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Abstract

Many advanced lattice cryptography applications require efficient algorithms for inverting the so-
called “gadget” matrices, which are used to formally describe a digit decomposition problem that pro-
duces an output with specific (statistical) properties. The common gadget inversion problems are the
classical (often binary) digit decomposition, subgaussian decomposition, Learning with Errors (LWE) de-
coding, and discrete Gaussian sampling. In this work, we build and implement an efficient lattice gadget
toolkit that provides a general treatment of gadget matrices and algorithms for their inversion/sampling.
The main contribution of our work is a set of new gadget matrices and algorithms for efficient subgaus-
sian sampling that have a number of major theoretical and practical advantages over previously known
algorithms. Another contribution deals with efficient algorithms for LWE decoding and discrete Gaussian
sampling in the Residue Number System (RNS) representation.

We implement the gadget toolkit in PALISADE and evaluate the performance of our algorithms both
in terms of runtime and noise growth. We illustrate the improvements due to our algorithms by imple-
menting a concrete complex application, key-policy attribute-based encryption (KP-ABE), which was
previously considered impractical for CPU systems (except for a very small number of attributes). Our
runtime improvements for the main bottleneck operation based on subgaussian sampling range from 18x
(for 2 attributes) to 289x (for 16 attributes; the maximum number supported by a previous implementa-
tion). Our results are applicable to a wide range of other advanced applications in lattice cryptography,
such as GSW-based homomorphic encryption schemes, leveled fully homomorphic signatures, other forms
of ABE, some program obfuscation constructions, and more.

1 Introduction

Many advanced applications of lattice cryptography require the generation of a random integer matrix
A ∈ Zn×mq (with uniform entries modulo q) together with a strong trapdoor (typically a short∗ basis S
for the lattice defined by A as a parity check matrix). The strong trapdoor is used to efficiently “invert”
the classical Short Integer Solution (SIS) and Learning with Errors (LWE) functions fA(x) = Ax and
gA(s, e) = stA + et associated to the matrix A. Theoretical solutions to these trapdoor generation and
function inversion problems have long been known [1, 6, 7, 33, 25]. However, the trapdoor constructions
of [1, 6] and generic inversion algorithms of [7, 33, 25] are rather complex, inefficient, and not suitable for
practice.

An important step towards bringing advanced lattice-based cryptographic applications to practice was
taken in [37], where a new notion of trapdoor (and associated generation algorithm) is proposed. The
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trapdoor of [37] transforms the problem of inverting the random functions fA, gA to the problem of inverting
the same type of functions fG, gG, but for a specific, carefully designed “gadget” matrix G, which admits
much simpler and faster inversion algorithms. Gadget matrices similar to the one of [37] had already been
used in a number of previous works, starting from Ajtai’s first construction of “solved instances of the
shortest basis problem” [1], and including virtually all works on (fully) homomorphic encryption schemes
based on the LWE problem (e.g., see [12, 26]); though different works use the gadget matrix for somehow
different purposes. In fact, there are several inversion problems associated to the gadget matrix G:

• Digit Decomposition: This is the problem of expressing an arbitrary vector u ∈ Znq as a short vector
x such that Gx = u (mod q). This is perhaps the most basic use of the gadget matrix G, and plays
an important role in the key-switching and multiplication operations of fully homomorphic encryption
(FHE) schemes. For example, the binary decomposition gadget matrix G = [I, 2I, . . . , 2k−1I] allows
to write any vector with entries in Zq as a combination

∑
i 2ixi of vectors xi ∈ {0, 1}n with the {0, 1}

coefficients corresponding to the binary digits of the entries in u.

• Subgaussian Decomposition: This is a type of randomized digit decomposition, where a short
vector x satisfying Gx = u (mod q) is chosen according to a distribution with desirable statistical
properties. This alternative to the standard binary decomposition was suggested in [5] as a method
to improve the noise growth in homomorphic computations using variants of the GSW homomorphic
encryption scheme [26], and is potentially applicable to the key-switching and homomorphic multipli-
cation operations of many other FHE schemes.

