
Key-Insulated and Privacy-Preserving Signature Scheme with

Publicly Derived Public Key ?

Zhen Liu1, Guomin Yang2, Duncan S. Wong3, Khoa Nguyen4, and Huaxiong Wang4

1 Shanghai Jiao Tong University, China.

liuzhen@sjtu.edu.cn

2 University of Wollongong, Australia.

gyang@uow.edu.au

3 CryptoBLK and Abelian Foundation.

duncanwong@cryptoblk.io

4 Nanyang Technological University, Singapore.

khoantt@ntu.edu.sg, HXWang@ntu.edu.sg

Abstract. Since the introduction of Bitcoin in 2008, cryptocurrency has been undergoing a quick and

explosive development. At the same time, privacy protection, one of the key merits of cryptocurrency,

has attracted much attention by the community. A deterministic wallet algorithm and a stealth address

algorithm have been widely adopted in the community, due to their virtues on functionality and privacy-

protection, which come from a key derivation mechanism that an arbitrary number of derived keys can

be generated from a master key. However, these algorithms suffer a fatal vulnerability which may

cause fatal damages. In particular, when a minor fault happens (say, one derived key is compromised

somehow), the damage is not limited to the leaked derived key, instead, it spreads to the master key

and the whole system collapses.

In this paper, to provide a formal treatment for the problem, we introduce and formalize a new sig-

nature variant, called Key-Insulated and Privacy-Preserving Signature Scheme with Publicly Derived

Public Key (PDPKS), which forms a convenient and robust cryptographic tool for offering the virtues

of deterministic wallet and steal address, while eliminating the security vulnerabilities. Specifically,

PDPKS allows anyone to derive new signature verification keys for a user, say Alice, based on her

long-term public-key, while only Alice can derive the signing keys corresponding to those verification

keys. In terms of privacy, given a derived verification key and valid signatures with respect to it, an

adversary is not able to tell which long-term public key, out of a set of known long-term public keys, is

the one from which the verification key was derived, and given two verification keys and corresponding

valid signatures, an adversary cannot tell whether the verification keys are derived from the same long-

term public key. A distinguishing security feature of PDPKS, with the above functionality and privacy

? This work is supported by Abelian Foundation, and forms part of the work from the Abelian Foundation. This

work was inspired by our previous work [29] on the whitepaper of Abelian Coin (ABE).

features, is that the derived keys are independent/insulated from each other, namely, compromising the

signing key associated with a verification key does not allow an adversary to forge a valid signature for

another verification key, even if both verification keys are derived from the same long-term public key.

We formalize the notion of PDPKS and propose a practical and proven secure construction, which

could be a convenient and secure cryptographic tool for building privacy-preserving cryptocurrencies

and supporting promising use cases in practice, as it can used to implement secure stealth addresses, and

can be used to implement deterministic wallets and the related appealing use cases, without security

concerns.

Keywords: Signature Scheme, Publicly Derived Public Key, Key-Insulated Security, Privacy, Cryp-

tocurrency, Stealth Addresses, Deterministic Wallets

1 Introduction

Since the introduction of Bitcoin [31] in 2008, in the past decade, cryptocurrency has been un-

dergoing a quick and explosive development, with thousands of different crypto-coins available to

date, most of which are Bitcoin-like. A Bitcoin-like cryptocurrency is a ledger consisting of a series

of transactions, and Digital Signature [37] is used to authorize and authenticate the transactions.

More specifically, each coin is a transaction-output represented by a (public key, value) pair, where

the public key specifies the owner of the coin (i.e. the payee of the transaction) and the value

specifies the denomination of the coin. When the owner wants to spend a coin cn on public key pk,

acting as a payer, he needs to issue a new transaction consuming cn and outputting new coins (i.e.

new transaction-outputs) assigned to the payees’ public keys, and sign this new transaction using

his secret signing key sk corresponding to pk. Due to the nature of digital signature, the public can

be convinced that such a transaction is authorized and authenticated to spend the input coin cn.

In other words, the public key acts as the coin-receiving address, while the secret signing key acts

as coin-spending key. Consequently, a cryptocurrency Wallet is used to manage the (public key,

secret key) pairs for the wallet owner, including generating, storing, using, and erasing the keys,

etc. A prelimianry wallet may generate each key pair randomly and independently by running the

key generation algorithm of the underlying signature scheme in a typical manner. On the other

hand, a type of advanced wallet mechanisms, called Deterministic Wallets[30,21,44], has been

proposed to achieve some appealing virtues, such as low-maintenance, easy backup and/or recovery,

supporting functionalities required by popular applications, and so on. Deterministic Wallets have

2

been very popular, and nearly every Bitcoin-like cryptocurrency client either already has a deter-

ministic wallet implemented or is planning to create one. However, as shown later, Deterministic

Wallets may suffer a fatal vulnerability, which seriously limits its application, and the security of

keys and corresponding coins has to heavily rely on the awareness of the implementers and users

of the wallet.

On the other side, while protecting user privacy is one of the most desired features of cryp-

tocurrency, it has been generally acknowledged that Bitcoin only provides pseudonymity, which is

pretty weak and does not provide untraceability or unlinkability [35,39]. Different techniques and

cryptocurrencies have been proposed to provide stronger privacy, for example, Dash, ZCash, Mon-

ero, etc. Among the privacy-protection technologies for cryptocurrencies, Stealth Address [39,42]

is regarded as a simple but effective and efficient way to enhance privacy, and has been widely

adopted by many cryptocurrencies. Particularly, it is a part of the core protocol of Monero [34],

which is the most popular privacy-centric cryptocurrency, with a market capitalization valued at

approximate 2 billion USD, ranking the 10th in all the existing cryptocurrencies [16]. However, as

shown later, the Stealth Address algorithm, the one used in Monero as example, also suffers a fatal

vulnerability, and the security of the coins has to heavily rely on the awareness of the implementers

and users.

While requiring a user in a cryptocurrency system to keep his secret key safe is reasonable, basing

the security on the awareness requirements beyond this is too risky, and it often fails. In this work, we

formalize a new cryptographic concept and propose a provably secure construction, which provides

a practical and solid solution to address these problems, i.e., we propose a cryptographic solution,

which can be used to build deterministic wallet and stealth address with built-in protection, rather

than heavily relying on the users’ awareness.

1.1 Deterministic Wallets for Bitcoin

Literally, in a deterministic wallet, all the public keys and secret keys can be deterministically

derived from a ‘seed’. Fig. 1 shows the essence of the deterministic wallet algorithm. Actually, a

specification of deterministic wallet based on this algorithm has been accepted as Bitcoin standard

BIP32 [44], and other existing deterministic wallets, for example Electrum wallet [21], also use the

similar algorithms. More specifically, let G be an additive cyclic group of prime order p, G ∈ G

3

Fig. 1. Deterministic Wallet Algorithm.

be a generator of G, and H : {0, 1}∗ → Zp be a cryptographic hash function. A randomly and

uniformly chosen s ∈ Zp works as the master secret key (i.e. the ‘seed’) for a deterministic wallet.

Then the master public key is computed as P = sG, and for any index i, the i-th public key could

be derived from the master public key as PKi = P +H(P‖i)G, without needing to use the master

secret key, while the corresponding i-th secret key could be derived from the master secret key as

ski = s+H(P‖i). Note that (ski, PKi) satisfies PKi = skiG and forms a valid (secret key, public

key) pair for some Discrete Logarithm based signature schemes, for example, ECDSA (Elliptic

Curve Digital Signature Algorithm) [33], which is used by most Bitcoin-like cryptocurrencies.

In the community, the deterministic wallets are advertised for the following use cases, as sum-

marized in [23]:

1. Low-maintenance wallets with easy backup and recovery. With the algorithm in Fig. 1, to backup

his deterministic wallet, a user only needs to backup the master secret key s, and when nec-

essary, for example, the hardware where his deterministic wallet is stored breaks down, he can

reconstruct the complete wallet from the master secret key.

2. Freshly generated cold addresses. In cryptocurrencies, cold address mechanism is used to reduce

the exposure chance of secret keys, namely, only the public keys are stored on a vulnerable

online server (referred to as ‘hot storage’) while the corresponding secret keys are kept safe

in offline storage (referred to as ‘cold storage’) until they are needed to generate signatures

to spend the coins, and each public key (and corresponding secret key) is used only once to

have better security and privacy. As each public key is used only once, cold address mechanism

protects user privacy in the sense that the public could not link the coins belonging to the

4

same owner. The algorithm in Fig. 1 provides a convenient way to implement cold address

mechanism, namely, it allows a user to easily generate and store only the public keys on hot

storage, while the corresponding secret keys are generated only when they are needed to spend

the corresponding coins.

3. Trustless audits. The algorithm in Fig. 1 allows a user to reveal his master public key to third-

party auditors, then the auditors could view all the transactions related to the corresponding

wallet, since they can compute all the public keys in the wallet by using the master public key

and the possible indexes. Note that the user is assured that his coins are safe from the theft by

the auditor since the master secret key or derived secret keys could not be computed from the

master public key and/or the derived public keys.

4. Hierarchical Wallet allowing a treasurer to allocate funds to departments. The algorithm in

Fig. 1 allows a treasure of a large company to create child key pairs for each department within

the company, so that the treasurer will have the master pubic/secret key for everything, but

each department will only have the key to their own part of the funds.

However, to use the deterministic wallet algorithm, the users have to be very aware in that,

besides the master secret key, they also need to keep the master public key and all the derived

secret keys secret and safe. This is because, if an attacker somehow obtains the master public

key P and any derived secret key, say ski for some index i, he can compute the master secret

key by s ← ski − H(P‖i), and further compromise the wallet completely. However, in practice

these awareness requirements may be difficult to meet. In particular, to generate the derived public

keys conveniently, the master public key is often stored in the vulnerable and online hot storage.

For the derived secret keys, when they are used to sign a transaction, the signature computation is

often performed on a relatively insecure device (e.g., a mobile device or an Internet-connected host)

which cannot be trusted to maintain secrecy of the secret key, as pointed out by Dodis et al. [19,20].

As a result, for the use case of freshly generated cold addresses, even if an attacker only obtains

the master public key somehow, it could break the privacy-protection feature claimed by cold

address mechanism, by behaving like an auditor. And for the use case of treasurer allocating funds

to departments, once a department manager who knows a child/derived secret key ski obtains the

master public key somehow, he can steal all the funds of the company. In addition, the deterministic

wallet algorithm cannot be used to simultaneously implement the treasure and the auditor use cases,

5

otherwise the auditor may collude with some department manager who knows a child/derived secret

key ski to compromise the master secret key and then steal all the funds of the company.

1.2 Stealth Address in Monero

While deterministic wallets focuses on the management of the keys in a wallet, the goal of stealth

address is to send money to a certain publicly visible master key in such a way that this key does

not appear in the ledger at all, so that users’ privacy gets more protection. Thus, a crucial difference

between stealth address and deterministic wallet is whether the master public key is allowed to be

publicly visible. Note that the above advertised use cases of deterministic wallet heavily rely on the

assumption that the master public key is kept secret.

Fig. 2. Stealth Address Algorithm in Monero.

As a privacy-centric cryptocurrency, to achieve unlinkable payments, Monero adopts a stealth

address algorithm proposed in CryptoNote [39], as shown in Fig. 2. In particular, each user could

choose random (a, b) ∈ Z2
p as his master secret key (also referred to as long-term secret key) and

keep it secret, while publishing (A = aG,B = bG) publicly as his master public key (also referred

to as long-term public key). On the functionality, for each transaction, the payer chooses a random

6

r ∈ Zp and computes a derived public/verification key5 dvk = (R = rG, S = H(rA)G + B) from

the payee’s long-term public key (A,B), and uses (R,S) as the coin-receiving address for the payee

in the transaction. On the other side, from the view of a payee, with his long-term public key (A,B)

and long-term secret key (a, b), he can check whether he is the intended receiver of a coin on fresh

public/verification key dvk = (R,S), by checking S
?
= H(aR)G + B, and if the equation holds,

he can compute s = H(aR) + b as his secret/signing key to spend the coin, since (S, s) satisfies

S = sG and forms a valid (public/verification key, secret/signing key) pair for a signature scheme6.

On the privacy, from the view of the public, the coin-receiving address (R,S) does not leak any

information that can be linked to the payee’s long-term public key. This is due to the Diffie-Hellman

Key Exchange [18] part (i.e. rA = aR = raG), since the public cannot compute the value of raG

from A and R. On the security, intuitively, for a coin-receiving address (R,S), only the payee can

derive the corresponding secret/signing key s = H(aR) + b, since only the payee knows the value

of b for the corresponding long-term key, and particularly, the payer cannot spend the coin either,

since he does not know the value of b. This is why B is added in S.

In summary, the main advantage of the stealth address algorithm is that every coin-receiving

address is unique by default (unless the payer uses the same random data for each of his transactions

to the same payee), so that there is no such issue as “address reuse” by design and no observer can

determine if any transactions were sent to a specific long-term public key or link two coin-receiving

addresses (as well as the corresponding coins and transactions) together. And importantly, this is

achieved in a very convenient manner, as each user only needs to publish one long-term public key,

and anyone (acting as a payer) can generate/derive an arbitrary number of fresh public/verification

keys from the long-term public key of a user (acting as a payee), while there is no interaction needed

between the payer and the payee. Also the payee can compute the secret/signing keys corresponding

to the fresh public/verification keys without any interaction with the payer. Actually, due to its

5 Note that it is not required that the long-term public key and secret key forms a key pair for a signature scheme.

To avoid confusion, we use (public/verification key, secret/signing key) to denote the key pair for signature scheme,

where it is emphasized that verification key is public and signing key is secretly held.
6 Besides using the above stealth address algorithm to hide the payee, Monero hides the payer and transaction amount

(i.e. the coin’s value) using the techniques based on Linkable Ring Signature [28] and Pedersen Commitment [36]

respectively. But all these functionalities are built on the basis of the above stealth address algorithm, as the

derived key pair (S, s) serves as the coin-receiving address and coin-spending key.

