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Abstract. We introduce the notion of Protean Signature schemes. This novel type of signature scheme allows to
remove and edit signer-chosen parts of signed messages by a semi-trusted third party simultaneously. In existing
work, one is either allowed to remove or edit parts of signed messages, but not both at the same time. Which and
how parts of the signed messages can be modified is chosen by the signer. Thus, our new primitive generalizes both
redactable (Steinfeld et al., ICISC ’01, Johnson et al., CT-RSA ’02 & Brzuska et al., ACNS ’10) and sanitizable
signatures schemes (Ateniese et al., ESORICS ’05 & Brzuska et al., PKC ’09). We showcase a scenario where either
primitive alone is not sufficient. Our provably secure construction (offering both strong notions of transparency and
invisibility) makes only black-box access to sanitizable and redactable signature schemes, which can be considered
standard tools nowadays. Finally, we have implemented our scheme; Our evaluation shows that the performance is
reasonable.

1 Introduction

Standard unforgeable digital signature schemes do not allow for any alterations of signed messages, i.e.,
an adversary cannot generate validating signatures for messages not explicitly endorsed by the signer [27].
However, this is too limiting in many real-life scenarios. The standard use-case usually given as an example
to clarify this situation is the handling of patient data. In particular, assume that a medical doctor signs a
complete record consisting of the patient’s name, insurance number and the received treatments. After the
patient is released, the hospital’s accountant receives the complete signed record related to the patient in
question to prepare the bill for the insurance company.

Obviously, this is not very privacy-friendly, especially from the patient’s point of view, as the accountant
receives all information, even though some data is irrelevant for the task carried out. So, the obvious solution
is to only give the treatments and the insurance number to the accountant, effectively anonymizing the
paperwork. However, as standard signatures do not allow for such alterations, the medical doctor either needs
to re-sign the document in this case or an additional trusted entity does it for the doctor. Still, both solutions
are not very satisfactory, as it induces additional overhead and may also be impossible in certain scenarios,
e.g., if the medical doctor is no longer employed. Thus, modifying signed messages in a controlled way has its
merits.

Motivation and Contribution. We introduce the notion of “Protean Signature schemes” (PS). In such
schemes, parts of a message can be removed, while the rest of this message remains authenticated, i.e., can be
verified using the corresponding public key pk. However, in contrast to redactable signature schemes [32,42]
(RSS), which only allow removal of parts, our primitive also allows to alter signer-chosen blocks to arbitrary
bit-strings, much like sanitizable signature schemes [2] (SSS), while also adding accountability.
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In the above (minimal) example, removal is enough to anonymize the data in question. However, in some
scenarios, it is also necessary to edit some parts of a signed message and not only to remove parts. For example,
to achieve k-anonymity [43], one may want to coarsen (generalize) the ZIP-code by replacing the last digits of
it with a special symbol, e.g., ∗. However, a problem here is that for more complex data, i.e., beyond ZIP-codes,
the decision of which and how data may be anonymized depends on the actual data gathered and additional
knowledge. Thus, there are scenarios where this information – and therefore the knowledge what to redact – is
not available to the entity generating the signature and hence not known at the time of signature generation.
Namely, coming back to the use-case with the patient data, data may be grouped based on side-effects on
the type of medication given, while certain information must be completely removed, i.e., identifiers such as
names. So, as new medications enter the market almost on a daily basis, even if based on existing agents, how
should the signer be aware of potential side-effects or new treatments ahead of time, especially considering
that the data must be grouped and anonymized w.r.t. to these values? Thus, a coexistence of the possibility
to remove and edit signed data becomes a necessity to successfully protect privacy while maintaining data
quality in certain scenarios.

This paper tackles this situation by introducing Protean Signature schemes (PS), where a semi-trusted
third party can remove and edit signer-chosen parts of the message (blocks), also answering an open question
by Bilzhause et al. [5] and de Meer et al. [19]. Thus, our new primitive can be seen as a generalization of both
SSSs and RSSs.

In more detail, we introduce a formal security framework for PSs and a provably secure construction.
Our construction is based on existing work on SSSs and RSSs, combining both concepts. The corresponding
efficiency analysis and implementation shows that our construction is reasonably efficient, especially considering
its possibilities.

Related Work. Malleable signatures received a lot of attention in the recent past, as it became clear that
there are many application scenarios where signed messages need to be modified in a controlled way [1,5,20,25].
This weakens the standard unforgeability definition, where the messages protected by signatures cannot be
altered at all, which is clearly not avoidable, if one wants to allow for modifications or derivations.

Essentially, existing work can be grouped into three, sometimes overlapping, directions. The first direction
are homomorphic signatures [1, 6, 32, 44], and some other closely related concepts [7, 45]. Homomorphic
signatures take several (signed) messages as input and can be used to compute functions on authenticated
data-sets. Here, an entity not holding any secrets can derive a new (valid) signature σ′ on f(m), where the
function f is public.

Directly related are RSSs, where anyone (i.e., no secrets are involved) can publish a subset of signed data,
along with a new signature σ′. To illustrate this, let m = (I, do, not, like, fish) along with a valid redactable
signature σ. Anyone can then derive a signature σ′ on m′ = (I, like, fish), i.e., redact the second and third
block m2 = do and m3 = not. The original ideas of RSSs [32, 42] were later formalized [8, 35]. Then, RSSs
have been extended to allow for additional use-cases, including adding accountability [38], discussing their
relation to SSSs [19], allowing for redactable structure [40], prohibiting additional redactions [29–31, 37],
yet also defining dependencies between different parts of a message [41]. Moreover, there are also some
real-world implementations of this primitive proving that they are practical [39, 46]. All these approaches (but
accountability) have later been unified into a generalized framework by Derler et al. [21]. Note, the work by
Izu et al. [30] addresses the case of “sanitizable and deletable signatures”. However, they actually address the
case of RSSs and not SSSs. In particular, in their scheme, a third party can decide whether a redaction is
visible or not, but does not allow for any other alterations. We follow the nomenclature clarified by Bilzhause
et al. [5] and thus classify the work by Izu et al. [30] as an RSS.

Likewise, SSSs allow to alter signer-chosen blocks of signed messages by a semi-trusted entity named the
sanitizer [2]. In particular, the sanitizer holds its own secret key and can derive new messages, along with
the corresponding signatures, but cannot completely redact blocks. For example, if m = (I, do, not, like, fish)



(and m5 is admissible, i.e., modifiable), then the sanitizer can, e.g., derive a new signature σ′ on the message
m′ = (I, do, not, like, meat). Even though this seems to be off the limits, it turned out that this primitive
has many real-life application scenarios, see, e.g., Bilzhause et al. [5]. After the initial ideas by Ateniese et
al. [2], SSSs also received a lot of attention in the recent past. Namely, the first thorough security model
was given by Brzuska et al. [9] (later slightly modified by Gong et al. [28]), which was later extended for
multiple signers/sanitizers [10, 16], unlinkability (which means a derived signatures cannot be linked to
its original) [11, 13, 24, 36], trapdoor SSSs (where a signer can choose additional sanitizers after signature
generation) [17,47], non-interactive public-accountability (an outsider can determine which party is accountable
for a given valid message/signature pair) [12], limiting the sanitizer to signer-chosen values [15,22,33], invisibility
(meaning that an outsider cannot derive which parts of a message are sanitizable) [3, 14,23] and the case of
strongly unforgeable signatures [34]. All these extensions allow for additional use-cases of this primitive [5].

Additional related work is given in some recent surveys [5,20,26]. We stress that a slightly altered SSS
can be used to “mimic” an RSS by defining a special symbol to which the specific block is sanitized to mark
the block as “redacted”. However, as shown by de Meer et al. [19], this has a negative impact on the privacy
guarantees of the resulting scheme because the special symbol remains visible. For example, m′ = (I, like, fish)
is clearly different from m′ = (I, ⊥,⊥, like, fish). We stress that our scheme supports both possibilities, i.e.,
visible and non-visible (transparent) redactions, adding additional freedom for the signer.

2 Preliminaries and Notation

We now give our notation and the required preliminaries. These include labeled IND-CCA2 secure encryption
schemes, sanitizable signatures and redactable signatures.

The formal definitions can be found in App. A.

Notation. The main security parameter is denoted by κ ∈ N. All algorithms implicitly take 1κ as an additional
input. We write a← A(x) if a is assigned to the output of the deterministic algorithm A with input x. If an
algorithm A is probabilistic, we write a←r A(x). An algorithm is efficient if it runs in probabilistic polynomial
time (PPT) in the length of its input. For the remainder of this paper, all algorithms are PPT if not explicitly
mentioned otherwise. Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception.
If S is a set, we write a←r S to denote that a is chosen uniformly at random from S. In the definitions, we
speak of a general message space M to be as generic as possible. What M is concretely, is defined in the
instantiations. For a message m = (m1,m2, . . . ,m`m), mi is called a block and `m ∈ N denotes the number of
blocks in m. If m is clear from the context, it is dropped from `m. A function ν : N→ R≥0 is negligible, if it
vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

Labeled Public-Key Encryption Schemes. A labeled public-key encryption scheme Π = {PPGenΠ ,
KGenΠ ,EncΠ ,DecΠ} allows to encrypt a message m using a given public key pkΠ and label ϑ ∈ {0, 1}∗. In
a nutshell, the given ciphertext leaks no information about the contained message, except its length, if the
corresponding secret key skΠ is not known. We require IND-CCA2 security to make our construction secure.

Sanitizable Signature Schemes. Subsequently, we restate the definitions of SSSs [3, 9, 34]. In a nutshell, a
SSS allows a semi-trusted third party, named the sanitizer, to alter signer-chosen blocks to arbitrary bit-strings.
The sanitizer holds its own key-pair and can be held accountable, if it sanitizes a message.

The following framework is essentially the one given by Camenisch et al. [14], which is itself based on
existing work [9]. However, some additional notation is required beforehand. The variable ADMSSS contains
the set of indices of the modifiable blocks, as well as `, denoting the total number of blocks in the message m.
For example, let ADMSSS = ({1, 2, 4}, 4). Then, m must contain four blocks (` = 4) and all but the third are



Signer Sanitizer Verifier

skSSSsig , pkSSSsan , m, ADMSSS = ({2}, 5) skSSSsan , pkSSSsig , m, MODSSS = {(2, E)} pkSSSsig , pkSSSsan

Signer Input Sanitizer Input Verifier Input

Output: σSSS Output: (σSSS′,m′) Output: d ∈ {0, 1}

Fig. 1: Example workflow of an SSS. The message m is set to (H,A,L, L,O) and is sanitized to (H,E,L, L,O).

Signer Judge

skSSSsig , pkSSSsan , m, σSSS, {(mi, σ
SSS
i )} pkSSSsig , pkSSSsan , m, σSSS

Proof-Generation Input Judge Input

Output: πSSS Output: d ∈ {SigSSS,SanSSS,⊥}

Fig. 2: Proof-generation and JudgeSSS

admissible. The variable MODSSS is a set containing pairs (i,mi′) for those blocks that are modified, meaning
that mi is replaced by mi′. We use the shorthand notation m′ ← MODSSS(m) to denote the result of this
replacement, while MODSSS ≺ (m,ADMSSS) means that MODSSS is a valid modification instruction w.r.t. m
and ADMSSS. Likewise, we use ADMSSS ≺ m to denote that ADMSSS is valid description of the admissible
blocks w.r.t. m. An example workflow is depicted in Fig. 1 and Fig. 2. Both are derived from Bilzhause et
al. [5].

Definition 1 (Sanitizable Signatures). A sanitizable signature scheme SSS consists of the following eight
ppt algorithms {PPGenSSS,KGenSSSsig ,KGen

SSS
san ,Sign

SSS,VerifySSS, SanitizeSSS,ProofSSS, JudgeSSS} such that:

PPGenSSS. The algorithm PPGenSSS generates the public parameters:

ppSSS ←r PPGen
SSS(1κ)

We assume that ppSSS is implicitly input to all other algorithms.