• LWE Decoding: Given stG + et for a sufficiently small error vector e, recover both s and e. This is
the (deterministic) inversion problem for the standard (injective) LWE function gG, which is used, for
example, in the decryption algorithms of LWE-based cryptosystems.

• Discrete Gaussian Sampling: Produce a sample from a discrete Gaussian distribution over the
set of all integer vectors x such that fG(x) = u. This problem was the main focus of [37], and is
used, for example, in hash-and-sign lattice-based signatures and trapdoor delegation for identity-based
encryption, among many other applications.

Very efficient gadget inversion algorithms were given in [37], but only for the Discrete Gaussian Sampling
and LWE Decoding problems, and in the very special setting where the modulus q = bk is the power of a
small base b. For the case of Discrete Gaussian Sampling, an equally efficient, but more general solution,
was recently proposed in [23] for arbitrary modulus q, expanding the range of advanced lattice cryptography
applications that admit a reasonably practical implementation. (E.g., see [19, 17, 30, 9, 29].) We remark that
trapdoor inversion is the most complex operation in many applications of lattice cryptography, and effective
solutions to gadget inversion play a critical role in determining the efficiency, quality and other performance
characteristics of higher-level algorithms and the final applications.

The main focus of our work is Subgaussian Decomposition, a problem that has received little or no atten-
tion so far, and still has the potential to substantially improve the efficiency of many important applications.
The importance of subgaussian sampling is easily explained by comparing it to the related problems of Digit
Decomposition and Discrete Gaussian Sampling. We recall that lattice-based cryptography directly supports
linear homomorphic operations, but ciphertexts are noisy, and their quality degrades when performing ho-
momorphic operations: the noise of a sum c0 + c1 is the sum of the noise in the original ciphertexts c0, c1.
More critically, when multiplying a ciphertext by a constant α, the noise scales by a factor α, which can be
arbitrarily large. So, one needs to limit linear combinations to use only small coefficients. This is typically
done using binary digit decomposition: given encryptions ci of 2im (for i = 0, . . . , k−1), one can compute an
encryption of αm (for a large α < 2k) by taking a 0−1 combination

∑
i αici, where α =

∑
i 2iαi is the binary

representation of α. This way, the resulting noise scales linearly with k = logα, rather than α. Subgaussian
decomposition allows to make the resulting noise even smaller: due to cancellations between randomly chosen
coefficients, subgaussian decomposition has a “pythagorean additivity” property that makes the noise grow
only as O(

√
k). The gain is even more substantial when adding many (say n) ciphertexts, in which case the
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noise growth is improved by a factor
√
nk. At the other end of the spectrum, pythagorean growth can also

be achieved using Discrete Gaussian Sampling, as gaussian distributions are by definition also subgaussians.
However, gaussian sampling is considerably more costly than digit decomposition, both in terms of running
time, randomness and output quality: even with the improved algorithms of [23, 37], Discrete Gaussian
Sampling is much more complex than a simple digit decomposition, and it necessarily produces “digits”
(i.e., coefficients) that are larger than naive binary decomposition roughly by a factor Ω(

√
log k). The added

algorithmic complexity and noise overhead make gaussian sampling unattractive in practice, and, perhaps
not surprisingly, all implementations we are aware of use digit decomposition whenever possible.

Subgaussian decomposition has the potential to offer the best of both worlds: pythagorean additivity, but
without the Ω(

√
log k) noise overhead of a full-blown discrete gaussian sampler. These potential advantages

were already outlined in [5], but they were so far considered only of theoretical interest. In fact, none of the
subsequent improvements and implementations [21, 15, 16, 39] make use of subgaussian sampling.

