
Constructing TI-Friendly Substitution Boxes
using Shift-Invariant Permutations?

Si Gao, Arnab Roy, and Elisabeth Oswald

University of Bristol

Abstract. The threat posed by side channels requires ciphers that can
be efficiently protected in both software and hardware against such at-
tacks. In this paper, we proposed a novel Sbox construction based on
iterations of shift-invariant quadratic permutations and linear diffusions.
Owing to the selected quadratic permutations, all of our Sboxes enable
uniform 3-share threshold implementations, which provide first order
SCA protections without any fresh randomness. More importantly, be-
cause of the “shift-invariant” property, there are ample implementation
trade-offs available, in software as well as hardware. We provide imple-
mentation results (software and hardware) for a four-bit and an eight-bit
Sbox, which confirm that our constructions are competitive and can be
easily adapted to various platforms as claimed. We have successfully
verified their resistance to first order attacks based on real acquisitions.
Because there are very few studies focusing on software-based threshold
implementations, our software implementations might be of independent
interest in this regard.

Keywords: Shift-invariant · Threshold implementation · Sbox

1 Introduction

In the past decade, side channel analysis (SCA) has become a serious threat to
various cryptographic devices. In this adversarial model, an attacker may observe
information leakage from a device operating some key-related information. For
cryptographic engineers, efficiently implementing a good cipher is then no longer
enough. They must also mitigate against the threat of such leakage and integrate
a proper countermeasure, which often is a non-trivial task.

Since they were proposed, Threshold Implementations (TI) [1, 2] have become
a recognised countermeasure for power analysis [3–7] when hardware implemen-
tations are considered. Unlike Boolean masking schemes [8, 9], TI requires more
shares, but the “non-completeness” property of TI ensures that in each compu-
tation logic gate, at least one of the (input) shares is missing. As a consequence,
even in the presence of hardware glitches, this missing share guarantees that
the observed leakage will not give out information about any secret intermedi-
ate value [2] and thus robustly protects against so-called first-order attacks. In

? This is the full version of the paper accepted at the CT-RSA 2019 with the same
title.

2 Si Gao, Arnab Roy, and Elisabeth Oswald

this paper, we only consider threshold implementations that provide first order
protections.

One obstacle in threshold implementations is that there is no trivial efficient
constructions for arbitrary cryptographic components. Take 3-share TI schemes
for instance: in theory, any arbitrary quadratic function can be re-written in a
TI-shared form with 3 shares. In practice, however, considering the requirement
of “uniformity”, a uniform 3-share TI scheme may not exist [2]. For smaller
components (eg. Sboxes), this issue has been extensively studied up to affine
equivalence [3, 10–12]. For larger components, there is no generic construction
available. On the other hand, solutions for uniform TIs may exist with higher
implementation costs, such as increasing the number of shares or adding fresh
randomness. Recently, De Meyer, Moradi and Wegener proposed a bit-serialized
implementation of the Sbox of AES [13]: although their implementation with
AES can be easily deployed in many applications, it comes with the price of
adding fresh randomness. Joan Daemen proposed a technique called “Changing
of the Guards”, which significantly eases the dilemma between uniformity and
fresh randomness [14]. As the “Changing of the Guards” technique borrows
randomness from the shares of other concurrent components, engineers no longer
need to ensure uniformity for their TI schemes, as long as there are a few extra
random bits available in the beginning of the encryption. Considering that the
overhead of TI is already high, it is imperative to keep any extra cost as low as
possible. Therefore, in this paper, we would like to avoid any fresh randomness
and minimize the number of shares.

Instead of searching for efficient TI representations for existing Sboxes, we
can also construct new Sboxes that are intrinsically suitable for TI protections.
The TI forms of all 4×4 Sboxes were described in [3]. Boss el al. constructed sev-
eral 8-bit Sboxes with round-based balanced Feistel, MISTY, SPNs structures,
where the core building blocks are 4-bit Sboxes with easier TI protections [15].
The main focus of their paper was in finding Sboxes with efficient hardware TI
implementations. However, the authors claimed their approach also “enables an
efficient and low-cost implementation in software”(their “software implementa-
tion” refers to masked bitslice implementations, rather than TI-based software
implementations). De Meyer and Varici further extended this approach to sev-
eral new constructions (such as Generalized Feistel, Lai-Massey, Asymmetric
SPN etc.) and provided implementation costs in terms of ASIC logic area [16].

It is not surprising that very few papers actually consider using TI-based soft-
ware implementations. To the best of our knowledge, the only available TI con-
structions on software are TI-based PRESENT on an 8-bit micro-controller [17]
and TI-based ARX ciphers [18]. The reason behind this is straightforward: the
main concern that TI solves — glitches — do not exist in software1. The overhead
of using TI-based countermeasures is usually much higher than using (bitsliced)
masking. Thus in theory, there is little point in applying TI to software im-

1 Technically, glitches still exist within one instruction. However, the threat that
glitches may bring—mixing between different data shares—does not usually show
up.

Title Suppressed Due to Excessive Length 3

plementations. In practice however, it has been observed that d-order bitsliced
maskings sometimes fail to provide d-order SCA protections. This is because
the internal architecture of micro-processors is not publicly accessible. Now even
if a cryptographic engineer carefully writes his/her code in assembly, some im-
plicit operations/registers may still mix different shares and produce exploitable
leakage such as demonstrated in [19, 20]. In the worst case, as Balasch el al. sug-
gested, a d-order masking may only achieve

⌊
d
2

⌋
-order security in practice [21].

Our contribution. In this paper, we aim to find several Sboxes that come with
easier first order TI protections, in both software and hardware platforms. In
contrast to Boss el al.’s work [15] we use shift-invariant quadratic permutations
instead of smaller Sboxes [22]. Similar to the χ2 function [23], any coefficient
Boolean function of these permutations is simply a “rotated” version of another.
In other words, the bit-width of the elementary computation logic —which we
called “granularity” in this paper — can be 1. Combined with the idea of serial
threshold implementations [24, 25], the granularity of first order TI implemen-
tation can then be 1. Finer granularity brings more flexibility for cryptographic
engineers, giving them more fine-grained trade-off options between executing
time, logic area as well as power consumption. Specifically, the benefits of such
protected Sboxes include:

– No fresh randomness.
– Easier software implementations. Since the shared version of our TI func-

tion preserves the “shift-invariant” property to some extent, bit-slicing such
protected Sbox becomes easier.

– Flexible hardware implementations. As the granularity of such TI Sboxes is
1, in hardware, it is possible to implement only 1 computation unit, then get
all other shared bits by shifting. Such strategy can lead to a very compact
footprint, in the price of taking more cycles to execute.

– Full implementations/security evaluations. Despite the fact that all the im-
plementations in this paper follow exactly the same rules as standard TI-s,
we have verified these implementations with real-world acquisitions.

Outline. In Section 2 we explain a few essential concepts, including the cryp-
tographic properties for Sboxes, the principle of threshold implementations and
our Sbox searching strategies. Section 3 first introduces the concept of shift-
invariance, then presents a search for quadratic TI-uniform shift-invariant per-
mutations. Based on the results of this search, we further construct Sboxes with
an SPN network. Section 4 and 5 discuss the possible implementation tradeoffs
on software/hardware platforms, respectively. Section 6 presents TVLA-based
security evaluation results on both an ARM M0 core and a Kintex 7 FPGA.

2 Preliminaries

2.1 Cryptanalytic properties for Sboxes

In a block cipher the Sboxes provide the desired non-linear properties. A newly
constructed Sbox must be evaluated for cryptographic properties e.g. differential

4 Si Gao, Arnab Roy, and Elisabeth Oswald

uniformity, linearity, to thwart the differential and linear attacks. Let : F2n →
F2n be a function.