KGenSSSsig . The algorithm KGenSSSsig generates the key pair of the signer:

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

KGenSSSsan . The algorithm KGenSSSsan generates the key pair of the sanitizer:

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

SignSSS. The algorithm SignSSS generates a signature σSSS on input of the public key pkSSSsan , ADMSSS, a
message m and skSSSsig :

σSSS ←r Sign
SSS(skSSSsig , pk

SSS
san ,m,ADM

SSS)

VerifySSS. The deterministic algorithm VerifySSS verifies a signature σSSS, i.e., outputs a decision d ∈ {0, 1}
w.r.t. pkSSSsan , pkSSSsig and a message m:

d← VerifySSS(pkSSSsig , pk
SSS
san ,m, σ

SSS)



SanitizeSSS. The algorithm SanitizeSSS generates a sanitized signature σSSS′ on input skSSSsan , ADMSSS, a message
m and pkSSSsig :

(m′, σSSS′)←r Sanitize
SSS(skSSSsan , pk

SSS
sig ,m, σ

SSS,MODSSS)

ProofSSS. The algorithm ProofSSS outputs a proof πSSS on input m, σSSS, skSSSsig , pkSSSsan and a set of polynomially

many additional signature/message pairs {(σSSSi ,mi)}. The proof πSSS is used by the next algorithm to
pinpoint the accountable party for a given signature:

πSSS ←r Proof
SSS(skSSSsig , pk

SSS
san ,m, σ

SSS, {(σSSSi ,mi)})

JudgeSSS. The deterministic algorithm JudgeSSS outputs a decision d ∈ {SigPS,SanPS,⊥} indicating whether
the message/signature pair has been created by the signer, or the sanitizer:

d← JudgeSSS(pkSSSsig , pk
SSS
san ,m, σ

SSS, πSSS)

Security Requirements. We only sketch the security requirements here for brevity. The formal game-based
definitions are given in App. B. We stress that we use the strong definitions by Beck et al. [3].

Unforgeability. An outsider must not be able to create any new valid signatures.

Immutability. The sanitizer should, even if it can create it’s own key pair, only sanitize admissible blocks and
neither append or remove a block.

Privacy. An outsider not holding any secret keys should not be able to derive which message was contained
before a sanitization took place.

Transparency. An outsider should not be able to decide whether a signature was created by the signer or the
sanitizer.

Sanitizer-Accountability. The sanitizer should not be able to create a signature which points to the signer,
even though the signer did not create it.

Signer-Accountability. The signer should not be able to create a proof for a signature which points to the
sanitizer, even though the sanitizer did not create that signature.

Invisibility. An outsider not holding any secret keys should not be able to decide which parts of a signed
message are admissible. It depends on the context if this notion is required.

Redactable Signature Schemes. The following definitions for RSSs are taken from Derler et al. [21],
but extended to support parameter generation to match the definitions of SSSs. In particular, let m =
(m1,m2, . . . ,m`) be some message, while ADMRSS ∈ {1, 2, . . . , `} denotes the admissible redactions, i.e., if
i ∈ ADMRSS, then mi can be redacted by anyone, i.e., no additional secrets are involved.4 The variable
MODRSS ⊆ {1, 2, . . . , `} denotes how a message m is to be modified, i.e., each block mi, i ∈ MODRSS, is
removed from m to form the redacted message m′. In comparison to Derler et al. [21], however, we already define
how those data-structures look like for preciseness. Moreover, as done for SSSs, we use the shorthand notation
m′ ← MODRSS(m) to denote a redaction. The notation MODRSS ≺ (m,ADMRSS) means that MODRSS is a
valid modification instruction w.r.t. m and ADMRSS. Likewise, we use ADMRSS ≺ m to denote that ADMRSS

is valid description of the admissible blocks w.r.t. m. The “redaction information” REDRSS is some auxiliary
string which may be used by some RSSs to improve the efficiency of the scheme [21]. We do not define what
this string is, as we use RSSs as a black-box and thus it does not matter in our case.

An example workflow is depicted in Fig. 3, also taken from [5].

4 Strictly speaking, there are approaches with additional secret keys, but they are not required for our construction [38].



Signer Redacter Verifier

skRSSsig , m, ADMRSS = ({2, 3}) pkRSSsig , MODRSS = {2, 3} pkRSSsig

Signer Input Redactor Input Verifier Input

Output: σRSS Output: (σRSS′,m′) Output: d ∈ {0, 1}

Fig. 3: Example workflow of an RSS. The message m is set to (I, do, not, like, crypto). After redacting, m′ is
(I, like, crypto). The redaction information REDRSS is omitted for brevity. As we only consider private RSSs,
the redacted parts are not visible.

Definition 2 (Redactable Signatures). A redactable signature scheme RSS consists of the following five
algorithms, i.e., {PPGenRSS,KGenRSS,SignRSS,VerifyRSS,RedactRSS}, such that:

PPGenRSS. The algorithm PPGenRSS generates the public parameters:

ppRSS ←r PPGen
RSS(1κ)

We assume that ppRSS is implicitly input to all other algorithms.

KGenRSS. The algorithm KGenRSS generates a key pair:

(skRSSsig , pkRSSsig )←r KGen
RSS(ppRSS)

SignRSS. The algorithm SignRSS outputs a signature σRSS and some redaction information REDRSS on input
of skRSSsig , ADMRSS and a message m:

(σRSS,REDRSS)←r Sign
RSS(skRSSsig ,m,ADMRSS)

Note, it is assumed that ADMRSS can always be derived.

VerifyRSS. The deterministic algorithm VerifyRSS verifies a signature σRSS, i.e., outputs a decision d ∈ {0, 1}
w.r.t. pkRSSsig and a message m:

d← VerifyRSS(pkRSSsig ,m, σRSS)

RedactRSS. The algorithm RedactRSS outputs a derived signature σRSS′ and a derived message m′ on input of
pkRSSsig , a signature σRSS, some modification instruction MODRSS and some redaction information REDRSS:

(σRSS′,m′,REDRSS′)←r Redact
RSS(pkRSSsig ,m, σRSS,MODRSS,REDRSS)

Note, to make our construction provably secure, we require that the redaction information REDRSS and its
derivatives REDRSS′, are always of constant size w.r.t. to κ. This is actually the case in the constructions by
Derler et al. [21]. Note, Derler et al. require that even without REDRSS a redactor can redact [21]. Thus, this
auxiliary string is only meant to make redactions more efficient.

Security Requirements. We only sketch the security requirements here for brevity. The formal game-based
definitions are given in App. B.

Note, even though these definitions seem to be related to the ones for SSSs, one needs to take care that
in standard definition of RSSs, only one key pair exists. Thus, neither accountability nor immutability are
meaningful. Moreover, the unforgeability definition does not take signatures into account, but only messages,
as everyone can redact.



Signer Sanitizer Verifier

skPSsig , pkPSsan, m,
ADMPS = ({1, 3, 4}, {5})

skPSsan, pk
PS
sig , m,

MODPS = ({(1, B), (3, E), (4, R)}, {(5)})}
pkPSsig , pkPSsan

Signer Input Sanitizer Input Verifier Input

Output: σPS Output: (σPS′,m′) Output: d ∈ {0, 1}

Fig. 4: Example workflow of a PS. The message m is set to (H,E,L, L,O) and is modified to (B,E,E,R).

Signer Judge

skPSsig , pkPSsan, m, σPS, {(mi, σ
PS
i )} pkPSsig , pkPSsan, m, σPS

Proof-Generation Input Judge Input

Output: πPS Output: d ∈ {SigSSS, SanSSS,⊥}

Fig. 5: Proof-generation and JudgePS

Unforgeability. No one should, without holding the signing key, create valid signatures on messages not
endorsed by the signer, i.e., forgeries exclude valid redactions.

Privacy. An outsider not holding any secret keys should not be able to derive which message was contained
before a redaction took place.

Transparency. An outsider should not be able to decide whether a signature was the result of a redaction or
not.

3 Protean Signatures

We now present our framework for PSs. To recap, a PS allows to remove and alter signer-chosen parts of a
signed message by a semi-trusted third party, i.e., the sanitizer. The sanitizer can also be held accountable, if
it chose to edit a signed message. For the framework, we need to settle some additional notation, which is
derived from the ones used for RSSs and SSSs to ease understanding.

Protean Signature Schemes. For the framework, we use the following notation. The variable ADMPS is
a list containing the set of indices of the editable blocks, as well as the blocks which can be redacted. For
example, let ADMPS = ({1, 2}, {4}). Then, the first and second block are editable, while only the fourth
block can be redacted. The variable MODPS is a list containing a set of pairs (i,mi′) for those blocks that
are modified, meaning that mi is replaced by mi′ and a set of indices to be redacted. In more detail, if
MODPS = ({(1, b), (2, b)}, {3}) means that the first two blocks are altered to contain a b, while the third block
is redacted.

We use the shorthand notation m′ ← MODPS(m) to denote the result of this replacement, while MODPS ≺
(m,ADMPS) means that MODPS is a valid modification instruction w.r.t. m and ADMPS. Likewise, we use
ADMPS ≺ m to denote that ADMPS is valid description of the admissible blocks w.r.t. m.

An example workflow is depicted in Fig. 4 and Fig. 5. Note, that this is very similar to SSSs. To ease
understanding and the description of our construction, we define that the replacements are done first and the
redactions afterwards.



Definition 3 (Protean Signature ). A Protean Signature scheme PS consists of the following eight ppt
algorithms (PPGenPS,KGenPSsig ,KGen

PS
san,Sign

PS,VerifyPS,EditPS,ProofPS, JudgePS) such that:

PPGenPS. The algorithm PPGenPS generates the public parameters:

ppPS ←r PPGen
PS(1κ)

We assume that ppPS is implicitly input to all other algorithms.
KGenPSsig . The algorithm KGenPSsig generates the key pair of the signer:

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

KGenPSsan. The algorithm KGenSSSsan generates the key pair of the sanitizer:

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

SignPS. The algorithm SignPS generates a signature σPS on input of the public key pkPSsan, ADMPS, a message
m, and skPSsig :

σPS ←r Sign
PS(skPSsig , pk

PS
san,m,ADM

PS)

It is assumed that ADMPS can be derived from any verifying signature σPS, if skPSsan is known.
VerifyPS. The deterministic algorithm VerifyPS verifies a signature σPS, i.e., outputs a decision d ∈ {0, 1}

w.r.t. pkPSsan, pkPSsig , and a message m:

d← VerifyPS(pkPSsig , pk
PS
san,m, σ

PS)

EditPS. The algorithm EditPS generates a sanitized signature σPS′ and updated ADMPS′, given inputs skPSsan,
ADMPS, a message m, and pkPSsig :

(m′, σPS′,ADMPS′)←r Edit
PS(skPSsan, pk

PS
sig ,m,MODPS)

ProofPS. The algorithm ProofPS outputs a proof πPS on input m, σPS, skPSsig , pkPSsan, and a set of polynomially

many additional signature/message pairs {(σPSi ,mi)}. The proof πPS is used by the next algorithm to
pinpoint the accountable party for a given signature:

πPS ←r Proof
PS(skPSsig , pk

PS
san,m, σ

PS, {(σPSi ,mi)})

JudgePS. The deterministic algorithm JudgePS outputs a decision d ∈ {SigPS, SanPS,⊥} indicating whether the
message/signature pair has been created by the signer, or the sanitizer:

d← JudgePS(pkPSsig , pk
PS
san,m, σ

PS, πPS)

PSs Security Definitions. We now introduce the security properties for PSs. Clearly, the goals are similar
to the ones for SSSs and RSSs. However, due to the extended capabilities, the semantic is quite different,
while we need to take extra care for changed indices after redactions.

Unforgeability. This definition requires that an adversary A not having any secret keys is not able to produce
any valid signature σPS∗ on a message m∗ which it has never not seen, even if A has full oracle access, i.e.,
this captures “strong unforgeability” [34].

