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Abstract. Side-channel attacks and evaluations typically utilize leakage models to
extract sensitive information from measurements of cryptographic implementations.
Efforts to establish a true leakage model is still an active area of research since
Kocher proposed Differential Power Analysis (DPA) in 1999. Leakage certification
plays an important role in this aspect to address the following question: "how good

is my leakage model?". However, existing leakage certification methods still need to
tolerate assumption error and estimation error of unknown leakage models. There
are many probability density distributions satisfying given moment constraints. As
such, finding the most unbiased and most reasonable model still remains an unre-
solved problem. In this paper, we address a more fundamental question: "what’s

the true leakage model of a chip?". In particular, we propose Maximum Entropy
Distribution (MED) to estimate the leakage model as MED is the most unbiased,
objective and theoretically the most reasonable probability density distribution con-
ditioned upon the available information. MED can theoretically use information on
arbitrary higher-order moments to infinitely approximate the true leakage model. It
well compensates the theory vacancy of model profiling and evaluation. Experimen-
tal results demonstrate the superiority of our proposed method for approximating
the leakage model using MED estimation.

Keywords: information theory · maximum entropy · maximum entropy distribution
· leakage model · leakage certification · side channel attack

1 Introduction

Side-channel attacks, which aim to extract secret information that are unintentionally
leaked in a cryptographic implementation, have been regarded as one of the most impor-
tant threats against the security of embedded devices [RSV+11]. Power attacks, the most
classic one of this family, can be divided into two categories: profiled attacks and non-
profiled attacks. Non-profiled attacks such as Differential Power Analysis (DPA) [KJJ99],
classify measurements (i.e. power traces) according to the intermediate values, and then
calculate the differences. The correct key corresponds to the most obvious differential
value (i.e. peak). The advantage of non-profiled attacks is that the attacker does not
require prior knowledge of the leakage model.

Standard profiled attacks include Template Attacks (TA) [CRR02, RO04] and stochas-
tic models [SLP05] as stated in [SKS09]. They include two stages: leakage profiling and
exploiting. The attacker needs to profile a leakage model before exploiting the leakage to
recover the key. The true leakage of the cryptographic hardware is unknown and difficult
to derive, and normal distribution is often used as the hypothetical model. Actually, the
true leakage model may not well follow it. Hypothetical models such as Hamming weight
[BCO04], Hamming distance [PSDQ05] and Switch [Pee13], can also be used to approxi-
mate the leakage in other attacks such as Correlation Power Analysis (CPA) [BCO04] to
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improve the efficiency. Exploring a true leakage model continues to be an active area of
research.

In this paper, we aim to investigate the most unbiased, most reasonable and realistic
leakage model, in order to address the question: "what’s the true leakage model of a
chip?". Existing works in side-channel attacks and evaluations (e.g. leakage detections
and assessments) have also attempted to propose such a model, but without thorough
study and suitable answers. In the following section, we will discuss these existing works
along with leakage certification methods, before describing the main contributions of our
work.

1.1 Related Works

Side channel attacks. A good leakage model has a significant impact on the effectiveness
of side channel attacks. Many recent works have been undertaken to accurately profile the
leakage model. However, most of them only considered first- and second-order moments
(i.e. mean and variance) when profiling probability density distribution. This typically
happens in Template Attack [RO04], which takes advantage of an off-line learning phase
in order to estimate the leakage model. Since the true leakage model is unknown, the
profiling methods are typically based on some assumptions on the leakage distribution
(e.g. Gaussian noise) as in [DSV14], which is not representative of the true leakage.
Flament et. al. discussed probability density function estimation for side-channel attacks
in [FSJL+10]. They compared parametric estimation and histogram estimation, but did
not consider information on higher-order moments.

Side channel evaluations. For attackers, the accuracy of the leakage model affects
the effectiveness of the attack. For evaluators, the accuracy of leakage model affects the re-
liability of the evaluations (e.g. Success Rate (SR) and Guessing Entropy (GE) [SMY09]).
Since model errors provide evaluators with a false security level. Leakage detections,
which relate to the concrete security level of an implementation given a model, are very
important tools for side-channel evaluation. Unlike the above-mentioned side-channel at-
tacks that are based on an assumption model, leakage detection tests such as Welch’s
t-test [DCE16, Rep16, BPG18], Normalized Inter-Class Variance (NICV) [BDGN14], cor-
relation ρ-test [DS16] and χ2 test [MRSS18], use a bounded moment model [JS17]. They
try to quantify the security of an implementation, of which the model reflects the leakage
of target device. Leakage detection and assessment have been performed before cryp-
tographic algorithms are implemented on devices in [Rep16] and [CGD18]. These tests
aim to detect the presence of leakage, without regards to whether the leakage can be
exploited. Leakage assessments seek a standard approach that enables a fast, reliable and
robust evaluation of the side-channel vulnerability of the given devices [SM15]. They can
be regarded as an extension of leakage detection, which also require a bounded moment
model rather than a true leakage distribution model. The above-mentioned works usually
consider moments that are less than 4th order. Higher-order moments (larger than 4)
leakage detection and assessments (e.g. [JS17, MW15, RGV17] and [SM15]) are seldom
studied.