Definition 1. (Differential uniformity [26]) For any pair (a, b) ∈ F2n , de-
fine the set

DF (a→ b) = {x ∈ F2n |F (x⊕ a)⊕ F (x) = b}.

The differential uniformity of F is defined as δ(F) := maxa6=0,b |DF (a → b)|
where the |DF (a → b)| denotes the cardinality of the set DF (a → b) and is
determined by the entry at the position (a, b) in the difference distribution table
of F .

The Walsh transformation of the function F is defined as W : F2n × F2n → Z
and is given as

WF (a, b) =
∑

x∈F2n

(−1)a·x+b·F (x).

The linearity of an Sbox gives a measure of its best linear approximation. The
linearity of F is defined as follows,

Definition 2. The linearity of F is defined as L(F) = maxa,b6=0W
F (a, b).

Besides, an Sbox should not have any algebraic properties e.g low degree of
the polynomial, which may be exploited by an adversary to mount an attack. It
is known that the maximum algebraic degree of an m-bit permutation Sbox will
be m− 1.

2.2 Threshold Implementation

In side channel research,threshold implementation (TI) usually refers to a coun-
termeasure that based on secret sharing. For an m×n vectorial Boolean function
f where each input x is shared as an s-length vector x =

(
x(1), .., x(s)

)
, TI im-

plements a few shared functions f (j) that satisfy:

– Correctness. The sum of all shared functions is equal to the original unshared
function f (i.e.

∑s
j=1 f

(j) = f).

– Non-completeness. Every shared function f (j) is independent of at least one
share of x. Specifically, for a d-order TI scheme, the combination of d f (j)

functions is still independent of at least one share.

– Uniformity. For any unshared input value x = x(1) ⊕ x(2) ⊕ ... ⊕ x(s), the
corresponding output shares y =

(
y(1), .., y(s)

)
are uniformly distributed on

all y-s that satisfy f (x) = y(1) ⊕ y(2) ⊕ ...⊕ y(s).

To ensure uniformity for permutations (m = n), we can simply check if the
shared version of f is an m×s-bit permutation [3] (or prove it is invertible [14]).

Title Suppressed Due to Excessive Length 5

2.3 Constructing TI Sboxes

To ensure non-completeness, threshold implementations need more shares for
Boolean functions with higher degrees. As the implementation cost increases
with the number of shares, the cheapest protected non-linear functions are
quadratic (deg = 2) Boolean functions. For Sbox constructions, it is favourable
to use permutations rather than arbitrary quadratic vectorial Boolean functions.
Previous studies have sucessfully found uniform TI schemes for many quadratic
permutations, including 3 × 3 and 4 × 4 Sboxes [3], 5-bit permutations [27] as
well as a few observations on 6-bit quadratic permutations [28].

All the results above serve as a perfect building block for larger Sboxes: al-
though directly applying TI is difficult, we can always use smaller Sboxes/quadratic
permutations with known TIs to build large Sboxes. Boss et al. started search-
ing for 8-bit Sboxes with Feistel (Figure 1(a)), SPN (Figure 1(b)), and MISTY
structures, using 4-bit TI Sboxes as building blocks [15]. De Meyer and Varici
extended this search to other constructions, such as Double Misty, Asymmetric
SPN and Generalized Feistel structures [16].

F

(a) Feistel in [15]

F1 F2

A

(b) SPN in [15]

F>>>

A2

(c) this paper

Fig. 1. Structure overview

Since the building blocks are smaller Sboxes/permutations, such construc-
tions give much more compact 8-bit Sboxes in hardware [15, 16]. Generally
speaking, for an n-bit Sbox, its 3-share TI form would be a 3n-bit permuta-
tion. Although each share can be computed with only 2 input shares (2n-bit),
in hardware, increasing inputs usually boosts the area cost. Using smaller TI-
Sboxes as building blocks significantly reduces the overall implementation cost,
but it is unclear whether such constructions can provide flexibility when consid-
ering other platforms. Neither of these papers discusses the possibilities of serial
TI—an extra trade-off proposed back in 2013 [24]. Boss et al.’s work did mention
software implementations, yet their argument is that fewer AND gates lead to
more efficient bit-sliced masking in software, rather than any TI protection [15].
None of these papers present security evaluations of their final implementations.

6 Si Gao, Arnab Roy, and Elisabeth Oswald

2.4 The notion of granularity

Irrespective of considering hardware or software implementations, constructions
that feature multiple identical computation tasks usually give the cryptographic
engineer more flexibility for the speed/cost trade-off. Taking hardware imple-
mentations for instance, all 4 bits in a PRESENT Sbox must be implemented
with combinational logic, because all 4 bits are based on different Boolean func-
tions [29]. Meanwhile, for the Keccak 5-bit χ2 function, it is possible to imple-
ment only the circuit to do a 1 bit computation, as other 4 output bits can be
computed through rotating the inputs [23] using the same circuit.

In this paper, we denote the output size of the smallest “gadget” to com-
pute an Sbox as the “granularity”. Clearly, the granularity for an unprotected
PRESENT Sbox is 4, whereas for an unprotected 5-bit χ2 function is 1. A
finer granularity gives crypto engineers more opportunities for trade-offs: for in-
stance, they can opt for a serial (slower) implementation, or a parallel (faster)
implementation in hardware. Granularity also plays a critical role in software im-
plementations. As most processors have intrinsic bit-widths (8,32 or 64), when
performing bitwise operations, most of the bit-width will be wasted unless all the
bits require the same operation. In order to take full advantage of the bit-width,
a bit-slice implementation usually “slices” the same bits from multiple Sboxes to
one register. As the CPU processes multiple Sboxes simultaneously, the overall
throughput increases. Implementations with finer granularity provide intrinsic
parallelism, which may take the most of the bit-width of our processors without
manually “slicing” from a lot of concurrent data blocks (eg. Sboxes).

3 Constructing TI-Sboxes with better granularity

In this section, we present our TI-Sboxes search strategy. To achieve better im-
plementation flexibility, we choose a different type of building blocks: instead of
using 4 bit Sboxes with known TIs, our search utilizes the “Shift-invariant” [22]
permutations. Such constructions usually lead to finer granularity (for each el-
emental operation) and give better implementation trade-offs for not only the
Sbox itself, but also its TI-protection.

3.1 Shift-invariant: concept and previous works

Technically, an n × n vectorial Boolean function F is shift-invariant if for any
rotated shift τ and any state x, F (τ(x))) = τ(F (x)) [22]. As stated in Dae-
men’s thesis [22], “shift-invariant transformations can be implemented as an
interconnected array of identical 1-bit output ‘processors’”(granularity 1). Dae-
men further studied both linear and non-linear shift-invariant transformations,
exploring their invertibility, local propagation and correlation properties [22]. As
shift-invariance is closely linked to the concept of cellular automaton, Mariot,
Picek , Leporati and Jakobovic searched up to 7× 7 Sboxes from a cellular au-
tomaton perspective [30]. The most well known output of this direction is the χ2

function in Keccak. However, it worth mentioning that without any other trick,
χ2 itself does not have a uniform 3-share TI.

Title Suppressed Due to Excessive Length 7

3.2 Quadratic shift-invariant permutation with uniform TI

For an unprotected Sbox, shift-invariance ensures its granularity is equal to 1.
However, considering the requirements of first order TI, its granularity also grows
with the number of shares. Further reducing the granularity requires not only
shift-invariance, but also its TI property: for any Boolean function f , if its direct
shared form (i.e. Section 4.2 in [3]) is uniform, its granularity can be reduced
to 1, using a serial TI implementation [24, 25]. Thus, for granularity, our best
option would be using quadratic shift-invariant permutations with a uniform
direct sharing threshold implementation.