Definition 4 (Unforgeability). A PS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that Pr[UnforgeabilityPSA (κ) = 1] ≤ ν(κ) ,where the corresponding experiment is defined in
Fig. 6.



Experiment UnforgeabilityPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

(m∗, σPS∗)←r ASignPS(skPSsig ,·,·,·),Edit
PS(skPSsan,·,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig , pk
PS
san)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,ADM
PS
i ) and σPS

i

index the queries/answers to/from SignPS

for j = 1, 2, . . . , q′ let (pkPSsig ,j ,mj , σ
PS
j ,MODj) and (m′j , σ

PS
j
′,ADMPS′

j)

index the queries/answers to/from EditPS

return 1, if VerifyPS(pkPSsig , pk
PS
san,m

∗, σPS∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pkPSsan,m

∗, σPS∗) 6= (pkPSsan,i,mi, σ
PS
i ) ∧

∀j ∈ {1, 2, . . . , q′} : (pkPSsig ,m
∗, σPS∗) 6= (pkPSsig ,j ,m

′
j , σ

PS
j
′)

return 0

Fig. 6: PS Unforgeability

Experiment ImmutabilityPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(m∗, σPS∗, pkPSsan
∗)←r ASignPS(skPSsig ,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,ADM
PS
i )

index the queries to SignPS

return 1, if VerifyPS(pkPSsig , pk
PS
san
∗,m∗, σPS∗) = 1 ∧

∀i ∈ {1, 2, . . . , q} : (pkPSsan
∗ 6= pkPSsan,i ∨

m∗ /∈ {MOD(mi) | MOD with MOD ≺ (mi,ADM
PS
i )})

return 0

Fig. 7: PS Immutability

Immutability. This definition prohibits that an adversary A can generate a verifying signature σPS∗ for a
message m∗ not derivable from the signatures given by an honest signer, even if it can generate the editor’s
key pair.

Definition 5 (Immutability). A PS is immutable, if for any PPT adversary A there exists a negligible
function ν such that Pr[ImmutabilityPSA (κ) = 1] ≤ ν(κ) ,where the corresponding experiment is defined in Fig. 7.

Privacy. This definition prohibits that an adversary A can learn anything about edited (redacted or sanitized)
parts.

Definition 6 (Privacy). A PS is private, if for any PPT adversary A there exists a negligible function ν
such that

∣∣Pr[PrivacyPSA (κ)]− 1/2
∣∣ ≤ ν(κ) ,where the corresponding experiment is defined in Fig. 8.

Transparency. This definition requires that an adversary A does not learn whether a signature σPS was
generated through SignPS or EditPS.

Definition 7 (Transparency). A PS is transparent, if for any PPT adversary A there exists a negligible
function ν such that

∣∣Pr[TransparencyPSA (κ)]− 1/2
∣∣ ≤ ν(κ) ,where the corresponding experiment is defined in

Fig. 9.



Experiment PrivacyPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

b←r {0, 1}
a←r ASignPS(skPSsig ,·,·,·),Edit

PS(skPSsan,·,·,·,·,·),Proof
PS(skPSsig ,·,·,·,·),LoREdit(·,·,·,·,·,sk

PS
sig ,sk

PS
san,b)(pkPSsig , pk

PS
san)

where oracle LoREdit on input of m0,m1,MODPS
0 ,MODPS

1 ,ADM
PS
0 ,ADM

PS
1 , sk

PS
sig , sk

PS
san, b

let σPS
i ←r Sign

PS(skPSsig , pk
PS
san,mi,ADM

PS
i ) for i ∈ {0, 1}

let (m′i, σ
PS
i
′,ADMPS

i
′)←r Edit

PS(skPSsan, pk
PS
sig ,mi, σ

PS
i ,MODPS

i ) for i ∈ {0, 1}
return ⊥, if m′0 6= m′1 ∨ ADMPS

0
′ 6= ADMPS

1
′

return (m′b, σ
PS
b
′,ADMPS

b
′)

return 1, if a = b
return 0

Fig. 8: PS Privacy

Experiment TransparencyPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

b←r {0, 1}
Q ← ∅
a←r ASignPS(skPSsig ,·,·,·),Edit

PS(skPSsan,·,·,·,·),Proof
PS′(skPSsig ,·,·,·,·),Sign/Edit(·,·,·,sk

PS
sig ,sk

PS
san,b)(pkPSsig , pk

PS
san)

where oracle ProofPS′ on input of skPSsig ,m, σ
PS, {(mi, σ

PS
i ) | i ∈ N}:

return ⊥, if pkPSsan
′ = pkPSsan ∧ ((m,σPS) ∈ Q ∨ Q ∩ {(mi, σ

PS
i )} 6= ∅)

return ProofPS(skPSsig , pk
PS
san
′,m, σPS, {(mi, σ

PS
i )})

where oracle Sign/Edit on input of m,MODPS,ADMPS, skPSsig , sk
PS
san, b:

σPS ←r Sign
PS(skPSsig , pk

PS
san,m,ADM

PS)

(m′, σPS′,ADMPS′)←r Edit
PS(skPSsan, pk

PS
sig ,m, σ

PS,MODPS)
if b = 1:

σPS′ ←r Sign
PS(skPSsig , pk

PS
san,m

′,ADMPS′)

if σPS′ 6= ⊥, set Q ← Q∪ {(m′, σPS′)}
return (m′, σPS′)

return 1, if a = b
return 0

Fig. 9: PS Transparency

Signer-Accountability. Signer-accountability prohibits that an adversary can generate a bogus proof that
makes JudgePS decide that the sanitizer is responsible for a given signature/message pair (m∗, σPS∗), but the
sanitizer has never generated this pair. This is even true, if the adversary can generate the signer’s key pair.

Definition 8 (Signer-Accountability). A PS is signer-accountable, if for any PPT adversary A there
exists a negligible function ν such that
Pr[SigAccountabilityPSA (κ) = 1] ≤ ν(κ) ,where the corresponding experiment is defined in Fig. 10.

Sanitizer-Accountability. Sanitizer-accountability prohibits that an adversary can generate a bogus signa-
ture/message pair (m∗, σPS∗) that makes ProofSSS output an honestly generated proof πPS which points to



Experiment SigAccountabilityPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

(pkPSsig
∗, πPS∗,m∗, σPS∗)←r AEditPS(skPSsan,·,·,·,·)(pkPSsan)

for i = 1, 2, . . . , q let (m′i, σ
PS
i
′,ADMPS′

j) and (mi,MODPS
i , σ

PS
i , pk

PS
sig ,i)

index the answers/queries from/to EditPS

return 1, if VerifyPS(pkPSsig
∗, pkPSsan,m

∗, σPS∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pkPSsig

∗,m∗, σPS∗) 6= (pksig
PS
,i,m

′
i, σ

PS
i
′) ∧

JudgePS(pkPSsig
∗, pkPSsan,m

∗, σPS∗, πPS∗) = SanPS

return 0

Fig. 10: PS Signer-Accountability

Experiment SanAccountabilityPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(m∗, σPS∗, pkPSsan
∗)←r ASignPS(skPSsig ,·,·,·),Proof

PS(skPSsig ,·,·,·,·)(pkPSsig)

for i = 1, 2, . . . , q let (pkPSsan,i,mi,ADM
PS
i ) and σPS

i

index the queries/answers to/from SignPS

πPS ←r Proof
PS(sksig, pk

PS
san
∗,m∗, σPS∗, {(mi, σ

PS
i ) | 0 < i ≤ q})

return 1, if VerifyPS(pkPSsig , pk
PS
san
∗,m∗, σPS∗) = 1 ∧

∀i ∈ {1, 2, . . . , q} : (pkPSsan
∗,m∗, σPS∗) 6= (pkPSsan,i,mi, σ

PS
i ) ∧

JudgePS(pkPSsig , pk
PS
san
∗,m∗, σPS∗, πPS) = SigPS

return 0

Fig. 11: PS Sanitizer-Accountability

the signer, but (m∗, σPS∗) has never been generated by the signer. This is even true, if the adversary can
generate the sanitizer’s key pair.

Definition 9 (Sanitizer-Accountability). A PS is sanitizer-accountable, if for any PPT adversary A
there exists a negligible function ν such that Pr[SanAccountabilityPSA (κ) = 1] ≤ ν(κ) ,where the corresponding
experiment is defined in Fig. 11.

Invisibility. Invisibility prohibits that an outsider can decide which blocks can be edited. However, as there are
no RSSs which prohibit to decide which elements are redactable (as redactions are always public), we restrict
ourselves to the case of which blocks can be edited by the sanitizer. This is a very strong privacy notion and
might be required, or not, depending on the use-case. However, we want to point out that achieving this
notion is possible with our construction, even though it comes at a high price (cf. Sect. 4). The main idea is
that the adversary has to decide which blocks are admissible — the oracle either uses ADMPS

0 .1 or ADMPS
1 .1.

Here, ADMPS
1 .b, where b ∈ {1, 2} means the bth element of the list. To avoid trivial attacks, the adversary

needs to be limited to further edit messages where (ADMPS
0 .1 ∩ ADMPS

1 .1). Note, the signing oracle can be
simulated by using the same ADMPS in the LoRADM oracle.

Definition 10 (Invisibility). A PS is invisible, if for any PPT adversary A there exists a negligible function
ν such that

∣∣Pr[InvisibilityPSA (κ)]− 1/2
∣∣ ≤ ν(κ) ,where the corresponding experiment is defined in Fig. 12.

We conclude with a final definition.



Experiment InvisibilityPSA (κ)

ppPS ←r PPGen
PS(1κ)

(skPSsig , pk
PS
sig)←r KGen

PS
sig(ppPS)

(skPSsan, pk
PS
san)←r KGen

PS
san(ppPS)

b←r {0, 1}
Q ← ∅
a←r AEditPS′(skPSsan,·,·,·,·),Proof

PS(skPSsig ,·,·,·,·),LoRADM(skPSsig ,·,·,·,·,b)(pkPSsig , pk
PS
san)

where oracle LoRADM on input of sksig, pk
PS
san
′,m,ADMPS

0 ,ADM
PS
1 , b:

return ⊥, if ADMPS
0 .2 6= ADMPS

1 .2 ∨ ADMPS
0 6≺ m ∧ ADMPS

1 6≺ m
return ⊥, if pkPSsan 6= pkPSsan

′ ∧ ADMPS
0 6= ADMPS

1

let σPS ←r Sign
PS(skPSsig , pk

PS
san
′,m,ADMPS

b )

if pkPSsan
′ = pkPSsan, let Q ← Q∪ {(m,σPS, ((ADMPS

0 .1 ∩ ADMPS
1 .1),ADMPS

0 .2))}
return σPS

where oracle EditPS′ on input of pkPSsig
′, skPSsan,m,MODPS, σPS:

return ⊥, if pkPSsig
′ = pkPSsig ∧ @(m,σPS,ADM) ∈ Q : MODPS ≺ (m,ADM)

let (m′, σPS′,ADMPS′′)←r Edit
PS(pkPSsig

′, skPSsan,m,MODPS, σPS)

if pkPSsig
′ = pkPSsig ∧ ∃(m,σPS,ADMPS′) ∈ Q : MODPS ≺ (m,ADMPS′),

let Q ← Q∪ {(m′, σPS′,ADMPS′′)}
return (m′, σPS′)

return 1, if a = b
return 0

Fig. 12: PS Invisibility

Definition 11 (Secure PSs). A PS is secure, if it unforgeable, private, transparent, immutable, signer-
accountable, and sanitizer-accountable.

If invisibility is required, depends on the use-case.

Are PSs a Generalization? We now show that PSs are indeed a generalization of both SSSs and RSSs. In
particular, it suffices to show how to construct SSSs and RSSs from a PS. Formalized, we have the following
theorem:

Theorem 1. Secure SSSs and RSSs can be black-box constructed from PSs.

Proof. We prove this theorem by providing two black-box constructions which “transform” any secure PS
into a SSS (or RSS resp.). Thus, we split the proof in two parts, each giving a concrete construction.