Leakage certifications. The effectiveness of both side-channel attacks and evalua-
tions rely heavily on the true leakage model. However, this model is usually unknown.
The following question underpins all the efforts that range from assuming a good leakage
model (e.g. Hamming weight model and Hamming distance model) to profiling a good
leakage model (e.g. normal distribution model and higher-order moments model used
in higher-order attacks [Mor12, MS16]): How good is the leakage model? The answer
to this question can be traced back to the complete evaluation framework proposed by
Standaert et al. in [SMY09]. The authors used Mutual Information (MI) to quantify the
leakage and encountered the notoriously difficult problem of designing an unbiased and
non-parametric estimator. Renauld et al. improved the work by introducing Perceived
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Information (PI) to estimate the MI biased by side-channel adversary’s model [RSV+11].
In this case, the accuracy of the model determines the closeness of PI and MI. To bet-
ter answer the question above, Durvaux et al. in [DSV14] proposed leakage certification,
which attempted to solve the fundamental problem that all evaluations were potentially
biased by both assumption and estimation errors. They also tried to quantify the leakage
of a chip and certify that the amount of information extracted was close to the maximum
value that would be obtained with a perfect model. This work was further improved in
[DSP16].

1.2 Our Contributions

Existing works on side-channel attacks and evaluations have incessantly pursued a true
leakage model. While existing leakage certification methods can provide a reasonable
leakage model, they do not alleviate the attacker or evaluator from having to deal with
model assumption error and estimation error. Moreover, the probability density distribu-
tion model under higher-order moments has not been discussed in existing works. Finally,
even though there are numerous probability density distributions satisfying given moment
constraints, achieving the most unbiased, most reasonable and least hypothetical leakage
model still remains an unresolved problem.

To address the shortcomings of existing work on leakage certification, we propose
Maximum Entropy Distribution (MED) to estimate the true leakage model of a chip. MED
is the most unbiased, random, uniform and theoretically the most reasonable probability
density distribution conditioned upon the available information. Here MED presents the
probability density function assigned by using principle of maximum entropy. MED can
theoretically use information on arbitrary higher-order moments to infinitely approximate
the true distribution of leakage, rather than assume a leakage model. To the best of our
knowledge, this is the first work that considers information on higher-order moments
when estimating probability density distribution. Experimental results demonstrate the
superiority of our proposed method for approximating the leakage model using maximum
entropy distribution estimation.

1.3 Organization

The rest of the paper is organized as follows. Information entropy, maximum entropy and
leakage certification are introduced in Section 2. In Section 3, MED, including its esti-
mation, parameter determination and fitting performance between estimated Probability
Density Function (PDF) model and true leakage, is given. Then, we use Newton-Raphson
nonlinear programming optimization method to fit MED with true distribution in Section
4. The specific algorithm and the optimal choice of histogram bins are also given in
this section. Experiments are performed on simulated traces and measurements of AT-
Mega644P micro-controller provided in [DSP16] in Sections 5 and 6 to demonstrate the
efficiency of our MED. Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Information Entropy

Information entropy is a very important concept in information theory. Let X be a
discrete random variable consisting of n observations of x = (x1, x2, . . . , xn), and the
corresponding probabilities are p = (p1, p2, . . . , pn). Shannon defined information entropy
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(or uncertainty) as

H(x) = −
n
∑

i=1

pilnpi (1)

in [Sha48], which was also denoted as self-information. Here 0 ≤ pi ≤ 1, and ln denotes
the logarithmic function. If X is a continuous random variable, then the Shannon entropy
is

H(x) = −
∫ b

a

f(x)lnf(x)dx. (2)

Here [a, b] is the integral interval, and f(x) is the probability density function. Information
entropy is widely used in side-channel analysis such as Mutual Information Analysis (MIA)
[GBTP08]. Self information of measurements can be used to quantify the leakage model
of a chip.

2.2 Maximum Entropy Principle

Information theory provides a constructive criterion for setting up probability distribu-
tions on the basis of partial knowledge and leads to a type of statistical inference which
is called the maximum entropy estimate [Jay57]. Maximum entropy estimation is the
most unbiased or most uniform probability distribution conditioned upon the available
information [SGUK08]. Maximum entropy here means maximizing information entropy
in Eq. 1 or Eq. 2.

There is an implicit constraint in Eq. 1 where

n
∑

i=1

pi = 1. (3)

The direct problem is to determine p conditioned upon Eq. 3. As detailed by Munirath-
nam et al. in [SKR00], maximum entropy solved this problem by the maximization of
Shannon entropy (uncertainty measure) of probabilities given in Eq. 1. By considering La-
grange multipliers, in order to maximize the entropy, the probabilities p = (p1, p2, . . . , pn)
should satisfy

ϕ (p1, p2, . . . , pn) = −
n
∑

i=1

pilnpi + λ

(

n
∑

i=1

pi − 1

)

. (4)

The purpose of this paper is to profile the true leakage model from the observed samples.
So, we use observer to represent side-channel attackers and evaluators. By differentiating
ϕ with respect to pi, the observer gets

∂ϕ

∂pi

= − (lnpi + 1) + λ = 0. (5)

That is, (lnpi + 1) = λ, we deduce that pi = eλ−1. When combined with Eq. 3, we obtain
∑n

i=1 eλ−1 = 1. So,

λ = ln

(

1

n

)

+ 1. (6)

Finally, we obtain pi = 1
n

. That is to say, if we don’t make any further assumptions on pi,
we can maximize the entropy of probability density function. In this case, the maximum
entropy distribution is the most reasonable choice, any other choice would mean that we
add additional constraints or unreasonable assumptions that are not available based on
the existing information. In other words, maximum entropy contains minimum spurious
information.
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2.3 Leakage Certification

Side-channel attacks and evaluations require a perfect model to extract all information
from the leakage measurements. However, the leakage model is never perfect with errors
arising from assumption and estimation. Durvaux et al. proposed the pioneering leakage
certification in [DSV14] and improved it in [DSP16]. Leakage certification aims to bound
and reduce the assumption and estimation errors, thus providing a good enough leakage
model for attacks and evaluations.