Therefore, our main building blocks for Sbox constructions are quadratic
shift-invariant permutations with uniform 3-share TI-s. Although Daemen’s the-
sis gave many useful results, it did not cover all possible nonlinear shift-invariant
transformations. Fortunately, the search space for common Sbox sizes (n = 4 or
n = 8) is small enough. For n×n shift-invariant transformations, the number of
all possible quadratic transformations are equal to the number of n-bit quadratic

Boolean functions 2
∑2

i=0 (n
i). The search space for 4 bit building blocks is 211,

whereas for the 8 bit case is 237. Among these transformations, we are interested
in those satisfy:

– The transformation itself is an n-bit permutation.
– Its direct 3-share TI is uniform.

Both properties are easy to check: for TI uniformity we simply check whether the
shared form is still a 3n×3n permutation. For early abortion in this permutation
check we first examine whether the coefficient Boolean function f is balanced.
If it is not balanced, the transformation it derived cannot be a permutation.
Additionally, we further limit our search to functions that satisfy:

– For bit y0, its Boolean function always contains bit x0. If not, we can always
find a shift transformation τ that ensures F ′ = F ◦τ (F is the shift-invariant
transformation f derived)2. For a shift-invariant F ′, τ and F are commu-
tative. This means for lower rounds (1 or 2) of SPN network, τ can be
integrated into the initial/final linear transformation, which does not affect
the cryptographic properties.

– f does not have a constant term. For a shift-invariant transformation, the
constant term can be either all-0 or all-1. As an all-1 constant has little
impact on the cryptographic property of F , we simply discard these choices.

For 4-bit quadratic functions, we found that 952 out of 2048 functions contain
x0 and 0 as their constant terms. 392 of them are balanced, whereas only 24 f
lead to a 4 × 4 permutation F . Fortunately, all of the direct 3-shares schemes
are actually 12× 12 permutations (i.e. satisfy uniformity).

On the other hand, for 8 bit permutations, the search space of f is 237. Almost
half of the f -s have x0 = c = 0, while only a quarter of f -s are balanced. 520
128 (≈ 219) can generate an 8-bit shift-invariant permutation F : interestingly,
all of these permutations have uniform direct 3-share TI.

2 Note that here we only need x0 to appear, rather than appearing as a linear term [22].

8 Si Gao, Arnab Roy, and Elisabeth Oswald

n All f Has x0&c = 0 Balanced Permutation TI Permutation

4 2048 952 392 24 24

Table 1. Shift-invariant quadratic TI permutations: n = 4

n All f Has x0&c = 0 Balanced Permutation TI Permutation

8 237 68451041152 29986581632 520128 520128

Table 2. Shift-invariant quadratic TI permutations: n = 8

3.3 Constructing Sboxes

In this section, we further construct cryptographically good 4/8-bit Sboxes with
these quadratic permutations. The Sbox search follows exactly the same strat-
egy as previous works [15, 16], although the granularity further complicates the
situation here.

Design Architectures As shift-invariance ensures each bit can be computed
in the same way, generally speaking, we would like to avoid more branches. Take
two-branch balanced Feistel structure for instance: although the round function
may still have granularity 1, the other branch also contributes to the granularity
for the whole Sbox. To this end, we perform our Sbox search with full range
Substitution-Permutation Network (SPN) (Figure 1(c)).

Permutation Layer As the substitution layer is chosen from those quadratic TI
permutations, the only decision left to make is the permutation layer. Clearly,
the most efficient construction would be using shift-invariant linear permuta-
tion or nothing at all. Although shift-invariance is a good property for soft-
ware/hardware implementations, considering the threat of rotational cryptanal-
ysis [31], we prefer not to preserve it in the final Sbox. Thus, our linear trans-
formation here needs to stop the propagation of shift-invariance. In general,
the cheapest option would be using non-shift bit-permutations. However, a bit-
permutation usually have a larger granularity (as each bit has to be implemented
respectively), which leads to a penalty on its software performance. Instead, in
this paper, we consider a linear transformation that is similar to AES’s “xtime”.
More specifically, we search for invertible matrices that satisfy:

A =


a1,1 1 0 . . . 0
a2,1 0 1 . . . 0
.

an−1,1 0 0 . . . 1
1 0 0 . . . 0



Title Suppressed Due to Excessive Length 9

Let a1 = {a1,1, a1,2, ..., an−1,1, 1}, if A is indeed invertible, in software, it can
be implemented with a shift and a conditional XOR.

Ax =

{
(x << 1)⊕ a1, if hsb(x) = 1

(x << 1), otherwise

As the conditional branch is prone to cache attack, most implementations
tend to use a multiplication instruction to achieve a constant control flow

Ax = (x << 1)⊕ (a1 × hsb(x))

As the n-bit state x is operated as a word, the granularity is determined by
this 1-bit multiplication: since this equation only holds 1 bit values, the over-
all granularity gets coarser. Nonetheless, from an implementation perspective,
it is still much better than arbitrary binary matrix multiplication. To achieve a
better diffusion property, in our Sbox search, we use two layers of A (A2) as our
permutation layer.

Selection criteria. In order to achieve a balance between the implementation
cost and the cryptographic properties, we have defined a selection criteria for
the candidate Sboxes. Specifically, for 4-bit Sboxes,

– the differential uniformity is ≤ 4 and,
– the linearity is ≤ 8

For 8-bit Sboxes,

– the differential uniformity is ≤ 8 and,
– the linearity is ≤ 72

Besides, the algebraic degree and the degree of the interpolation polynomial
should be large enough to resistent algebraic attack and interpolation attack,
respectively.

3.4 Results

4-bit case. For 4-bit Sboxes, such selection criteria only accepts optimal Sboxes
(differential uniformity= 4, linearity = 8) [32]. By enumerating all possible
choices of A and quadratic permutations, we can find 16 such 4-bit Sboxes within
2 rounds. One such Sbox is presented as follow. The algebraic degree of this Sbox
is 3, whereas the degree of the interpolation polynomial is 15.

A =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0



10 Si Gao, Arnab Roy, and Elisabeth Oswald

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 9 4 A 3 7 8 C 5 B 6 D E F

Table 3. Shift-invariant quadratic TI permutation for S4

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4 8 A F C 6 9 1 E B D 7 5 3 2

Table 4. Final Sbox for S4

8-bit case. For n = 8, the overall search space is around 226, which is quite
feasible for most PCs. 6 Sboxes appear within 3 rounds: all of them have differ-
ential uniformity 8 whereas their linearity vary from 64 to 72. Due to the space
limit, we present the best one (differential uniformity= 8, linearity = 64) in the
Appendix. The algebraic degree of the presented Sbox is 6 and the degree of
interpolation polynomial is 252.

4 Software Implementation

The major benefit of an Sbox with small granularity, is that it can be efficiently
implemented in both software and hardware platforms. Although software based
TIs tend to have higher overhead, in terms of security, they might have their
own advantages [5]. In this section, we implement our selected Sboxes with first
order TI protections in software and discuss a few possible trade-off options.

4.1 Target Platform

For software implementations, the most common platforms are smart cards or
high-end processors (ARM/AMD/Intel). Although different processors may have
different instruction sets, for bit-slice computations, most required bit-wise in-
structions can be found easily in all instruction sets. The major difference lies
in the bit-width of the target processor, which determines how many bits can
be computed in parallel. In this paper, our implementation chooses the most
common bit-width—32. Implementations for 8-bit and 64-bit follow exactly the
same rule. Because our target chip is an NXP ARM M0 core, we wrote our Sbox
implementations using the Thumb instruction set [33]. In order to demonstrate
the difference between Thumb and ARM instruction sets [34], we also show how
those Sboxes can be computed on a more advanced core like the ARM M3.