SSSs from PS. We first show how an SSS can be constructed from a PS. This is actually straightforward; an
SSS can be emulated by prohibiting any redactions.

RSSs from PS. This follows from the fact that SSSs (which we now know how to build from PSs) can emulate
standard signature schemes, i.e., by prohibiting any sanitizations by the sanitizer. Moreover, RSSs as defined
above can be build from standard signature schemes [8]. Thus, the theorem follows.

We stress that Brzuska et al. [8] address trees, but the underlying idea can trivially be extended for lists
as well. However, they do not allow that a signer can prohibit certain redactions. This can easily be solved
by adding a special marked block (e.g., the first one) which contains all blocks which cannot be redacted. A
black-box construction of such a RSS is given in App. C.



4 Construction

In this section, we introduce our construction for PSs. The basic idea is to combine RSSs and SSSs by bridging
them using unique tags. In more detail, each block mi ∈ m is signed using an SSS, while an additional
(non-admissible) tag τ is used to identify the “overall” message m the block mi belongs to. Moreover, each
block mi is also assigned a (non-admissible) additional tag τi, along with all public keys, used by the RSS
to allow for redactions. Thus, there are `m σSSSi , where each signature protects (mi, τ, τi, pk

PS
sig , pk

PS
san). If a

block mi is sanitizable, it is marked as admissible within ADMSSS
i . This allows to sanitize the block mi. Then,

each tag τi is put into an RSS to allow for transparent redactions, additionally bound to the non-redactable
“overall” tag τ and all (non-redactable) public keys. If a block mi is non-redactable, this is marked in ADMRSS.
Thus, σRSS protects (τ1, . . . , τ`m , τ, pk

PS
sig , pk

PS
san). For technical reason, namely to make the auxiliary redaction

information REDRSS available to the sanitizer, we also encrypt this information as c; to achieve stateless
signers and sanitizers, this information is also “self-encrypted” by the redactor itself upon editing. Finally, to
achieve accountability, all tags, all signatures generated so far, the resulting ciphertext and public keys are
signed again using an additional SSS, while in this outer SSS everything, but the public keys and the tag τ
are admissible. To maintain transparency, the overall message m is a single block in the outer SSS.

In more detail, the outer signature σSSS0 protects (m,σRSS, c, (τi, σ
SSS
i )i, τ, pk

PS
sig , pk

PS
san). Thus, changing the

message or any signature requires changing σSSS0 , implying accountability. Upon sanitization of a block mi,
σSSSi is sanitized, while the outer signature σSSS0 needs to be adjusted as well. For redaction of a block mi,
σRSS is adjusted and the corresponding signature is no longer given out. This also means that σSSS0 must be
adjusted.

Our resulting construction is depicted in Construction 1. To give a graphical overview of the construction
idea, see Fig. 13 (before editing) and Fig. 14 (after editing). We stress that this idea seems to be straightforward,
but there are a lot of details to make the construction provably secure. Moreover, we do not consider
unlinkability [11], as it seems to be very hard to achieve with the underlying construction paradigm, especially
considering that there are no SSSs yet which are unlinkable and invisible at the same time.

(”m1, τ̂ ,“τ1,‘pkPSsig ,‘pkPSsan) (›m2, τ̂ ,“τ2,‘pkPSsig ,‘pkPSsan) (”m3, τ̂ ,“τ3,‘pkPSsig ,‘pkPSsan)
σSSS
1 σSSS

2 σSSS
3

(“τ1,“τ2,‹τ3, τ̂ ,‘pkPSsig ,‘pkPSsan)
σRSS

(Â�(m1,m2,m3),fiσRSS, c̃, Â�(τ1, τ2, τ3, σSSS
1 , σSSS

2 , σSSS
3 ), τ̂ ,‘pkPSsig ,‘pkPSsan)

σSSS
0

Fig. 13: Our main construction idea. Let ADMPS = ({2}, {3}) and m = (m1,m2,m3) for preciseness, i.e., only
the second block of m is sanitizable, while only the last block of m is redactable. Redactable elements for the
RSS (or sanitizable for the SSS) are marked with a tilde, i.e., ·̃. Blocks which are not redactable (or sanitizable
resp.) are marked with a hat, i.e., ·̂.

Security. The proof of the following Theorem is found in Appendix E.

Theorem 2. The scheme given in Construction 1 is secure (and invisible), if Π, SSS and RSS are secure
(and SSS is also invisible).

Proof (Sketch). Transparency and privacy follow from the transparency and privacy of the underlying
primitives, the uniform distribution of the tags, and the IND-CCA2-security of Π. Immutability follows from
the unforgeability of the RSS and the immutability of the SSSs. Accountability directly follows from the
accountability of the outer SSS. Likewise, invisibility follows from the invisibility of the used SSSs.



(”m1, τ̂ ,“τ1,‘pkPSsig ,‘pkPSsan) (m̃2′, τ̂ ,“τ2,‘pkPSsig ,‘pkPSsan)
σSSS
1 σSSS

2
′

(“τ1,“τ2, τ̂ ,‘pkPSsig ,‘pkPSsan)
σRSS′

(‚�(m1,m2′),fiσRSS′, c̃′, Â�(τ1, τ2, σSSS
1 , σSSS

2
′), τ̂ ,‘pkPSsig ,‘pkPSsan)

σSSS
0
′

Fig. 14: State after sanitization. Here, block m3 was redacted and m2 was changed to m2′. Block m1 must
stay the same.

PPGenPS(1κ). Let ppΠ ←r PPGen
Π(1κ), ppSSS ←r PPGen

SSS(1κ) and ppRSS ←r PPGen
RSS(1κ). Return ppPS = (ppΠ , ppSSS, ppRSS).

KGenPSsig(ppPS). Let (skSSSsig , pk
SSS
sig ) ←r KGenSSSsig (ppSSS) and (skRSSsig , pk

RSS
sig ) ←r SignRSS(ppRSS). Return (skPSsig , pk

PS
sig) =

((skSSSsig , sk
RSS
sig ), (pkSSSsig , pk

RSS
sig )).

KGenPSsan(ppPS). Let (skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS) and (skΠ , pkΠ)←r KGen

Π(ppΠ). Return (skPSsan, pk
PS
san) = ((skSSSsan , skΠ), (pkSSSsan ,

pkΠ)).

SignPS(skPSsig , pk
PS
san,m,ADM

PS). If ADMPS ≺ m, where m = (m1,m2, . . . ,m`), continue. Otherwise, return ⊥. Parse ADMPS =
(ADMPS

1 ,ADM
PS
2 ). Draw τ ←r {0, 1}κ. Do (∀i ∈ {1, 2, . . . , `m}): σSSS

i ←r SignSSS(skSSSsig , pk
SSS
san , (m

i, τ, τi, pk
PS
sig , pk

PS
san),ADM

SSS
i ),

where each τi ←r {0, 1}κ and, if i ∈ ADMPS
1 , let ADMSSS

i = ({1}, 5) and ADMSSS
i = (∅, 5) otherwise. Next, let (σRSS,

REDRSS)←r Sign
RSS(skRSSsig ,m

′,ADMRSS), where ADMRSS = ADMPS
2 and the message m′ = (τ1, τ2, . . . , τ`, τ, pk

PS
sig , pk

PS
san). Next,

let c ←r EncΠ(pkΠ ,RED
RSS, (τ, pkPSsig , pk

PS
san)). Finally, generate the signature σSSS

0 ←r SignSSS(skSSSsig , pk
SSS
san , (m,σ

RSS, c, (τi,

σSSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san),ADM

SSS
0 ), where ADMSSS

0 = ({1, 2, 3, 4}, 7). Return ((σSSS
i )0≤i≤`m , σ

RSS, c, τ, (τi)1≤i≤`m).

VerifyPS(pkPSsig , pk
PS
san,m, σ

PS). If VerifySSS(pkSSSsig , pk
SSS
san , (m,σ

RSS, c, τ, (τi, σ
SSS
i )1≤i≤`m , pk

PS
sig , pk

PS
san), σ

SSS
0 ) = 0, return 0. If 0 =

VerifyRSS(pkRSSsig , (τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san), σ

RSS), return 0. If for any i ∈ {1, 2, . . . , `m} : 0 = VerifySSS(pkSSSsig , pk
SSS
san , (m

i,

τ, τi, pk
PS
sig , pk

PS
san), σ

SSS
i ), return 0. Return 1.

EditPS(skPSsan, pk
PS
sig ,m,MODPS). If 0 = VerifyPS(pkPSsig , pk

PS
san,m, σ

PS), return ⊥. Parse MODPS = (MODPS
1 ,MODPS

2 ). Further do (∀(i,
mi′) ∈ MODPS

1 ): (mi′, σSSS
i
′) ←r SanitizeSSS(skSSSsan , pk

SSS
sig , (m

i, τ, τi, pk
PS
sig , pk

PS
san), σ

SSS
i , {(0,mi′)}). If any σSSS

i
′ = ⊥, return

⊥. Let ϑ = (τ, pkPSsig , pk
PS
san) and REDRSS ← DecΠ(skΠ , c, ϑ). If REDRSS = ⊥, return ⊥. Generate (σRSS′,m′,REDRSS′) ←r

RedactRSS(pkRSSsig ,m
′′, σRSS,MODPS

2 ,RED
RSS), where m′′ = (τ1, τ2, . . . , τ`, τ, pk

PS
sig , pk

PS
san). If σRSS′ = ⊥, return ⊥. Let c′ ←r

EncΠ(pkΠ ,RED
RSS′, ϑ) and (m′0, σ

SSS′
0)←r Sanitize

SSS(skSSSsan , pk
SSS
sig , (m,σ

RSS, c, (τiσ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σ

SSS
0 , {(1,m′), (2,

σRSS′), (3, c′), (4, (τi, σ
SSS′

i)i∈{1,2,...,`}\MODPS
2

)}). If σSSS′
0 = ⊥, return ⊥. Update ADMPS to ADMPS′ by removing all indices in

MODPS
2 and adjusting the remaining indices by reducing each i in ADMPS by #{j ∈ MODPS

2 : j < i}. Return (MODPS(m),
((σSSS

i )i∈{1,2,...,`}\MODPS
2
, σRSS′, c′, τ, (τi)i∈{1,2,...,`}\MODPS

2
),ADMPS′).

ProofPS(skPSsig , pk
PS
san,m, σ

PS, {(σPS
i ,m

i)}). If for any (σPS
i ,mi), 0 = VerifyPS(pkPSsig , pk

PS
san,mi, σ

PS
i ), return ⊥. If 0 =

VerifyPS(pkPSsig , pk
PS
san,m, σ

PS), return ⊥. Return ProofSSS(skSSSsig , pk
SSS
san ,m

′, σSSS, {(σSSS
i ,m′i)}), where m′ = (m,σRSS, c, (τi)1≤i≤`m ,

τ, pkPSsig , pk
PS
san) and each m′i = (mi, σ

RSS
i , ci, (τi,j)1≤j≤`mi , τi, pk

PS
sig , pk

PS
san).

JudgePS(pkPSsig , pk
PS
san,m, σ

PS, πPS). If 0 = VerifyPS(pkPSsig , pk
PS
san,m, σ

PS), return ⊥. Return JudgeSSS(pkSSSsig , pk
SSS
san ,m

′, σSSS, πPS), where

m′ = (m,σRSS, c, (τi)1≤i≤`m , τ, pk
PS
sig , pk

PS
san).

Construction 1: Our PS scheme

Notes on the Construction. We stress that one does not strictly require to use an SSS for a block which is
not admissible at signing, but could use a standard signature scheme instead. However, this was not done for
two reasons. First, this would further blow up the description. Second, we achieve a stronger form of privacy,
i.e., invisibility, if the underlying SSS supports this notion.

Moreover, one may notice that the inner SSSs do not need to be accountable, as the outer SSS is used for
this purpose. However, as there are (for obvious reasons) no notions of non-accountable SSSs, there is no way
around this, while defining such a notion is not the goal of this paper. Moreover, this can be turned into a
useful additional feature, i.e., one can actually generate a proof which blocks have been altered, based on the
ideas by Brzuska et al. [12]. How this can be achieved is discussed in Sect. 5.