Assumption error. Since the true leakage model of devices is unknown, the observer
has to establish an assumption leakage model before he performs attacks or evaluations.
For example, Gaussian model including mean and variance are used in Template Attack
[RO04], and Hamming weight model in CPA [BCO04]. These models include subjective
assumptions and can easily lead to assumption error. A good model should reflect the
basic information of the leakage, but it is not the real leakage model of the chip. The
goodness of fit of these two models can be quantified by hypothesis testing.

Estimation error. The estimation error is the difference between the estimated pa-
rameters and true parameters of the leakage model. The main cause of this error is that
the number of measurements is insufficient, which makes the probability density distribu-
tion estimation deviate from the true distribution. Typical estimation error is shown in
Fig. 1, where two models estimated from samples deviate from the true distribution. It
can be observed that Model 1 deviates further from the true leakage model than Model
2. Estimation error can be made arbitrarily small through more measurements and using
cross validation techniques [DSP16].
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Figure 1: Estimation errors in leakage model profiling.

Cross-validation. For each plaintext z, the observer randomly acquires samples
and estimates the dth order mean µ̂d using cross validation. Suppose that k-fold cross
validation is used and n measurements are acquired. Measurements are divided into k non-
overlapping folds of approximately the same size as introduced in [DSP16]. The observer
then selects the jth (1 ≤ j ≤ k) fold as the validation set and other k − 1 folds as profiling
set. The observer then randomly generates samples from the estimated leakage model.

Each repetition generates a dth order moment estimate m̃
d,(j)
z . The dth order mean µ̃d of

real samples is processed in the same way. Thus,

µ̂d
z =Êj

(

m̂d,(j)
z

)

, σ̂d
z =

√

ˆvarj

(

m̂
d,(j)
z

)

,

µ̃d
z =Ẽj

(

m̃d,(j)
z

)

, σ̃d
z =

√

˜varj

(

m̃
d,(j)
z

)

.

(7)

Here E (·) and var denote the sample mean and variance operator. Then, Welch’s t-test
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is performed as:

∆d
z =

µ̂d
z − µ̃d

z
√

(σ̂d
z

)2+(σ̃d
z

)2

k

. (8)

Let CDFt denote the Cumulative Distribution Function (CDF) in t-test, df denote the
number of freedom degrees (see Section 4.1 in [DSP16]). The probability of observed
difference coming from the effects of estimation is:

p = 2 ×
(

1 − CDFt

(
∣

∣∆d
z , df

∣

∣

))

. (9)

The probability p only indicates that the difference between true samples and simulated
samples has statistical significance. It doesn’t reflect how large the difference is. The
larger p is, the smaller the probability of estimation error. Leakage certification test uses
information on higher-order moments to profile bounded moment leakage model [JS17],
rather than making assumptions on the leakage distribution.

3 Maximum Entropy Distribution Estimation

A perfect leakage model can accurately reflect the leakage of devices and improve the
effectiveness of side-channel attacks and security evaluations. However, such perfect mod-
els are generally unknown. Density estimation techniques, such as Maximum Entropy
Distribution (MED) [XM10], have to be used to approximate the leakage distribution.

3.1 Maximum Entropy Distribution

Suppose that geometrical moments are used, the maximum entropy of the random variable
X can be obtained by maximizing Shannon’s entropy (see Eq. 1) subject to the constraints:

∫

xif(x)dx = µi, i = 0, . . . , N (10)

where µi is the expectation value calculated from samples (e.g. µ0 = 1). N denotes that
the first N + 1 moment constraints (µ0, µ1, . . . , µN ) are used in our side-channel attacks
or evaluations. This can be expressed as the Lagrangian:

L = −
∫

f(x)lnf(x)dx + (λ0 + 1)

[
∫

f(x)dx − 1

]

+

m
∑

i=1

λi

[
∫

xif(x)dx − µi

]

.

(11)

Here, λ = (λ0, λ1, . . . , λm) are unknown Lagrange multipliers, and ln denotes natural
logarithm. The setting of coefficient (λ0 + 1) is to facilitate the solution of λ. Maximum
entropy usually occurs at the extreme point of function λ. By differentiating L with
respect to f(x), we have

∂L
∂f(x)

= −
∫

[lnf(x) + 1] dx + (λ0 + 1)

∫

dx +

m
∑

i=1

λi

∫

xidx. (12)

We set ∂L
∂f(x) = 0 and obtain

− [lnf(x) + 1] + (λ0 + 1) +

m
∑

i=1

λix
i = 0. (13)
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By transposition, we further get

lnf(x) = λ0 +
m
∑

i=1

λix
i. (14)

Finally, we derive the maximum entropy probability density function (MED) as

f(x) = exp

(

λ0 +

m
∑

i=1

λix
i

)

. (15)

Maximum entropy accommodates information on higher-order moments and therefore
facilitates a higher quality probability density function model. The observer does not
make any assumptions on the leakage model except the moment information from the
samples, which also shows the objectivity and rationality of f(x).