4.2 Implementation Trade-offs

No optimization. It is worth mentioning that finer granularity only provides a
possibility for further implementation trade-off: when such trade-off is not nec-
essary, engineers can always do a TI implementation with 3n variables. Such an

Title Suppressed Due to Excessive Length 11

implementation achieves its best performance when there are 32 concurrent data
blocks (Sboxes) available. As the available bit-width is already fully occupied,
the shift-invariant property will not provide any benefit in this case.

Size-based optimization. As each bit can be computed in the same way, with
shift-invariant transformations, we can pack all n bits into one register. Take an
8 bit Sbox for instance, if there are 4 concurrent Sbox computations for x[1], x[2],
x[3] and x[4], a 32-bit register can be filled with(

x
[1]
1 , x

[2]
1 , x

[3]
1 , x

[4]
1 , ..., x

[1]
8 , x

[2]
8 , x

[3]
8 , x

[4]
8

)
where xi is the i-th bit of x. Correspondingly, each computation will be adjusted
to ensure it takes the right input bit. Note that the rotated shift is still available
in this form: instead of rotating 1 bit, now we are rotating 4 bits. Readers can
verify that the transformation can still be computed correctly in this form, while
the number of required concurrent data blocks shrinks from 32 to 4. Similar to
the unprotected Sbox, the TI protection can be computed in exactly the same
way. If all three shares are computed separately, such an optimization does not
contradict with any TI requirement.

Extreme optimization. In theory, since the granularity of the TI protection is still
1, packing all 3 shares into one register is possible. Whether it contradicts with
TI’s security requirement (i.e. non-completeness) is debatable: ideally, if bit-wise
instructions’ leakage can be regarded as a sum of the leakages of all candidate
bits (i.e. no “bit-interactions”), such implementation should be as secure as
a hardware-based TI3. However, current results seem to suggest this may not
always be the case: Sasdrich et al’s work shows that for lookup tables (i.e. LDR
instruction) on smart cards, bit-interaction clearly exists [5]. Our experiments
with ARM M0 processors also prove the shift instructions (LSL,LSR,ROR) have
the same issue. Moreover, as different bits and shares both get placed in one
register, shifting becomes trickier. Only one of the shifts, whether shift bits or
shares, can be operated with rotated shift instructions. The other one must be
done manually with a few shifts and data masks. Considering the security loss
and potential performance gain, we believe this is not a reasonable option.

4.3 Implementation on ARM M0/M3

Throughout this section, our evaluation is based on the size-based optimization.
For the quadratic permutation S, we simply computed the TI-protected per-
mutation according to its Algebraic Normal Form (ANF). Further customized
optimizations may be possible but are out of the scope of this paper. To limit
the usage of registers or memories, we compute all shifted results online, even

3 Unlike its hardware counterpart, “coupling” effect [35] and “voltage fluctuation” are
not the only concerns for the software TI. An AND instruction may not have the
same leakage as 32 1-bit-AND gates, unless all the other combinational logic cells in
the ALU are actually “silent”.

12 Si Gao, Arnab Roy, and Elisabeth Oswald

if some of them appear repeatedly in the computation. Although this sounds
far from ideal, as most commodity processors have a limited number of general
purpose registers, such a compromise is inevitable in practice. For the linear
transformation P , as the multiplication operation can only handle 1 bit at a
time, all n-bit data shares must be executed one by one.

Despite the fact that our Sbox is computed online (rather than using pre-
computed lookup tables), architecturally, its computation procedure is not that
different from Sasdrich et al.’s implementation of PRESENT’s Sbox [17]. De-
pending on the context, leakage might still show up when the CPU switches
from one TI-shared function to another. Nonetheless, as the number of shared
functions in TI is quite limited (compared with the number of AND-s in mask-
ing), implementing TI correctly requires much less effort than implementing
bit-slice Boolean masking.

Table 5 illustrates the software implementation costs of our selected Sboxes,
along with a few other well-known protected Sboxes, such as AES and PRESENT.
It is not hard to see there is a significant performance difference between Thumb [33]
and ARM [34] instruction sets. The major difference lies in rotation: as Thumb’s
ROR only shifts with a register rather than a constant, rotating r1 by n and
storing the result in r2 has to be implemented as

MOV r3,#n
MOV r2,r1
ROR r2,r3

However, with the “Flexible Operand 2” [34] in ARM instruction set, such
procedure can be implemented with only one line. In terms of executing cycles,
implementations with ARM instructions have a significant bonus.

MOV r2,r1, ROR #n

Size Diff. Lin. Deg.
1st Order Protected

Randomness
Cycles

Thumb ARM

PRESENT(BS) [36] 4 4 8 3 64 n/a 796/16

PRESENT(F ◦G) [36] 4 4 8 3 128 n/a 686/8

S4 (our result) 4 4 8 3 0 870/8 654/8

AES(BS) [36] 8 4 32 7 512 n/a 4698/16

AES(KHL) [36] 8 4 32 7 192 n/a 2309/8

S8 (our result) 8 8 64 6 0 3627/4 2169/4

Table 5. Software Performance of various Sboxes

As the results in Table 5 are most likely parallel implementations for mul-
tiple Sboxes, we have listed the number of parallel Sboxes with the operation
cycles. For our S4, Table 5 suggests it takes 870 cycles to compute 8 Sboxes

Title Suppressed Due to Excessive Length 13

simultaneously. 4 For 4 bit Sboxes, our shift-invariant Sbox has similar perfor-
mance as the PRESENT Sbox based on quadratic decomposition (654 v.s. 686).
With bitslice masking, PRESENT Sbox can be much more efficient [36]. On the
other hand, for the 8 bit case, both the KHL and bit-sliced masking are quite
efficient, running twice faster than our shift-invariant Sbox. However, we would
like to stress that the comparison of Table 5 is not as trivial as comparing the
numbers of cycles. First of all, our implementation does not take any fresh ran-
domness. As we can see in Table 5, all other Sboxes use quite a lot of random
bits, even if they do not use any mask refreshing. Considering the cost of produc-
ing (pseudo)random numbers, it is clearly desirable to avoid fresh randomness.
On the other hand, although all Sboxes in Table 5 claim first order security, a TI
scheme has 3 shares whereas a bit-slice masking only has 2. Since the authors did
not give any real traces based SCA evaluation [36], it is hard to argue whether
these bit-sliced masking schemes provide the same security level as our threshold
implementations. If we simply believe in the order-reduction theorem [21], a fair
comparison would be using the second order bit-slice masking (3 shares), which
degrades their performance to the same level of ours [36]. Last but not least,
enormous effort has been invested in optimizing the implementations of both
AES’s Sbox and PRESENT’s Sbox. In fact, the advantage of bit-slice masking is
mainly inherited from the circuit optimization of the unprotected Sbox. On the
contrary, we simply implemented the ANF of our shift-invariant Sboxes: further
optimizations may be possible but they are out of the scope of this paper.

Another interesting observation would be our granularity gains. Technically,
granularity determines how many concurrent Sbox computations we need to
achieve the best possible throughput. For PRESENT and AES in Table 5, gran-
ularity does not cause an issue: both ciphers use SPN networks with many same
Sboxes as their confusion layers. However, if the cipher uses smaller round func-
tions with less concurrent Sboxes or a confusion layer with different Sboxes,
it would be difficult to find enough data to “slice” within one plaintext block.
Thanks to the fine granularity of our new Sboxes, in short encryption request,
our construction has a better chance to reach its maximal throughput.

5 Hardware Implementation

5.1 Implementation Trade-off

Unlike software platforms, TI on hardware has been extensively studied for years.
The only difference our Sboxes bring is a “double-rotating” feature: not only the
3 shares can be generated by rotating the inputs with the same circuit (i.e. serial
TI [24]), all n-bit output can also be generated by rotating inputs. Note that
these two rotations are different operations: one is rotating bits, the other is ro-
tating shares. On software platforms, since there is only one rotation instruction,

4 Note that this does not mean each Sbox can be computed only 109 cycles: if there
is only one Sbox to compute, it will still take 870 cycles, as most of the bit-width
will be wasted.