7

virtues in functionality, privacy and “security”, the above algorithm and/or similar variants have

been widely adopted by the cryptocurrency community to implement stealth addresses.

However, we would like to point out that, the stealth address algorithm suffers a potential

vulnerability which may cause fatal damages. In particular, consider the example in Fig. 2, namely,

the payer Carol derives two public/verification keys dvk1 = (R1 = r1G,S1 = H(r1A)G + B) and

dvk2 = (R2 = r2G,S2 = H(r2A)G+B) for the same payee Alice with long-term public key (A,B).

Suppose Carol somehow compromises one of the two secret/signing keys, say s1 = H(aR1) + b.

Note that Carol knows the value of r1, she can compute the value of b by b ← s1 − H(r1A). So,

Carol can compute the secret/signing key corresponding to dvk2, by s2 ← H(r2A) + b, since she

also knows the value of r2. Furthermore, if Carol colludes with other payers who sent coins to

Alice, they can compromises all the secret/signing keys for the related coins, for example, colluding

with Bob in Fig. 2, Carol and Bob can compute the secret/signing key corresponding to (R,S) by

s ← H(rA) + b, where r is provided by Bob. Actually, as long as one derived secret/signing key

is compromised, the corresponding long-term public key is not safe any more, and all coins to the

fresh public/verification keys derived from this long-term public key in the past and the future are

in danger of being stolen.

As a result, the users in Monero must be very aware in that, they not only need to keep

their long-term secret keys safe, but also need to keep all the derived secret/signing keys for their

coins absolutely safe, even after the coins have been spent, since leaking one derived secret/signing

key may lead to the complete leakage of all the secret/signing keys derived from the same long-

term key. Note that the users in Monero are not warned about this vulnerability, and the security

heavily depends on the implementations and the users’ awareness and behavior. However, in practice

keeping all the derived secret/signing keys (i.e. coin-spending keys) safe is a difficult task. Even if

it was implemented very carefully so that a secret/signing key is generated only when it is needed

to sign a transaction to spend the corresponding coin, and is erased once it was used, it still takes

the risk of being compromised somehow, as pointed out by Dodis et al. [19,20], “cryptographic

computations (decryption, signature generation, etc.) are often performed on a relatively insecure

device (e.g., a mobile device or an Internet-connected host) which cannot be trusted to maintain

secrecy of the private key.” In addition, it is worth mentioning that, while the deterministic wallet

is only a optional tool for Bitcoin, the stealth address algorithm is a part of the core protocol for

8

Monero. That is, the damages caused by the vulnerability seems to be inevitable to Monero, unless

it is fixed.

1.3 Related Work

The community has noticed the deterministic wallet algorithm’s vulnerability that once the mas-

ter pubic key and one secret key is compromised, the master secret key and the whole wallet will

be compromised. In particular, the authors of BIP32 standard [44] noticed this vulnerability and

compensated for it by allowing for “hardened” child secret key that can be compromised without

also compromising the master secret key. But the cost is that the public keys cannot be generated

from the master public key, i.e. it cannot support the use cases of ‘freshly generated cold addresses’

and ‘trustless audits’. Buterin [12] called attention to this vulnerability, by announcing open-source

software that cracks BIP32 [44] and Electrum wallets [21], but was pessimistic on fixing this vul-

nerability. As an attempt to fix this vulnerability, Gutoski and Stebila [23] proposed a deterministic

wallet that can tolerate the leakage of up to m derived secret keys with a master public key size of

O(m). In essence, Gutoski and Stebila’s algorithm improves the difficulty of compromising the mas-

ter secret key m times at the price of O(m) times larger master public key, but does not eliminate

this vulnerability, in the sense that if an attacker compromises the master public key and m secret

keys, it can compromise the master secret key. Thus, the algorithm by Gutoski and Stebila [23] still

heavily relies on the users’ awareness and suffers the problems we discussed in Sec. 1.1. For example,

the master public key may be compromised due to its exposure on hot storage, the secret keys may

be compromised when they are used to generate signature on insecure environments such as mobile

device, and when being used to simultaneously implement the treasure and the auditor use cases,

the parameter m must be larger than the possible max number of the departments. In addition, it

is worth mentioning that the Gutoski and Stebila’s algorithm only considered the security against

complete break where the attacker succeeds only if it recovers the value of the master secret key,

without considering the standard security of signature scheme, namely, existentially unforgeability

under adaptive chosen-message attacks, where an attacker succeeds as long as it can forge a valid

signature, regardless of whether it knows the master secret key or secret/signing key.

For the vulnerability in Monero’s stealth address algorithm, it is somewhat surprising that it

has not been noticed in the community. This might be because that the algorithm allows the master

9

public key to be publicly visible, and from the master public key (A,B), one secret key s = H(aR)+b

and corresponding public key (R,S), one could not comprise the value of b. It is worth mentioning

that Courtois and Mercer [17] pointed that if the signature scheme is implemented incorrectly so

that two ESDSA signatures use the same randomness, the two payers who generated the two public

keys corresponding to the two ‘bad’ signatures may collude and compromise the master secret key.

To address this problem, they proposed an enhanced stealth address algorithm by incorporating

Gutoski and Stebila’s method [23] and gets similar results with that of [23], i.e., their algorithm

improves the difficulty of compromising the master secret key m times at the price of O(m) times

larger master public key, but does not eliminate the problem. Considering the derived secret key

leakage problem we discussed in Sec. 1.2, their algorithm has to rely on the awareness that the

number of leaked secret keys could not exceed the system parameter m.

Note that in a previous work [29] due to the same authors as this work, the derived secret key

leakage problem is considered, and schemes satisfying the security models in [29] would not have

the similar vulnerabilities to that in the deterministic wallets for Bitcoin or the stealth address of

Monero.

1.4 Our Results

Note that for the vulnerabilities of the deterministic wallet and stealth address algorithms, as well

as the problem pointed out by Courtois and Mercer [17], the essence is that the derived secret

keys are not insulated from each other, neither from the master secret key, so that one derived

secret key being compromised will lead to the compromising of the master secret key and all other

derived secret keys. From a cryptography security point of view, this is a fatal flaw, as when a

minor fault happens (say, one derived secret key is compromised somehow), the damages spread

and the whole system collapses. As a counterexample, for a old-style wallet where each key pair

is generated independently by running the key generation algorithm of the signature scheme, if a

secret key is compromised, only the coins on the corresponding public key may be stolen, without

affecting the security of other keys or coins. Furthermore, assume this old-style wallet uses cold

address mechanism, where each public is used only once and the corresponding secret key appears

in hot storage only when it is used to generate signature to spend the coin on its public key, even

if a secret key is compromised somehow when it appears in hot storage to generate signature, it

10

does not cause any damage, since the coin on the corresponding public key has been spent by the

generated signature and the public key will not be used any more to receive payments.

Naturally, we want to enjoy both the virtues of deterministic wallet and stealth address, includ-

ing the functionalities and privacy-protection, and the security of conventional wallet and address

mechanism. Intuitively, this may be achieved by a cryptographic primitive where the security model

allows the derived secret key to be corrupted by the adversaries while the security and privacy-

protection rely only on the secrecy of the master secret key, and the damage of derived secret key

being compromised will not spread at all. Note that none of the existing algorithms for deterministic

wallet or stealth address has been analyzed under formalized security models.

In this paper, we introduce and formalize a new signature variant, called Key-Insulated and

Privacy-Preserving Signature Scheme with Publicly Derived Public Key (PDPKS)7, and propose

a provably secure and practically efficient construction, which provides a solution that offers the

virtues of deterministic wallet and stealth address, while eliminating the security vulnerabilities

completely.

In particular, on the functionality, PDPKS provides a convenient way to enable receiving each

coin at a fresh/unique address, namely, anyone can derive public/verification keys from a long-

term public key without requiring any interaction, while only the owner of the long-term public

key can generate the corresponding secret/signing keys, also without interactions. On the security,

we formalize a security model for PDPKS, which ensures the derived keys are completely inde-

pendent/insulated from each other, i.e., for any specific derived public/verification key dvk, even

if an adversary corrupts all other derived public and secret keys from the same long-term key,

the adversary cannot forge a valid signature with respect to dvk. On the privacy, we formalize

two privacy models for PDPKS, both of which captures practical needs and requirements, namely,

one capturing that an adversary should not be able to link a given public/verification key (with

corresponding signatures) to its underlying long-term public key, and the other capturing that an

adversary should not be able to tell whether two public/verification keys (with their corresponding

signatures) are derived from the same long-term public key. And we prove that the latter is implied

by the former and hence we only need to focus on one privacy model.

7 We abbreviate this signature variant to PKPDS to emphasize its functionality feature, namely, Signature Scheme

with Publicly Derived Public Key.

11

With its functionality, security, and privacy-protection features, PDPKS can support the use

cases of deterministic wallet and stealth address, without security vulnerabilities. To demonstrate

these properties are achievable, we propose a practical PDPKS construction, and prove its security

and privacy in the random oracle model.

1.5 Related Techniques and Our Approach

1.5.1 Techniques Related to Privacy-protection

While Blind Signature [14] hides the really signed messages from the signer and Group Signature

[15] and Ring Signature [38] hide the identity of the real signer from the public, the PDPKS sig-

nature in this paper focuses on (public-)key privacy, i.e. breaking the link between the derived

public/verification keys (and corresponding signatures) and the underlying long-term public key,

as well as the link among the derived public/verification keys (and corresponding signatures) from

the same long-term public key. From the view point of motivations in practice, namely in cryp-

tocurrency, this is to protect the privacy of the payees of the transactions, as the derived pub-

lic/verification keys are used to specify the owner of the output coins. Note that in Monero [34], a

variant of ring signature, namely Linkable Ring Signature [28], has been adopted to hide the payer,

while the above discussed stealth address algorithm is used to hide the payee.

While the privacy-protection concerns in cryptocurrencies motivate us to investigate the (pub-

lic) key-privacy problem for digital signature in this paper, Bellare et al. [5] has considered a similar

problem in the setting of public key encryption in 2001, where key-privacy requires that an eaves-

dropper in possession of a ciphertext cannot tell which specific key, out of a set of known public

keys, is the one under which the ciphertext was created, meaning the receiver is anonymous from

the view point of the adversary.8 It is worth mentioning that the key-private encryption scheme

in [5] has been used by Zerocash [7] (in 2014) as one of the cryptographic components to enhance

privacy.

Recently, a new notion named “Signatures with Flexible Public Key” was proposed in [1]. It

allows a signer of a digital signature scheme to derive new public and private key pairs that fall in the

same “equivalent class”. This new primitive also gives a way to implement the stealth addresses for

8 We borrow the term “key-privacy” from [5], although its meaning for digital signature in this paper is very different

from that for public key encryption in [5].

12

cryptocurrencies. Nevertheless, it suffers the same security issue as in the stealth address algorithm

for Monero illustrated above.

1.5.2 Techniques Related to Key-insulation

Motivated by the fact that in practice signature computation is often performed on a relatively

insecure device (e.g., a mobile device or an Internet-connected host) which cannot be trusted to

maintain secrecy of the secret key, Dodis et al. [19,20] introduced key-insulated signature scheme,

where the lifetime of the protocol is divided into N distinct periods, and at the beginning of each

period a temporary secret key is derived and will be used by the insecure device to sign messages

during that period. The security of key-insulated signature scheme means that even if an adversary

corrupts t temporary secret keys, it will be unable to forge a signature on a new message for any

of the remaining N − t periods. Note that key-insulated signature scheme does not consider the

privacy-protection problem, and it is not applicable to the setting of cryptocurrency, where the

verification key (serving as coin-receiving address) and signing key (serving as coin-spending key)

are unrelated to time periods. We borrow the term “key-insulated” in the sense that the derived

signing keys are completely independent from each other and the security of any specific derived

signing key will not be affected even if all other derived signing keys are corrupted.

In Identity-based Cryptography (IBC) [40,9], there is an entity referred to as Private Key

Generator (PKG), who publishes the system master public key MPK and holds the system master

secret key MSK. For any identity string ID, PKG can generate a corresponding user secret key skID,

which can be used to decrypt ciphertext encrypted under (MPK, ID) as public key (in Identity-based

Encryption (IBE) system) or sign a message to produce a signature that can be verified by (MPK, ID)

as verification key (in Identity-based Signature (IBS) system). In a secure IBC system, unbounded

leakage of user secret keys will not affect the security of the master secret key or other identities’

user secret keys. In other words, the user secret keys in IBC are independent/insulated from each

other. On privacy, user/identity anonymity inside a system has been studied. In particular, in

an anonymous IBE [11], the attackers can not distinguish between C0 ← Enc(MPK, ID0,M) and

C1 ← Enc(MPK, ID1,M) for any message M and identities ID0 6= ID1, unless it has a secret key for

ID0 or ID1. However, master public key privacy among multiple systems has not been considered

as fo far. In particular, consider two instantiations of an IBE scheme, with master public keys

13

MPK0 and MPK1 respectively. The master-public-key privacy requires that an attacker should be

unable to distinguish between C0 ← Enc(MPK0, ID0,M) and C1 ← Enc(MPK1, ID1,M) for any

message M , and identities (ID0, ID1). This is somewhat similar to the public key encryption with

key privacy by Bellare et al. [5], but seems to be less motivated, which may be the reason why it has

been considered yet. The master-public-key privacy for IBS may be more complicated than that in

IBE, since the master public key and the identity need to be known by the public who verify the

signature. Also, IBS with master-public-key privacy seems to lack of motivation and has not been

considered as fo far.