3.2 Parameter Determination

We have derived the maximum entropy probability density function in Section 3.1. We
can get the corresponding expression after solving the Lagrange Multipliers in f(x). Since

∫

f(x)dx =

∫

exp

(

λ0 +

m
∑

i=1

(

λix
i
)

)

dx = 1, (16)

by multiplying both sides of the equality by e−λ0 , we obtain

e−λ0 =

∫

exp

(

m
∑

i=1

(

λix
i
)

)

dx. (17)

The first unknown Lagrange multiplier can be expressed as:

λ0 = −ln

∫

exp

(

m
∑

i=1

(

λix
i
)

)

dx. (18)

By differentiating λ0 with respect to λi (see Eq. 17), we can also get

∂λ0

∂λi

=

∫

xiexp

(

m
∑

i=1

λix
i

)

dx. (19)

This means, ∂λ0

∂λi

= µi. Since
∫

exp
(
∑m

i=1 λix
i
)

dx = 1, the Lagrange multipliers can be
defined by the sum of residuals:

ri = 1 −
∫

xiexp
(
∑m

i=1 λix
i
)

dx

µi

∫

exp (
∑m

i=1 λixi) dx
(20)

for i = 1, 2, . . . , m. The minimum residual can be expressed as:

min R =

m
∑

i=1

ri. (21)

Suppose that ǫ is the permissible error of the observer. If R < ǫ, then R converges, he
accepts the corresponding Lagrange multipliers λ = (λ0, λ1, . . . , λm) and recovers the
probability density function f(x). The problem of Shannon entropy maximization is a
convex minimization problem.
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3.3 Fitting Performance Metrics

Maximum entropy is a monotonic decreasing function, which means that the observer
obtains smaller maximum entropy when the algorithm iterates. The probability density
function MED is obtained after R < ǫ. This will be followed by testing whether the
profiled model can accurately reflect the true leakage of device (i.e. test of goodness of
fit).

According to the report "Guide to Expression of Uncertainty in Measurement (GUM)"
(see [IO95]), standard uncertainty of the result of measurement corresponding to maximum
entropy is expressed as a standard deviation. By performing maximum entropy estimation
on the observations, the expectation and deviation are

µ̂ =

∫

xf̂(x)dx (22)

and

σ̂ =

∫

[x − x̂ (x)]
2

f̂(x)dx. (23)

If f(x) approximates the true distribution, µ̂ → µ1 and σ̂ → µ2.
Actually, to test whether this model is consistent with the real leakage model, the

leakage certification test of Durvaux et al. (see [DSP16] and [DSV14]) can be employed.
This work performed hypothesis tests on samples generated from the estimated leakage
model and real samples to determine if the model can be accepted based on the test
results. Other tests such as Chi-square χ2 [MRSS18] and Root Mean Square Error (RMSE)
[SUK06], can also be used to test maximum entropy probability density distribution. In
principle, the more moments are used, the more accurate the model is, and the smaller
the error.

In our paper, we combine GUM’s test and Welch’s t-test introduced by Durvaux et al.
in [DSV14] to detect estimation error. Specifically, referring to the leakage certification
test of Durvaux et al., we divide the collected measurements into k-folds of approximately
the same size. Each iteration selects a new validation fold and uses other k − 1 folds as
training set. We first find the interval of training set and calculate µ̂ and σ̂ in GUM’s test.
We then randomly generate samples of the same size as the validation set from this model.
Referring to Eq. 8 and Eq. 9, we carry out Welch’s t-test to quantify the probability of
the difference caused by the estimation error.

4 Nonlinear Programming Optimization

The minimum residual given by Eq. 21 can be solved using nonlinear programming
optimization, which minimizes residual by calculating the least squares of error. If ri is
a linear function for all i, R can be solved by linear least square method. R here is a
non-linear function that can be solved using nonlinear least square method. This is based
on the basic principle of using a series of linear least squares to solve nonlinear least square
problems.

4.1 Newton-Raphson Method

By combining Eq. 10 and Eq. 15, the ith order moment can be expressed as:

Gi (λ) =

∫

xiexp

(

λ0 +

m
∑

i=1

λix
i

)

dx = µi (24)

if Eq. 10 is regarded as a function of λ = (λ0, λ1, . . . , λm). According to [ZH88, MD92],
one can expand Gi (λ) in Taylor’s series around trial values of λ0, dropping the second
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and higher-order moments

µ
′

i =Gi (λ)

∼=Gi

(

λ0
)

+
(

λ − λ0
)T

[grad Gi (λ)]
λ=λ0

(25)

and solving them iteratively. Here the symbol ’T’ indicates vector or matrix transposition
and symbol ’grad’ indicates gradient function. If the first five moments are taken into
consideration, then m = 4. Mean, variance, skewness and kurtosis [MS16] are often used
in side-channel attacks. However, very a few papers discussed very higher-order moments
(e.g. [JS17]). Obviously, for nonlinear functions like R, the observer can solve them using
higher-order Taylor expansions, of which µ

′

i is closer to µi.
The work in [MD92] defined two vectors

δ = λ − λ0 (26)

and

v =
[

µ
′

0 − G0

(

λ0
)

, . . . , µ
′

N − GN

(

λ0
)

]T

. (27)

Here the superscript 0 of λ0 represents the number of iterations. The authors then defined
a matrix G by

G =



gnk



 =





∂Gn(λ)
∂λk





(λ−λ0)

. (28)

G is a Hankel matrix, of which

gnk =

∫

xnxkexp

(

m
∑

i=1

λix
i

)

dx

=

∫

xn+kexp

(

m
∑

i=1

λix
i

)

dx

=gn+k.