Implementation. To demonstrate that our scheme is realizable, it was implemented in Java. We chose to
implement the version giving the most privacy guarantees, i.e., with invisibility. This was done to show the
absolute lower bound of our construction. We discuss this in more depth at the end of the this section. We use
the implementation by Beck et al. [3] as the underlying SSS, also using their chameleon-hash with 2,048 Bit
RSA moduli and the RSS presented in App. C with 2,048 Bit RSA-FDH signatures, based on the ideas by
Brzuska et al. [8]. The security parameter κ is fixed to 512. Furthermore, we stress that the implemented
RSS does not have any redaction information (REDRSS = ∅), and thus c is always ⊥. The measurements
were performed on a Lenovo W530 with an Intel i7-3470QM@2.70Ghz, and 16GiB of RAM. No performance
optimization such as CRT were implemented and only a single thread does the computations. We evaluated our
implementation with 32 blocks, wheres 25% were marked as admissible and an additional 25% as redactable.
For editing, 50% of the admissible blocks were sanitized and redacted. We omit proof generation and the
judge, as they are simple database look-ups, and parameter generation as it is a one-time setup. The overall
results are depicted in Fig. 15a, and Tab. 15b and are based on 500 runs, while verification was measured
after sanitization.

KGenPSsig KGenPSsan SignPS EditPS VerifyPS

5s

10s

15s

20s

25s

30s

35s

40s

45s

Algorithms

R
u
n
ti

m
e

(a) Box-plots of the run-times in s

KGenPSsig KGenPSsan SignPS EditPS VerifyPS

Min.: 275 76 24’619 7’825 4’701
25th PCTL: 784 260 27’672 8’230 4’847

Median: 1’172 353 28’655 8’650 4’993
75th PCTL: 1’795 494 29’788 9’475 5’287
90th PCTL: 2’698 650 31’009 11’361 5’918
95th PCTL: 3’464 787 31’842 13’653 6’453

Max.: 8’332 1’356 43’164 44’273 47’713

Average: 1’450 394 28’655 10’937 5’333
SD: 1’004 188 1’938 2’974 2’095

(b) Percentiles for our implementation in ms

Fig. 15: Performance Evaluation Results

As demonstrated, signing is the most expensive operation. Moreover, as already explained, we chose
to implement the most expensive version, i.e., the one with invisibility. As this involves rather expensive
primitives, i.e., the SSS presented by Beck et al. [3], it is “obvious” that the runtime is not very satisfactory.
However, we chose to do this to present a lower bound. In other words, if one is willing to drop invisibility
and deploys a weaker SSS (e.g., Brzuska et al [9]; Runtimes are given by de Meer et al. [18]), our resulting
construction becomes much more efficient.

5 Extensions and Future Directions

We now present some additional alterations to our construction, further increasing the applicability of the
new primitive.

Editing to Signer-Chosen Values. In our basic construction, the editor can either redact a block or edit
the block’s content to an arbitrary bit-string. However, as already clarified in existing work on SSSs, a signer
may want to limit the sanitizer to a set of signer-chosen values [15,22,33].



In our construction this extension can easily be integrated, as we bridge the primitives using unique tags
and do not further process any output of the inner SSSs. Thus, SSSs supporting this additional feature can
directly be used instead of the “standard” SSSs. However, we leave it as future work to derive a formal security
model supporting this additional feature.

Block-Level Definitions. Our accountability definition only allows to decide whether a given signa-
ture/message pair (σ,m) was altered as a whole. However, as already discussed in prior work, one may
also want to decide for each block whether it has been sanitized or not [12,18]. As our construction already
uses accountable SSSs as the inner signatures, one can use the inner SSSs’ accountability algorithms to create
proofs for each block.

Dependencies. In the used definition of the RSS used, the signer can only decide whether a block can be
redacted (and/or edited) or not. However, there are use-cases where one wants to force the redactor two follow
restrictions, e.g., “if block 1 is redacted, also redact block 2, but block 2 can be redacted on its own” [41]. Due
to the black-box usage of the RSS, any RSS which supports this feature can be integrated into our construction.
However, we leave a formal definition of this possibility as future work.

Unlinkability. As an additional privacy guarantee, unlinkability prohibits that an adversary can decide
which signature was used to create a derived version [11,13,24,36]. However, it seems to be hard to achieve
with our underlying construction paradigm.

6 Conclusion

We have introduced the notion of Protean Signature schemes (PS). This new primitive allows to modify and
redact signer-chosen parts of a signed message without additional involvement of the signer. We proposed a
formal security model and a provably secure black-box construction from sanitizable (SSS) and redactable
signature schemes (RSS). Our new primitive generalizes both SSSs and RSSs, while our performance estimates
show that our corresponding construction can be considered efficient. However, it remains an open question
whether we can construct “designated redactor” RSSs which hide which parts of a message are redactable
to achieve a stronger invisibility notion, hiding which blocks are redactable. Likewise, it remains an open
question if we can add unlinkability.
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3. M. T. Beck, J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig. Practical strongly invisible and

strongly accountable sanitizable signatures. In ACISP, Part I, pages 437–452, 2017.
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A Labeled Public-Key Encryption Schemes

Labeled public-key encryption allows to encrypt a message m using a given public key pkΠ and label ϑ ∈ {0, 1}∗.
In a nutshell, the given ciphertext leaks no information about the contained message, except its length, if the
corresponding secret key skΠ is not known.

Definition 12 (Labeled Public-Key Encryption Schemes). A labeled public-key encryption scheme Π
consists of four algorithms {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ}, such that:

PPGenΠ . The algorithm PPGenΠ outputs the public parameters of the scheme:

ppΠ ←r PPGen
Π(1κ)

It is assumed that ppΠ is implicit input to all other algorithms.

KGenΠ . The algorithm KGenΠ outputs the key pair, on input ppΠ :

(skΠ , pkΠ)←r KGen
Π(ppΠ)

EncΠ . The algorithm EncΠ gets as input the public key pkΠ , the message m ∈MS and a label ϑ ∈ {0, 1}∗ to
encrypt. It outputs a ciphertext c:

c←r Enc
Π(pkΠ ,m, ϑ)

DecΠ . The deterministic algorithm DecΠ outputs a message m (or ⊥, if the ciphertext is invalid) on input
skΠ , ϑ and a ciphertext c:

m← DecΠ(skΠ , c, ϑ)

Π IND-CCA2-Security. We need IND-CCA2-security for our construction to work.

Definition 13 (IND-CCA2-Security). A labeled encryption scheme Π is IND-CCA2-secure, if for any
PPT adversary A there exists a negligible function ν such that:∣∣Pr[IND-CCA2ΠA (κ) = 1]− 1

2

∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 16.

B Security Games for SSSs and RSSs

SSSs Security Definitions. We now introduce the security properties required. These are the ones given
by Beck et al. [3], but altered for the used notation, already incorporating the strong definitions by Krenn et
al. [34]. Moreover, we do neither consider unlinkability, invisibility nor non-interactive public-accountability,
as it depends on the context whether these properties are required [3,14]. However, non-interactive public-
accountability is easy to achieve, e.g., by signing the resulting signature again [12], while we discuss unlinkability
and invisibility in Sect. 5.



Experiment IND-CCA2ΠA(κ):
ppΠ ←r PPGen

Π(1κ)
(skΠ , pkΠ)←r KGen

Π(ppΠ)
b←r {0, 1}
(m∗0,m

∗
1, ϑ
∗, stateA)←r ADecΠ (skΠ ,·,·)(pkΠ)

If |m∗0| 6= |m∗1| ∨m∗0 /∈MS ∨m∗1 /∈MS:
c∗ ← ⊥

Else:
c∗ ←r Enc

Π(pkΠ ,m
∗
b , ϑ
∗)

a←r ADecΠ ′(skΠ ,·,·)(stateA, c
∗)

where DecΠ ′(skΠ , ·) behaves as DecΠ(skΠ , ·), but returns ⊥, if (c∗, ϑ∗) is queried.
return 1, if a = b
return 0

Fig. 16: Π IND-CCA2-Security

Experiment UnforgeabilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

(m∗, σSSS∗)←r ASignSSS(skSSSsig ,·,·,·),Sanitize
SSS(skSSSsan ,·,·,·,·),Proof

SSS(skSSSsig ,·,·,·,·)(pkSSSsig , pk
SSS
san )

for i = 1, 2, . . . , q let (pkSSSsan ,i,mi,ADM
SSS
i ) and σSSS

i

index the queries/answers to/from SignSSS

for j = 1, 2, . . . , q′ let (pkSSSsig ,j ,mj , σ
SSS
j ,MODj) and (m′j , σ

SSS
j
′)

index the queries/answers to/from SanitizeSSS

return 1, if VerifySSS(pkSSSsig , pk
SSS
san ,m

∗, σSSS∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pkSSSsan ,m

∗, σSSS∗) 6= (pkSSSsan ,i,mi, σ
SSS
i ) ∧

∀j ∈ {1, 2, . . . , q′} : (pkSSSsig ,m
∗, σSSS∗) 6= (pkSSSsig ,j ,m

′
j , σ

SSS
j
′)

return 0

Fig. 17: SSS Unforgeability

Unforgeability. This definition requires that an adversary A not having any secret keys is not able to produce
any new valid signature σ∗ on a message m∗ which it has never seen, even if A has full oracle access.

Definition 14 (Unforgeability). An SSS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[UnforgeabilitySSSA (κ) = 1] ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 17.

Immutability. This definition prohibits that an adversary A can generate a verifying signature σSSS∗ for a
message m∗ not derivable from the signatures given by an honest signer, even if it can generate the sanitizer’s
key pair.

Definition 15 (Immutability). An SSS is immutable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ImmutabilitySSSA (κ) = 1] ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 18.



Experiment ImmutabilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(m∗, σSSS∗, pkSSSsan
∗)←r ASignSSS(skSSSsig ,·,·,·),Proof

SSS(skSSSsig ,·,·,·,·)(pkSSSsig )

for i = 1, 2, . . . , q let (pkSSSsan ,i,mi,ADM
SSS
i )

index the queries to SignSSS

return 1, if VerifySSS(pkSSSsig , pk
SSS
san
∗,m∗, σSSS∗) = 1 ∧

∀i ∈ {1, 2, . . . , q} : (pkSSSsan
∗ 6= pkSSSsan ,i ∨

m∗ /∈ {MOD(mi) | MOD with MODSSS(ADMSSS
i ) = 1})

return 0

Fig. 18: SSS Immutability

Experiment PrivacySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

b←r {0, 1}
a←r ASignSSS(skSSSsig ,·,·,·),Sanitize

SSS(skSSSsan ,·,·,·,·),Proof
SSS(skSSSsig ,·,·,·,·),LoRSan(·,·,·,·,·,sk

SSS
sig ,sk

SSS
san ,b)(pkSSSsig , pk

SSS
san )

where oracle LoRSan on input of

m0,m1,MODSSS
0 ,MODSSS

1 ,ADMSSS, skSSSsig , sk
SSS
san , b

return ⊥, if MODSSS
0 ⊀ (m0,ADM

SSS) ∨ MODSSS
1 ⊀ (m1,ADM

SSS) ∨
MODSSS

0 (m0) 6= MODSSS
1 (m1) ∨ ADMSSS ⊀ m0 ∨ ADMSSS ⊀ m1

let σSSS ←r Sign
SSS(skSSSsig , pk

SSS
san ,mb,ADM

SSS)

return (m′, σSSS′)←r Sanitize
SSS(skSSSsan , pk

SSS
sig ,mb, σ

SSS,MODSSS
b )

return 1, if a = b
return 0

Fig. 19: SSS Privacy

Privacy. This definition prohibits that an adversary A can learn anything about sanitized parts. This is
similar to the definition of standard encryption schemes.

Definition 16 (Privacy). An SSS is private, if for any PPT adversary A there exists a negligible function
ν such that ∣∣∣Pr[PrivacySSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 19.