1.5.3 Our Construction Approach

Besides introducing and formalizing PDPKS, including its definition and models for security and

privacy, we also present a construction approach in this work, as well as a concrete construction

with provable security and privacy. Below we briefly present our construction approach.

Note that what we need is a signature scheme where (1) each public/verification key can be

derived from a (long-term, unchanged) public key, and the corresponding secret/signing key can be

computed from the verification key and the long-term secret key; (2) the (verification key, signing

key) pairs are insulated from each other, namely one being compromised will not affect others; and

(3) the verification keys, as well as the signatures, could not be linked to the original long-term

public key, neither to those from the same long-term public key. For the requirements (1) and (2),

it is natural to consider the Identity-Based Signature (IBS) [40,9,6], which supports verification

key derivation and can tolerate unbounded leakage of the user secret/signing keys. The challenge

is how to achieve the privacy described by requirement (3).

Note that the key-escrow problem in IBS, i.e. PKG can generate and know the secret key skID for

any identity ID, is unacceptable in the setting of cryptocurrencies, we could not apply anonymous

IBS into cryptocurrencies to address the privacy problem. Instead, to construct a PDPKS, we start

from an IBS scheme in a trick, which is simple but effective, and matches the cryptocurrency setting

well, as below:

– Each user, say Ui, runs an instantiation of the IBS scheme and acts as the PKG for the in-

stantiation, namely, publishes the system master public key of IBS as his long-term public key

14

of PDPKS, and holds the master secret key as his long-term secret key, denoted by MPKi and

MSKi respectively.

– When issuing a transaction with Ui as the payee, the payer creates a random string (i.e. identity)

ID and sets vk = (MPKi, ID) as the fresh public/verification key for the output coin. Note that

MPKi being included in vk is to ensure that only the intended payee (i.e. the owner of MPKi)

can generate the corresponding secret/signing key skvk.

– For any coin with a fresh public/verification key, say vk = (MPKi, ID), the intended payee can

run the IBS’ Key Extract algorithm skvk ← IBS.KeyExtract(MPKi, ID,MSKi) and set skvk as

the secret/signing key, and then spend the coin by generating a valid signature σ, which can be

verified by the IBS’ Verify algorithm IBS.Verify(MPKi, ID,M, σ), where M is the signed message.

Note that using IBS in such a way does not suffer the key-escrow problem any more, since each

user acts as PKG for the identities for himself, and actually is making use of the key-escrow

functionality. Such an intuitive construction seems to address the requirements (1) and (2), but

does not provide privacy at all, as vk = (MPKi, ID) contains the corresponding long-term public

key MPKi. To provide privacy required by PDPKS, the verification algorithm should takes only the

verification key vk, the message, and the signature σ as inputs, and vk and σ should not leak any

information about the corresponding MPK. Note that such a privacy requirement is just what we

discussed previously in Sec. 1.5.2, namely, IBS with master-public-key privacy. However, it seems

that due to its lack of motivation, IBS with master-public-key privacy has not been considered or

researched as fo far. In this work, motivated by the vulnerabilities of the stealth address algorithm

for Monero and the deterministic wallet algorithm for Bitcoin, we focus on the formalization and

construction of PDPKS, rather than IBS with master-public-key privacy. To construct a PDPKS

from IBS scheme using above approach, we need the IBS scheme to have the following property

(referred to as MPK-pack-able Property):

– The master public key MPK of the IBS scheme can be divided into two parts CMPK and IMPK,

where CMPK are the common parameters shared by all the instantiations of the IBS scheme, for

example, the underlying groups, while IMPK are the particular parameters for each individual

instantiation, for example, the public parameters generated from the master secret keys of the

instantiations.

– There is a function F and a verification algorithm VerifyF such that

15

1. An attacker, who does not know the value of ID, cannot learn any partial information about

IMPK from the value of F (MPK, ID), where ID is a random string.

2. The signature does not leak any partial information about IMPK.

3. For any master public key MPK, any random ID, any message M , and any signature σ, it

holds that VerifyF (CMPK, F (MPK, ID),M, σ) = IBS.Verify(MPK, ID,M, σ).

Intuitively, with such an IBS scheme, we can generate ID using Diffie-Hellman Key Exchange

Protocol to prevent the attacker from knowing the value of ID, and set vk = (R,F (MPK, ID))

where R = rG is the randomness to run the Diffie-Hellman protocol, so that we can achieve the

privacy requirement of PDPKS. Note that the ideas behind the above requirements are that the

verification key should be derived from MPK and ID, but leak no information about IMPK, and we

use the function F to perform this derivation operation. In addition, the value of the function F

should be independent from the message and signature, that is why F takes only MPK and ID as

inputs.

In this work, to obtain a PDPKS construction by above approach, we investigated three existing

IBS schemes [24,13,3], which have very different construction structures. Finally, we found that the

IBS schemes in [24,3] have the above MPK-pack-able property, while the IBS scheme in [13] does

not have. We also investigated the three generic transformations [26], which transform standard

signature schemes, convertible identification schemes, and hierarchical identity based encryption

schemes to IBS schemes, as well as the presented IBS instantiations in [26]. Also, we found that

none of the resulting generic IBS constructions or the concrete IBS instantiations in [26] has the

above MPK-pack-able property. This is not surprising, as the master-public-key privacy has not

been considered in IBS. Based on the IBS schemes in [24,3], we construct two PDPKS schemes

formally, and prove their security and privacy in the random oracle model. Roughly speaking, on

the construction, inspired by the stealth address algorithm in Monero, we generate the identity using

Diffe-Hellman Key Exchange Protocol. On the proof, implied by the above approach, the security

proofs are comparatively easy, by a reduction to the security of underlying IBS scheme, while the

privacy proofs need more efforts. More specifically, our techniques include using parallel/double

public keys (one for proving security and one for proving privacy) and using H(rG, (ra)G) rather

than H((ra)G) as in the stealth address algorithm for Monero. All these techniques are to enable

the proof of privacy.

16

We would like to point out that the above approach of transferring an IBS scheme to a PDPKS

scheme is not the unique way to construct PDPKS schemes. Also, we would like to point out

that the PDPKS concept formalized in this work is well motivated by the practical requirements in

cryptocurrencies, and PDPKS may be a meaningful motivation to the research on IBS with master-

public-key privacy. While the ideas and techniques in IBC could be useful tools for constructing

PDPKS, we do not want to limit the construction of PDPKS to being from IBS. That is why we

formalize the concept of PDPKS, rather than extending the IBS concept.

1.6 Outline

In Sec. 2, we formalize the definition, the security model, and the privacy model for PDPKS. In

Sec. 3 we propose a PDPKS construction, and prove its security and privacy in Sec. 4. In Sec. 5

we discuss the application and implementation of the proposed PDPKS construction. The paper is

concluded in Sec. 6. In Apendix B, we give another PDPKS construction and the outlines for the

proofs of security and privacy. In Apendix C, we show that the IBS scheme in [13] does not have

the MPK-pack-able property.

2 Key-Insulated and Privacy-Preserving Signature Scheme with Publicly

Derived Public Key

In this section, we formalize the notion of Key-Insulated and Privacy-Preserving Signature Scheme

with Publicly Derived Public Key (PDPKS). In particular, we first formalize the comprising algo-

rithms and the security model, which capture the special functionality that fresh public/verification

keys could be derived from a long-term public key, and the security requirement that the derived

(public/verification key, secret/signing key) pairs are insulated from each other so that one being

compromised will not affect others. Then we formalize two models for privacy, both of which reflect

practical privacy concerns. Specifically, the first model captures that an adversary, given the se-

cret/signing key corruption oracle and signing oracle, should not be able to link a public/verification

key to its original long-term public key out of a set of known long-term public keys; and the second

captures that an adversary should not be able to tell whether two public/verification keys are de-

rived from the same long-term public key. We prove that the privacy in the second model is implied

by that of the first, so that we can focus on the privacy in the first model.

17

Note that the concept of PDPKS is motivated by the security and privacy problems in cryp-

tocurrency, where it is suggested that each public/verification key, as the coin address, is used only

once. But in this paper we do not restrict the concept to one-time signature scheme, which requires

that for each public key the signing oracle can be queried at most once. Our proposed PDPKS

requires stronger security, namely, even if the users use the freshly derived key pairs multiple times,

the system is still safe.

2.1 Algorithm Definition

A Key-Insulated and Privacy-Preserving Signature Scheme with Publicly Derived Public Key

(PDPKS) consists of following algorithms:

– Setup(λ)→ PP. The algorithm takes as input a security parameter λ, runs in polynomial time

in λ, and outputs system public parameters PP.

The system public parameters PP are common parameters used by all participants in the system,

including the underlying groups, hash functions, etc.

– KeyGen(PP) → (PK, SK). The algorithm takes as input the system public parameters PP, and

outputs a (public key, secret key) pair (PK,SK).

Each participant runs KeyGen algorithm to generate his long-term (public key, secret key) pair.

– VrfyKeyDerive(PK,PP) → DVK. The algorithm takes as input a public key PK and the system

public parameters PP, and outputs a derived verification key DVK.9

Anyone can run this algorithm to generate a fresh public/verification key from a long-term public

key.

– VrfyKeyCheck(DVK,PK,SK,PP)→ 1/0. The algorithm takes as input a derived verification key

DVK, a (public key, secret key) pair (PK,SK), and the system public parameters PP, and outputs

a bit b ∈ {0, 1}, with b = 1 meaning that DVK is a valid derived verification key generated from

PK and b = 0 otherwise.

The owner of a long-term (public key, secret key) pair can use this algorithm to check whether

a verification key is derived from his public key. In a cryptocurrency, a payee can use this

algorithm to check whether he is the intended receiver of a coin on the verification key. Note

9 From now on, due to the clear definition, we use ’verification key’ and ’signing key’, rather than ‘public/verification

key’ and ‘secret/signing key’, respectively.

18

that this algorithm is actually a subroutine of the following SignKeyDerive algorithm. It is put

here as a standalone algorithm to capture the application scenario that, in a cryptocurrency,

when a payer issues a transaction paying to a payee, the payee may first check whether he is

the owner of the output coin’s verification key to ensure he is paid well, but does not compute

the corresponding signing key at this moment. The signing key may be computed just before it

is used to sign a transaction to spend the coin.

– SignKeyDerive(DVK,PK,SK,PP)→ DSK or ⊥. The algorithm takes as input a derived verifica-

tion key DVK, a (public key, secret key) pair (PK, SK), and the system public parameters PP,

and outputs a derived signing key DSK, or ⊥ implying that DVK is not a valid verification key

derived from PK.

The owner of a long-term (public key, secret key) pair can use this algorithm to compute the

signing key corresponding to a given derived verification key, if the verification key was indeed

derived from this public key.

– Sign(m,DVK,DSK,PP)→ σ. The algorithm takes as input a message m in message spaceM, a

derived (verification key, signing key) pair (DVK,DSK), and the system public parameters PP,

and outputs a signature σ.

– Verify(m,σ,DVK,PP)→ 1/0. The algorithm takes as input a (message, signature) pair (m,σ), a

derived verification key DVK, and the system public parameters PP, and outputs a bit b ∈ {0, 1},

with b = 1 meaning valid and b = 0 meaning invalid.

Correctness. The scheme must satisfy the following correctness property: For any messagem ∈M,

suppose

PP← Setup(λ), (PK,SK)← KeyGen(PP),

DVK← VrfyKeyDerive(PK,PP), DSK← SignKeyDerive(DVK,PK, SK,PP),

it holds that

VrfyKeyCheck(DVK,PK, SK,PP) = 1 and

Verify(m,Sign(m,DVK,DSK,PP),DVK,PP) = 1.

2.2 Security Model

The security of a PDPKS scheme is defined as below.

19

Definition 1. A PDPKS scheme is existentially unforgeable under an adaptive chosen-message

attack, or just secure, if for all probabilistic polynomial time (PPT) adversaries A, the success

probability of A in the following game GameUEF is negligible.

– Setup. PP← Setup(λ) is run and PP are given to A.

(PK, SK)← KeyGen(PP) is run and PK is given to A. An empty set Ldvk = ∅ is initialized. 10

– Probing Phase. A can adaptively query the following oracles:

• Verification Key Adding Oracle ODVKAdd(·):

Upon input a derived verification key DVK, this oracle returns b← VrfyKeyCheck(DVK,PK,

SK,PP) to A. If b = 1, set Ldvk = Ldvk ∪ {DVK}.

This captures that A can try and test whether the derived verification keys generated by him

are accepted by the owner of PK.

• Signing Key Corruption Oracle ODSKCorrput(·):

Upon input a derived verification key DVK which is in Ldvk, this oracle returns DSK ←

SignKeyDerive(DVK,PK, SK,PP) to A.

This captures that A can obtain the derived signing keys for some existing valid derived

verification keys of its choice.

• Signing Oracle OSign(·, ·): Upon input a message m ∈ M and a derived verification key

DVK ∈ Ldvk, this oracle returns σ ← Sign(m,DVK,DSK,PP) to A, where DSK is a signing

key corresponding to DVK.

This captures that A can obtain the signatures for messages and derived verification keys of

its choice.

– Output Phase. A outputs a message m∗ ∈ M, a derived verification key DVK∗ ∈ Ldvk, and

a signature σ∗. A succeeds in the game if Verify(m∗, σ∗,DVK∗,PP) = 1 under the restriction

that (1) ODSKCorrput(DVK∗) is never queried, and (2) OSign(m∗,DVK∗) is never queried.

