consensus protocol (but
need not be trusted for consistency). Specifically, in a typical implementation, the proposer nodes
can provide an optimistic network layer on the fast path: each proposer acts as a relay to forward
the blocks proposed to the voters over a direct IP link; they then collect the voters’ votes and
send the aggregated notarization back to the nodes. Underneath we can employ a (slower) network
diffusion mechanism (e.g., the diffusion mechanism employed by Bitcoin or Ethereum) where nodes
keep telling each other the freshest notarized chain they have seen, and help each other get caught
up on notarized blocks that they do not have.

6.2 Considerations for Decentralized Proof-of-Stake

Earlier in the paper, we primarily focused on a permissioned setting for concreteness. In a per-
missioned setting especially if high performance is a primary concern, a stability-favoring proposer

23

rotation policy might be more desirable.
Our reconfigurable PiLi? is also a great consensus candidate for a decentralized proof-of-stake

setting. In decentraized proof-of-stake, anyone can bid to become part of the consensus commit-
tee by freezing stake on the blockchain. In this way, the consensus committee can be re-elected
periodically and the our reconfigurable PiLi? (Section 5.1) readily supports such re-election.

Democracy-favoring proposer eligibility. We describe a democracy-favoring proposer eligi-
bility policy that is desirable for such a decentralized environment. Suppose that each elected
committee will serve for one “committee-term”. Recall that in reconfigurable PiLi?, we would
spawn a new consensus instance for each committee-term. Let λ be a suitable super-logarithmic
function in κ that denotes the number of epochs in each committee-term; henceforth, we assume
that each committee-term’s epoch numbers are renumbered as 1, 2, . . . , λ. Let Sk denote a public
random seed that can be determined before the k-th committee-term starts — we will describe how
to select such a seed shortly after. Now, a node i ∈ [nk] is said to be an eligible propser to propose
a block of epoch e′ ∈ [1, λ], iff

i = (H∗(Sk||e) mod nk) + 1

where nk is the size of the k-th committee. Note that once the k-th committee is determined, we
can easily assign each node a unique index, e.g., by lexicographical ordering of their public keys.

To understand this scheme, first pretend that Sk is chosen by a trusted party after the k-th
committee is determined (we will later describe how to remove this assumption). If so, then for
any super-logarithmic function λ′ = ω(κ) and any constant C > 1, the following good event must
happen except with negligible (in κ) probability: over the course of any λ′ consecutive epochs, there
must exist C consecutive epochs whose proposers are all honest. Using almost the same proof as
Theorem C.7, whenever C consecutive epochs all have honest proposers for some appropriate C ≈
30, honest nodes’ final output must grow by at least one honestly-proposed-block. Summarizing
the above, in every window of super-logarithmically many consecutive epochs, honest nodes’ output
logs must have grown by at least one honestly-proposed-block.

We now discuss how to resolve two concerns: 1) how to select the random seed for seeding
the proposer eligibility random oracle H∗; and 2) how to improve the concrete parameters of the
scheme.

A two-phase approach for electing committee and seed. One possible attack we need to
defend against is the following: after the adversary observes the random seek Sk, it can choose
the indices of the seats corrupt nodes want to hold in the k-th committee such that corrupt nodes
can elected as proposer for many consecutive epochs — such an attack can deny liveness to the
blockchain for up to Ω(nk) blocks. Therefore, it is important that the random seed Sk be selected
after the k-th committee is determined. To this end, we can employ an idea proposed in Snow
White [10] and subsequently adopted by later versions of Algorand [9] too:

• When the i-th committee is serving and we are running the i-th consensus instance, we will use
two phases, called bid and seed respectively, to determine the committee and the random seed
of the next committee-term. Each phase encompasses super-logarithmically many epochs.

• During the bid phase, all interested players freeze stake on the blockchain to become elected
into the next committee. We assume that the proof-of-stake system may specify some election
policy, e.g., a minimal amount of stake that must be frozen.

24

• After the bid phase ends, the next consensus committee will have been determined. At this
moment, there is a seed phase that consists of λ′ blocks where λ′ is a suitable super-logarithmic
function in κ. We also assume that a proposer would include a random string of κ bits into
the payload field of any block it proposes. Suppose that the seed phase encompasses blocks of
epochs between [e, e+λ′], and let ρe, . . . , ρe+λ′ denote the random strings of all blocks contained
in the seed phase — if an epoch is skipped we simply let the corresponding ρ be ⊥.