14 Si Gao, Arnab Roy, and Elisabeth Oswald

implementing both efficiently is not trivial. On hardware, double-rotation can
be simply implemented with multiplexers. Thanks to the fine granularity, now
we can implement only 1 bit Boolean function and compute the other 3n − 1
bits through rotations.

...

...

...

S

...

output register

input register

Fig. 2. Hardware schematic of shift invariant transformation S

As all other implementations are relatively trivial, in this section, our evalu-
ation only uses this 1-bit serial implementation. Note that this implementation
is by no means our “reference” design. The point of having a granularity 1 Sbox
is that the engineers have the flexibility to choose the right trade-off. Although
this 1-bit implementation leads to a very compact logic footprint, it trades area
advantages with executing cycles. It takes 3 ∗ n cycles to finish a 3-share n-bit
Sbox computation. Besides, the multiple data paths cause the control logic to
increase, which may compensate some of the footprint gain. Depending on the
specific applications, engineers can also use a “single rotation” version, where
only the shares or the bits are generated by rotations.

5.2 Pre-charge Issue

A well known issue for serial threshold implementation, is some first-order leak-
age might appear during the “shift-shares” procedure [37]. The reason behind
is that the leakage for a combinational logic during an input transition depends
on not only the current state, but also the previous state. The solution would
be simply eliminating any transition of input shares in the combinational logic:
i.e. add a pre-charge stage which charges the combinational logic with all zero
between these two states. Obviously, this pre-charge stage penalizes the overall
performance by one extra cycle. Interestingly, as our double-rotating design takes
more cycles to proceed, the percentage of pre-charge time becomes smaller. Note
that a pre-charge stage is only required when we are switching between different
shares, not between different bits.

Title Suppressed Due to Excessive Length 15

5.3 Implementation on ASIC

In order to evaluate their performance on hardware, we have implemented our
Sboxes with first order TI protections in Verilog. For synthesis, we used Syn-
opsys Design Compiler with the TSMC 180nm standard cell library. Their area
requirements as well as clock cycles are presented in Table 6. Note that only the
combinational part is documented in Table 6: as most previous works excluded
the multiplexers and registers as “required extra logic”, we cannot further com-
pare the whole design5. For clarity, Table 6 only shows one 8 bit Sbox and one
4 bit Sbox: other alternatives can be found in the Appendix.

Size Diff. Lin. Deg. Rounds
Protected

Area(GE) Delay(ns) Cycles

PRESENT [24] 4 4 8 3 n/a 151 — 6

GIFT [7] 4 6 8 3 n/a 172.5 —6 6

S4 4 4 8 3 2 54 0.72 28

AES [38] 8 4 32 7 n/a 2224 — 3

SB1 [15] 8 16 64 6 8 51 1.09 8

SB4 [15] 8 8 56 7 5 202 2.10 5

S8 8 8 64 6 3 181 1.89 78
Table 6. Hardware evaluation of various Sboxes

Since most results in Table 6 are uniform first order threshold implementa-
tions, we did not present their fresh randomness requirements. Only the AES
Sbox uses 32 random bits; all others do not take fresh randomness. Thanks to its
fine granularity, our protected Sboxes can be implemented with 1-bit combina-
tional logic, which leads to very compact implementations (Table 6). However,
this is nothing more than a trade-off: the number of cycles clearly shows the
price to pay. Besides, for a larger n, shift-invariant constructions lose most of
their charms. Table 6 shows the area gain for 8 bit Sbox is neglectable (if any,
considering a serial implementation uses more MUX-es), compared with Boss et.
al’s construction. The reason for this roots in the philosophy of shift invariance:
shift invariance saves area by reducing the outputs of a logic circuit, but not
the inputs. Our 1-bit implementation is still a 2n-variate Boolean function. Boss
et. al’s construction uses smaller Sboxes, which reduces the input scale of the
protected circuit. Technically, for an arbitrary vectorial Boolean function, the
implementation cost grows linearly with its output, but exponentially with its
input. Having said that, the main advantage of our construction is providing
flexible implementation trade-offs, on both software and hardware platforms.
Although Boss et. al’s paper also mentioned software-efficiency, their prediction

5 Depending on the specific implementation, such “extra logic” can actually predom-
inates the overall area cost. To this end, we would like the stress that our serial
implementation is only worthwhile if it has a significant advantage in area cost.

6 Not given.

16 Si Gao, Arnab Roy, and Elisabeth Oswald

is actually based on the number of AND-s. We believe that software perfor-
mance evaluation should use actual assembly code: due to the limited resources
available (eg. instructions, registers, buses, etc.), high-level estimations could be
misleading.

6 Security Evaluation

6.1 Software: ARM M0

In order to evaluate our protected Sbox in practice, we have implemented such
Sboxes on both software and hardware platforms. For software implementation,
our target chip is an NXP LPC1114 (ARM Cortex M0) processor. The measure-
ment point connects to a 100 Ohm resistor on the VCC end. Power traces were
captured with a PicoScope 2206B running at a sampling rate of 125MSa/s. The
clock speed of the target core was set to 8MHz. For leakage detection, we use the
non-specific fix-vs-random T-test [39]. In order to increase the detection power,
we force all parallel Sboxes to use the same input shares (i.e. all the concurrent
Sbox computations are exactly the same). Figure 3 shows the evaluation results
for our 4 bit Sbox with 1 million traces:

Fig. 3. Software evaluation of S4

Title Suppressed Due to Excessive Length 17

Considering the Sbox computation includes 25000 time points, we increase
the T-test threshold to 5 [40]. With 1 million traces, a first order T-test can-
not find any significant leakage. As we have only implemented a first order TI
protection, second order attacks are still feasible. In theory, the most efficient
2nd order attack should be multi-variate attacks which combine 2 independent
samples on the trace. In practice, significant leakage can be detected by simply
performing the same T-test on the second moment (Figure 3). Therefore, we did
not enumerate all possible second order sample combinations on the trace. The
8-bit case is quite similar: due to the limited space, we present the results for S8

in the Appendix.

6.2 Hardware: SAKURA-X FPGA

For hardware implementations, we have tested our Sboxes on the SAKURA-
X board with Xilinx Kintex-7 FPGA. In order to increase the signal-to-noise
ratio, an Agilent 25db amplifier is connected to the measured signal. Moreover,
considering our all-serial implementation has very limited power consumption,
we extended a 3n-bit protected Sbox to a 384-bit design: for the 4 bit case,
this means there are 32 parallel Sboxes implemented on the board. For 8 bit
Sboxes, there are 16 parallel Sboxes. Similar to software implementations, all
the implemented Sboxes were given the same input shares. Our FPGA design
run at 3MHz, while our Lecroy Waverunner 700 Zi scope was capturing traces
at 500MSa/s. Obvious outliers were removed before T-test. Figure 4 shows the
leakage detection results for our 4 bit Sbox after 5 million traces. Clearly, our
protected design is first order secure. Since our implementation is a serial one,
technically, the second order detection should use multi-variate T-test. However,
it is not hard to see that the second moment already shows some clear leakage.
Like the software case, we present the 8-bit results in the Appendix.

7 Conclusion

In this paper, we propose a novel Sbox construction using quadratic shift-
invariant transformations. Thanks to the shift-invariant property, our Sbox con-
structions have a fine “granularity”which contributes to more flexible imple-
mentation trade-offs. Both software and hardware implementations have been
discussed and evaluated (on ARM processors and an FPGA). The strong point
of our Sboxes is that their first order protection can be efficiently tuned for
the needs in different applications without using any fresh randomness. Experi-
ments suggest our TI protection has effectively eliminated the 1-st order leakage.
Meanwhile, to the best of our knowledge, this is the first computation based TI
Sbox implementation in software (rather than the table-based TI implementa-
tion in [5]). Considering masked software implementations do not always back
their security claims (eg. [17]), utilizing threshold implementations on software
is of independent interest.