Remark: Note that the adversary in the above model is allowed to generate derived

verification keys and corrupt the corresponding signing keys on its choice. This cap-

tures the security requirement that the derived verification keys should be insulated

from each other, i.e. for any specific derived verification key, even if all other verifi-

cation keys derived from the same public key are corrupted, the specific one is still

10 This list is defined only for describing the game easier.

20

safe. With such a security requirement, the security flaws in Monero’s protocol and

Bitcoin’s deterministic wallet are avoided.

2.3 Privacy Models

The public key privacy of a PDPKS scheme needs to consider two cases:

– Case I: Given a derived verification key, an adversary should not be able to tell which public

key, out of a set of known public keys, is the one from which the verification key was derived.

– Case II: Given two derived verification keys, an adversary should not be able to tell whether

they are generated from the same public key.

Below we define the two types of key privacy, and prove that we only need to consider Case I.

Definition 2. A PDPKS scheme is public key unlinkable (PK-UNL), if for all PPT adversaries

A, the advantage of A in the following game GamePKUNL, denoted by AdvpkunlA , is negligible.

– Setup. PP← Setup(λ) is run and PP are given to A.

(PK0,SK0) ← KeyGen(PP) and (PK1,SK1) ← KeyGen(PP) are run, and PK0,PK1 are given to

A. An empty set Ldvk = ∅ is initialized. 11

– Phase 1. A can adaptively query the following oracles:

• Verification Key Adding Oracle ODVKAdd(·, ·):

Upon input a derived verification key DVK and a public key PK ∈ {PK0,PK1}, this oracle

returns b← VrfyKeyCheck(DVK,PK,SK,PP) to A, where SK is the secret key corresponding

to PK. If b = 1, set Ldvk = Ldvk ∪ {(DVK,PK)}.

This captures that A can try and test whether the derived verification keys generated by him

are accepted by the owner of PK.

• Signing Key Corruption Oracle ODSKCorrput(·):

Upon input a derived verification key DVK which is in Ldvk, this oracle returns DSK ←

SignKeyDerive(DVK,PK, SK,PP) to A, where PK is the public key that DVK is derived from,

and SK is the secret key corresponding to PK.

This captures that A can obtain the derived signing keys for some existing valid derived

verification keys of its choice.

11 The list is defined only for describing the game easier.

21

• Signing Oracle OSign(·, ·): Upon input a message m ∈ M and a derived verification key

DVK in Ldvk, this oracle returns σ ← Sign(m,DVK,DSK,PP) to A, where DSK is a signing

key corresponding to DVK.

This captures that A can obtain the signatures for messages and derived verification keys of

its choice.

– Challenge. A random bit b ∈ {0, 1} is chosen, DVK∗ ← VrfyKeyDerive(PKb) is given to A. Set

Ldvk = Ldvk ∪ {(DVK∗,PKb)}.

– Phase 2. Same as Phase 1, except that

(1) ODVKAdd(DVK∗,PKi) (for i ∈ {0, 1}) cannot be queried; and (2) ODSKCorrput(DVK∗)

cannot be queried.

– Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b.

A succeeds in the the game if b = b′. The advantage of A is AdvpkunlA = |Pr[b′ = b]− 1
2 |.

Remark: Note that the adversary in the above model is allowed to query OSign(·,DVK∗).

This captures the privacy-preserving requirement in cryptocurrency that even after

the owner of a coin (on a verification key) signs a transaction and spends the coin, the

signature does not leak information that links the coin (and the transaction) to the

owner’s long-term public key.

Definition 3. A PDPKS scheme is public key strongly unlinkable (PK-S-UNL), if for all PPT

adversaries A, the advantage of A in the following game GamePKSUNL, denoted by AdvpksunlA , is

negligible.

GamePKSUNL: Same as GamePKUNL, except that in Phase 2, the restriction “(2) ODSKCorrput(DVK∗)

cannot be queried” is removed.

Remark: In the game GamePKSUNL, without the restriction “(2) ODSKCorrput(DVK∗) cannot be

queried”, it is implied that, even given the derived signing key corresponding to the challenge

derived verification key, an adversary cannot tell which public key the verification key is derived

from. This implies stronger privacy.

Below we define the key privacy for the Case II.

22

Definition 4. A PDPKS scheme is derived verification key unlinkable (DVK-UNL), if for all PPT

adversaries A, the advantage of A in the following game GameDVKUNL, denoted by AdvdvkunlA , is

negligible.

– Setup. Same as that of GamePKUNL.

– Phase 1. Same as that of GamePKUNL.

– Challenge. A random bit b ∈ {0, 1} is chosen, and a random bit c ∈ {0, 1} is chosen. Compute

DVK∗0 ← VrfyKeyDerive(PKc,PP). If b = 0, compute DVK∗1 ← VrfyKeyDerive(PKc,PP), otherwise

compute DVK∗1 ← VrfyKeyDerive(PK1−c,PP). (DVK∗0,DVK
∗
1) is given to A. Set Ldvk = Ldvk ∪

{(DVK∗0,PKc), (DVK∗1,PK∗)}, where PK∗ = PKc if b = 0, PK∗ = PK1−c otherwise.

– Phase 2. Same as Phase 1, except that

(1) ODVKAdd(DVK∗j ,PKi) (for j, i ∈ {0, 1}) cannot be queried; and (2) ODSKCorrput(DVK∗j)

(for j ∈ {0, 1}) cannot be queried.

– Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b, i.e., guess whether DVK∗0 and DVK∗1 are

derived from the same public key.

A succeeds in the the game if b = b′. The advantage of A is AdvdvkunlA = |Pr[b′ = b]− 1
2 |.

Remark: Note that the adversary in the above model is allowed to query OSign(·,DVK∗j) for j ∈

{0, 1}.

Definition 5. A PDPKS scheme is derived verification key strongly unlinkable (DVK-S-UNL),

if for all PPT adversaries A, the advantage of A in the following game GameDVKSUNL, denoted by

AdvdvksunlA , is negligible.

GameDVKSUNL: Same as GameDVKUNL, except that in Phase 2, the restriction “(2) ODSKCorrput(DVK∗j)

(for j ∈ {0, 1}) cannot be queried” is removed.

The following theorem shows that the privacy of Case II is implied by that of Case I.

Theorem 1. If a PDPKS scheme is public key unlinkable (resp. public key strongly unlinkable),

then it is also derived verification key unlinkable (resp. derived verification key strongly unlinkable).

Proof. The proof details are referred to Appendix A.

23

With the above Theorem 1, for the privacy in PDPKS scheme, we only need to consider the public

key (strong) unlinkability.

Remark : It seems that the reverse side of Theorem 1, i.e., “If a PDPKS scheme is derived verification

key unlinkable (resp. derived verification key strongly unlinkable), then it is also public key unlinkable

(resp. public key strongly unlinkable)”, also holds and can be be proved trivially. In particular, if

there is an algorithm A that can win the GamePKUNL, i.e. link a derived verification key to its

original public key, then an algorithm B can be constructed to win the GameDVKUNL, by running the

algorithm A two times, on the two challenged derived verification keys DVK∗0 and DVK∗1 respectively.

We do not investigate the details formally here, since we already have the Theorem 1 and public

key unlinkability is more natural for indistinguishability definitions.

3 Our Construction

In this section, we first present some preliminaries, including the bilinear groups and the assump-

tions, then we propose a PDPKS scheme, which is obtained by applying our approach introduced

in Sec. 1 to the IBS scheme by Barreto et al. [3].

3.1 Preliminaries

3.1.1 Bilinear Map Groups [10]

Let λ be a security parameter and p be a λ-bit prime number. Let G1 and G2 be two additive cyclic

groups of order p, GT be a multiplicative cyclic group of order p, and P,Q be generators of G1 and

G2 respectively. (G1,G2,GT) are bilinear map groups if there exists a bilinear map e : G1×G2 → GT

satisfying the following peoperties:

1. Bilinearity: ∀(S, T) ∈ G1 ×G2, ∀a, b ∈ Z, e(aS, bT) = e(S, T)ab.

2. Non-degeneracy: e(P,Q) is a generator of GT .

3. Computability: ∀(S, T) ∈ G1 ×G2, e(S, T) is efficiently computable.

4. There exists an efficient, publicly computable (but not necessarily invertible) isomorphism ψ :

G2 → G1 such that ψ(Q) = P .

One can set G1 = G2, P = Q, and take ψ to be the identity map.

24

3.1.2 Assumptions

The security of our PDPKS construction relies on the q-Strong Diffie-Hellman (q-SDH) Assumption

[8], while the privacy-preserving relies on the Computational Diffie-Hellman (CDH) Assumption [43]

on bilinear groups.

Definition 6 (q-Strong Diffie-Hellman Assumption). [8,3] The q-SDH problem in (G1,G2)

is defined as follows: given a q+ 2-tuple (P,Q, βQ, β2Q, . . . , βqQ) as input, output a pair (c, 1
c+βP)

with c ∈ Z∗p. An algorithm A has advantage ε in solving q-SDH in (G1,G2) if

Pr
[
A(P,Q, βQ, β2Q, . . . , βqQ) = (c,

1

c+ β
P)

]
≥ ε

where the probability is over the random choice of β in Z∗p and the random bits consumed by A.

We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if no t-time algorithm has advantage

at least ε in solving the q-SDH problem in (G1,G2).

Definition 7 (Computational Diffie-Hellman Assumption). [43] The CDH problem in G2

is defined as follows: given a tuple (Q,A = aQ,B = bQ) ∈ G3
2 as input, output C = abQ ∈ G2. An

algorithm A has advantage ε in solving CDH in G2 if

Pr
[
A(Q, aQ, bQ) = abQ

]
≥ ε

where the probability is over the random choice of a, b ∈ Z∗p and the random bits consumed by A.

We say that the (t, ε)-CDH assumption holds in G2 if no t-time algorithm has advantage at least

ε in solving the CDH problem in G2.

3.2 Construction

– Setup(λ)→ PP. Upon input a security parameter λ, the algorithm chooses bilinear map groups

(G1,G2,GT , e, ψ) of prime order p > 2λ, generators Q ∈ G2, P = ψ(Q) ∈ G1, g = e(P,Q), and

hash functions H1 : G2 × G2 → Z∗p, H2 : {0, 1}∗ × GT → Z∗p. The algorithm outputs public

parameters

PP := (p, (G1,G2,GT , e, ψ), P,Q, g,H1, H2),

and the message space is M = {0, 1}∗.

25

– KeyGen(PP) → (PK, SK). The algorithm chooses random α, β ∈ Z∗p, then outputs a public key

PK and corresponding secret key SK as

PK :=(Qpub,1, Qpub,2) = (αQ, βQ) ∈ G2 ×G2,

SK :=(α, β) ∈ Z∗p × Z∗p.

– VrfyKeyDerive(PK,PP) → DVK. Upon input PK = (Qpub,1, Qpub,2) ∈ G2 × G2 and the system

public parameters PP, the algorithm chooses random r ∈ Z∗p, and outputs a derived verification

key

DVK :=(Qr, Qvk)

=(rQ,H1(rQ, rQpub,1)Q+Qpub,2) ∈ G2 ×G2.

– VrfyKeyCheck(DVK,PK,SK,PP) → 1/0. Upon input DVK = (Qr, Qvk) ∈ G2 × G2, PK =

(Qpub,1, Qpub,2) ∈ G2 × G2, SK = (α, β) ∈ Z∗p × Z∗p, and the system public parameters PP,

the algorithm checks whether Qvk
?
= H1(Qr, αQr)Q+Qpub,2. If it holds, the algorithm outputs

1, otherwise outputs 0.

– SignKeyDerive(DVK,PK,SK,PP)→ DSK or ⊥. Upon input DVK = (Qr, Qvk) ∈ G2 ×G2, PK =

(Qpub,1, Qpub,2) ∈ G2 × G2, SK = (α, β) ∈ Z∗p × Z∗p, the algorithm checks whether Qvk
?
=

H1(Qr, αQr)Q+Qpub,2. If it hods, the algorithm outputs a derived signing key

DSK := Psk =
1

H1(Qr, αQr) + β
P ∈ G1,

otherwise, outputs ⊥.

– Sign(m,DVK,DSK,PP)→ σ. Upon input a message m ∈ M, a derived verification key DVK =

(Qr, Qvk) ∈ G2×G2, a signing key DSK = Psk ∈ G1, and the system public parameters PP, the

algorithm

1. picks a random x ∈ Z∗p and computes X = gx,

2. sets h = H2(m,X) ∈ Z∗p,

3. computes Pσ = (x+ h)Psk ∈ G1,

and outputs σ = (h, Pσ) as a signature for m.

– Verify(m,σ,DVK,PP)→ 1/0. Upon input a message m ∈M, a signature σ = (h, Pσ) ∈ Z∗p×G1,

a derived verification key DVK = (Qr, Qvk) ∈ G2 × G2, and the system public parameters PP,

the algorithm checks whether h
?
= H2(m, e(Pσ, Qvk)g

−h) holds. If it holds, the algorithm outputs

1, otherwise 0.

26

Correctness. For any messagem ∈M, it is easy to verify that (1) VrfyKeyCheck(DVK,PK,SK,PP) =

1, since αQr = αrQ = rQpub,1, and

(2) Verify(m,Sign(m,DVK,DSK,PP), DVK,PP) = 1, since

e(Pσ, Qvk)g
−h = e((x+ h)Psk, Qvk)g

−h

= e(Psk, Qvk)
x+hg−h = gx+hg−h = gx = X.

Note that

e(Psk, Qvk)

=e(
1

H1(Qr, αQr) + β
P,H1(rQ, rQpub,1)Q+Qpub,2)

=e(
1

H1(rQ, αrQ) + β
P,H1(rQ, rαQ)Q+ βQ)

=e(P,Q) = g.