We can simply let the concatenation ρe|| . . . ||ρe+λ′ be the random seed for the next epoch.

As earlier works [9,10] have shown, although a corrupt proposer can arbitrarily manipulate the
random string inserted into any block it proposes, as long as one of the random strings among
ρe, . . . , ρe+λ′ is created by an honest propser, then the concatenated string ρe|| . . . ||ρe+λ′ has high
entropy. Such a high-entropy is safe for seeding the proposer-eligibility random oracle H∗, as long as
H∗ is used to elect super-logarithmically many proposers [10] — intuitively, although the adversary
can get corrupt nodes elected for a few number of epochs, it cannot consistently win for λ′ number
of epochs except with exp(−Ω(λ′)) · poly(κ) probability. More specifically, when the random seed
is elected using the above mechanism rather than by a trusted party, using the same analysis as
Snow White [10], we lose only by a polynomial factor in the failure probability and thus we retain
the same asymptotical guarantee: except with negligible probability, in every window of super-
logarithmically many consecutive epochs, honest nodes’ final logs must have grown by at least one
honestly-proposed block.

Concrete parameters for the decentralized setting. As mentioned, our scheme requiresO(1)
number of consecutively honest proposers for liveness. In practice, we may consider the following
tweak for better concrete parameters: every multiple of 32 is a proposer-relection opportunity and
once elected, every proposer proposes blocks for the next 32 epochs.

Finally, it is not hard to see from our proofs that some of our constants can be easily tightened
by making minor tweaks to our scheme — in preparing this manuscript, we made an explicit choice
not to include all these minor tweaks in our presentation to maximize conceptual simplicity, to
help illustrate this “streamlined” paradigm not only in terms of construction but also in terms of
proof technique, and to help the reader understand the essence of this new paradigm. We leave it
as exciting future work to have the most concretely efficient scheme of our paradigm implemented
and open sourced.

References

[1] Gmail and google drive are experiencing issues, and naturally people are complaining about it
on twitter. https://www.huffingtonpost.com/entry/gmail-issue_n_3099988.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. Efficient synchronous byzantine
consensus. In Financial Crypto, 2019.

[3] I. Abraham, G. Gueta, and D. Malkhi. Hot-stuff the linear, optimal-resilience, one-message
BFT devil. CoRR, abs/1803.05069, 2018.

[4] S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai. Secure mpc: Laziness leads to god.
Cryptology ePrint Archive, Report 2018/580, 2018.

[5] M. Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In PODC, pages 27–30, 1983.

25

https://www.huffingtonpost.com/entry/gmail-issue_n_3099988

[6] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broadcast
protocols. In CRYPTO, pages 524–541, 2001.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

[8] T.-H. H. Chan, R. Pass, and E. Shi. Pala: A simple partially synchronous blockchain. Cryp-
tology ePrint Archive, Report 2018/981, 2018.

[9] J. Chen and S. Micali. Algorand: The efficient and democratic ledger.
https://arxiv.org/abs/1607.01341, 2016.

[10] P. Daian, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. In Financial
Cryptography and Data Security (FC), 2019.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.
ACM, 1988.

[12] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Eurocrypt, 2015.

[13] Y. Guo, R. Pass, and E. Shi. Synchronous, with a chance of partition tolerance. Cryptology
ePrint Archive, 2019.

[14] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-
stake blockchain protocol. In Crypto, 2017.

[15] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[16] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[17] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated byzantine
agreement. In STOC, 2002.

[18] J. Loss and T. Moran. Combining asynchronous and synchronous byzantine agreement: The
best of both worlds. Cryptology ePrint Archive, Report 2018/235, 2018.

[19] S. Micali and V. Vaikuntanathan. Optimal and player-replaceable consensus with
an honest majority. https://dspace.mit.edu/bitstream/handle/1721.1/107927/

MIT-CSAIL-TR-2017-004.pdf?sequence=1, 2017.

[20] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT protocols. In
CCS, 2016.

[21] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[22] R. Pass and E. Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[23] R. Pass and E. Shi. Rethinking large-scale consensus. In CSF, 2017.

[24] R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation. In Euro-
crypt, 2018.