Our contribution The main contribution of our work is a set of new gadget matrices and algorithms for
efficient subgaussian sampling. The improvements are not just theoretical/asymptotical, but very practical,
as demonstrated by a concrete complex application: an implementation of a Key-Policy Attribute-Based
Encryption (KP-ABE) scheme that speeds up previous implementation efforts by more than one order of
magnitude. (See below and Sections 7 and 8 for details.) On the theoretical side, our algorithms and
gadgets result in pythagorean error growth and optimal (essentially linear) time complexity. In practice, the
algorithms are easy to implement and have very small hidden constants both in the number of operations they
perform and the subgaussian parameters, offering a very attractive alternative to the naive deterministic digit
decomposition methods currently used in the implementation of FHE and other related pritimives. Moreover,
our gadgets and algorithms have a number of other useful properties that make them even more attractive
in practice:

• All our algorithms require very little storage and only a modest (essentially optimal) amount of ran-
domness. In particular, our gadget matrices have a very regular structure, and do not need to be
explicitly stored.

• We support an arbitrary modulus q. This is not just of theoretical interest, as fast implementations of
lattice cryptography [34, 36, 8, 32] require moduli of special form in order to make use of the Number
Theoretic Transform (NTT).

• Our gadgets and algorithms support the “Full RNS” and “double CRT” techniques used to implement
lattice cryptography with large modulus without the need for arbitrary-precision arithmetic libraries
[24, 8, 32].

Beside subgaussian decomposition, we also provide very efficient algorithms for LWE Decoding and
Discrete Gaussian Sampling that improve previous work [37, 23] by supporting arbitrary moduli and Full RNS
implementations. (For Discrete Gaussian Sampling, algorithms supporting arbitrary moduli were already
provided in [23], but for gadget matrices that do not support Full RNS implementations.)

Taken together, our algorithms provide a complete lattice gadget toolkit, offering efficient solutions to
the full range of inversion problems encountered in lattice cryptography: Subgaussian Decomposition, LWE
Decoding, and Discrete Gaussian Sampling. Our results are not just of theoretical interest, but are also
relevant to the implementation and use of advanced lattice cryptography applications.

In order to demonstrate the applicability of our results, we developed an open-source optimized imple-
mentation of our algorithms and used it to implement a complex application: a key-policy attribute-based
encryption scheme, which utilizes in a single setting most of the new algorithms developed in this paper.
Our experimental results strongly support the theoretical analysis, showing both that (with proper algo-
rithms and implementations) the advantages of pythagorean additivity clearly outweigh the modest increase
in computational cost over naive bit decomposition, and that the overall impact on the performance of lat-
tice applications can be substantial. Our CPU implementation of homomorphic access policy evaluation for
keys and ciphertexts (the most expensive operation in KP-ABE schemes) outperforms the previous CPU
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implementation (for a comparable level of security) by a factor ranging from 18x to 289x as the number of
policy attributes grows from 2 to 16. For higher numbers of attributes, previous CPU implementations were
not feasible (only a GPU implementation is known), while we were able to run our implementation within
reasonable running times for as many as 128 attributes. Other operations are also faster in our implementa-
tion, and memory requirements are also much smaller (by more than a factor of 2x in the simplest case of 2
attributes, and more than one order of magnitude at 16 attributes.) In summary, our results show that using
our toolkit gadget inversion is no longer the bottleneck in efficient implementations of lattice cryptography,
and it can be profitably used to achieve better performance and scalability both in theory and practice.

While in this paper we focused on the algorithmic core of a general gadget toolkit, and on a specific (but
representative) application, our results are applicable to a wide range of other advanced applications in lattice
cryptography. These include the use of subgaussian decomposition in GSW-based homomorphic encryption
schemes [21, 16, 15], leveled fully homomorphic signatures [28], other forms of ABE [4], obfuscation of finite
automata and branching programs using graph-induced encoding [31], and more.