4 Proofs of Security and Privacy

In this section, we prove our PDPKS construction above is existentially unforgeable under an adap-

tive chosen-message attack (i.e. is secure) (w.r.t. Def. 1) and is public key strongly unlinkable (w.r.t.

Def. 3). For the proof of security, in Sec. 4.1 we reduce the security of our PDPKS construction

to the security of the IBS construction by Barreto et al. [3]. For the proof of privacy, in Sec. 4.2

we reduce the public key strong unlinkability of our PDPKS construction to the hardness of CDH

problem.

4.1 Proof of Security

Below, we first review the definition and security model of IBS, as well as the IBS construction and

security conclusion in [3], then prove the security of our PDPKS construction by giving a reduction

from our PDPKS construction to the IBS construction in [3].

4.1.1 Review of Identity-Based Signature in [3]

Definition of Identity-Based Signature Scheme

An IBS scheme consists of following four algorithms:

27

– Setup(λ)→ (PP,MSK). The algorithm takes as input a security parameter λ, runs in polynomial

time in λ, and outputs system public parameters PP and a system master secret key MSK.

– KeyExtract(ID,PP,MSK) → SKID. The algorithm takes as input an arbitrary identity ID ∈

{0, 1}∗, the system public parameters PP, and the master secret key MSK, and outputs a

private key SKID for the identity ID.

– Sign(m, ID,PP, SKID)→ σ. The algorithm takes as input a message m in the message spaceM,

an identity ID ∈ {0, 1}∗, the system public parameters PP, and a private key SKID corresponding

to the identity ID, and outputs a signature σ for the message m and the identity ID.

– Verify(m,σ, ID,PP)→ 1/0. The algorithm takes as input a (message, signature) pair (m,σ), an

identity ID ∈ {0, 1}∗, and the system public parameters PP, and outputs a bit b ∈ {0, 1}, with

b = 1 meaning valid and b = 0 meaning invalid.

Security Model of IBS

Definition 8. An IBS scheme is existentially unforgeable under adaptive chosen message and iden-

tity attacks if no PPT adversary has a non-negligible advantage in the following game GameIBS,UEF:

– Setup. (PP,MSK)← Setup() is run and PP are given to the adversary A.

– Probing Phase. The adversary can adaptively query the following oracles:

• Key Extract Oracle OKeyExtract(·): Upon input an arbitrary identity ID ∈ {0, 1}∗, OKeyExtract(ID)

returns the corresponding private key SKID to A.

• Signing Oracle OSign(·, ·): Upon input a message m ∈ M and an identity ID ∈ {0, 1}∗,

OSign(m, ID) returns Sign(m, ID,PP,SKID) to A, where SKID is a private key for ID.

– Output Phase. A outputs a message m∗ ∈M, an identity ID∗, and a signature σ∗. A succeeds

in the the game if Verify(m∗, σ∗, ID∗,PP) = 1 under the restrictions that (1) OKeyExtract(ID∗)

is never queried, and (2) OSign(m∗, ID∗) is never queried.

Construction of the IBS in [3]

Below is the IBS construction in [3]. 12

12 Note that we slightly changed the variable names in the IBS construction, to better suit our PDPKS construction

in later proof.

28

– Setup(λ) → (PP,MSK). Upon input a security parameter λ, the algorithm chooses bilinear

map groups (G1,G2,GT , e, ψ) of prime order p > 2λ, generators Q ∈ G2, P = ψ(Q) ∈ G1, g =

e(P,Q), and hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}∗ × GT → Z∗p. The algorithm selects

random β ∈ Z∗p and computes Qpub = βQ ∈ G2, then outputs public parameters PP and master

secret key MSK as PP := (p, (G1,G2,GT , e, ψ), P,Q,Qpub, g,H1, H2), MSK := β. The message

space is M = {0, 1}∗.

– KeyExtract(ID,PP,MSK) → SKID. Upon input an arbitrary identity ID ∈ {0, 1}∗, the system

public parameters PP, and the master secret key MSK, the algorithm outputs a private key

SKID for the identity ID as SKID = 1
H1(ID)+βP ∈ G1.

– Sign(m, ID,PP, SKID) → σ. Upon input a message m ∈ {0, 1}∗, an identity ID ∈ {0, 1}∗, the

system public parameters PP, and a private key SKID for the identity ID, the algorithm

1. picks a random x ∈ Z∗p and computes X = gx,

2. sets h = H2(m,X) ∈ Z∗p,

3. computes Pσ = (x+ h)SKID ∈ G1,

and outputs σ = (h, Pσ) ∈ Z∗p ×G1 as a signature for message m and identity ID.

– Verify(m,σ, ID,PP) → 1/0. Upon input a message m ∈ {0, 1}∗, a signature σ = (h, Pσ) ∈

Z∗p ×G1, an identity ID ∈ {0, 1}∗, and the system public parameters PP, the algorithm outputs

b = 1 if and only if h = H2(m, e(Pσ, H1(ID)Q+Qpub)g
−h).

Remark : Note that the above IBS scheme has the MPK-pack-able property in the sense that

CMPK :=(p, (G1,G2,GT , e, ψ), P,Q, g,H1, H2),

IMPK :=(Qpub),

F (PP, ID) :=H1(ID)Q+Qpub.

Security of the IBS in [3]

The security of the IBS construction in [3] is established by the following lemma.

Lemma 1. [3, Theorem 1] Let us assume that there exists an adaptively chosen message and

identity attacker A making qhi queries to random oracles Hi(i = 1, 2) and qs queries to the signing

oracle. Assume that, within a time t, A produces a forgery with probability ε ≥ 10(qs+1)(qs+qh2)/2λ.

29

Then, there exists an algorithm B that is able to solve the q-SDH Problem for q = qh1 in an expected

time

t′ ≤ 120686qh1qh2(t+O(qsτp))/(ε(1− q/2λ)) +O(q2τmult)

where τmult and τp respectively denote the cost of a scalar multiplication in G2 and the required

time for pairing evaluation.

4.1.2 Security Proof of our PDPKS Construction

Now we prove the security of our PDPKS construction, by a reduction to the IBS construction in

[3], as shown in the following Lemma 2.

Lemma 2. Assume that there exists an adaptively chosen message attacker A that makes qhi

queries to random oracles Hi(i = 1, 2), qa queries to the verification key adding oracle, and qs

queries to the signing oracle in GameUEF for our PDPKS construction. Assume that, within time

t, A produces a forgery with probability ε. Then, there exists an algorithm B that is able to produce

within time t̄ = t+O(qaτmult) a forgery with probability ε̄ = ε in GameIBS,UEF for the IBS construc-

tion in [3], where B makes q̄hi queries to random oracles Hi(i = 1, 2) and q̄s queries to the signing

oracle, with q̄h1 ≤ qh1 + qa, q̄h2 ≤ qh2 , q̄s ≤ qs.

Proof. Below, B acts as an adversary in GameIBS,UEF to interact with a challenger C which simulates

the IBS scheme Πibs to B in the random oracle model, and at the same time, B simulates our PDPKS

scheme Πpdpks to A, which is an adversary for GameUEF in the random oracle model. B tries to

attack πibs, by making use of A′s attacking ability to our Πpdpks.

Setup (for GameIBS,UEF). B is given Πibs.PP = (p, (G1,G2, GT , e, ψ), P,Q,Qpub, g, H̃1, H2).

Then B simulates GameUEF.Setup to A as follows.

B sets Πpdpks.PP = (p, (G1,G2,GT , e, ψ), P,Q, g,H1, H2), and gives Πpdpks.PP to A, where

H1 : G2 ×G2 → Z∗p is defined as: for any (preimg1, preimg2) ∈ G2 ×G2, H1(preimg1, preimg2) :=

H̃1(preimg1‖preimg2) where ‘‖’ denotes concatenation.

B chooses random α ∈ Z∗p, sets Qpub,1 = αQ and Qpub,2 = Qpub, then gives Πpdpks.PK :=

(Qpub,1, Qpub,2) to A.

30

B initializes an empty list LH1 = ∅, each element of which will be a (preimage 1, preimage 2,

hash value) tuple (preimg1, preimg2, hval).

B initializes an empty list Ldvk = ∅, each element of which will be a (derived verification key, de-

rived signing key, corrupted, preimage 1, preimage 2) tuple (DVK,DSK, corrupted, preimg1, preimg2),

satisfying DVK = (Qr, Qvk) ∈ G2 ×G2, preimg1 = Qr, preimg2 = αQr, and

Qvk = H1(preimg1, preimg2)Q+Qpub,2.

Probing Phase (for GameIBS,UEF). According to the queries that A makes adaptively in GameUEF.Probing

Phase, B makes adaptive queries to the challenger C in GameIBS,UEF as follows.

– When A makes a H1 query for input (preimg1, preimg2) ∈ G2 × G2 to B: B searches LH1 to

find a tuple ht ∈ LH1 such that ht.preimg1 = preimg1 AND ht.preimg2 = preimg2:

• if such a tuple exists, B returns ht.hval to A.

• otherwise, B makes a H̃1 query for input preimg1‖preimg2 to C and obtains a hash value

hval, then B adds (preimg1, preimg2, hval) to LH1 , and returns hval to A.

– When A makes an ODVKAdd(·) query for input DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

B searches Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK. If such a tuple exists, B

return 1 to A; Otherwise,

1. B searches LH1 to find a tuple ht ∈ LH1 such that ht.preimg1 = Qr AND ht.preimg2 = αQr.

If such a tuple does not exist, B makes a H̃1 query for input Qr‖αQr to C and obtains a

value hval = H̃1(Qr‖αQr), then sets ht = (Qr, αQr, hval) and adds ht to LH1 .

2. B then checks if ht.hvalQ+Qpub,2
?
= Qvk. If the equation holds, B adds (DVK, null, 0, Qr, αQr)

to Ldvk and returns 1 to A; otherwise, B returns 0 to A.

– When A makes an ODSKCorrput(·) query for input DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

Note that A can only query ODSKCorrput(·) for input DVK such that DVK exists in Ldvk, B

searches Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK. If such a tuple does not

exist, return ⊥ to A, otherwise

1. B sets ID = dvk.preimg1‖dvk.preimg2 and makes a query OKeyExtract(·) for input ID to C,

and obtains a private key SKID ∈ G1 for ID.

2. B sets DSK = SKID and returns DSK to A. Note

that SKID = 1
H̃1(dvk.preimg1||dvk.preimg2)+β

P = 1
H1(dvk.preimg1,dvk.preimg2)+β

P , i.e. from the view

31

of A, it obtains a valid derived signing key corresponding to DVK = (Qr, Qvk), since

Qr = dvk.DVK.Qr = dvk.preimg1,

Qvk = dvk.DVK.Qvk

= H1(dvk.preimg1, dvk.preimg2)Q+Qpub,2,

dvk.preimg2 = α · dvk.preimg1.

3. B updates the tuple dvk (in Ldvk) by setting dvk.DSK = SKID, dvk.corrupted = 1.

– When A makes a signing query OSign(·, ·) for input message m ∈ M and derived verification

key DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

Note that A can only query OSign(·, ·) for input DVK such that DVK exists in Ldvk, B searches

Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK. If such a tuple does not exist,

return ⊥ to A, otherwise

1. B sets ID = dvk.preimg1‖dvk.preimg2 and makes a query OSign(·, ·) for input m and ID to

C, and obtains a signature σ = (h, Pσ) ∈ Z∗p × G1 such that h = H2(m, e(Pσ, H̃1(ID)Q +

Qpub)g
−h).

2. B forwards σ = (h, Pσ) to A. Note that (h, Pσ) satisfies h = H2(m, e(Pσ,DVK.Qvk)g
−h),

since

H̃1(ID)Q+Qpub

= H̃1(dvk.preimg1‖dvk.preimg2)Q+Qpub

= H1(dvk.preimg1, dvk.preimg2)Q+Qpub,2

= dvk.DVK.Qvk = DVK.Qvk,

i.e. from the view of A, σ is a valid signature for message m and derived verification key

DVK.

Output Phase (for GameIBS,UEF). In the GameUEF.Output Phase,A outputs a messagem∗ ∈M,

a derived verification key DVK∗ = (Q∗r , Q
∗
vk) ∈ G2 ×G2 such that there is a tuple dvk ∈ Ldvk with

dvk.DVK = DVK∗, and a signature σ∗ = (h∗, P ∗σ) ∈ Z∗p×G1. B sets ID∗ = dvk.preimg1‖dvk.preimg2,

and forwards (m∗, ID∗, σ∗) to C. Note that

32

– Πpdpks.Verify(m∗, σ∗,DVK∗,PDPKS.PP) = 1 means h∗ = H2(m
∗, e(P ∗σ , Q

∗
vk)g

−h∗), and this im-

plies h∗ = H2(m
∗, e(P ∗σ , H̃1(ID

∗)Q+Qpub)g
−h∗), since

Q∗vk = dvk.DVK.Qvk

= H1(dvk.preimg1, dvk.preimg2)Q+Qpub,2

= H̃1(ID
∗)Q+Qpub,

i.e., Πibs.Verify(m∗, σ∗, ID∗, IBS.PP) = 1.

– ThatA never made query ODSKCorrput(DVK∗) implies that B never made query OKeyExtract(ID∗)

to C.

– That A never made query OSign(m∗,DVK∗) implies that B never made query OSign(m∗, ID∗)

to C.

This implies that if A wins GameUEF agains Πpdpks, then B wins GameIBS,UEF against Πibs.

Theorem 2. The PDPKS scheme is secure under the q-SDH assumption in the random oracle

model provided that qh1 + qa ≤ q, where qh1 and qa denote the number of queries to the random

oracle H1 and the verification key adding oracle, respectively.