26

https://dspace.mit.edu/bitstream/handle/1721.1/107927/MIT-CSAIL-TR-2017-004.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/107927/MIT-CSAIL-TR-2017-004.pdf?sequence=1

[25] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[26] V. G. Vitalik Buterin. Casper the friendly finality gadget. https://arxiv.org/abs/1710.

09437.

Supplementary Materials

A Proofs for Optimistic Responsiveness

Theorem A.1 (Optimistic responsiveness: restatement of Theorem 4.16). Suppose that in some
good execution, an honest proposer i takes over in some round t that is at least 3∆ rounds after the
GST; and moreover, at least 3n/4 number of nodes are honest. Let δ ≤ ∆ be the actual maximum
honest message delay after the GST in this execution. Then, suppose that i proposes an epoch-e
block in round t′ ≥ t, we have the following:

• the proposed block obtains notarization in every honest node’s view by the beginning of round
t′ + 2δ;

• by the beginning of round t′ + 2δ, every honest node will have fast-forwarded to epoch e + 1
or greater;

• i will successfully propose a block at epoch e+ 1 extending from a strongly notarized parent of
epoch e.

Proof. We first show it for the skip block proposed in round t. First, using a simlar argument as the
proof of Lemma 4.12, we can conclude the following: 1) every honest node will have voted for this
proposal by the end of t+ δ, and all honest node will have observed a notarization for the proposal
at the beginning of round t + 2δ; 2) every honest node will enter epoch e + 1 by fast-forwarding;
and 3) i will propose an epoch-(e+ 1) block extending from a strongly notarized parent of epoch-e
upon entering epoch e+ 1 (i.e., no later than round t+ 2δ).

Now, suppose that above claims hold for every block proposed by i with epoch numbers e, e+
1, . . . , e′ − 1 where e is the first skip block proposed in round t. By induction hypothesis, i will
propose an epoch-e′ block in some round t′ ≥ t extending from a strongly notarized parent of
epoch-(e′ − 1). Note that all honest nodes will have received the proposal, its parent chain and
the parent’s strong notarization at the beginning of round t′ + δ. Using a similar argument as in
the proof of Lemma 4.12, between rounds [t′ + δ, t′ + 2δ], every honest node must be in epoch e′.
Clearly, no honest node will reject the proposal due to the parent being too stale or due to having
seen conflicting notarizations since the last skip block (i.e., the block proposed by i in round t).
Thus, every honest node will have voted for the epoch-e′ proposal by round t+ δ and every honest
node will have seen its notariation at the beginning of round t + 2δ. Thus all honest nodes will
have fast-forwarded to epoch e′ + 1 by the beginning of round t + 2δ; and by round t + 2δ i will
have proposed a block of epoch e′ + 1 extending from a strongly notarized parent of epoch e′.

B Echo Mechanism

As mentioned earlier, a brute-force mechanism to realize Assumption 2 from Assumption 1 is to have
nodes echo (i.e., multicast) all messages they have seen in every round. This approach, however,
would be very expensive.

27

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437

We can rely on a more efficient mechanism to realize Assumption 2 from Assumption 1 — this
approach was in fact described in the work by Guo et al. [13] and we include it here for completeness.
Effectively, online nodes only need to retry a few times whereas offline nodes might need to keep
retrying until shortly after they come online — however, since nodes are unaware whether they
are online or offline, the actual protocol needs to look for a different indicator as to when to stop
retrying. The idea is to stop retrying when more than n/2 nodes have echoed the message. More
concretely, nodes rely on the following echo mechanism to realize Assumption 2:

• An echo from a node i for a message m is of the format (echo,m) tagged with node i’s
signature3.

• Upon observing a fresh message m (including messages contained in an echo, messages input
from Z, messages received over the network, or messages the node tried to send itself),
multicast an echo for m in every round until more than n/2 valid echos for m have been heard
from distinct nodes. Note that nodes need not recursively send echos for an echo.

Theorem B.1. Consider a good execution: the above echo mechanism satisfies Assumption 2.

Proof. Suppose that some honest node stops echoing m in round r, we prove that everyone in Or′
where r′ ≥ r + ∆ will have seen m.

Let r′′ ≤ r be the first round in which some honest node hears more than n/2 echos for m.
Some node i∗ ∈ Or′′−1 must have sent an echo for m; and since r′′ is the first round in which some
honest node hears more than n/2 echos for m, it must be that i∗ sent an echo for m in round r′′− 1
too. Thus, by Assumption 1, every node honest and online in round r′ ≥ r′′ + ∆ will have seen
m.