Techniques Our efficient lattice gadget toolkit is based on better algorithmic solutions to known problems,
but also on a new class of gadget matrices that enable our algorithmic improvements. While gadget matrices
of the type used in [37] and our work are quite common in lattice cryptography, they have never been formally
defined. In fact, as different applications and algorithms use the gadget matrices in somehow different ways,
it was not even clear if one could meaningfully define gadget matrices as abstract mathematical objects, and
most of previous works use the term “gadget” informally to identify specific constructions.

The starting point of our investigation is a simple, intuitive definition of gadget matrix, which turns out
to be relevant to the solution of all algorithmic problems studied in this work. For any dimension n and
modulus q (typically mandated by the application), a gadget of quality β is a matrix G ∈ Zn×wq such that
any u ∈ Znq can be represented as Gx = u for some small integer vector x ∈ Zw of norm ‖x‖ ≤ β. This
definition is directly motivated by the Digit Decomposition problem, but as we show in Section 3, it is already
enough to enable theoretically efficient solutions to all of the algorithmic problems discussed above. (See
Theorem 3.1 and Corollary 3.1.) The generic solutions obtained from Corollary 3.1 are not suited for practice,
both in terms of algorithmic complexity and output quality. Still, a generic definition of gadget is useful to
delimit a design space which extends well beyond the simplest (and perhaps most natural) construction of
decomposition gadget [1, 2, 22, . . . , 2k−1] corresponding to the the standard binary representation of a number
as a sequence of bits. Other gadgets used in our work are digit decomposition gadgets [1, b, b2, . . . , bk−1] with
a larger base b > 2, the CRT gadget [g1, . . . , gk] where gi = ((q/qi)

−1 mod qi) · (q/qi) [11] (for composite
moduli with relatively prime factorization q =

∏
i qi) as well as hybrids between the two approaches where

each gi is replaced by an appropriate multiple of a vector of the form [1, b, b2, . . . , bk−1].
Our subgaussian decomposition algorithms use ideas and techniques from recent work on discrete gaussian

sampling for arbitrary modulus [23]. In particular, we use the SD matrix factorization for the lattice defined
by G, and then perform subgaussian decomposition with respect to matrix D, which is sparse and triangular,
and admits much faster algorithms. A solution to the original problem is obtained using S as a linear
transformation. Naturally, the details of our subgaussian decomposition algorithm for D are quite different
from the algorithms in [23], as that paper solves a different problem (discrete gaussian sampling.) But, as our
algorithm can sample an output vector x with respect to an arbitrary (not necessarily isotropic) subgaussian
distribution, there is no need to apply gaussian correction terms (as done in [23]), and our algorithm is
much simpler and more efficient. Our efficient LWE decoding algorithm is analogous. Specifically, the
decoding problem can be seen as decoding an input to a lattice basis q(SD)−t = S−t(q ·D−t). Now we can
solve the decoding problem by first using St as a linear transformation, then by decoding the transformed
input to the lattice generated by q · D−t. This lattice is efficiently decodable since it, too, has a sparse,
triangular basis. Our toolkit implementation focuses on providing full ring and RNS support for all gadget
algorithms because ring multiplications can be efficiently computed via NTTs and large integer operations
can be efficiently performed using native arithmetic in RNS. Full RNS / double CRT constructions based on
power-of-two cyclotomic rings provide the best performance for the majority of known lattice cryptography
primitives, as illustrated by our experimental results for subgaussian sampling and key-policy attribute-based
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encryption.

Related Work The first use of subgaussian decomposition appears in [5] in a theoretical form, not opti-
mized for implementations. While the use of CRT gadgets for digit decomposition in the implementation of
FHE schemes [8, 32] or even the foundation of Ring LWE [35] is not new, their applicability in the context of
Gaussian or subgaussian sampling is, to the best of our knowledge, novel. Our CRT gadget algorithms can
be seen as an extension of [37, 23, 11]. The CRT-like gadget proposed in [31] can be considered as a special
case of ours when bi = pi (assuming that qi = pei ), which implies the gagdet noise width is larger than pi. In
our CRT gadget, bis can be chosen independently from CRT moduli qi, enabling significantly more efficient
implementations in the ring setting. Another related work is a deterministic, balanced digit decomposition
for the “double CRT/RNS” gadget [24] in the “LoL” library [18, 40] (initially unknown to the authors).