(29)

This means gnk = gkn. This also means that in order to calculate the first five moments
(m = 4) of f(x), we have to calculate G0, . . . , G8. Solving Eq. 21 is equivalent to solving
the linear system of equations:

Gδ = v. (30)

The above is the first iteration of λ0. The observer obtains the error δ0 of λ0 in probability
density function f(x). Then λ0 is replaced by λ1 = λ0 + δ0 and the next iteration is
executed. The iteration continues until δ becomes appropriately small (i.e. R < ǫ). In
principle, the smaller the ǫ, the better f(x) fits the true leakage distribution.

4.2 Algorithm Implementation

We have described the principle of nonlinear programming optimized MED estimation in
the previous sub-section. Here we provide the detailed algorithm in Algorithm 1. In our
algorithm, the samples and accuracy serve as inputs, λ and maximum entropy MaxEnt
are the outputs. There are no other parameters to set, which indicates that our algo-
rithm is very simple and does not need to handle the complex parameter optimization
problem. The algorithm first estimates the optimal number of bins hn using function
BinsEstimation (as detailed in Section 4.3). Then, it estimates the probability density
function using histogram, where the corresponding inputs include the samples and hn.
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Algorithm 1: Nonlinear programming optimized MED estimate.

Input: samples x and ǫ
Output: estimated parameters λ and MaxEnt

1 the number of bins hn = BinsEstimation(x) ;
2 estimate PDF (p, x) = Histogram(x, hn) ;
3 calculate moments G1, . . . , GN using p and x ;
4 λ0 = max(x) − min(x) ;
5 while 1 do

6 calculate v ;
7 solve Gδ = v ;
8 update λ = λ + δ;
9 update f(x) and R;

10 if R < ǫ then

11 MaxEnt = −∑hn

j=1 f(xj)ln f(xj);

12 break;

13 end

14 update G1, . . . , GN using f(x) and x ;

15 end

The outputs of function Histogram include the probability density distribution p and
the mid-points of all bins x.

The purpose of Algorithm 1 is to fit p and f(x) and find the parameters in λ that
satisfies the fitness condition. It is worth noting that our algorithm does not need to set
λ. We only initialize λ0 = max(x) − min(x) as suggested in [MD92]. All λ-s will be
adjusted in the following repetitions. Our algorithm initializes moments G1, . . . , GN using
p and x. It then calculates v, solves Gδ = v and updates λ = λ+δ. It then updates f(x)
using λ. λ and R will gradually stabilize after a number of iterations. In this case, f(x)
approximates the distribution p, and the measurement uncertainty in Eq. 22 and Eq. 23
approaches the mean and variance of true samples.

For Newton-Raphson method, one of the conditions for iterative convergence is that
G is a non-singular matrix. If G is singular, then nonlinear programming optimizations
such as damped least square (i.e. Levenberg-Marquardt) method, can also be taken into
consideration. Unlike Newton-Raphson method, Levenberg-Marquardt method needs to
set several parameters. To optimize these parameters, we need to consider the specific
samples and model, which is not easy. Moreover, the algorithm may return a local optimal
solution during iteration. In order to find the global optimal solution, Algorithm 1 can be
combined with Simulated Annealing (SA) [GG84] or Genetic Algorithm (GA) [XM10].

4.3 Optimal Bin Width in Histogram

Probability density estimation is a widely-used method for estimating the distribution
model of samples. It can be broadly classified to parametric estimation and non-parametric
estimation. Parametric estimation is utilized If we have already known what kind of prob-
ability density distribution the observed samples follow and only need to determine its
parameters. The most commonly used parametric estimation methods are Maximum
Likelihood Estimation (MLE) and Bayesian estimation. If we do not know the true distri-
bution of the observed samples, we can only use the non-parametric estimation method to
estimate its probability density distribution model. The non-parametric estimation meth-
ods mainly include histogram estimation and Kernel Density Estimation (KDE) [Ven10].
Since the true leakage model of a chip is unknown, we consider the non-parametric esti-
mation method in Algorithm 1. Specifically, we use histogram to estimate the probability
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density distribution in this paper.
Let κ denote the number of bins in histogram, and x denote the mid-points of bins.

The mid-point xj of each interval (1 ≤ j ≤ κ) is often selected as representative value of
this bin [SKR00]. To derive the probability density distribution, the observer needs to
calculate the frequency of each bin. Suppose that he obtains the frequency distribution
of x as (f1, f2, . . . , fκ) (see [SKR00]). In this case, the expectation value of the ith order
moment of samples can be expressed as:

µi = E
(

xi
) ∼= 1

κ

κ
∑

j=1

fjx
i
j . (31)

In order to avoid overflow, the domain of x can also be transformed into interval [0, 1]
using equation x

′

= (x−xmin)/(xmax −xmin). Here xmin and xmax denote the minimum
and maximum values of x.

It is difficult to determine the optimal bin width when constructing a histogram. To
illustrate this, we simulate the normal distribution N

(

0, 52
)

and randomly generate 1000
measurements from this model. The probability density distributions when the number
of bins is set to 5, 10, 20 and 200 are shown in Fig. 2. As can be observed, it will be
unreasonable to set the number of bins to 5 and 200, as this will lead to the number of bins
being either too small or too large. As a result, profiling will lose a lot of information of the
distribution. On the other hand, determining whether 10 bins or 20 bins are reasonable
is not straightforward. The authors in [Wan97] suggested that the bin width should be
chosen so that the histogram displays the essential structure of the data, without giving
too much credence to the data set at hand.
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(b) 10 bins
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(c) 20 bins
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(d) 200 bins
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Figure 2: Probability density distribution under different numbers of bins.