18 Si Gao, Arnab Roy, and Elisabeth Oswald

0 2000 4000 6000

Time [*2ns]

-1

0

1

2

V
ol

t [
*1

V
]

×10-3 Raw Trace

0 2000 4000 6000

Time [*2ns]

-50

0

50

T
 s

ta
tis

tic
s

1st Order T-test: N=50k, RNGOff

0 2000 4000 6000

Time [*2ns]

-5

0

5

T
 s

ta
tis

tic
s

1st Order T-test: N=5M, RNGOn

0 1000 2000 3000 4000 5000

Number of traces (N) [*1000]

0

2

4

M
ax

im
um

 |T
|

1st Order Maximum |T| v.s. N

0 2000 4000 6000

Time [*2ns]

-5

0

5

T
 s

ta
tis

tic
s

2nd Order T-test: N=5M, RNGOn

0 1000 2000 3000 4000 5000

Number of traces (N) [*1000]

0

2

4

6

M
ax

im
um

 |T
|

2nd Order Maximum |T| v.s. N

Fig. 4. Hardware evaluation of S4

Acknowledgements

We would like to thank all anonymous reviewers for improving the quality of this
paper as well as providing insights from some other perspectives. This work has
been funded in part by EPSRC under grant agreement EP/N011635/1 (LADA).

References

1. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Information and Communications Security, 8th
International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings. (2006) 529–545

2. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2) (2011) 292–321

3. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold Implementations
of All 3×3 and 4×4 S-Boxes. In: Cryptographic Hardware and Embedded Systems
- CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12,
2012. Proceedings. (2012) 76–91

4. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Advances in Cryptol-
ogy - EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings. (2011) 69–88

Title Suppressed Due to Excessive Length 19

5. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-Share Threshold
Implementations for 4-Bit S-boxes. In: Constructive Side-Channel Analysis and
Secure Design - 4th International Workshop, COSADE 2013, Paris, France, March
6-8, 2013, Revised Selected Papers. (2013) 99–113

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES
Threshold Implementation. In: Progress in Cryptology - AFRICACRYPT 2014 -
7th International Conference on Cryptology in Africa, Marrakesh, Morocco, May
28-30, 2014. Proceedings. (2014) 267–284

7. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
Implementations of GIFT: A Trade-off Analysis. IACR Cryptology ePrint Archive
2017 (2017) 1040

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 15-19, 1999, Proceedings. (1999) 398–412

9. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY,
USA, April 10-12, 2000, Proceedings. (2000) 150–164

10. De Meyer, L., Bilgin, B.: Classification of Balanced Quadratic Functions. IACR
Cryptology ePrint Archive 2018 (2018) 113

11. Bozilov, D., Bilgin, B., Sahin, H.A.: A Note on 5-bit Quadratic Permutations’
Classification. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 398–404

12. Beyne, T., Bilgin, B.: Uniform First-Order Threshold Implementations. In: Se-
lected Areas in Cryptography - SAC 2016 - 23rd International Conference, St.
John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers. (2016) 79–98

13. De Meyer, L., Moradi, A., Wegener, F.: Spin me right round rotational symmetry
for fpga-specific aes. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2018(3) (Aug. 2018) 596–626

14. Daemen, J.: Changing of the Guards: A Simple and Efficient Method for Achieving
Uniformity in Threshold Sharing. In: Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings. (2017) 137–153

15. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit Sboxes with efficient masking in hardware extended version. J. Cryptographic
Engineering 7(2) (2017) 149–165

16. Meyer, L.D., Varici, K.: More Constructions for strong 8-bit S-boxes with efficient
masking in hardware. In: Proceedings of the 38th Symposium on Information
Theory in the Benelux, Delft,NE, Werkgemeenschap voor Informatie- en Commu-
nicatietheorie (2017) 11

17. Sasdrich, P., Bock, R., Moradi, A.: Threshold Implementation in Software - Case
Study of PRESENT. In: Constructive Side-Channel Analysis and Secure Design
- 9th International Workshop, COSADE 2018, Singapore, April 23-24, 2018, Pro-
ceedings. (2018) 227–244

18. Jungk, B., Petri, R., St ottinger, M.: Efficient Side-Channel Protections of ARX
Ciphers. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(3) (Aug. 2018) 627–653

19. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, Bitslicing and
Masking at 1 GHz. In: Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015,
Proceedings. (2015) 599–619

20 Si Gao, Arnab Roy, and Elisabeth Oswald

20. de Groot, W., Papagiannopoulos, K., de la Piedra, A., Schneider, E., Batina, L.:
Bitsliced Masking and ARM: Friends or Foes? In: Lightweight Cryptography for Se-
curity and Privacy - 5th International Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers. (2016) 91–109

21. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.: On the Cost of
Lazy Engineering for Masked Software Implementations. In: Smart Card Research
and Advanced Applications - 13th International Conference, CARDIS 2014, Paris,
France, November 5-7, 2014. Revised Selected Papers. (2014) 64–81

22. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis, PhD Thesis. K.U.Leuven (1995) http://jda.noekeon.org/.

23. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings. (2013) 313–314

24. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-Share Threshold
Implementations for 4-Bit S-boxes. In: Constructive Side-Channel Analysis and
Secure Design - 4th International Workshop, COSADE 2013, Paris, France, March
6-8, 2013, Revised Selected Papers. (2013) 99–113

25. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
Implementations of GIFT: A Trade-off Analysis. IACR Cryptology ePrint Archive
2017 (2017) 1040

26. Nyberg, K.: Differentially uniform mappings for cryptography. In Helleseth, T.,
ed.: Advances in Cryptology — EUROCRYPT ’93, Berlin, Heidelberg, Springer
Berlin Heidelberg (1994) 55–64

27. Božilov, D., Bilgin, B., Sahin, H.: A Note on 5-bit Quadratic Permutations’ Clas-
sification. IACR Transactions on Symmetric Cryptology 2017(1) (2017) 398–404

28. Meyer, L.D., Bilgin, B.: Classification of Balanced Quadratic Functions. Cryptol-
ogy ePrint Archive, Report 2018/113 (2018) https://eprint.iacr.org/2018/113.

29. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Cryptographic Hardware and Embedded Systems - CHES 2007, 9th Interna-
tional Workshop, Vienna, Austria, September 10-13, 2007, Proceedings. (2007)
450–466

30. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based s-boxes.
Cryptography and Communications (May 2018)

31. Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. In: Fast Software
Encryption, 17th International Workshop, FSE 2010, Seoul, Korea, February 7-10,
2010, Revised Selected Papers. (2010) 333–346

32. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In: Arithmetic
of Finite Fields, First International Workshop, WAIFI 2007, Madrid, Spain, June
21-22, 2007, Proceedings. (2007) 159–176

33. ARM: Arm and thumb-2 instruction set. http://infocenter.arm.com/help/
topic/com.arm.doc.qrc0006e/QRC0006 UAL16.pdf

34. ARM: Thumb 16-bit instruction set. http://infocenter.arm.com/help/topic/
com.arm.doc.qrc0001m/QRC0001 UAL.pdf

35. Cnudde, T.D., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does
Coupling Affect the Security of Masked Implementations? In: Constructive Side-
Channel Analysis and Secure Design - 8th International Workshop, COSADE 2017,
Paris, France, April 13-14, 2017, Revised Selected Papers. (2017) 1–18

Title Suppressed Due to Excessive Length 21

36. Goudarzi, D., Rivain, M.: How Fast Can Higher-Order Masking Be in Software?
In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I. (2017) 567–597