In the ring setting, one method [20] to achieve better-than-generic, n log2 q, efficiency of “power-of-b”
gadget discrete Gaussian sampling is to use the FFO style of discrete Gaussian samplers from [22] and [23,
Section 4]. This incurs a logarithmic slowdown, log n, in time and space compared to using [23, Section 3]
on the coefficients independently, which has n log q time and space efficiency. Further, Section 6 of this work
extends [23, Section 3] to the “double-CRT” setting [24], freeing implementations using discrete Gaussian
gadget sampling from multi-precision numbers when the modulus is over 64 bits.

Organization The rest of the paper is organized as follows. In Section 2 we review some preliminary
material. In Section 3 we present our general definition of gadget matrices. Next, in Section 4 and Section 5
we present our core gadgets and algorithms for subgaussian decomposition and LWE decoding with arbitrary
modulus. In Section 6 we extend these algorithms to large composite moduli to allow efficient operations
in CRT form without the need of multiprecision integer arithmetic. Section 7 and 8 we present our imple-
mentation and experimental results. The generic subgaussian version of Babai’s nearest plane is described
in the Appendix.

2 Preliminaries

We indicate numbers with lowercase letters, such as z ∈ Z, vectors as bold lowercase letters, z ∈ Zn, and
matrices as uppercase bold letters, M ∈ Rn×n. The default norm used is the l2 norm of a vector unless
stated otherwise, though we will often use the max, or l∞, norm. For a real number r, denote drc as the
deterministic rounding function to a nearest integer of r. Rounding a real vector is applied analogously, entry-
wise. Many computations will be done over the integers modulo q, Zq. We view Zq through its balanced
coset representatives in (−q/2, q/2] unless stated otherwise. For a positive integer base b and a non-negative
integer u < bk, u’s b-ary decomposition is a vector [u]kb = (u0, · · · , uk−1) ∈ {0, · · · , b − 1}k and satisfies∑
i b
iui = u. When b = 2, this is simply u’s binary decomposition. Recall the Chinese Remainder Theorem

for modular arithmetic. Let q be a positive integer with a prime factorization of q = pe11 · · · p
el
l = q1 · · · ql.

Then by the Chinese Remainder Theorem (CRT), we have Zq ∼= Zq1 × · · · × Zql . The isomorphism φ(·) is
given by φ(a) = (a mod q1, · · · , a mod ql) and its inverse is φ−1(a1, · · · , al) =

∑
i(ai)q

∗
i q̂i where q∗i := q

qi

and q̂i := (q∗i )−1 mod qi.
For a probability distribution χ, we denote e← χ to mean e is sampled from χ. When χ is trivial (often

over a number x), we will use e ← x to be variable assignment as well. We will need the following, known
as the Geršgorin Circle Theorem.

Theorem 2.1 (Geršgorin) Let M be an n× n matrix with complex entries. For each row i, let ri be the
sum of its non-diagonal entries’ magnitudes: ri =

∑
j 6=i |M(i, j)|. Then, the eigenvalues of M are all in⋃

i{z ∈ C : |z −M(i, i)| ≤ ri}.
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2.1 Subgaussian Random Variables

A random variable X over R is subgaussian [35, 42] with parameter α > 0 if its (scaled) moment generating
function satisfies E[exp(2πtX)] ≤ exp(πα2t2) for all t ∈ R. Scaling a subgaussian X by any c ∈ R to c ·X
yields a subgaussian random variable with parameter |c|α. If X is subgaussian with parameter α, then its
tails are dominated by a Gaussian parameterized by α, Pr{|X| ≥ t} ≤ 2 exp(−πt2/α2). Any B-bounded
centered (E[X] = 0) random variable X is subgaussian with parameter B

√
2π. When X is subgaussian

with parameter α and Y conditioned on X taking any value is subgaussian with parameter β, X + Y is
subgaussian with parameter

√
α2 + β2. This property is called Pythagorean additivity. The proof of the

following Lemma is derived by expanding E[exp(2πt(X + Y ))].