Sample size is an important indicator for side-channel evaluations. The implicit pre-
requisite in profiling stage is that the observer can capture a sufficient number of mea-
surements so that he can profile a sufficiently accurate leakage model. However, the fewer
power traces he uses in the attack stage, the more powerful and higher efficiency is the
scheme. It is desirable if he can profile an accurate leakage model under a small sam-
ple size. Therefore, deriving an optimal bin width is an important issue that must be
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considered.
The authors in [Sco79] indicated that the formula for determining the optimal his-

togram bin width should asymptotically minimize the integrated mean squared error.
They proposed the following to determine the bin width:

hn =
3.49s

3
√

n
, (32)

where s was an estimate of the standard deviation and n was the sample size. In side-
channel attacks, we often assume that the leakage follows Gaussian distribution. However,
this assumption may be incorrect, or at least inaccurate, since the true leakage model is
unknown. Although Eq. 32 is established on the basis of Gaussian density, fortunately,
it can be also used for non-Gaussian data. Thanks to Scott’s solution, the problem of
estimating the bin width in our side-channel attacks can be resolved.

5 Simulated Experiments

5.1 Leakage Function

Our first experiment is performed on simulated measurements. Let HW (·) denote the
Hamming weight function, SBOX (·) denote the SubBytes operation of AES-128, zi de-
note the ith plaintext byte and k∗ denote the encryption key byte. The leakage function
is defined as:

li = HW (SBOX (zi ⊕ k∗)) + θ, (33)

where ⊕ denotes the XOR operation, li denotes the corresponding leakage sample and θ
denotes the noise component [MOP07] that follows normal distribution N

(

0, 102
)

.

5.2 Information on Higher-order Moments

Maximum entropy decreases with increase in moment constraints. Since each moment
contains information, the uncertainty of the model is reduced if a new moment is added.
However, this conclusion is not always established when measurements are limited (as
shown in Table.1). Here 800 measurements are used, ǫ is set to 10−8 and Ci denotes the
ith order moment. The maximum entropy under the constraint of natural moment (C0) is
about 14.6171 and changes to 14.6460 after adding the first-order moment constraint. This
means that the maximum uncertainty of distribution varies by 0.0289 after adding the
first-order moment. The second-order moment makes the maximum uncertainty decrease
the most followed by the first-order moment. MaxEnt changes very little after reaching
9.8123. In this case, the fitting performance also gradually approaches the optimum.

Table 1: Maximum entropy under different constraint sets.

Constraint sets MaxEnt

{N} 14.6171
{N, C1} 14.6460

{N, C1, C2} 9.4689
{N, C1, C2, C3} 9.8123

{N, C1, C2, C3, C4} 9.8123
{N, C1, C2, C3, C4, C5} 9.8123

Since we only initialize λ0 in our MED, the fitting performance of f(x) and true leakage
distribution is not good at the initial iterations. As the number of iterations increases,
the variables in λ are constantly updated, f(x) also converges to the true distribution (as
shown in Fig. 3(1)). Finally, the required accuracy is achieved after 10 iterations.

The information entropy on different moments is different, as with the fitting perfor-
mance. We analyse the different moments on f(x) of the above 800 traces and consider
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(a) MED under different iterations
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(b) Fitting performance under different moments
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Figure 3: MED under different iterations and fitting performance under different mo-
ments.

the moments with orders higher than 3. Let MaxEnt2 denotes a set of moments including
{N, C1, C2}, and MaxEnt3 denotes a set of moments including {N, C1, C2, C3}. Similar
notations apply for MaxEnt4 and MaxEnt5. It can be observed from the experimental
results in Fig. 3(2) that the higher the orders use, the better the fitting performance
of f(x) and the true distribution. When considering MaxEnt2 and MaxEnt3, f(x) still
deviates from the true distribution of the leakage, and the two have a good fit in MaxEnt4.
The fitting performance in MaxEnt5 is better and f(x) almost passes through the middle
of all bins. On one hand, this indicates that to fit the real leakage distribution, we need
to combine the information on all six moments in MaxEnt5. On the other hand, this indi-
cates that the information on higher-order moments are limited. It is obvious that there
is still a deviation between the estimated model f(x) and the true leakage model. This is
mainly due to the small number of samples we use and the large deviation between the
sample distribution and real leakage distribution in our experiment. In order to better fit
the real leakage distribution, we can further reduce ǫ or consider higher-order moments,
or even use more measurements.

5.3 Fitting Performance

The evaluator can encrypt any number of plaintexts and collect their leakage to profile
sufficiently accurate PDF model. Compared to evaluator, the number of measurements
obtained by the attacker is limited, so it is important to make full use of the information
on them. The number of measurements is also the most important factor in our MED
estimation. So, estimating the most reasonable, most unbiased leakage model from the
limited model is a very important issue that they needs to be taken into consideration.
Here we also compare fitting performance of our MED estimation under different numbers
of measurements. The experimental results corresponding to Hamming weight 0 are shown
in Fig. 4, Fig. 5 and Table 2.

First, considering the fitness between MED and the real distribution under different
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(b) MED5
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(c) MED6
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(d) MED7
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Figure 4: MED under different iterations using 200 simulated measurements.

moments, we simulate 200 power traces and fit the corresponding distribution with its
first 5 ∼ 8 moments (the corresponding Maximum Entropy Distribution is expressed as
MED4∼MED7). The experimental results are shown in Fig. 4. Since we only initial-
ize λ0, f(x) deviates from the true distribution at the initial iterations. So, the MED
corresponding to iterations less than 8 is not given. f(x) appears to exhibit a complex dis-
tribution under different moments. It gradually fits to the real distribution as the number
of iterations increases. However, the fitting performance under different moments is very
different, MED6 and MED7 fit better than MED4 and MED5. Moreover, the number
of iterations is closely related to the complexity of distribution of samples. The more
complex this is, the more iterations are required to achieve a better fitness.