Transparency. This definition prohibits that an adversary A does not learn whether a signature σSSS was
generated through SignSSS or SanitizeSSS.

Definition 17 (Transparency). An SSS is transparent, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[TransparencySSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 20.



Experiment TransparencySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

b←r {0, 1}
Q ← ∅
a←r ASignSSS(skSSSsig ,·,·,·),Sanitize

SSS(skSSSsan ,·,·,·,·),Proof
SSS′(skSSSsig ,·,·,·,·),Sign/Sanit(·,·,·,sk

SSS
sig ,sk

SSS
san ,b)(pkSSSsig , pk

SSS
san )

where oracle ProofSSS′ on input of

skSSSsig ,m, σ
SSS, {(mi, σ

SSS
i ) | i ∈ N}:

return ⊥, if pkSSSsan
′ = pkSSSsan ∧

((m,σSSS) ∈ Q ∨ Q ∩ {(mi, σ
SSS
i )} 6= ∅)

return ProofSSS(skSSSsig , pk
SSS
san
′,m, σSSS, {(mi, σ

SSS
i )})

where oracle Sign/Sanit on input of

m,MODSSS,ADMSSS, skSSSsig , sk
SSS
san :

σSSS ←r Sign
SSS(skSSSsig , pk

SSS
san ,m,ADM

SSS)

(m′, σSSS′)←r Sanitize
SSS(skSSSsan , pk

SSS
sig ,m, σ

SSS,MODSSS)
if b = 1:

σSSS′ ←r Sign
SSS(skSSSsig , pk

SSS
san ,m

′,ADMSSS)

If σSSS′ 6= ⊥, set Q ← Q∪ {(m′, σSSS′)}
return (m′, σSSS′)

return 1, if a = b
return 0

Fig. 20: SSS Transparency

Experiment SigAccountabilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

(pkSSSsig
∗, πSSS∗,m∗, σSSS∗)←r ASanitizeSSS(skSSSsan ,·,·,·,·)(pkSSSsan )

for i = 1, 2, . . . , q let (m′i, σ
SSS
i
′) and (mi,MODSSS

i , σSSS
i , pkSSSsig ,i)

index the answers/queries from/to SanitizeSSS

return 1, if VerifySSS(pkSSSsig
∗, pkSSSsan ,m

∗, σSSS∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pkSSSsig

∗,m∗, σSSS∗) 6= (pksig,i,m
′
i, σ

SSS
i
′) ∧

JudgeSSS(pkSSSsig
∗, pkSSSsan ,m

∗, σSSS∗, πSSS∗) = SanSSS

return 0

Fig. 21: SSS Signer-Accountability

Signer-Accountability. Signer-accountability prohibits that an adversary can generate a bogus proof that
makes JudgeSSS decide that the sanitizer is responsible for a given signature/message pair (m∗, σSSS∗), but the
sanitizer has never generated this pair. This is even true, if the adversary can generate the signer’s key pair.

Definition 18 (Signer-Accountability). An SSS is signer-accountable, if for any PPT adversary A there
exists a negligible function ν such that

Pr[SigAccountabilitySSSA (κ) = 1] ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 21.



Experiment SanAccountabilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(m∗, σSSS∗, pkSSSsan
∗)←r ASignSSS(skSSSsig ,·,·,·),Proof

SSS(skSSSsig ,·,·,·,·)(pkSSSsig )

for i = 1, 2, . . . , q let (pkSSSsan ,i,mi,ADM
SSS
i ) and σSSS

i

index the queries/answers to/from SignSSS

πSSS ←r Proof
SSS(sksig, pk

SSS
san
∗,m∗, σSSS∗, {(mi, σ

SSS
i ) | 0 < i ≤ q})

return 1, if VerifySSS(pkSSSsig , pk
SSS
san
∗,m∗, σSSS∗) = 1 ∧

∀i ∈ {1, 2, . . . , q} : (pkSSSsan
∗,m∗, σSSS∗) 6= (pkSSSsan ,i,mi, σ

SSS
i ) ∧

JudgeSSS(pkSSSsig , pk
SSS
san
∗,m∗, σSSS∗, πSSS) = SigSSS

return 0

Fig. 22: SSS Sanitizer-Accountability

Sanitizer-Accountability. Sanitizer-accountability prohibits that an adversary can generate a bogus signa-
ture/message pair (m∗, σSSS∗) that makes ProofSSS outputs a (honestly generated) generated proof πSSS which
points to the signer, but (m∗, σSSS∗) has never been generated by the signer. This is even true, if the adversary
can generate the sanitizer’s key pair.

Definition 19 (Sanitizer-Accountability). An SSS is sanitizer-accountable, if for any PPT adversary A
there exists a negligible function ν such that

Pr[SanAccountabilitySSSA (κ) = 1] ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 22.

Invisibility. Depending on the context, an additional privacy guarantee may be required. In particular,
invisibility prohibits that an outsider holding no secret keys can decide which parts of a message m are
sanitizable. Note, the signing oracle can be simulated using the LoRADM oracle and setting ADMSSS

0 = ADMSSS
1 .

The notation ADMSSS
0 ∩ADMSSS

1 means that only those indices are admissible which are admissible in ADMSSS
0

and ADMSSS
1 .

Definition 20 (Invisibility). An SSS is invisible, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[InvisibilitySSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 23.

RSSs Security Definitions. We now introduce the security model for RSSs. This is a simplified version
derived from Derler et al. [21], which is, in turn, derived from Brzuska et al. [8]. Note, moreover, that we
do not need accountability, as in our construction accountability is given by the SSS, much like Pöhls and
Samelin [38] and Bilzhause et al. [4].

Unforgeability. This definition requires that an adversary A cannot derive a message which is not derivable
from any signed messages. We stress that, even though the set

⋃q
i=1{MODRSS(mi) | MODRSS ≺ (mi,ADM

RSS
i )}

may grow exponentially, membership is trivially to decide, i.e., in polynomial time.

Definition 21 (Unforgeability). An RSS is unforgeable, if for any PPT adversary A there exists a negligible
function ν such that

Pr[UnforgeabilityRSSA (κ) = 1] ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 24.



Experiment InvisibilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

b←r {0, 1}
Q ← ∅
a←r ASanitizeSSS′(skSSSsan ,·,·,·,·),Proof

SSS′(skSSSsig ,·,·,·,·),LoRADM(skSSSsig ,·,·,·,·,b)(pkSSSsig , pk
SSS
san )

where oracle LoRADM on input of sksig, pk
SSS
san
′,m,ADMSSS

0 ,ADMSSS
1 , b:

return ⊥, if ADMSSS
0 ≺ m ∧ ADMSSS

1 ≺ m
return ⊥, if pkSSSsan 6= pkSSSsan

′ ∧ ADMSSS
0 6= ADMSSS

1

let σSSS ←r Sign
SSS(skSSSsig , pk

SSS
san
′,m,ADMSSS

b )

if pkSSSsan
′ = pkSSSsan , let Q ← Q∪ {(m,σSSS,ADMSSS

0 ∩ ADMSSS
1 )}

return σSSS

where oracle SanitizeSSS′ on input of pkSSSsig
′, skSSSsan ,m,MODSSS, σSSS:

return ⊥, if pkSSSsig
′ = pkSSSsig ∧ @(m,σSSS,ADMSSS) ∈ Q : MODSSS ≺ (m,ADMSSS)

let (m′, σSSS′)←r Sanitize
SSS(pkSSSsig

′, skSSSsan ,m,MODSSS, σSSS)

if pkSSSsig
′ = pkSSSsig ∧ ∃(m,σSSS,ADMSSS′) ∈ Q : MODSSS ≺ (m,ADMSSS′),

let Q ← Q∪ {(m′, σSSS′,ADMSSS′)}
return (m′, σSSS′)

return 1, if a = b
return 0

Fig. 23: SSS Invisibility

Experiment UnforgeabilityRSSA (κ)

ppRSS ←r PPGen
RSS(1κ)

(skRSSsig , pk
RSS
sig )←r KGen

RSS(ppRSS)

(m∗, σRSS∗)←r ASignRSS(skRSSsig ,·,·)(pkRSSsig )

for i = 1, 2, . . . , q let mi, ADM
RSS
i , and σRSS

i index the queries/answers to/from Sign
return 1, if VerifyRSS(pkRSSsig ,m

∗, σRSS∗) = 1 ∧
m∗ /∈

⋃q
i=1{MODRSS(mi) | MODRSS ≺ (mi,ADM

RSS
i )}

return 0

Fig. 24: RSS Unforgeability

Privacy. This definition prohibits that an adversary A can learn anything about redacted parts. This is similar
to the definition for SSSs.

Definition 22 (Privacy). An RSS is private, if for any PPT adversary A there exists a negligible function
ν such that ∣∣∣Pr[PrivacyRSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 25.

Transparency. This definition prohibits that an adversary A can decide whether a signature was generated
through SignRSS

Definition 23 (Transparency). An RSS is transparent, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[TransparencyRSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,



Experiment PrivacyRSSA (κ)

ppRSS ←r PPGen
RSS(1κ)

(skRSSsig , pk
RSS
sig )←r KGen

RSS(ppRSS)
b←r {0, 1}
a←r ASignRSS(skRSSsig ,·,·),LoRRedact(sk

RSS
sig ,·,·,·,·,b)(pkRSSsig )

where oracle LoRRedact on input of

skRSSsig ,m0,m1,MODRSS
0 ,MODRSS

1 , b

let (σRSS
0 ,REDRSS

0 )←r Sign
RSS(skRSSsig ,m0)

let (σRSS
1 ,REDRSS

1 )←r Sign
RSS(skRSSsig ,m1)

let (σRSS
0
′,m′0,RED

RSS
0
′)←r Redact

RSS(pkRSSsig ,m0, σ
RSS
0 ,MODRSS

0 ,REDRSS
0 )

let (σRSS
1
′,m′1,RED

RSS
1
′)←r Redact

RSS(pkRSSsig ,m1, σ
RSS
1 ,MODRSS

1 ,REDRSS
1 )

return ⊥, if m′0 6= m′1 ∨ ADMRSS
0 6= ADMRSS

1

return (m′b, σ
RSS
b
′)

return 1, if a = b
return 0

Fig. 25: RSS Privacy

Experiment TransparencyRSSA (κ)

ppRSS ←r PPGen
RSS(1κ)

(skRSSsig , pk
RSS
sig )←r KGen

RSS(ppRSS)
b←r {0, 1}
a←r ASignRSS(skRSSsig ,·,·),Sign/Redact(·,·,·,sk

RSS
sig ,b)(pkRSSsig )

where oracle Sign/Redact on input of

m,MODRSS,ADMRSS, skRSSsig , b:

(σRSS,REDRSS)←r Sign
RSS(skRSSsig ,m,ADM

RSS)

(m′, σRSS′,REDRSS′)←r Redact
RSS(pkRSSsig ,m, σ

RSS,MODRSS,REDRSS)
if b = 1:

(σRSS′,REDRSS′)←r Sign
RSS(skRSSsig ,m

′,ADMRSS′)

return (m′, σRSS′)
return 1, if a = b
return 0

Fig. 26: RSS Transparency

where the corresponding experiment is defined in Fig. 26.

C RSS With Redaction Control

We now show how to construct an RSS′ which allows prohibiting redactions in a black-box fashion from any
existing secure RSS as defined. Note, this construction is not unlinkable, even though the underlying RSS may
be.

The basic idea is as follows. The message m is extended to contain an additional block m0 which contains
all blocks which are non-redactable. To mark that block non-redactable, it contains a leading 0, while all
other blocks contain a leading 1. To bind everything together, each block mi ∈ m (and m0) is bound to an
additional tag τ . Redaction works as before, but verification also checks whether the blocks contained in m0

are also contained in m in the correct order.



PPGenRSS′(1κ). Return ppRSS
′ = RSS.PPGenRSS(1κ).