C Warmup: Basic PiLi for Classical Synchrony

In this section, we describe an extremely simple warmup protocol and we prove it secure in the
classical synchronous model assuming honest majority.

C.1 A Fully Synchronous Execution Model

We consider a set of n consensus nodes numbered 1, 2, . . . , n. The nodes have access to a public-
key infrastructure (PKI), and we use (pki, ski) to denote node i’s public- and secret-key pair where
i ∈ [n]. We adopt a standard synchronous model of protocol execution. Within a synchronous
round, the following takes place. First, nodes receive messages at the beginning of each round;
they then perform computation and process these messages; finally, they send messages. Any
honest message sent in round r will be received by honest recipients at the beginning of round
r + 1. Henceforth in the paper, “the end of round r” and “the beginning of round r + 1” are used
interchangably.

We assume that the adversary A statically corrupts a minority set of f nodes before the PKI
is chosen and moreover n ≥ 2f + 1. Corrupt nodes are entirely under the control of the adversary:
the messages they receive are forwarded to A, and the corrupt nodes send whatever messages A
instructs them to send. We assume a rushing adversary, i.e., corrupt nodes can send messages in a
round after looking at honest nodes’ messages sent in the same round.

3We assume that all protocol instances share the same echo-PKI. For composition, we assume that the message
signed is tagged with the session identifier sid and verification is aware of the sid too.

28

C.2 The Basic PiLi Protocol

C.2.1 Definitions

We formalize some useful definitions; all of these notions are defined in the most natural manner.

Block. Each block is of the format (e,TXs, h−1) where e ∈ N denotes an epoch number, TXs ∈
{0, 1}∗ denotes the block’s payload (e.g., a batch of transactions to confirm), and h−1 ∈ {0, 1}κ
denotes the parent hash, i.e., hash of the blockchain the block extends from.

Valid blockchain. A valid blockchain denoted chain is a sequence of blocks where for 1 ≤ i ≤
|chain|, chain[i] denotes the i-th block in chain. We often use the following useful blockchain notation:

• chain[−1] denotes the last block in chain and chain[: i] denotes the first i blocks of chain;

• assume that a block of epoch e exists in chain, we would then use chain〈e〉 to denote this
block at epoch e in chain; and use chain〈: e〉 to denote the prefix of chain ending at the block
chain〈e〉.

For a blockchain chain to be valid, the following must be respected:

1. For all 1 ≤ i < j ≤ |chain|, chain[i].e < chain[j].e; and

2. It must be that chain[1].h−1 = ⊥, and for every 2 ≤ i ≤ |chain|, chain[i].h−1 = H(chain[: i−1])
where H is randomly sampled from a collision-resistant hash family4.

In other words, in a valid blockchain, all blocks’ sequence numbers must strictly increase (but
sequences numbers may jump); and moreover, every block must correctly contain the parent chain’s
hash.

Epoch-e blockchain and “fresher than” relation. We say that chain is an epoch-e chain iff
chain[−1].e = e. A chain is said to be fresher than another chain′ iff chain[−1].e > chain′[−1].e.

Vote and notarization. A pair (h, σ) from a purported sender i ∈ [n] is said to be a valid vote
for some chain, iff h = H(chain) and moreover Σ.Verifypki(h, σ) = 1.

A collection of f + 1 valid votes for chain from distinct senders is said to be a notarization for
chain.

Remark C.1. Note that since our blockchain validity definition requires that each block specify the
parent hash, assuming no hash collision, a block may be considered an alias for a chain. Thus, we
often use the term “a vote/notarization for chain” and the term “a vote/notarization for the block
B := chain[−1]” interchangeably.

4In practice, H should be incrementally evaluated using a base hash function H0: let H(chain) := H0(H(chain[:
−1])||chain[−1]) if |chain| > 1; and let H(chain) := H0(chain[1]) if |chain| = 1.

29

Basic PiLi for classical synchrony

In every epoch e = 1, 2, . . ., every node performs the following. Henceforth, we assume that every
message is tagged with the (purported) sender’s identity.