37. Wegener, F., Moradi, A.: A First-Order SCA Resistant AES Without Fresh Ran-
domness. In: Constructive Side-Channel Analysis and Secure Design - 9th Inter-
national Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings.
(2018) 245–262

38. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-Offs for Threshold
Implementations Illustrated on AES. IEEE Trans. on CAD of Integrated Circuits
and Systems 34(7) (2015) 1188–1200

39. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. Technical report, CRI (2011)

40. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F., Fei, Y.: Towards Sound and
Optimal Leakage Detection Procedure. In: Smart Card Research and Advanced
Applications - 16th International Conference, CARDIS 2017, Lugano, Switzerland,
November 13-15, 2017, Revised Selected Papers. (2017) 105–122

A Full table of S8

This Sbox is constructed with 3-layer SPN, where S is a quadratic shift-invariant
permutation: The content of S8 is presented as follow:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 4c 98 db 31 0a b7 83 62 56 14 2f 6f 2c 07 4b

1 c4 dd ac ba 28 46 5e 3f de bf 58 36 0e 18 96 8f

2 89 ca bb f7 59 6d 75 4e 50 6b 8c b8 bc f0 7e 3d

3 bd ab 7f 66 b0 d1 6c 02 1c 72 30 51 2d 34 1f 09

4 13 82 95 0b 77 91 ef 06 b2 5b da 3c ea 74 9c 0d

5 a0 64 d6 1d 19 aa 71 cd 79 c5 e1 52 fc 37 7a be

6 7b e5 57 c6 fe 17 cc 2a 61 87 a3 4a d8 49 04 9a

7 38 f3 e4 20 60 dc a2 11 5a e9 68 d4 3e fa 12 d9

8 26 ed 05 c1 2b 97 16 a5 ee 5d 23 9f df 1b 0c c7

9 65 fb b6 27 b5 5c 78 9e d5 33 e8 01 39 a8 1a 84

A 41 85 c8 03 ad 1e 3a 86 32 8e 55 e6 e2 29 9b 5f

B f2 63 8b 15 c3 25 a4 4d f9 10 6e 88 f4 6a 7d ec

C f6 e0 cb d2 ae cf 8d e3 fd 93 2e 4f 99 80 54 42

D c2 81 0f 43 47 73 94 af b1 8a 92 a6 08 44 35 76

E 70 69 e7 f1 c9 a7 40 21 c0 a1 b9 d7 45 53 22 3b

F b4 f8 d3 90 d0 eb a9 9d 7c 48 f5 ce 24 67 b3 ff
Table 7. The quadratic shift-invariant permutation S

22 Si Gao, Arnab Roy, and Elisabeth Oswald

, where the diffusion layer uses two layers of A:

A =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


The overall Sbox is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 6d f1 8f 3d 80 b4 31 50 82 3f 2e 51 0f 1c c1

1 a0 c4 25 12 5d 67 a4 65 81 1e e0 1d 38 e5 97 05

2 19 f3 da 03 ba 91 07 b5 9e 7f c7 77 32 76 a3 e1

3 98 93 94 5c 7e 17 c2 0a 70 43 cb a6 5e ac 7c a1

4 8b a5 d6 2a 18 ed c0 57 9a 6b 23 06 88 08 2b cd

5 24 7b d2 2c e7 59 69 dc 9f 0e 61 75 20 89 fc ff

6 0c bd 27 9d 16 b9 86 fd 73 d7 b1 5a f0 5f 14 40

7 74 e3 df d5 f2 36 e6 64 2f e9 92 e4 fa 71 be b2

8 9c ce 41 42 b6 63 87 a2 30 29 cc ef 8c 68 c6 3c

9 4a 66 b0 c9 bc dd 8e 45 21 90 d1 ae 1f 62 56 db

A 48 96 f6 ab 8d a7 58 b7 22 f8 ec 28 0d f7 bb f5

B 2d 6a 4d fe eb 0b 01 13 52 ea 7a 10 f9 72 7d 8a

C 6c 6e 34 95 d0 c5 6f 49 ee 4b b3 4c af 3b a8 4f

D 4e 39 c3 9b a9 84 78 11 60 55 aa 85 15 02 fb 09

E 37 ca 79 47 3e f4 d8 e2 53 d9 26 3a 99 e8 c8 33

F de 54 5b b8 1a 83 46 35 d3 ad 44 d4 bf 04 cf 1b
Table 8. The overall Sbox

B Security evaluation on S8

C Other 8-bit Sbox candidates

C.1 S81

3 rounds, differential uniformity = 8, linearity = 72:

Title Suppressed Due to Excessive Length 23

0 2 4 6 8

Time [*8ns] ×104

0

0.05

0.1

0.15

V
ol

t [
*1

V
]

Raw Trace

0 2 4 6 8

Time [*8ns] ×104

0

200

400

600

T
 s

ta
tis

tic
s

1st Order T-test: N=50k, RNGOff

0 2 4 6 8

Time [*8ns] ×104

-5

0

5

T
 s

ta
tis

tic
s

1st Order T-test: N=1M, RNGOn

0 200 400 600 800 1000

Number of traces (N) [*1000]

0

2

4

6

M
ax

im
um

 |T
|

1st Order Maximum |T| v.s. N

0 2 4 6 8

Time [*8ns] ×104

0

20

40

T
 s

ta
tis

tic
s

2nd Order T-test: N=1M, RNGOn

0 200 400 600 800 1000

Number of traces (N) [*1000]

0

20

40

M
ax

im
um

 |T
|

2nd Order Maximum |T| v.s. N

Fig. 5. Software evaluation of S8

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 a4 49 24 92 b1 48 a2 25 03 63 8c 90 31 45 2d

1 4a 77 06 f2 c6 7c 19 6a 21 9e 62 14 8a b2 5a ab

2 94 60 ee d3 0c 7f e5 5f 8d fb f8 47 32 c3 d4 ec

3 42 2f 3d 99 c4 2e 28 0b 15 fa 65 43 b4 dc 57 f6

4 29 6c c0 4c dd 1f a7 ac 18 df fe f0 cb 8b be 37

5 1b c7 f7 e2 f1 aa 8e 1c 64 3a 87 10 a9 70 d9 c9

6 84 91 5e 82 7a e8 33 68 89 1e 5c 02 50 40 16 cf

7 2a a6 f5 b0 ca c1 86 44 69 67 b9 7e ae 27 ed ad

8 52 12 d8 51 81 46 98 96 bb 79 3e 35 4f 0a 59 d5

9 30 e9 bf af fd a3 e1 76 97 cc 17 85 7d a1 6e 7b

a 36 26 8f 56 ef 78 c5 9b e3 71 55 0e 1d 08 38 e4

b c8 41 74 34 0f 01 20 e7 53 58 e0 22 b3 3f 93 d6

c 09 a8 23 4b bc 9a 05 ea f4 d7 d1 3b 66 c2 d0 bd

d 13 2b 3c cd b8 07 04 72 a0 1a 80 f3 2c 11 9f 6b

e 54 a5 4d 75 eb 9d 61 de 95 e6 83 39 0d f9 88 b5

f d2 ba ce 6f 73 9c fc da 5d b7 4e 6d db b6 5b ff
Table 9. The quadratic shift-invariant permutation S

A =



1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0



24 Si Gao, Arnab Roy, and Elisabeth Oswald

0 5000 10000

Time [*2ns]

-4

-2

0

2

4

V
ol

t [
*1

V
]

×10-3 Raw Trace

0 5000 10000

Time [*2ns]

-100

-50

0

50

T
 s

ta
tis

tic
s

1st Order T-test: N=50k, PRNGOff

0 5000 10000

Time [*2ns]

-5

0

5
T

 s
ta

tis
tic

s
1st Order T-test: N=1M, PRNGOn

0 1000 2000 3000 4000 5000

Number of traces (N) [*1000]