KGenRSS′(ppRSS). Return (skRSSsig
′, pkRSSsig

′) = RSS.KGenRSS(ppRSS
′).

SignRSS′(skRSSsig
′,m,ADMRSS). If ADMRSS ≺ m, where m = (m1,m2, . . . ,m`), continue. Otherwise, return ⊥. Draw τi ←r {0, 1}κ

for i ∈ {0, 1, . . . , `} Let m0′ = (0, τ, (τ i,mi)i/∈ADMRSS), mi′ = (1, τ, τi,m
i) and m′ = (m0′,m1′, . . . ,m`′). Return (σRSS′′,

REDRSS) = ((σRSS
1 , σRSS

2 , (τi)0≤i≤`),RED
RSS), where (σRSS

1 ,REDRSS) = RSS.SignRSS(skRSSsig
′,m′, ∅) and σRSS

2 = (τi,m
i′)i/∈ADMRSS .

VerifyRSS′(pkRSSsig ,m, σ
RSS). Parse σRSS as (σRSS

1 , σRSS
2 , (τi)0≤i≤`). Let m0′ = (0, τ, (τ i,mi)(τi,mi)∈σRSS

2
), mi′ = (1, τ, τi,m

i) and

m′ = (m0′,m1′, . . . ,m`′). Return RSS.VerifyRSS(pkRSSsig ,m
′, σRSS

1 ).

RedactRSS′(pkRSSsig ,m, σ
RSS,MODRSS,REDRSS). If VerifyRSS′(pkRSSsig ,m, σ

RSS) = 0, return ⊥. Parse σRSS as (σRSS
1 , σRSS

2 , (τi)0≤i≤`). Let

m0′ = (0, τ, (τ i,mi)(τi,mi)∈σRSS
2

), mi′ = (1, τ, τi,m
i) and m′ = (m0′,m1′, . . . ,m`′) and MODRSS′ is the same as MODRSS, but

each element is incremented by 1. Let (σRSS
1
′,m′′,REDRSS′)←r Redact

RSS(pkRSSsig ,m
′, σRSS,MODRSS′,REDRSS). Return ((σRSS

1
′,

σRSS
2 , (τi,m

i)0≤i≤`\MODRSS′),MODRSS(m),REDRSS′).

Construction 2: Black-Box RSS construction with non-redactable blocks

Let RSS = {PPGenRSS,KGenRSS, SignRSS,VerifyRSS,RedactRSS} be a secure RSS, which assumes ADMRSS =
∅, i.e., the RSS does not support any redaction control. We now construct RSS′ = {PPGenRSS′,KGenRSS′,
SignRSS′,VerifyRSS′,RedactRSS′} as given in Construction 2, where ADMRSS is defined as given in Sect. 2.

Security. We now prove that the above construction is secure.

Theorem 3. The above construction is secure, if RSS is secure and allows to mark blocks as non-redactable.

We first provide a sketch of the proof, while the full proof is given afterwards.

Proof (Sketch). The proof idea is simple. On the one hand, transparency and privacy directly follow from the
underlying RSS and the uniform distribution of the tags. Unforgeability, on the other hand, follows from the
fact that the first block in the modified message contains all non-redactable blocks and cannot be removed
without detection, while each block is bound to a specific message.

Proof. Correctness follows from inspection. Moreover, as transparency implies privacy (only in the RSS case!),
it is sufficient to prove transparency and unforgeability [8, 21]. We prove each property on its own.

Transparency. To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game, where b = 0.
Game 1: We directly sign m′ instead of signing and redacting.
Transition - Game 0 → Game 1: If A can distinguish this hop, it can be turned into an adversary B against

the transparency of the underlying RSS. A reduction is simple. Namely, the reduction B receives the
challenge key pkRSSsig

′ from its own challenger, and embeds it as pkRSSsig . Every underlying signing request
for the RSS is performed by the reduction’s oracles. So far, the simulation is perfect. Finally, whatever A
outputs, is also output by B. Note, τ is distributed identically in all cases.
Thus, |Pr[S0] − Pr[S1]| ≤ νrss-trans(κ) follows, while we are now in the case b = 1. Moreover, each hop
changes the view of the adversary only negligibly, concluding the proof.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: We now abort, if τ was drawn twice.
Transition - Game 0 → Game 1: The probability that this event happens is bounded by the birthday paradox.
|Pr[S0]− Pr[S1]| ≤ q2

s/2
κ follows, where qs is the number of drawn tags.

Game 2: We now abort, if the adversary outputs (m∗, σ∗), which was not derivable.



Experiment UnlinkabilitySSSA (κ)

ppSSS ←r PPGen
SSS(1κ)

(skSSSsig , pk
SSS
sig )←r KGen

SSS
sig (ppSSS)

(skSSSsan , pk
SSS
san )←r KGen

SSS
san (ppSSS)

b←r {0, 1}
a←r ASignSSS(skSSSsig ,·,·,·),Sanitize

SSS(skSSSsan ,·,·,·,·),Proof
SSS(skSSSsig ,·,·,·,·),LoRSan(·,·,·,·,·,·,sk

SSS
sig ,sk

SSS
san ,b)(pkSSSsig , pk

SSS
san )

where oracle LoRSan on input of

m0,m1,MODSSS
0 ,MODSSS

1 , σSSS
0 , σSSS

1 , skSSSsig , sk
SSS
san , b

return ⊥, if VerifySSS(pkSSSsig , pk
SSS
san ,m0, σ

SSS
0 ) = 0 ∨ VerifySSS(pkSSSsig , pk

SSS
san ,m1, σ

SSS
1 ) = 0 ∨

ADMSSS
0 6= ADMSSS

1 ∨ ADMSSS ⊀ m0 ∨ ADMSSS ⊀ m1 ∨ MODSSS
0 (m0) 6= MODSSS

1 (m1) ∨
MODSSS

0 ⊀ (m0,ADM
SSS
0 ) ∨ MODSSS

1 ⊀ (m1,ADM
SSS
1 )

return (m′, σSSS′)←r Sanitize
SSS(skSSSsan , pk

SSS
sig ,mb,MODSSS

b )
return 1, if a = b
return 0

Fig. 27: SSS Unlinkability

Transition - Game 0 → Game 1: If A can generate such a pair, it can be turned into an adversary B against
the unforgeability of the underlying RSS. A reduction is simple. Namely, the reduction B receives the
challenge key pkRSSsig

′ from its own challenger, and embeds it as pkRSSsig . Every underlying signing request
for the RSS is performed by the reduction’s oracles. So far, the simulation is perfect. Then, as m∗ was
not derivable by assumption, either because some block is fresh, the order is not correct or a block was
redacted, even though it was marked as non-redactable. In either case, B can return (m∗′, σ∗′), where
m∗′ = (m0′,m1′, . . . ,m`′), m0′ = (0, τ, (τi,mi)i/∈ADMRSS), mi′ = (1, τ,mi) and (σ∗′, σRSS2 , (τi)0≤i≤`\MODRSS),

as either m0′ is forged or the other blocks, while the tags τi force a block to remain in the signature. Thus,
|Pr[S1]− Pr[S2]| ≤ νrss-unf(κ) follows.

Now, the adversary has no more possibilities to forge a signature. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

D Additional Security Properties

We now give additional security properties, not required to understand the main body of this paper.

Additional Definitions for SSSs.

Unlinkability. This definition prohibits that an adversary A can learn from which signature a sanitized
signature was derived from.

Definition 24 (Unlinkability). An SSS is unlinkable, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[UnlinkabilitySSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 27.

Additional Definitions for RSSs.



Experiment UnlinkabilityRSSA (κ)

ppRSS ←r PPGen
RSS(1κ)

(skRSSsig , pk
RSS
sig )←r KGen

RSS(ppRSS)
b←r {0, 1}
a←r ASignRSS(skRSSsig ,·,·),LoRRed(·,·,·,·,·,·,·,·,b)(pkRSSsig )

where oracle LoRRed on input of

m0,m1,MODRSS
0 ,MODRSS

1 , σRSS
0 , σRSS

1 ,REDRSS
0 ,REDRSS

1 , b

return ⊥, if ADMRSS
0 6= ADMRSS

1 ∨ ADMRSS
0 ⊀ m0 ∨

ADMRSS
1 ⊀ m1 ∨ MODRSS

0 (m0) 6= MODRSS
1 (m1) ∨

MODRSS
0 ⊀ (m0,ADM

RSS
0 ) ∨ MODRSS

1 ⊀ (m1,ADM
RSS
1 )

let (m′0, σ
RSS
0
′,REDRSS

0
′)←r Redact

RSS(pkRSSsig ,m0,MODRSS
0 ,REDRSS

0 )

let (m′1, σ
RSS
1
′,REDRSS

1
′)←r Redact

RSS(pkRSSsig ,m1,MODRSS
1 ,REDRSS

1 )

return ⊥, if σRSS
0
′ = ⊥ ∨ σRSS

1
′ = ⊥

return (m′b, σ
RSS
b
′,REDRSS

b
′)

return 1, if a = b
return 0

Fig. 28: RSS Unlinkability

Unlinkability. This definition prohibits that an adversary A learns from which signature a redacted signature
was derived from.

Definition 25 (Unlinkability). An RSS is unlinkable, if for any PPT adversary A there exists a negligible
function ν such that ∣∣∣Pr[UnlinkabilityRSSA (κ)]− 1/2

∣∣∣ ≤ ν(κ) ,

where the corresponding experiment is defined in Fig. 28.

E Proof of Theorem 2

Proof. Correctness follows from inspection. Each security property is proven on it own. However, we already
keep all queries and answers to and from the oracle. This does not change the view of the adversary. We
also directly generate any keys required, but not received by the reduction’s own challenger, honestly, also
embedding them, without mentioning it, to shorten the proof.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.

Game 1: We now abort, if the adversary outputs (m,σPS), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ, (τi)1≤i≤`m),

where any (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSSS0 , has never been returned by the

challenger.

Transition - Game 0 → Game 1: In this case, ((m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 ) is a valid

forgery of the outer SSS. A reduction is simple. Namely, the reduction B receives the challenge keys pkSSSsig
′

and pkSSSsan
′ from its own challenger, and embeds them into pkPSsig and pkPSsan. Every underlying signing and

sanitization request for the SSSs is performed by the reduction’s oracles. As, by assumption, the message
protected by σSSS0 must be fresh, it thus breaks the unforgeability of the underlying SSS in any case. Thus,
|Pr[S0]− Pr[S1]| ≤ νsss-unf(κ) follows.



Game 2: We now abort, if the adversary outputs (m,σPS), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ, (τi)1≤i≤`m),

where any (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) protected by σSSS0 was returned by the challenger,

but σSSS0 was never created by the challenger.
Transition - Game 1 → Game 2: In this case, ((m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 ) is a valid

forgery of the outer SSS. The reduction works as in the prior hop. As, by assumption, the message
protected by σSSS0 must be fresh, it thus breaks the unforgeability of the underlying SSS in any case. Thus,
|Pr[S1]− Pr[S2]| ≤ νsss-unf(κ) follows.

Now, the adversary can no longer win the unforgeability game, as also each public key is bound to a tag.
Moreover, each hop changes the view of the adversary only negligibly, concluding the proof.

Signer-Accountability. To prove that our scheme is signer-accountable, we use a sequence of games:

Game 0: The original signer-accountability game.
Game 1: We now abort, if the adversary outputs (pkPSsig , π

PS,m, σPS), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c,

τ, (τi)1≤i≤`m), where any (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSSS0 , has never been

returned by the challenger.
Transition - Game 0 → Game 1: In this case, (pkSSSsig , π

PS, (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 ) is

a valid forgery of the outer SSS. For the reduction, B receives the challenge keys pkSSSsan
′ from its own

challenger, and embeds them into pkPSsan. Every underlying sanitization request for the SSSs is performed by
the reduction’s oracles. As, by assumption, the proof is wrong for σSSS0 , it breaks the signer-accountability
of the underlying SSS in any case. Thus, |Pr[S0]− Pr[S1]| ≤ νsss-sigacc(κ) follows.