Proof. This follows Lemma 1 and Lemma 2 immediately.

4.2 Proof of Privacy

Now we prove that our PDPKS construction in Sec. 3 is public key strongly unlinkable (w.r.t.

Def. 3).

Theorem 3. The PDPKS scheme is public key strongly unlinkable under the CDH assumption in

the random oracle model. Specifically, assume that there exists an attacker A that runs within time

t and makes qhi queries to random oracles Hi(i = 1, 2), qa queries to the verification key adding

oracle, and qs queries to the signing oracle, and wins GamePKSUNL with advantage ε, then there

exists an algorithm B that runs within time t̄ = t+O((qh1 + qs)τmult) +O((qh1 + qa)τp) +O(qsτexp),

where τexp denotes the time for an exponentiation operation in GT , and solves the CDH problem

with probability at least ε− qa/p.

33

Proof. Below we show that, if there exists a PPT adversary A that can win GamePKSUNL for our

PDPKS construction with non-negligible advantage, then we can construct a PPT algorithm B

that can solve the CDH problem with non-negligible probability.

Setup. B is given an instance of CDH problem on bilinear map groups, i.e. bilinear groups

(G1,G2,GT , e, ψ) of prime order p, generator Q ∈ G2, and a tuple (A = aQ,B = bQ) ∈ G2 × G2

for unknown a, b ∈ Z∗p, and the target of B is to compute an element C ∈ G2 such that C = abQ.

B sets PP := (p, (G1,G2,GT , e, ψ), P,Q, g,H1, H2) and gives PP to A, where P = ψ(Q) ∈ G1,

g = e(P,Q), and H1 and H2 are hash functions modeled as random oracles.

B chooses random α′0, β0, α
′
1, β1 ∈ Z∗p, sets Q

(0)
pub,1 = α′0A,Q

(0)
pub,2 = β0Q, Q

(1)
pub,1 = α′1A,Q

(1)
pub,2 =

β1Q, and gives PK0 := (Q
(0)
pub,1, Q

(0)
pub,2),PK1 := (Q

(1)
pub,1, Q

(1)
pub,2) to A. Note that the secret keys

corresponding to PK0 and PK1 are SK0 := (α′0a, β0) and SK1 := (α′1a, β1) respectively, where B

does not know the value of a.

B initializes an empty list LH1 = ∅, each element of which will be a (preimage 1, preimage 2,

hash value, group element) tuple (preimg1, preimg2, hval, hvalQ).

B initializes an empty list Ldvk = ∅, each element of which will be a (derived verification key, de-

rived signing key, corrupted, preimage 1, preimage 2, public key index) tuple (DVK,DSK, corrupted,

preimg1, preimg2, i), satisfying (1) DVK = (Qr, Qvk) ∈ G2 × G2, (2) i ∈ {0, 1}, (3) preimg1 = Qr

and preimg2 satisfies e(P, preimg2) = e(ψ(Q
(i)
pub,1), preimg1) , i.e. assuming preimg1 = Qr = rQ

for some r ∈ Z∗p, then preimg2 satisfies preimg2 = (α′ia)preimg1 = α′iarQ = rQ
(i)
pub,1, and (4)

Qvk = H1(preimg1, preimg2)Q+Q
(i)
pub,2.

Phase 1.

– When A makes a H1 query for input (preimg1, preimg2) ∈ G2 ×G2 to B:

B searches LH1 to find a tuple ht ∈ LH1 such that ht.preimg1 = preimg1 AND ht.preimg2 =

preimg2:

• if such a tuple exists, B returns ht.hval to A.

• otherwise, B chooses a random hval ∈ Z∗p, adds (preimg1, preimg2, hval, havlQ) to LH1 ,

and returns hval to A.

– When Amakes a query ODVKAdd(·, ·) for input DVK = (Qr, Qvk) ∈ G2×G2 and PKi(i ∈ {0, 1})

to B:

34

B searches Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK AND dvk.i = i. If such

a tuple exists, B return 1 to A. Otherwise, B searches LH1 to find a tuple ht ∈ LH1 such that

ht.hvalQ = Qvk −Q
(i)
pub,2. Note the validity requirement for a derived verification key and that

A can obtain the hash values for H1 only by making H1 queries, if such a tuple does not exist,

B returns 0 to A, 13 otherwise

• if ht.preimg1 = Qr AND e(P, ht.preimg2) = e(ψ(Q
(i)
pub,1), ht.preimg1) holds, B returns 1 to

A and adds (DVK, 1
ht.hval+βi

P, 0, preimg1, preimg2, i) to Ldvk.

Note that the equation e(P, ht.preimg2) = e(ψ(Q
(i)
pub,1), ht.preimg1) implies that ht.preimg2

= (α′ia)ht.preimg1. Assuming Qr = rQ for some r ∈ Z∗p, note that ht.hvalQ = Qvk−Q
(i)
pub,2,

we have that (Qr, Qvk) satisfies Qvk = ht.hvalQ+Q
(i)
pub,2 = H1(ht.preimg1, ht.preimg2)Q+

Q
(i)
pub,2 = H1(Qr, α

′
iaQr)Q+Q

(i)
pub,2 = H1(rQ, rQ

(i)
pub,1)Q+Q

(i)
pub,2.

• otherwise, B returns 0 to A.

– When A makes a query ODSKCorrput(·) for input DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

Note that A can only query ODSKCorrput(·) for input DVK such that DVK exists in Ldvk, B

searches Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK. If such a tuple does not

exist, return ⊥ to A, otherwise B returns dvk.DSK to A and sets dvk.corrupted = 1.

– When A makes a query OSign(·, ·) for input message m ∈ M and derived verification key

DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

Note that A can only query OSign(·, ·) for input DVK such that DVK exists in Ldvk, B searches

Ldvk to find a tuple dvk ∈ Ldvk such that dvk.DVK = DVK. If such a tuple does not exist,

return ⊥ to A, otherwise B returns (h, Pσ)← Sign(m,DVK, dvk.DSK,PP) to A.

Challenge. A random bit i∗ ∈ {0, 1} is chosen. B generates the challenge derived verification key

DVK∗ = (Q∗r , Q
∗
vk) from PKi∗ as follows:

1. Set Q∗r = B.

2. Note that B = bQ and Q∗vk should be Q∗vk = H1(B, bQ
(i∗)
pub,1)Q + Q

(i∗)
pub,2 = H1(B, bα

′
i∗aQ)Q +

Q
(i∗)
pub,2, where a and b are unknown to B. B chooses a random hval∗ ∈ Z∗p, and adds (B,>, hval∗,

hval∗Q) to LH1 , where > is a special symbol to denote the value of α′i∗abQ that is unknown by

B. B sets Q∗vk = hval∗Q+Q
(i∗)
pub,2 and gives DVK∗ = (Q∗r , Q

∗
vk) to A.

13 Without making a H1 query that produces such a tuple, the chance that DVK = (Qr, Qvk) is a valid derived

verification key is negligible.

35

3. B sets DSK∗ = 1
hval∗+βi∗

P and adds (DVK∗,DSK∗, 0, B,>, i∗) to Ldvk.

Phase 2. Similar to Phase 1,

– When A makes a H1 query for input (preimg1, preimg2) ∈ G2 ×G2 to B:

B acts in the same way as in that of Phase 1 except that if preimg1 = B AND e(P, preimg2) =

e(α′iψ(A), preimg1) for i = 0 or 1 (denote this event by E), which implies that preimg2 =

α′iabQ = bα′iA = bQ
(i)
pub,1, B outputs 1

α′i
preimg2 as the solution for the CDH problem and aborts

the game.

B acts in the same way as in that of Phase 1.

– When Amakes a query ODVKAdd(·, ·) for input DVK = (Qr, Qvk) ∈ G2×G2 and PKi(i ∈ {0, 1})

to B:

If Qr 6= Q∗r , B acts in the same way as in that of Phase 1.

If Qr = Q∗r , note that A is only allowed to query DVK 6= DVK∗, we only need to consider

Qvk 6= Q∗vk. If Qr = Q∗r AND Qvk 6= Q∗vk, B directly returns 0 to A, since

• If PKi = PKi∗ , then DVK is invalid for sure and hence should be rejected.

• If PKi = PK1−i∗ , since there has been no corresponding random oracle query made to H1

yet (as otherwise B will solve the CDH problem and abort the game if this happens), B

returns 0 to A as in Phase 1.

– When A makes a query ODSKCorrput(·) for input DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

B acts in the same way as in that of Phase 1. Note that for public key strong unlinkability, the

adversary A is allowed to make ODSKCorrput(·) query on input the challenge derived verification

key DVK∗. As shown above, B knows the values of hval∗ and βi∗ , so that B can generate the

derived signing key corresponding to DVK∗, namely, DSK∗ = 1
hval∗+βi∗

P .

– When A makes a query OSign(·, ·) for input message m ∈ M and derived verification key

DVK = (Qr, Qvk) ∈ G2 ×G2 to B:

B acts in the same way as in that of Phase 1. Note that as shown above, B can generate the

derived signing key corresponding to DVK∗, so that even when the adversary A makes a query

OSign(·, ·) on input the challenge derived verification key DVK∗, B can answer the query by

running the sign algorithm using the derived signing key.

Guess. A outputs a bit b′ ∈ {0, 1} as its guess to i∗. Note that it implies event E does not occur

in this case, and B outputs ⊥ and aborts the game (i.e., B fails to solve the CDH problem).

36

Analysis. Let G0 and G1 denote the original GamePKSUNL game and the above simulated game by

B, respectively. Let E′ denote the event that A makes a valid verification key adding query without

first making the corresponding H1 query. Then we have

Pr[E′] ≤ qa/p

where qa denotes the number of verification key adding queries.

If event E and E′ don’t occur, then G0 and G1 are identical. So we have

Pr[A wins in G0|¬(E ∨E′)] = Pr[A wins in G1|¬(E ∨E′)]

which gives

Pr[(E ∨E′)] ≥ |Pr[A wins in G0]− Pr[A wins in G1]| .

Since H1 is modeled as a random oracle, and in game G1 the adversary A does not obtain any

information about H1(Q
∗
r = gb, bQ

(0)
pub,1) or H1(Q

∗
r = gb, bQ

(1)
pub,1), then (DVK∗,DSK∗) does not reveal

any information about i∗. Also, the adversary is forbidden to query DVK∗ in any ODVKAdd query,

so the adversary has no advantage in G1, which means Pr[A wins in G1] = 1/2. Therefore, if the

adversary has advantage ε over random guess in winning the original game, i.e., Pr[A wins in G0] =

ε+ 1/2, then

Pr[E] + Pr[E′] ≥ Pr[(E ∨E′)] ≥ ε

and we have

Pr[E] ≥ ε− qa/p

which means B can solve the CDH problem with probability at least ε− qa/p.

5 Application and Implementation

5.1 Applications

As PDPKS is defined to capture the functionality, privacy, and security requirements for stealth

address, the proposed PDPKS scheme naturally provides a secure and convenient tool for imple-

menting stealth addresses in cryptocurrencies, by simply using the proposed PDPKS scheme as the

underlying digital signature scheme. Below we show that the proposed PDPKS can also support

the use cases of deterministic wallet very well, and importantly, without the vulnerabilities.

37

1. Low-maintenance wallets with easy backup and recovery. To backup his deterministic wallet, a

user only needs to backup the (long-term) secret key (α, β). When needed, he could reconstruct

the complete wallet, by using α to scan the ledger to find which transaction-outputs are his

coins, and using (α, β) to generate the corresponding derived signing keys.

2. Freshly generated cold addresses. With the PDPKS scheme, a user can publish his (long-term)

public key on a hot storage, without affecting the security or privacy. To use the cold address

mechanism, he can easily generate derived verification keys as he needs. In addition, a user even

can ask the payer to generate the derived verification keys for the transaction sending coins to

him, and he only checks and ensures that no derived verification key is used more than once,

by rejecting the transactions using repeated derived verification keys.

3. Trustless audits. For a user with (long-term) secret key α, β, revealing α to an auditor will enable

the auditor to view all the transactions related to (long-term) public key (Qpub,1 = αG,Qpub,2 =

βG), since for any transaction-output with verification key DVK = (Qr, Qvk), the auditor can

check whether Qvk
?
= H1(Qr, αQr)Q + Qpub,2 holds. Note that revealing α just conceals the

privacy-protection, without affecting the security at all. Actually, we can further modify the

security models so that the long-term secret key consists of two parts, say long-term secret

receiving key SRK and long-term secret spending key SSK, where SRK is used as the input to

the algorithm VrfyKeyCheck and SSK is used as the input to the algorithm SignKeyDerive, and

an adversary is allowed to corrupt the SRK. For the construction, we just need to set SRK = α

and SSK = (α, β). For the security proof, note that in the proof for Lemma 2, the algorithm B

chooses the value of α by itself and is able to gives α to A if A makes a query to corrupt the

SRK, this means that the proof will work in the modified security model, i.e. revealing the value

of α does not affect the security. In such a security model, the exposure chance of the crucial

part of the master secret key, say SSK, is reduced further.

4. Hierarchical Wallet allowing a treasurer to allocate funds to departments. The treasure does not

need to worry that the department managers collude to steal the funds of other departments,

no matter how many of them collude.

5. Simultaneously implementing the treasurer and the auditor use cases. The treasure does not

need to worry that the department managers and the auditors collude to steal the funds of

other departments, no matter how many of them collude.