Lemma 2.1 Let X,Y be discrete random variables over R such that X is subgaussian with parameter α and
Y conditioned on X taking any value is subgaussian with parameter β. Then, X + Y is subgaussian with
parameter

√
α2 + β2.

Proof: Expanding the moment generating function gives the result:

E[exp(2πt(X + Y ))] =
∑
z

∑
χ

Pr{Y = z − χ|X = χ}Pr{X = χ} exp(2πtz)

=
∑
χ

Pr{X = χ} exp(2πtχ)E[exp(2πtY )|X = χ]

≤ exp(πt2(α2 + β2)).

�

A random vector x over Rn is subgaussian with parameter α > 0 if 〈x,u〉 is subgaussian with parameter
α for all unit vectors u. Using a similar calculation to the above, one can show that if each coefficient of a
random vector is subgaussian with parameter α conditioned on the previous coefficients taking any values,
then the vector is subgaussian with parameter α. The slightly more general fact below is needed for our
algorithms. Its proof is analogous to the proof of Lemma 2.1.

Lemma 2.2 Let x be a discrete random vector over Rn such that each coordinate xi is subgaussian with
parameter αi given the previous coordinates take any values. Then, x is a subgaussian vector with parameter
maxi{αi}.

Proof: As before, we expand the moment generating function:

E[exp(2πt 〈x,u〉)] =
∑
χ

Pr{x = (χ1, · · · , χn)} exp(2πt 〈χ,u〉)

≤ exp(πt2
∑
i

α2
iu

2
i )

≤ exp(πt2 max
i
αi

2‖u‖2).

The jump to the inequalities skips the straightforward calculations (nearly the same calculations as in
Lemma 2.1). �

We emphasize this fact, for without it one is left with an unnecessary
√
n term in the subgaussian

parameter of subgaussian vectors. Now, that the sum of independently generated random vectors x and y
subgaussian with parameters α and β is a subgaussian vector with parameter

√
α2 + β2 immediately follows.

A main algorithm presented in this paper will rely on a linear transformation of a discrete subgaussian
vector.

Lemma 2.3 (Simplified [35, Corollary 2.3]) Let x be a subgaussian random vector with parameter α
and let M be a linear transformation. Then, Mx is a subgaussian vector with parameter αλmax(MMT )1/2

where λmax(·) is the largest eigenvalue.
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2.2 Lattices

A lattice is a discrete subgroup of Rn. Equivalently, a lattice Λ can be represented as the set of all integer
combinations of a basis B = [b1, · · · ,bk] ∈ Zn×k, Λ = {

∑k
1 zibi : zi ∈ Z} = L(B). Notice that any

permutation of basis vectors is another lattice basis. We only consider full-rank lattices (k = n). A lattice
is an integer lattice if it is a sublattice of Zn. The dual lattice of Λ, denoted as Λ∗, is the set Λ∗ = {z ∈
Rn : 〈z,Λ〉 ⊆ Z}. Given a basis B for Λ, its dual basis is B−t which is also a basis for Λ∗. We will consider
direct sums of lattices, Λ = Λ1 ⊕ · · · ⊕ Λl and their dual lattices Λ∗ = Λ∗1 ⊕ · · · ⊕ Λ∗l . The number λi(Λ) is
the radius of the smallest ball containing i linearly independent lattice vectors.