Game 2: (pkPSsig , π
PS,m, σPS), where σPS = ((σSSSi )0≤i≤`m , σ

RSS, c, τ, (τi)1≤i≤`m), where (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m ,

τ, pkPSsig , pk
PS
san) is not new, but σSSS0 has never been returned by the challenger.

Transition - Game 0 → Game 1: In this case, (pkSSSsig , π
PS, (m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 ) is

a valid forgery of the outer SSS. The reduction works as in the prior hop. As, by assumption, the
proof is wrong for σSSS0 , it breaks the signer-accountability of the underlying SSS in any case. Thus,
|Pr[S1]− Pr[S2]| ≤ νsss-sigacc(κ) follows.

Now, the adversary can no longer win the signer-accountability game. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

Sanitizer-Accountability. To prove that our scheme is sanitizer-accountable, we use a sequence of games:

Game 0: The original sanitizer-accountability game.
Game 1: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ

RSS, c, τ,
(τi)1≤i≤`m), where any (m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), protected by σSSS0 , has never been re-

turned by the challenger.
Transition - Game 0 → Game 1: In this case, ((m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 , pkSSSsan ) is a

valid forgery of the outer SSS. For the reduction, B receives the challenge keys pkSSSsig
′ from its own

challenger, and embeds them into pkPSsig . Every underlying signing and proof-generation request for the SSSs

is performed by the reduction’s oracles. As, by assumption, the signer outputs a wrong proof for σSSS0 , it
breaks the sanitizer-accountability of the underlying SSS in any case. Thus, |Pr[S0]−Pr[S1]| ≤ νsss-sanacc(κ)
follows.

Game 2: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ,

(τi)1≤i≤`m), where any (m,σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) is not new, but σSSS0 has never been

returned by the challenger.
Transition - Game 0 → Game 1: In this case, ((m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san), σSSS0 , pkSSSsan ) is a

valid forgery of the outer SSS. The reduction works as in the prior hop. As, by assumption, the signer
outputs a wrong proof for σSSS0 , it breaks the sanitizer-accountability of the underlying SSS in any case.
Thus, |Pr[S1]− Pr[S2]| ≤ νsss-sanacc(κ) follows.



Now, the adversary can no longer win the sanitizer-accountability game. Moreover, each hop changes the view
of the adversary only negligibly, concluding the proof.

Immutability. To prove that our scheme is immutable, we use a sequence of games:

Game 0: The original immutability game.
Game 1: We now abort, if the challenger draws a tag twice.
Transition - Game 0 → Game 1: The probability that this event happens is bounded by the birthday paradox.
|Pr[S0]− Pr[S1]| ≤ q2

t /2
κ follows, where qt is the number of drawn tags.

Game 2: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ,

(τi)1≤i≤`m), but pkPSsan was never signed by the signing oracle w.r.t. to τ .
Transition - Game 1 → Game 2: This breaks the immutability property of the outer SSS. The reduction

proceeds as follows. It receives pkSSSsig
′ from its own challenger and embeds it into pkPSsig . Then, every signing

query is performed by the reduction’s own oracles. Then, after A returned (m,σPS, pkPSsan), (m′, σSSS0 , pkSSSsan )
with m′ = (m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) is a valid forgery. |Pr[S1] − Pr[S2]| ≤ νsss-imm(κ)

follows.
Game 3: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ

RSS, c, τ,
(τi)1≤i≤`m), but τ was never drawn by the challenger.

Transition - Game 2 → Game 3: As τ is non-admissible, the adversary was able to generate a signature not
derivable, breaking the immutability of the outer SSS. The reduction works exactly as in the prior game.
|Pr[S2]− Pr[S3]| ≤ νsss-imm(κ) follows.

Game 4: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ,

(τi)1≤i≤`m), but some τi was never signed by the challenger w.r.t. τ or the ordering is inconsistent.
Transition - Game 3 → Game 4: As each τi is signed by the RSS, the adversary was able to generate a forgery

of the RSS. It receives pkRSSsig
′ from its own challenger and embeds it into pkPSsig . Then, every signing query

is performed by the reduction’s own oracles. Then, ((τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san), σRSS) is a valid forgery.

|Pr[S4]− Pr[S5]| ≤ νrss-unf(κ) follows.
Game 5: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ

RSS, c, τ,
(τi)1≤i≤`m), but it was able to redact a block not marked as redactable.

Transition - Game 4 → Game 5: Note, we already ruled out tag-collisions and thus the messages are uniquely
identifiable. The reduction is same as in the prior hop. |Pr[S4]− Pr[S5]| ≤ νrss-unf(κ) follows.

Game 6: We now abort, if the adversary outputs (m,σPS, pkPSsan), where σPS = ((σSSSi )0≤i≤`m , σ
RSS, c, τ,

(τi)1≤i≤`m), but it was able to sanitize a block with tag τi which was not marked as sanitizable.
Transition - Game 5 → Game 6: Note, we already ruled out tag-collisions and thus the messages are uniquely

identifiable. The reduction is same as in Game 3, but the reduction returns ((mi, τ, τi), σ
SSS
i , pkSSSsan ).

|Pr[S5]− Pr[S6]| ≤ νsss-imm(κ) follows.

Now, the adversary can no longer win the immutability game. Moreover, each hop changes the view of the
adversary only negligibly, concluding the proof.

Privacy. To prove that our scheme is private, we use a sequence of games:

Game 0: The original privacy game, where b = 0.
Game 1: We now replace the encryption of REDRSS (and each REDRSS′) with an encryption of zeroes with

the same length if encrypted to pkΠ contained in pkPSsan.
Transition - Game 1 → Game 2: This does changes the view of the adversary only negligibly due to the

IND-CCA2 security of Π. In particular, using a series of hybrids, replace each ciphertext one by one, while
the challenge key pkΠ

′ is embedded into pkPSsan. The ciphertexts generated from any other signer can be
decrypted using the decryption oracle provided, as the label is different due to the different public key,
while they are known to the challenger in the other case without decrypting. So, if A notices a difference, so



does the reduction B. Note, all oracles can still be simulated honestly, as the content the ciphertexts should
contain is still known. |Pr[S0] − Pr[S1]| ≤ qeνenc-ind-cca2 follows, where qe is the number of ciphertexts
generated.

Game 2: Instead of signing (mi
0, τ, τi) in the inner SSSs and adjusting them to (mi, τ, τi), sign (mi

1, τ, τi)
and adjust it. Likewise, instead of signing (m0, σ

RSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) in the outer SSS and

then adjusting it, directly sign (m1, σ
RSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) and adjust it to (m,σRSS, c, (τi,

σSSSi )1≤i≤`′m , τ, pk
PS
sig , pk

PS
san). Note, the distribution of c, σRSS and the tags are still exactly the same, even

if reused. Moreover, the redactions are still performed as in the case b = 0.
Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then

construct a reduction B which uses the adversary A to break the privacy of the underlying SSS. Namely, B
proceeds as follows. It receives pkSSSsig

′ and pkSSSsan
′, and embeds them into pkPSsig and pkPSsan. Then, every signing,

editing and proof oracle queries are answered by B’s own oracles. However, for the calls to the LoREdit
oracle, the calls for the SSSs are redirected to the LoRSan oracle and the result embedded to the answer.
Clearly, the simulation is perfect. Then, whatever A outputs is also output by B. |Pr[S1]−Pr[S2]| ≤ νsss-priv
follows.

Game 3: Instead of signing (τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san) in the RSSs from the first message, use the second

message and then redact as required. Note, the distribution of the tags are still exactly the same due to
the uniform distribution.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the privacy of the underlying RSS. Namely, B
proceeds as follows. It receives pkRSSsig

′ and embeds them into pkPSsig . Then, every signing query is answered
by B’s own signing oracle. However, for the calls to the LoREdit oracle, the calls for the RSSs are redirected
to the LoRRedact oracle and the result embedded to the answer. Clearly, the simulation is perfect. Then,
whatever A outputs is also output by B. Note, here we no longer need REDRSS, as this done via the oracles.
|Pr[S2]− Pr[S3]| ≤ νrss-priv follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, privacy is
proven.

Transparency. To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game, where b = 0.
Game 1: We now replace the encryption of REDRSS (and each REDRSS′) with an encryption of zeroes with

the same length if encrypted to pkΠ contained in pkPSsan.
Transition - Game 1 → Game 2: This does changes the view of the adversary only negligibly due to the

IND-CCA2 security of Π. In particular, using a series of hybrids, replace each ciphertext one by one, while
the challenge key pkΠ

′ is embedded into pkPSsan. The ciphertexts generated from any other signer can be
decrypted using the decryption oracle provided, as the label is different due to the different public key,
while they are known to the challenger in the other case without decrypting. So, if A notices a difference, so
does the reduction B. Note, all oracles can still be simulated honestly, as the content the ciphertexts should
contain is still known. |Pr[S0] − Pr[S1]| ≤ qeνenc-ind-cca2 follows, where qe is the number of ciphertexts
generated.

Game 2: Instead of signing (m, τ, τi) in the inner SSSs and adjusting them to (m′, τ, τi), directly sign
(m′, τ, τi). Likewise, instead of signing (m,σRSS, c, (τi, σ

SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san) in the outer SSS and then

adjusting it, directly sign (m′, σRSS, c, (τi, σ
SSS
i )1≤i≤`m , τ, pk

PS
sig , pk

PS
san). Again, the distribution of c, σRSS

and the tags are still exactly the same, even if reused. Moreover, the redactions are still performed as in
the case b = 0. Note, the restrictions on the proof-oracle are still implicitly enforced.

Transition - Game 1 → Game 2: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the transparency of the underlying SSS.



Namely, B proceeds as follows. It receives pkSSSsig
′ and pkSSSsan

′, and embeds them into pkPSsig and pkPSsan. Then,
every signing, editing and proof oracle queries are answered by B’s own oracles. However, for the calls
to the Sign/Edit oracle, the calls for the SSSs are redirected to the Sign/Sanit oracle and the result
embedded to the answer. Clearly, the simulation is perfect. Then, whatever A outputs is also output by B.
|Pr[S1]− Pr[S2]| ≤ νsss-tran follows.

Game 3: Instead of signing (τ1, τ2, . . . , τ`, τ, pk
PS
sig , pk

PS
san) in the RSSs from the first message and then redacting

it, directly sign the redacted messages. Note, the distribution of the tags are still exactly the same due to
the uniform distribution.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish these two games. We can then
construct a reduction B which uses the adversary A to break the transparency of the underlying RSS.
Namely, B proceeds as follows. It receives pkRSSsig

′ and embeds them into pkPSsig . Then, every signing query is
answered by B’s own signing oracle. However, for the calls to the Sign/Edit oracle, the calls for the RSSs
are redirected to the Sign/Redact oracle and the result embedded to the answer. Clearly, the simulation
is perfect. Then, whatever A outputs is also output by B. Note, here we no longer need REDRSS, as this
done via the oracles and are already replaced with a 0. |Pr[S2]− Pr[S3]| ≤ νrss-tran follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, transparency is
proven.

Invisibility. To prove that our scheme is invisible, we use a sequence of games:

Game 0: The original invisibility game, where b = 0.
Game 1: Instead of using ADMPS

0 .1 use ADMPS
1 .1 as ADMSSS in the SSS.

Transition - Game 0 → Game 1: This does changes the view of the adversary only negligibly due to the
invisibility of the underlying SSS. Namely, assume that an adversary A can distinguish these games with
non-negligible probability. We can then construct an adversary B which breaks the invisibility guarantees
of the used SSS. In particular, B receives pkSSSsig

′ and pkSSSsan
′, and embeds them into pkPSsig and pkPSsan. For

all oracle queries, B uses its own oracles to answer correctly, but makes block 1 in each underlying
SSS admissible or not using its own challenge oracle. Then, whatever A outputs, is also output by B.
|Pr[S0]− Pr[S1]| ≤ νsss-invis follows.

Now, we are in the case b = 1. As each hop only changes the view of the adversary negligibly, invisibility is
proven.
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