38

5.2 Implementation

On the implementation, note that our construction is using a type-2 pairing [22] and does not need

to hash to G2, so it can be implemented based on any pairing friendly curve [22]. We suggest to use

the Barreto-Naehrig (BN) curve [4], which has been well studied and regarded as an efficient and

popular curve for high security level, say 128-bits of security or higher. On the concrete parameter

for achieving 128-bits security, we suggest to adopt the parameter recommended in the recent work

by Barbulescu and Duquesne [2, Section 6.1], i.e. the BN curve with parameter u = 2114 + 2101 −

214 − 1, which implies that the group order p is 462-bits, elements in G1 and G2 are 462-bits

and 924-bits respectively. It is worth mentioning that a 256-bits prime p, and the resulting 256-

bits G1 and 512-bits G2 are supposed to match the 128-bit security level according to the NIST

recommendations [32], which are however now invalidated by Kim and Barbulescu’s recent progress

on number field sieve algorithm for discrete logarithms in Fpn [27]. That is why we suggest to use

the above parameter recommended by Barbulescu and Duquesne [2, Section 6.1], which has taken

into account the attacking algorithm in [27].

On the verification key and signature size, with the parameter suggested above, the verification

key (i.e. the coin-receiving address), say (R,S) ∈ G2 × G2, is 1848-bits, and the signature, say

(h, Pσ) ∈ Z∗p ×G1, is 924-bits. These are larger than that of ECDSA implemented on elliptic curve

“secp256k1” [41] for 128-bits security, which is used by Bitcoin, with public key size 264-bits and

signature size 520-bits. 14 But for cryptocurrencies, this is a reasonable and acceptable cost for

achieving enhanced privacy with solid security and convenient functionality. On the computation

time for deriving fresh verification key, signing, and verification, verification is the most expensive,

since it needs one paring computation. According to the experimental results by Khandaker et al.

[25, Section 4], for the parameter suggested above, on a usual computation environment (Intel(R)

Core(TM) i5-6500 CPU @ 3.20GHz, 4GB Memory), one pairing computation needs less than 8 ms.

This is fast enough for a signature scheme to be applied in cryptocurrencies.

14 This comparison may be unfair, as the evaluation of the PDPKS has considered the latest results in cryptanalysis,

while that of ECDSA does not.

39

6 Conclusion

In this paper, to fix the vulnerabilities in the stealth address algorithm for Monero and the determin-

istic wallet algorithm for Bitcoin, we introduced and formalized a new signature variant, called Key-

Insulated and Privacy-Preserving Signature Scheme with Publicly Derived Public Key (PDPKS),

including definition, security model, and privacy-preserving model. We proposed a PDPKS con-

struction, and proved its security and privacy in the random oracle model. On the functionality,

anyone can derive an arbitrary number of fresh public verification keys from a user’s long-term

public key, without interactions with the key owner, while only the key owner can generate the

corresponding signing keys from his long-term secret key. On the privacy, the derived verification

keys and corresponding signatures do not leak any information that can be linked to the origi-

nal long-term public key. On the security, the derived keys are independent/insulated from each

other, namely, for any specific derived public verification key, even if an adversary corrupts all

other derived signing keys, the adversary cannot forge a valid signature with respect to it. With

these functionality, security, and privacy-protection features, PDPKS could be a convenient and

secure cryptographic tool for building privacy-preserving cryptocurrencies. Particularly, the pro-

posed PDPKS construction can be used to implement secure stealth addresses, and can be used to

implement deterministic wallets and the related appealing use cases, without security concerns.

References

1. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible public key: A unified approach to

privacy-preserving signatures (full version). IACR Cryptology ePrint Archive (2018), http://eprint.iacr.org/

2018/191

2. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. IACR Cryptology ePrint Archive (2017),

http://eprint.iacr.org/2017/334

3. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.: Efficient and provably-secure identity-based signa-

tures and signcryption from bilinear maps. In: ASIACRYPT 2005. pp. 515–532 (2005)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: SAC 2005. pp. 319–331 (2005)

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: ASIACRYPT

2001. pp. 566–582 (2001)

6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes.

J. Cryptology 22(1), 1–61 (2009)

40

http://eprint.iacr.org/2018/191
http://eprint.iacr.org/2018/191
http://eprint.iacr.org/2017/334

7. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized

anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, SP 2014. pp. 459–474

(2014)

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: EUROCRYPT 2004. pp. 56–73 (2004)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: CRYPTO 2001. pp. 213–229

(2001)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297–319 (2004)

11. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: CRYPTO

2006. pp. 290–307 (2006)

12. Buterin, V.: Deterministic wallets, their advantages and their understated flaws. Bitcoin Magazine (November

2013), http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/

13. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups. In: PKC 2003. pp. 18–30

(2003)

14. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO ’82. pp. 199–203 (1982)

15. Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT ’91. pp. 257–265 (1991)

16. CoinMarketCap: Top 100 cryptocurrencies by market capitalization, https://coinmarketcap.com. Accessed 4

October 2018

17. Courtois, N.T., Mercer, R.: Stealth address and key management techniques in blockchain systems. In: ICISSP

2017. pp. 559–566 (2017)

18. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6),

644–654 (1976)

19. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: EUROCRYPT 2002. pp. 65–82

(2002)

20. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: PKC 2003. pp. 130–144 (2003)

21. Electrum.org: Electrum lightweight bitcoin wallet (November 2011), https://electrum.org

22. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16),

3113–3121 (2008)

23. Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate key leakage. In: FC 2015. pp.

497–504 (2015)

24. Hess, F.: Efficient identity based signature schemes based on pairings. In: SAC 2002. pp. 310–324 (2002)

25. Khandaker, M.A., Nanjo, Y., Ghammam, L., Duquesne, S., Nogami, Y., Kodera, Y.: Efficient optimal ate pairing

at 128-bit security level. IACR Cryptology ePrint Archive (2017), http://eprint.iacr.org/2017/1174

26. Kiltz, E., Neven, G.: Identity-Based Signatures, available at http://homepage.ruhr-uni-bochum.de/Eike.

Kiltz/papers/ibschapter.pdf.

27. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for the medium prime case. In:

CRYPTO 2016, Part I. pp. 543–571 (2016)

28. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended

abstract). In: ACISP 2004. pp. 325–335 (2004)

41

http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/
https://coinmarketcap.com
https://electrum.org
http://eprint.iacr.org/2017/1174
http://homepage.ruhr-uni-bochum.de/Eike.Kiltz/papers/ibschapter.pdf
http://homepage.ruhr-uni-bochum.de/Eike.Kiltz/papers/ibschapter.pdf

29. Liu, Z., Wong, D.S., Nguyen, K., Yang, G., Wang, H.: Abelian Coin (ABE) - A Quantum-Resistant Cryptocur-

rency Balancing Privacy and Accountability. Abelian Foundation, available at https://www.abelianfoundation.

org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf.

30. Maxwell, G.: Deterministic wallets (June 2011), https://bitcointalk.org/index.php?topic=19137

31. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://bitcoin.org/bitcoin.pdf

32. National Institute of Standards and Technology (NIST): Recommendation for key management, part 1: General

(revised) (July 2012), https://csrc.nist.gov/publications/detail/sp/800-57-part-1/revised/archive/

2007-03-01

33. NIST: Fips pub 186-4, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. Accessed 2 June

2018

34. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger, vol. 1, pp. 1-18 (2016)

35. Okamoto, T., Ohta, K.: Universal electronic cash. In: CRYPTO ’91. pp. 324–337 (1991)

36. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: CRYPTO ’91. pp.

129–140 (1991)

37. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems.

Commun. ACM 21(2), 120–126 (1978)

38. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT 2001. pp. 552–565 (2001)

39. van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/whitepaper.pdf

40. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO ’84. pp. 47–53 (1984)

41. Standards for Efficient Cryptography Group: Sec 2: Recommended elliptic curve domain parameters (2010),

http://www.secg.org/sec2-v2.pdf

42. Todd, P.: Stealth addresses, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/

004020.html

43. Waters, B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT 2005. pp. 114–127

(2005)

44. Wuille, P.: Bip32: Hierarchical deterministic wallets (February 2012), https://github.com/bitcoin/bips/blob/

master/bip-0032.mediawiki

A Proof of Theorem 1

Proof. Let Π be a PDPKS scheme, and Π is public key unlinkable. Below we prove that Π is

derived verification key unlinkable.

Suppose there exists an adversary A can win GameDVKUNL for Π with non-negligible probability,

we can construct an algorithm B that wins GamePKUNL with non-negligible probability, which is

contradict to Π is public key unlinkable. Consider the following game where B is interacting with

a challenger C to attack the public key unlinkablility of Π in GamePKUNL, while from A’s point of

view, A is attacking the derived verification key unlinkability of Π in GameDVKUNL.

42

https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://bitcointalk.org/index.php?topic=19137
http://bitcoin.org/bitcoin.pdf
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/revised/archive/2007-03-01
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/revised/archive/2007-03-01
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://cryptonote.org/whitepaper.pdf
http://www.secg.org/sec2-v2.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Setup. B is given PP, PK0 and PK1, then B forwards PP, PK0 and PK1 to A.

Phase 1. When A makes query to the oracles ODVKAdd(·, ·), ODSKCorrput(·), OSign(·, ·), B just

makes the same query to C, and forwards the results to A.

Challenge. B receives DVK∗, which is derived from PKb.

B chooses a random c ∈ {0, 1}, and computes DVK∗0 ← VrfyKeyDerive(PKc,PP).

B sets DVK∗1 = DVK∗, and returns (DVK∗0,DVK
∗
1) to A.

B sets Ldvk = Ldvk ∪ {(DVK∗0,PKc), (DVK∗1,>)}, where > is a special symbol to denote the

public key PKb where b is unknown to B.

Phase 2. Same as Phase 1. Note that A is not allowed to query ODVKAdd(DVK∗j ,PKi) (for

j, i ∈ {0, 1}) or ODSKCorrput(DVK∗j) (for j ∈ {0, 1}), when B forwards A’s queries to C and

forwards the results to A, from C’s point of view, B does not make queries ODVKAdd(DVK∗,PKi)

(for i ∈ {0, 1}) or ODSKCorrput(DVK∗).

Guess. A outputs a bit b′ ∈ {0, 1}, B sets b′′ = b′ ⊕ c and returns b′′ to C. Note that

– b′ = 0 implies A is guessing that DVK∗0 and DVK∗1 are derived from the same public key, and

this implies that DVK∗ is also derived from PKc. Thus, if c = 0, B sets b′′ = 0, otherwise B sets

b′′ = 1. This means B sets b′′ = b′ ⊕ c.

– b′ = 1 implies A is guessing that DVK∗0 and DVK∗1 are derived from different public keys, and

this implies that DVK∗ is derived from PK1−c. Thus, if c = 0, B sets b′′ = 1, otherwise B sets

b′′ = 0. This means B sets b′′ = b′ ⊕ c.

The advantage of A in GameDVKUNL is

AdvdvkunlA = |Pr[b′ = 0|c = b] + Pr[b′ = 1|c = 1− b]− 1/2|

= |Pr[b′ = c⊕ b]− 1/2| = |Pr[b = c⊕ b′]− 1/2|.

Note that the advantage of B in GamePKUNL is

AdvpkunlB = |Pr[b′′ = b]− 1/2| = |Pr[b′ ⊕ c = b]− 1/2|,

we have AdvpkunlB = AdvdvkunlA .

43

The proof for public key strong unlinkability implying derived verification key strong unlinkability

is similar, except that Phase 2 changes as below.

Phase 2. At the begin of Phase 2, B makes query ODVKAdd(DVK∗0,PKc) to C. Note that DVK∗0

is honestly derived from PKc, C will return 1 to B, implying DVK∗0 is valid.

Then, when A makes query to oracles ODVKAdd(·, ·), ODSKCorrput(·), OSign(·, ·), B makes the

same query to C, and forwards the results to A.

Note that A is not allowed to query ODVKAdd(DVK∗j ,PKi) (for j, i ∈ {0, 1}), when B forwards

A’s ODVKAdd() queries to C, from C’s point of view, B does not make queries ODVKAdd(DVK∗,PKi)

(for i ∈ {0, 1}).

For derived verification key strong unlinkability,A is allowed to make queries ODSKCorrput(DVK∗j)

(for j ∈ {0, 1}). When B forwards A’s ODSKCorrput(DVK∗0) query to C, from C’s point of view, it is

a valid query since DVK∗0 has been checked valid by C at the begin of Phase 2. When B forwards

A’s ODSKCorrput(DVK∗1) query to C, from C’s point of view, it is a valid query since B is actually

making ODSKCorrput() query on the challenge derived verification key DVK∗, which is allowed in

the model for public key strong unlinkability.

B Another PDPKS Construction

In this section, we give another PDPKS construction as well as the proofs for its security and

privacy.

B.1 Construction

This PDPKS construction and the underlying CDH assumption are on the bilinear map groups

where G1 = G2 = G, P = Q, and ψ is the identity map.

– Setup(λ)→ PP. Upon input a security parameter λ, the algorithm chooses bilinear map groups

(G,GT , e) of prime order p > 2λ, generator P ∈ G, and hash functions H1 : {0, 1}∗ → G∗,

H2 : {0, 1}∗ ×GT → Z∗p, where G∗ = G \ {0}. The algorithm outputs public parameters

PP := (p, (G,GT , e), P,H1, H2),

and the message space is M = {0, 1}∗.

44

– KeyGen(PP) → (PK, SK). The algorithm chooses random α, β ∈ Z∗p, then outputs a public key

PK and corresponding secret key SK as

PK :=(A,B) = (αP, βP) ∈ G×G,

SK :=(α, β) ∈ Z∗p × Z∗p.

– VrfyKeyDerive(PK,PP) → DVK. Upon input PK = (A,B) ∈ G × G and the system public

parameters PP, the algorithm chooses random r ∈ Z∗p, and outputs a derived verification key

DVK := (R, Tvk) = (rP, e(H1(rP, rA),−B)) ∈ G×GT .