1. Propose. Let chain be the freshest notarized chain observed so far. Let TXs be a set of
outstanding transactions. and let B := (e,TXs, H(chain)). If the node is an eligible proposer
for proposing B, multicast (B, σ) where σ is the node’s signature on B.

2. Vote. If a node has received a proposal of the form B := (e,TXs, h−1) with a valid signature
from some node i that is an eligible proposer for proposer B, vote on B iff the following
conditions hold:

• the node has observed some chain such that h−1 = H(chain) as well as a notarization
for chain; and

• unless e = 1, the following condition must hold: let chain′ be the freshest notarized
chain the node had observed at the beginning of the previous epoch e − 1, it must be
that chain (whose hash matches h−1) is at least as fresh as chain′.

To vote on B := (e,TXs, h−1), let chain be the blockchain matching h−1: sign h :=
H(chain||B) to obtain the signature σ, and multicast (h, σ).

A node is allowed to vote on multiple proposals if they all satisfy the above conditions.

Finalize. At any time, let chain be the freshest notarized chain ending with six blocks at consec-
utive epochs — and let e, e+ 1, . . . , e+ 5 be these six epochs. If for every e′ ∈ {e, e+ 1, . . . , e+ 5}
the only epoch-e′ notarized block observed so far belongs to chain, then output chain〈: e〉.

Figure 2: The basic PiLi blockchain for classical synchrony.

30

C.2.2 Protocol Description

Conventions. In our protocol all messages are always multicast to everyone. We assume that
a node always signs any message it wants to send, and the message is tagged with the purported
sender. If a message with an invalid signature is received, it is discarded immediately without being
processed.

We assume that every node always echos (i.e., multicasts) every fresh message it has seen. With
such echoing, we may assume the following stronger network delivery assumption: if an honest node
ever sends or receives a message m at the beginning of round r, then all honest nodes will have
observed m by the beginning of round r + 1.

Epochs and proposer eligibility. The protocol proceeds in epochs. We assume that there is
a publicly known and efficient function that can check whether a node i is eligible for proposing
a block denoted B := (e,TXs, h−1) extending from a parent chain (whose hash matches h−1). For
the time being, it is easiest to think of a round-robin policy, i.e., node (e mod n) + 1 is the only
eligible proposer for proposing any epoch-e block. We discuss other proposer-eligibility policies in
Sections 3 and 6.2.

Protocol. Each epoch contains exactly two synchronous rounds called Propose and Vote re-
spectively.

Our basic PiLi protocol proceeds in a natural manner: every epoch, an eligible proposer pro-
poses a next block extending its current freshest notarized chain. Consensus nodes vote on all
valid proposals from eligible proposers, as long as the proposed block extends from a chain that is
sufficiently fresh. When a block collects f + 1 votes, it is considered notarized. Thus if an epoch
has a single honest proposer, only a unique block of this epoch can be notarized. Not all notarized
blocks are considered final. If, however, at the beginning of epoch e the freshest notarized chain
(denoted chain) ends with 6 blocks at epochs e− 6, e− 5, . . . , e− 1 respectively, and moreover there
are no other notarized blocks at these epochs have been observed, then chain〈: e− 6〉 is considered
final (i.e., chop off the trailing 5 blocks from chain).

A formal description of the protocol is presented in Figure 2. In Section C.3, we prove the
following:

• Consistency. The protocol satisfies consistency as long as the majority of the nodes are honest
(and even when proposers are corrupt); and

• Chain growth under good proposers. Suppose that for each of C ≥ 6 consecutive epochs
e + 1, e + 2, . . . , e + C, there is a single honest proposer per epoch and no corrupt node is
elected proposer, then by the end each of the epochs e+ 6, e+ 7, . . . , e+C, any honest node’s
finalized chain would grow one honest block per epoch. More intuitively, whenever sufficiently
many consecutive epochs each has a single honest proposer and no corrupt proposer, then
after 6 epochs of wait-time, afterwards, every epoch will have a new block finalized for every
honest node.

C.3 Proofs

Good executions. Henceforth we ignore the negligible fraction of bad executions where honest
nodes’ signatures are forged or where a hash collision is found. For simplicity, in all theorems and
lemmas below, we omit stating “except with negligible probability” — however, the reader should

31

keep in mind that all theorems and lemmas below hold only for “good executions” where honest
nodes’ signatures are not forged and hash collisions do not exist in the union of honest nodes’ views.