(a) MED4
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(b) MED5
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(c) MED6
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(d) MED7
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Figure 5: MED under different iterations using 500 simulated measurements.

We also show the fitting performance of MED and true distribution under different
moments when 500 simulated measurements are used. With increasing number of measure-
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ments, the maximum entropy decreases gradually. The leakage model becomes simpler
and more definite, and the fitting performance between MED and the true leakage func-
tion becomes better (see Fig. 5). This indicates that the higher-order moments make full
use of information on measurements. MED6 and MED7 better reflect the true distribu-
tion than MED4 and MED5, and pass through the middle of most of bins. The GUM test
in Table 2 also illustrates this. Moreover, the distribution of samples reflects the leakage
function better and is more conducive to the fitness of f(x). As such, the number of
iterations in Algorithm 1 also decreases.

Table 2: Parameters under different numbers of measurements.

measurements iteration MaxEnt
GUM

µ̂ σ̂

200 14 12.1936 4.4432 10.7905
400 13 9.5870 5.3772 9.3680
800 12 8.8991 4.9424 9.8951
1600 11 7.7859 4.9751 9.9917
3200 9 6.5737 5.1266 9.9241
6400 9 5.8106 4.8918 10.1207

It is noteworthy that both f(x) and true leakage function do not successfully pass
through the middle of all the bins. This would have been unrealistic especially when there
are many bins which are not well distributed. This is not a concern as f(x) has already
approximated the true leakage model. Although the true leakage model of cryptographic
devices is unknown. It is therefore not necessary to make f(x) pass through the middle
of all bins, as long as the fitness requirements in leakage certification test is met.
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Figure 6: Leakage certification tests on simulated measurements.

We use the MATLAB source code provided by Durvaux et. al. in [dur] to perform
our leakage certification test. Specifically, we randomly generate 1000 samples from the
leakage model given in Eq. 33 for each possible intermediate value and train 256 leakage
models independently. Each leakage model can be expressed as N

(

µ̂, σ̂2
)

, the first six
moments and cross validation are used. Samples with same size of validation set are
randomly generated from this model. We then perform leakage certification test on them,
of which the experimental results are shown in Fig. 6. The p-values output by our different
t-tests are in grey-scale, for four statistical moments (i.e. the mean, variance, skewness
and kurtosis). The results show that our MED model fits the measured leakages quite
accurately. We only consider the first six order of moments MED5 in this experiment. In
order to achieve better fitting performance, higher-order moments can also be taken into
consideration. Actually, the results of leakage certification tests using MED5 are better
than those using MED4 in our experiments.
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6 Experiments on ATMega644P Microcontroller

6.1 Measurement Setup

Our second experiment is performed on the measurements provided by Durvaux et al.
in their leakage certification code [dur]. These measurements are leaked from an AES
Furious algorithm implemented on an 8-bit Ateml AVR (ATMega644P) microcontroller.
Let z and k denote the target input plaintext byte and subkey, and y = z ⊕ k. For
each possible value of y, 1000 encryptions and measurements are collected. Then, leakage
certification tests are performed on them.

6.2 Low Discretization of Leakage Samples

Compared with real leakage, measurements sampled from simulated leakage model are
more random. They also have higher discretization and better satisfy the given distri-
bution. Moreover, we know the specific leakage function (i.e. real leakage model) in
simulation experiments. In order to compare the fitting performance between MED and
real model, we can simply compare MED with leakage function. However, the real leakage
model of cryptographic devices is unknown and can only be measured by other methods
such as hypothesis tests.

It is worth noting that the leakage samples of ATMega644P microcontroller provided
by Durvaux et al. in [dur] is with low discretization. We have tested a lot of y-s under
all 1000 measurements and give the probability density functions corresponding to y =
0, . . . , 3 in Fig. 7. The probability density values close to the middle of distribution are 0,
but some others close to the edges are significantly high. We also carry out experiments
on AT89S52 micro-controller and obtain similar conclusions. The randomness of leakage
model reflected by these low discrete samples is also reduced. There could be three reasons
for this phenomenon: (1) the leakage of the device is not normally distributed, (2) the size
of measurements is too small, and (3) the measurement limitations of the oscilloscope.
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Figure 7: Low data discretization of leakage from ATMega644P micro-controller.

The matrix G is close to singularity if we use Newton-Raphson method to fit MED
and true leakage distribution under the condition that the leakage samples are with low
discretization. We change the accuracy ǫ in our iteration to 10−6. It is worth noting
that, although we reduce the accuracy in our iteration in Table 3 (y=1), the number of
iterations increase compared to Table 2. The algorithm needs to iterate about 16 times.
Moreover, the uncertainty of distribution decreases when we use more measurements. We
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also show the experimental results of GUM tests in Table 3, which indicates that the mean
of these samples is about 0.0249 and the variance is about 0.0050.