0

2

4

M
ax

im
um

 |T
|

1st Order Maximum |T| v.s. N

0 5000 10000

Time [*2ns]

-5

0

5

T
 s

ta
tis

tic
s

2nd Order T-test: N=5M, PRNGOn

0 1000 2000 3000 4000 5000

Number of traces (N) [*1000]

0

2

4

6

M
ax

im
um

 |T
|

2nd Order Maximum |T| v.s. N

Fig. 6. Hardware evaluation of S8

C.2 S82

3 rounds, differential uniformity = 8, linearity = 72:

A =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0



C.3 S83

3 rounds, differential uniformity = 8, linearity = 72:

Title Suppressed Due to Excessive Length 25

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 b5 6b 17 d6 e4 2e d5 ad 9a c9 37 5c ec ab d2

1 5b 77 35 d0 93 38 6e 0c b8 16 d9 be 57 7e a5 45

2 b6 53 ee c2 6a 08 a1 0a 27 40 70 de dc 3c 18 31

3 71 0d 2c 99 b3 48 7d 4f ae 50 fc cb 4b 32 8a 3a

4 6d 39 a6 3b dd 0e 85 9f d4 02 10 0f 43 12 14 8c

5 4e 83 80 84 e0 aa bd 3e b9 f6 78 fe 30 f8 62 63

6 e2 e6 1a d7 58 db 33 79 67 e1 90 df fa fb 9e 56

7 5d c0 a0 f4 f9 e3 97 44 96 89 64 b2 15 8d 74 25

8 da 8b 72 ea 4d 9b 76 69 bb 68 1c 06 0b 5f 3f a2

9 a9 61 04 05 20 6f 1e 98 86 cc 24 a7 28 e5 19 1d

a 9c 9d 07 cf 01 87 09 46 c1 42 55 1f 7b 7f 7c b1

b 73 eb ed bc f0 ef fd 2b 60 7a f1 22 c4 59 c6 92

c c5 75 cd b4 34 03 af 51 b0 82 b7 4c 66 d3 f2 8e

d ce e7 c3 23 21 8f bf d8 f5 5e f7 95 3d 11 ac 49

e ba 5a 81 a8 41 26 e9 47 f3 91 c7 6c 2f ca 88 a4

f 2d 54 13 a3 c8 36 65 52 2a d1 1b 29 e8 94 4a ff
Table 10. The quadratic shift-invariant permutation S

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 4a 94 8e 29 4e 1d 2a 52 56 9c c8 3a 13 54 2d

1 a4 77 ac 2f 39 c7 91 3f 74 e9 26 eb a8 18 5a ba

2 49 ca ee 3d 59 f7 5e a0 72 bf 8f 12 23 c3 7e ce

3 e8 f2 d3 99 4c 7b d7 b0 51 05 30 34 b4 cd 75 5c

4 92 93 95 c4 dd f1 7a 06 b2 fd ef f0 bc de 41 73

5 e4 7c 7f b7 1f aa 24 c1 46 90 87 01 fc 07 9d 36

6 d1 19 e5 7d a7 42 33 86 98 1e f6 20 af 04 61 9a

7 a2 f3 0a 0b 60 1c 68 44 69 76 9b d4 ea d8 b8 da

8 25 47 27 15 2b 64 89 96 bb 97 e3 9f f4 f5 0c 5d

9 65 9e fb 50 df 09 e1 67 79 cc bd 58 82 1a e6 2e

a c9 62 f8 03 fe 78 6f b9 3e db 55 e0 48 80 83 1b

b 8c be 21 43 0f 10 02 4d f9 85 0e 22 3b 6a 6c 6d

c a3 8a 32 4b cb cf fa ae 4f 28 84 b3 66 2c 0d 17

d 31 81 3c dc ed 70 40 8d 5f a1 08 a6 c2 11 35 b6

e 45 a5 e7 57 14 d9 16 8b c0 6e 38 c6 d0 53 88 5b

f d2 ab ec c5 37 63 a9 ad d5 e2 b1 d6 71 6b b5 ff
Table 11. The quadratic shift-invariant permutation S

A =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0



26 Si Gao, Arnab Roy, and Elisabeth Oswald

C.4 S84

3 rounds, differential uniformity = 8, linearity = 72:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 5b b6 42 6d 1b 84 5d da 30 36 73 09 ce ba d2

1 b5 77 60 0d 6c 83 e6 a6 12 61 9d 41 75 2b a5 54

2 6b 06 ee 2c c0 80 1a f5 d8 04 07 74 cd 3c 4d 13

3 24 d0 c2 99 3b e2 82 f4 ea af 56 bc 4b 23 a8 6f

4 d6 c6 0c b3 dd e0 58 ca 81 20 01 0f 34 b8 eb c8

5 b1 38 08 2e 0e aa e8 e3 9b a3 78 ef 9a 8f 26 9c

6 48 6e a1 28 85 8e 33 97 76 e1 c5 fd 05 bf e9 fc

7 d5 6a 5f 4f ac 3e 79 44 96 98 46 e7 51 72 de 52

8 ad 21 8d ae 18 b9 67 69 bb 86 c1 53 b0 a0 95 2a

9 03 16 40 fa 02 3a 1e 89 68 cc 71 7a d7 5e 91 b7

a 63 d9 70 65 10 87 5c 64 1c 17 55 f1 d1 f7 c7 4e

b 37 14 47 cb f0 fe df 7e 35 a7 1f 22 4c f3 39 29

c 90 57 dc b4 43 a9 50 15 0b 7d 1d c4 66 3d 2f db

d ec b2 c3 32 8b f8 fb 27 0a e5 7f 3f d3 11 f9 94

e ab 5a d4 8a be 62 9e ed 59 19 7c 93 f2 9f 88 4a

f 2d 45 31 f6 8c c9 cf 25 a2 7b e4 92 bd 49 a4 ff
Table 12. The quadratic shift-invariant permutation S

A =



0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


C.5 S85

3 rounds, differential uniformity = 8, linearity = 64:

A =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0



Title Suppressed Due to Excessive Length 27

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 9b 37 e7 6e 1b cf f1 dc 1d 36 bc 9f b0 e3 87

1 b9 88 3a 40 6c b3 79 ed 3f 54 61 41 c7 42 0f c1

2 73 a3 11 8a 74 4a 80 f5 d8 52 67 a6 f2 96 db f4

3 7e 04 a8 99 c2 56 82 5d 8f af 84 ef 1e d0 83 06

4 e6 c6 47 2c 22 ec 15 90 e8 92 94 a5 01 95 eb 34

5 b1 3b a4 65 ce aa 4d 62 e5 35 2d b6 b7 89 e9 9c

6 fc 97 08 28 51 d4 33 fd 85 b4 ac d6 05 da ba 2e

7 1f de 5f d5 09 26 df bb 3c a7 a1 71 07 72 0c 32

8 cd f3 8d f8 8e 5e 58 c3 44 20 d9 f6 2a a0 21 e0

9 d1 45 25 fa 29 53 4b 7a 02 cc 2b ae d7 f7 68 03

a 63 16 76 48 49 d2 ca 1a 9d b2 55 31 9a 5b c4 4e

b cb 14 6a fe 5a 6b 6d 17 6f ea 13 dd d3 b8 39 19

c f9 7c 2f e1 10 7b 50 70 a2 7d a9 3d 66 57 fb 81

d 0b 24 69 0d 59 98 ad 27 0a 7f b5 8b 75 ee 5c 8c

e 3e f0 bd 38 be 9e ab c0 12 86 4c 93 bf c5 77 46

f 78 1c 4f 60 43 c9 e2 23 0e 30 e4 91 18 c8 64 ff
Table 13. The quadratic shift-invariant permutation S