Additional terminology. We introduce some additional useful terminology:

• We say that chain is a notarized chain in honest view in some execution if there exists some
round in which some so-far honest node has observed chain and a notarization for it.

• For convenience, we pretend that there is an imaginary genesis block denoted chain[0] :=
(0,⊥,⊥) at index 0 in every valid blockchain chain.

• chain � chain′ means chain is a prefix of chain′; by convention, chain � chain.

A simple observation is the following.

Fact C.2. Consider some good execution: if chain is a notarized chain in honest view at the
beginning of round r, then every prefix of chain is a notarized chain in honest view at the beginning
of round r too.

Proof. All statements below are with respect to the honest view at the beginning of some round r.
For contradiction, suppose that chain[: `] is a notarized chain in honest view but chain[: `−1] is not.
Since no honest node has observed a notarization for chain[: ` − 1], no honest node has voted for
chain[: `] by our protocol definition. This means that chain[: `] cannot gain notarization in honest
view in a good execution.

C.4 Consistency

Lemma C.3. Consider some good execution: suppose chain is some valid notarized chain in honest
view and there are two consecutive blocks in chain at epochs e and e′ > e respectively. Let chain〈: e〉
denote the prefix of chain ending at the epoch-e block. It must be that all honest nodes have observed
a notarization for chain〈: e〉 by the beginning of epoch e′ + 1.

Proof. Suppose for the sake of contradiction that some honest node has not observed a notarization
for chain〈: e〉 by the beginning of epoch e′ + 1. This means that no honest node has observed a
notarization for chain〈: e〉 by the beginning of the Vote round of epoch e′ (since otherwise all
honest nodes would have observed it by the beginning of epoch e′+ 1). This means that no honest
node will vote on chain〈: e〉 in epoch e′; combining Fact C.2, we have that chain〈: e〉 cannot be
followed by a notarized block at epoch e′ in any notarized chain in honest view — this contradicts
the assumption of this lemma.

Good event. We define the good event G(e) to be the following where e > 1: some honest node
has observed a notarized chain that contains both an epoch-(e− 1) block and an epoch-e block.

Lemma C.4. Consider some good execution such that for some e > 1, G(e) is true. Then, for every
notarized chain in honest view, if for some i chain[i].e ≥ e+ 2, it holds that chain[i− 1].e ≥ e− 1.

Proof. By Lemma C.3, if G(e) is true, then all honest nodes will have observed an epoch-(e − 1)
notarized block by the beginning of epoch e+ 1. Thus, by our honest protocol definition, in epochs
e+ 2 or higher, no honest node will vote to extend any chain that ends at epoch e− 2 or smaller.
Thus, any notarized block at epoch e + 2 or higher cannot extend from a block at epoch e − 2 or
smaller.

32

Lemma C.5. Consider some good execution in which G(e + 1) is true for e > 0: then for any
notarized chain ever in honest view such that chain[−1].e > e+ 2, it must be that chain contains at
least one block at epoch e, e+ 1, or e+ 2, i.e., it cannot be that chain skips all three epochs e, e+ 1,
and e+ 2.

Proof. For the sake of contradiction, suppose that there is some notarized chain in honest view such
that chain[−1].e > e+ 2 and moreover chain skips epochs e, e+ 1, and e+ 2. Consider the earliest
(i.e., least fresh) block in chain whose epoch is greater than e+ 2 and let chain[i] be this block. It
must be that chain[i− 1].e < e but this violates Lemma C.4.

Theorem C.6 (Consistency). Consider some good execution: suppose that ch is output by honest
node i at some time t and ch′ is output by honest node j at some time t′ (where the nodes i and j
and the times t and t′ need not be distinct). Then, it holds that ch � ch′ or ch′ � ch.

Proof. Let chain be the freshest notarized chain of node i at time t, and let chain′ be the freshest
notarized chain of node j at time t′. Further, suppose that chain and chain′ ends at epochs e and
e′ respectively. Without loss of generality, assume e′ ≥ e. By definition, ch := chain〈: e − 5〉 and
ch′ := chain′〈: e′ − 5〉. It suffices to show that ch � chain′. Suppose this is not true for the sake of
reaching a contradiction.