Table 3: Parameters under different numbers of measurements.

measurements iteration MaxEnt
GUM

µ̂ σ̂

200 15 5.7612 0.0247 0.0050
400 16 5.2089 0.0249 0.0051
600 16 4.6202 0.0257 0.0049
800 17 4.4929 0.0249 0.0052

1000 16 4.2925 0.0249 0.0050

6.3 Fitting Performance

We use the first six moments to analyse the measurements corresponding to y = 1. The
number of bins in histogram varies with the size of measurements used according to Eq.
32. Considering the first 200 and the first 300 measurements, hn is 9 and 11 respec-
tively. Unlike Fig. 7, the new divisions do not exhibit the complex phenomenon that the
probability density is almost 0 in the middle and high on both two sides, which is also
amenable to MED fitness. However, the histogram shows another complex distribution
when n = 200: the probability density is low in the middle and high on both two sides.
Obviously, normal distribution considering skewness and kurtosis is not enough to fit this
distribution. To solve this, the observer can increase or decrease the number of bins, or
improve the algorithm so that f(x) can still fit the complex distribution.
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(b) MED5
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Figure 8: MED4 and MED5 under different iterations.

Fortunately, one advantage of our MED is that it can theoretically fit complex dis-
tributions by making full use of information on arbitrary higher-order moments. f(x)
gradually fits the sample distribution in iterations under first five and six moments (see
MED4 and MED5 in Fig. 8). Specifically, the irregular probability density distribution
of samples has been found after 11 iterations in our MED. f(x) shows the same charac-
teristics as the probability density distribution of samples in the twelfth iteration: low in
the middle, high on the left and low on the right. Although the error ǫ reduces, MED-s
almost coincide in the 13th, 14th and 15th iterations. It is very difficult to distinguish
them in Fig. 8(2). f(x) passes through the middle of most of bins, which shows very
good fitness performance with the distribution of measurements. Since the distribution is
complex under these 200 measurements, we also consider MED6 and MED7, of which the
experimental results are shown in Fig. 9. In order to fit bins, both two ends of MED6 and
MED7 are higher than those of MED4 and MED5 at the initial iterations. Fortunately,
they decrease rapidly and converge quickly as the number of iterations increases. In other
words, the fitting performance converges to the optimum quickly. Compared to MED4
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and MED5, the fitting curves of MED6 and MED7 are more complex and curved, which
implies that the fitting performance is much better.

The number of iterations of MED6 and MED7 is also higher than that of MED4 and
MED5 under the same accuracy. Moreover, the higher order moments fit better than
the lower order moments under the same number of iterations. We also obtain similar
conclusions in Section 5.3. λ in Fig. 9 and Fig. 10 changes slightly as the iteration reaches
a certain point. Maximum entropy distributions f(x) also change very little, and they
eventually overlap in the last a few iterations.
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(b) MED7
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Figure 9: MED6 and MED7 under different iterations.

It is noteworthy that the observer is likely to obtain different f(x) when using varying
numbers of measurements, or different measurement sets of the sample size. However,
f(x) can well reflect the true distribution of current measurements. MED represents
the most unbiased, most objective and most reasonable distribution estimation of the
observed measurements. When the number of power traces increases, the observer gets
a better sample distribution and a decreasing maximum entropy (as shown in Table 3).
We also test our MED under more measurements. For example, the MED of first 300
measurements corresponding to y = 1, of which the probability follows a distribution
with left side up but the right side sloping down smoothly. Therefore, f(x) first ascends
at both ends and finally the left-end ascends to fit the high probability density while the
right-end gradually descends to fit the low probability density on the right. Finally, f(x)
fits well to the true distribution of measurements. Similar conclusions and fitting process
can also be obtained from Fig. 4, Fig. 5, Fig. 8 and Fig. 9.
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Figure 10: Leakage certification of leakage from ATMega644P Microcontroller.

Fig. 8 and Fig. 9 fully embody the super fitness ability of our MED. We use the
first six moments (MED5) in our leakage certification test and obtain very good fitting
performance in our leakage certification tests (as shown in Fig. 10). However, due to the
pre-mentioned low data dispersion of the leakage of ATMega644P microcontroller, many
MED models cannot fit the distribution of measurements on the model N

(

µ̂, σ̂2
)

and pass
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the leakage certification tests (see horizontal blank lines in Fig. 10). Moreover, p value
in Welch’s t-test is in function of the number of measurements used for certification as
stated by Durvaux et al. in [DSP16]. This also indicates that the information on the first
six moments (MED5) is insufficient to ensure that f(x) accurately fits the distribution of
measurements. Therefore, in order to fit the distribution, we need to take information on
higher-order moments into consideration. For example, the first seven or eight moments
(MED6 and MED7) in Fig. 9, or even using the information on moments with orders
larger than 7. We also carry out leakage certification tests on MED4, of which the results
show that p values on MED5 look ’whiter’. This also shows that the fitting performance
of the higher-order moments is better.

7 Conclusion and Future Works

The accuracy of a leakage model plays a very important role in side-channel attacks and
evaluations. In this paper, we aim to determine the true leakage model of a chip. To
achieve this, we performed Maximum Entropy Distribution (MED) estimation on higher-
order moments of measurements to approximate the true leakage model of devices rather
than assume a leakage model. Then, non-linear programming is used to solve the Lagrange
multipliers. The MED is the most unbiased, objective and reasonable probability density
distribution estimation that is built on known moment information. It does not include
the profiler’s subjective knowledge of the model. MED can well approximate the true
distribution of the leakage of devices, thus reducing the model assumption error and
estimation error. It can also well approximate the complex distribution (e.g. non-gaussian
distribution). Both theoretical analysis and experimental results verify the feasibility of
our proposed MED.

MED can theoretically use information on arbitrary higher-order moments to infinitely
approximate the true distribution of leakage. In this case, more moments mean more
information. However, more moments also necessitate more computation. In our future
work, we will explore methods to accurately measure the amount of information on each
moment and make MED choose the right moments for each iteration. We also plan to
improve our MED to make it converge faster, thereby reducing the number of iterations
and computation time.
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