– VrfyKeyCheck(DVK,PK,SK,PP)→ 1/0. Upon input DVK = (R, Tvk) ∈ G×GT , PK = (A,B) ∈

G × G, SK = (α, β) ∈ Z∗p × Z∗p, and the system public parameters PP, the algorithm checks

whether Tvk
?
= e(H1(R,αR),−B). If it hods, the algorithm outputs 1, otherwise outputs 0.

– SignKeyDerive(DVK,PK,SK,PP) → DSK or ⊥. Upon input DVK = (R, Tvk) ∈ G × GT , PK =

(A,B) ∈ G × G, SK = (α, β) ∈ Z∗p × Z∗p, and the system public parameters PP, the algorithm

checks whether Tvk
?
= e(H1(R,αR),−B). If it hods, the algorithm outputs a derived signing

key

DSK := Ssk = βH1(R,αR) ∈ G,

otherwise, outputs ⊥.

– Sign(m,DVK,DSK,PP)→ σ. Upon input a message m ∈ M, a derived verification key DVK =

(R, Tvk) ∈ G × GT , a signing key DSK = Ssk ∈ G, and the system public parameters PP, the

algorithm

1. picks a random x ∈ Z∗p and a random P1 ∈ G, and computes X = e(P1, P)x ∈ GT ,

2. sets h = H2(m,X) ∈ Z∗p,

3. computes Pσ = hSsk + xP1 ∈ G,

and outputs σ = (h, Pσ) as a signature for m.

– Verify(m,σ,DVK,PP)→ 1/0. Upon input a message m ∈M, a signature σ = (h, Pσ) ∈ Z∗p×G1,

a derived verification key DVK = (R, Tvk) ∈ G×GT , and the system public parameters PP, the

algorithm checks whether h
?
= H2(m, e(Pσ, P) · (Tvk)h) holds. If it holds, the algorithm outputs

1, otherwise 0.

45

Correctness. For any messagem ∈M, it is easy to verify that (1) VrfyKeyCheck(DVK,PK,SK,PP) =

1, since αR = αrP = rA, and

(2) Verify(m,Sign(m,DVK,DSK,PP),DVK,PP) = 1, since

e(Pσ, P) · (Tvk)h = e(hSsk + xP1, P) · e(H1(rP, rA),−B)h

= e(hβH1(R,αR), P) · e(xP1, P) · e(H1(rP, rA),−B)h

= e(H1(R,αR), βP)h · e(P1, P)x · e(H1(rP, rA),−B)h

= X.

B.2 Proof of Security

We prove the security of the above PDPKS construction by a reduction to the security of IBS

construction in [24, Section 2]. First, in Appendix B.2.1 we review the IBS construction and its

security conclusion, then in Appendix B.2.2 we give the reduction from the security of our PDPKS

construction to the security of the IBS construction.

B.2.1 Review of IBS in [24, Section 2]

Construction of the IBS in [24, Section 2]

Below is the IBS construction in [24, Section 2]. 15

– Setup(λ)→ (PP,MSK). Upon input a security parameter λ, the algorithm chooses bilinear map

groups (G,GT , e) of prime order p > 2λ, generators P ∈ G, and hash functions H1 : {0, 1}∗ →

G∗, H2 : {0, 1}∗ × GT → Z∗p, where G∗ = G \ {0}. The algorithm selects random β ∈ Z∗p and

computes B = βP ∈ G, then outputs public parameters PP and master secret key MSK as

PP := (p, (G,GT , e), P,B,H1, H2), MSK := β.

The message space is M = {0, 1}∗.

– KeyExtract(ID,PP,MSK) → SKID. Upon input an arbitrary identity ID ∈ {0, 1}∗, the system

public parameters PP, and the master secret key MSK, the algorithm outputs a private key

SKID for the identity ID as SKID = βH1(ID) ∈ G.

– Sign(m, ID,PP, SKID) → σ. Upon input a message m ∈ {0, 1}∗, an identity ID ∈ {0, 1}∗, the

system public parameters PP, and a private key SKID for the identity ID, the algorithm

15 Note that we slightly changed the variable names in the IBS construction, to better suit our PDPKS construction

in later proof.

46

1. picks a random x ∈ Z∗p and a random P1 ∈ G, and computes X = e(P1, P)x ∈ GT ,

2. sets h = H2(m,X) ∈ Z∗p,

3. computes Pσ = hSKID + xP1 ∈ G,

and outputs σ = (h, Pσ) as a signature for message m and identity ID.

– Verify(m,σ, ID,PP)→ 1/0. Upon input a message m ∈ {0, 1}∗, a signature σ = (h, Pσ) ∈ Z∗p×G,

an identity ID ∈ {0, 1}∗, and the system public parameters PP, the algorithm outputs b = 1 if

and only if h = H2(m, e(Pσ, P) · e(H1(ID),−B)h).

Remark : Note that the above IBS scheme has the MPK-pack-able property in the sense that

CMPK :=(p, (G,GT , e), P,H1, H2),

IMPK :=(B),

F (PP, ID) :=e(H1(ID),−B).

Security of the IBS in [24, Section 2]

The security of the IBS construction in [24, Section 2] is established by the following lemma.

Lemma 3. [24, Theorem 1] In the random oracle model, suppose that an adaptive adversary A

which makes at most n1 ≥ 1 queries of an identity hash and extraction oracle, at most n2 ≥ 1

queries of a message hash and signing oracle and which succeeds within time tA of making an

existential forgery with probability εA ≥
an1n2

2
p for some constant a ∈ Z≥1. Then there is another

probabilistic algorithm C and a constant c ∈ Z≥1 such that C solves the CDH problem in expected

time tC ≤ cn1n2tA
εA

.

B.2.2 Security Proof of our PDPKS Construction

Now we prove the security of our PDPKS construction in Appendix B.1, by a reduction to the IBS

construction in [24, Section 2], as shown in the following Lemma 4.

Lemma 4. Assume that there exists an adaptively chosen message attacker A that makes qhi

queries to random oracles Hi(i = 1, 2), qa queries to the verification key adding oracle, and qs

queries to the signing oracle in GameUEF for our PDPKS construction. Assume that, within a time

47

t, A produces a forgery with probability ε. Then, there exists an algorithm B that is able to produce

within time t̄ = t+O(qaτmult) +O(qaτp) a forgery with probability ε̄ = ε in GameIBS,UEF for the IBS

construction in [24, Section 2], where B makes q̄hi queries to random oracles Hi(i = 1, 2) and q̄s

queries to the signing oracle, with q̄h1 ≤ qh1 + qa, q̄h2 ≤ qh2 , q̄s ≤ qs.

Proof. The reduction is similar to that in Lemma 2, namely, using tuple (rP, rA) as the identity

for the IBS construction. We omit the details here.

Theorem 4. The PDPKS scheme in Appendix B.1 is secure under the CDH assumption in the

random oracle model.

Proof. This follows Lemma 3 and Lemma 4 immediately.

B.3 Proof of Privacy

Now we prove that our PDPKS construction in Appendix B.1 is public key strongly unlinkable

(w.r.t. Def. 3).

Theorem 5. The PDPKS scheme in Appendix B.1 is public key strongly unlinkable under the

CDH assumption in the random oracle model. Specifically, assume that there exists an attacker A

that runs within time t and makes qhi queries to random oracles Hi(i = 1, 2), qa queries to the

verification key adding oracle, and qs queries to the signing oracle, and wins the GamePKSUNL with

advantage ε, then there exists an algorithm B that runs within time t̄ = t + O((qh1 + qs)τmult) +

O((qaqh1 + qs)τp), and solves the CDH problem with probability at least ε− qa/p.

Proof. Similar to the proof of Theorem 3, if there exists a PPT adversaryA that can win GamePKSUNL

for our PDPKS construction with non-negligible advantage, then we can construct a PPT algorithm

B that can solve the CDH problem with non-negligible probability.

In particular, given an instance of CDH problem on bilinear groups, i.e. bilinear groups (G,GT , e)

of prime order p, generator P ∈ G, and a tuple (Ã = aP, B̃ = bP) ∈ G×G for unknown a, b ∈ Z∗p,

the target of B is to compute an element C ∈ G such that C = abP .

To simulate the PDPKS construction to A, B chooses random α′0, β0, α
′
1, β1 ∈ Z∗p, sets A(0) =

α′0Ã, B
(0) = β0P , A(1) = α′1Ã, B

(1) = β1P , and gives PK0 := (A(0), B(0)),PK1 := (A(1), B(1)) to A.

Note that the secret keys corresponding to PK0 and PK1 are SK0 := (α′0a, β0) and SK1 := (α′1a, β1)

respectively, where B does not know the value of a.

48

Note that B knows the values of β0 and β1, so that it is able to answer A’s queries to the

ODVKAdd(·, ·), ODSKCorrput(·), OSign(·, ·) oracles. The challenge derived verification key is also

generated in a similar way, namely,

Challenge. A random bit i∗ ∈ {0, 1} is chosen. B generates the challenge derived verification key

DVK∗ = (R∗, T ∗vk) from PKi∗ as follows:

1. Set R∗ = B̃.

2. Note that B̃ = bP and T ∗vk should be T ∗vk = e(H1(B̃, bA
(i∗)),−B(i∗)) = e(H1(B̃, bα

′
i∗aP),−B(i∗)),

where a and b are unknown to B. B chooses a random hval∗ ∈ Z∗p, and adds (B̃,>, hval∗, hval∗P)

to LH1 , where > is a special symbol to denote the value of α′i∗abP that is unknown by B. B

sets T ∗vk = e(hval∗P,−B(i∗)) and gives DVK∗ = (R∗, T ∗vk) to A.

3. B sets DSK∗ = (βi∗hval
∗)P and adds (DVK∗,DSK∗, 0, B̃,>, i∗) to Ldvk.

The rest of the proof and analysis can follow those of Theorem 3 and we omit the details here.

C An IBS without the MPK-pack-able Property

Below we review the IBS construction in [13], and show that it does not have the MPK-pack-able

Property. 16

The IBS Scheme in [13]

– Setup(λ) → (PP,MSK). Upon input a security parameter λ, the algorithm chooses bilinear

map groups (G,GT , e) of prime order p > 2λ, generators P ∈ G, and hash functions H1 :

{0, 1}∗ → G, H2 : {0, 1}∗ × G → Zp. The algorithm selects random β ∈ Zp and computes

B = βP ∈ G, then outputs public parameters PP and master secret key MSK as PP :=

(p, (G,GT , e), P,B,H1, H2), MSK := β.

The message space is M = {0, 1}∗.

– KeyExtract(ID,PP,MSK) → SKID. Upon input an arbitrary identity ID ∈ {0, 1}∗, the system

public parameters PP, and the master secret key MSK, the algorithm outputs a private key

SKID for the identity ID as SKID = βH1(ID) ∈ G.

16 Note that we slightly changed the variable names in the IBS construction.

49

– Sign(m, ID,PP, SKID) → σ. Upon input a message m ∈ {0, 1}∗, an identity ID ∈ {0, 1}∗, the

system public parameters PP, and a private key SKID for the identity ID, the algorithm

1. picks a random r ∈ Zp, and computes U = rH1(ID) ∈ G,

2. sets h = H2(m,U) ∈ Zp,

3. computes V = (r + h)SKID ∈ G,

and outputs σ = (U, V) as a signature for message m and identity ID.

– Verify(m,σ, ID,PP)→ 1/0. Upon input a message m ∈ {0, 1}∗, a signature σ = (U, V) ∈ G×G,

an identity ID ∈ {0, 1}∗, and the system public parameters PP, the algorithm outputs b = 1 if

and only if e(P, V) = e(B,U +H2(m,U)H1(ID)).

The above IBS scheme does not have the MPK-pack-able property. Note that in the above

IBS scheme, we have

CMPK := (p, (G,GT , e), P,H1, H2), IMPK := (B).

In the verification algorithm, the used values are P, V,B,U,m, ID. For the left side of the equation,

as V is a part of the signature, neither V or e(P, V) could be used to define the function F . As P

is in CMPK, it is unnecessary to contain P as a component of F ’s output. For the right side of the

equation, as U is a part of the signature, the only possible definitions of F are: (1) F (PP, ID) = B,

or (2) F (PP, ID) = e(B,H1(ID)), or (3) F (PP, ID) = H1(ID).

– For case (1), i.e. F (PP, ID) = B: The output of F leaks the value of B which identifies IMPK.

– For case (2), i.e. F (PP, ID) = e(B,H1(ID)): To verify the signature, e(B,U) has to be computed

whereB is used. This implies that there is no VerifyF such that VerifyF (CMPK, F (PP, ID),M, σ) =

IBS.Verify(PP, ID,M, σ).

– For case (3), i.e. F (PP, ID) = H1(ID): The same to Case (2).

Thus, it concludes that the above IBS scheme does not have the MPK-pack-able property.

50

	Key-Insulated and Privacy-Preserving Signature Scheme with Publicly Derived Public Key
	Introduction
	Deterministic Wallets for Bitcoin
	Stealth Address in Monero
	Related Work
	Our Results
	Related Techniques and Our Approach
	Outline

	Key-Insulated and Privacy-Preserving Signature Scheme with Publicly Derived Public Key
	Algorithm Definition
	Security Model
	Privacy Models

	Our Construction
	Preliminaries
	Construction

	Proofs of Security and Privacy
	Proof of Security
	Proof of Privacy

	Application and Implementation
	Applications
	Implementation

	Conclusion
	Proof of Theorem 1
	Another PDPKS Construction
	Construction
	Proof of Security
	Proof of Privacy

	An IBS without the MPK-pack-able Property