We next show that chain′ has some block with epoch in {e− 2, e− 1, e}. If e′ = e, then this is
satisfied. Otherwise, we apply Lemma C.5. Since the truth of G(e− 1) is witnessed by chain, and
the last block of chain′ is of epoch e′ ≥ e + 1, it follows that chain′ must contain some block with
epoch in {e− 2, e− 1, e}, as required.

Let chain′〈e∗〉 be the earliest block in chain′ where e∗ ∈ {e− 2, e− 1, e}. We apply Lemma C.4.
Since the truth of G(e− 4) is witnessed by chain, and chain′ contains a block with epoch e∗ ≥ e− 2,
the parent block B of chain′〈e∗〉 has epoch at least e− 5.

By our assumption, B is not in ch. Now, by Lemma C.3, by the end of epoch e∗ ≤ e (which is
the beginning of epoch e∗ + 1), all honest nodes would have observed a notarization for B. Note
that no honest node can have seen any epoch-e block notarized before the end of epoch e. Thus, t
must be at least the end of epoch e or larger. However, since node i output chain〈: e− 5〉 at time
t, by the definition of the honest finalization procedure (see Figure 2), it must be that node i has
not seen a notorization for B at time t. We have thus reached a contradiction.

C.5 Liveness

Theorem C.7 (Liveness). Consider some good execution: suppose that in each of 6 consecutive
epochs e, e + 1, e + 2, . . . , e + 5, a single honest node is elected proposer and and no corrupt node
is elected proposer. Then, at the beginning of epoch e+ 6, all honest nodes must output a finalized
chain ending at epoch e.

Note that if the above theorem holds, at the end of epoch e+6, honest nodes’ finalized chain ends
at an epoch-e block proposed by an honest node, and this honest node must include all outstanding
transactions into this block.

Proof. If some epoch e, a single honest is elected proposer and no corrupt node is proposer, then
a unique epoch-e block will be proposed in the Propose round of this epoch. To prove the above
theorem, it suffices to argue the following:

1. Progress: all honest nodes will have oberved a notarization for the proposed epoch-e block
by the end of epoch e;

33

2. Uniqueness: there cannot be two different epoch-e blocks notarized in honest view.

Uniqueness is obvious since the single honest proposer of epoch e makes a unique proposal and thus
honest nodes will not vote for any other epoch-e block other than the proposed. We now argue
about progress. If e > 1 then for any notarized chain ch seen by any honest node at the beginning
of the Vote round of epoch e − 1, all honest nodes must have seen ch by the beginning of epoch
e; thus an honest proposer of epoch e must propose to extend some chain that is at least as fresh
as ch. Thus all honest nodes will vote on the proposal by this honest proposer in epoch e, and all
honest nodes will have observed a notarization for the proposal by the end of epoch e.

Applying the same argument to epoch e + i, for i ∈ {1, . . . , 5}, we can conclude that by the
beginning of epoch e+ 6, all honest nodes must have observed the notarized chain containing the 6
blocks proposed by the unique honest node from epochs e to e+5, and observed no other notarized
blocks in these epochs.

Therefore, according to the finalization procedure specified in Figure 2, by the beginning of
epoch e+ 6, all honest nodes must output the same finalized chain ending at epoch e.

34

	Introduction
	A Tale of Synchronous Consensus
	PiLi: A New Paradigm for Synchronous Consensus
	Technical Contributions
	Additional Related Work

	A Weakly Synchronous Execution Model
	Execution Model
	Defining Global Standardization Time (GST)
	Weakly Synchronous Blockchain Protocols

	The PiLi Family of Blockchain Protocols
	Intuition
	Warmup: Basic PiLi for Classical Synchrony
	Making it Optimistically Responsive and Best-Possible Partition Tolerant

	Formal Description of PiLi
	Additional Preliminaries
	Protocol

	Proofs
	Additional Definitions and Useful Facts
	Consistency
	Chain Growth
	Optimistic Responsiveness

	Extensions: Reconfigurability and Block Quality
	Reconfigurable PiLi
	Quality of the Confirmed Blockchain

	Practical Considerations
	Performance Considerations in a Permissioned Environment
	Considerations for Decentralized Proof-of-Stake

	Proofs for Optimistic Responsiveness
	Echo Mechanism
	Warmup: Basic PiLi for Classical Synchrony
	A Fully Synchronous Execution Model
	The Basic PiLi Protocol
	Definitions
	Protocol Description

	Proofs
	Consistency
	Liveness