Given a basis B = [b1, · · · ,bn] for a lattice Λ, its Gram-Schmidt orthogonalization (GSO) is the set of

vectors B̃ = [b̃1, · · · , b̃n] where b̃i is the component of bi orthogonal to span(b1, · · · ,bi−1). The GSO is not

another basis for the lattice in general, but it gives us a tiling of Rn given by Rn = ∪x∈Λ(x+P1/2(B̃)) where

P1/2(B̃) := B̃ · (−1/2, 1/2]n. Note that the GSO depends on the order of the vectors given. We define the
reverse order GSO analogously. The algorithms presented in this paper will all be instantiations of Babai’s
greedy decoding algorithm known as the nearest plane algorithm [7].

Theorem 2.2 There is an algorithm which given B, B̃, t ∈ Rn returns the unique lattice point in t+P1/2(B∗)

in time O(n2) and memory O(n3)†.

Discrete Gaussians Let A ⊂ Rn be a discrete set, and let the (spherical) Gaussian function with width s
and center c ∈ Rn be ρs,c(x) = exp(−π‖x−c‖2/s2). Let ρs,c(A) =

∑
y∈A ρs,c(y). The smoothing parameter

of a lattice [38] for some ε > 0, is dentoted as ηε(Λ), and it is defined as the minimum s > 0 such that
ρ(s ·Λ∗) ≤ 1+ ε. When s = 1 and c = 0, we denote this as ρ(·). Then, the discrete Gaussian distribution has
probability ρs,c(x)/ρs,c(A) for each x ∈ A. This distribution is denoted as DA,s,c. Polynomial time discrete
Gausisan sampling algorithms for general lattices and their cosets, with width above the GSO length of the
input basis (times a small factor, ω(

√
log n) or O(

√
log n)), are given in [25, 13].

q-ary Lattices Throughout this paper we will mostly be concerned with q-ary lattices. These are full-
rank integer lattices with q · Zk as a sublattice. Fix an integer q > 0 to be used as a modulus and let
m > w > n. A matrix A ∈ Zn×mq is primitive if AZmq = Znq . Given an A ∈ Zn×mq , we define the following

lattices: Λ⊥q (A) = {z ∈ Zm : Az = 0 mod q}, and Λq(A) = {v ∈ Zm : ∃ s ∈ Zn, vt = stA mod q}.
These lattices satisfy the following duality relation: Λ⊥q (A)∗ = q · Λq(A). Further, the cosets of Λ⊥q (A),

Λ⊥u (A) := {z ∈ Zm : Az = u mod q}, are in bijection with Znq when A is primitive. Let G be an arbitrary,

primitive matrix over Zq. The following sampling problem, defined on the integer cosets of Λ⊥q (G), is needed
for many advanced lattice crypto-schemes.

Definition 2.1 For a primitive G ∈ Zn×wq , the subgaussian decomposition problem with parameter α for G
is to sample vectors x ∈ Zw subgaussian with parameter α such that u = Gx mod q for arbitrary u given
as input.

Another name for this problem is subgaussian sampling. A generic adaptation of Babai’s algorithm (analyzed
in the Appendix, called the subgaussian nearest plane algorithm) is used in [5] (AP14) to achieve subgaussian
decomposition for a specific G. In general, this generic algorithm runs in time O(k2), and uses space O(k3).
Another, related problem is the discrete Gaussian sampling problem.

Definition 2.2 For a primitive G ∈ Zn×wq , the discrete Gaussian sampling problem with width s for G is
to sample vectors x ∈ Zw distributed as DZw,s conditioned on Gx mod q = u for arbitrary u given as input.

Efficient solutions with small s for commonly used G’s are given in [37, 23]. Both of the above sampling
problems have polynomial time solutions using randomized versions of Babai’s algorithm. In addition, we
will consider decoding the q-ary code defined by G for an arbitrary, primitive G.

†This assumes the GSO has entries each described in O(n) bits
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Definition 2.3 For a primitive G ∈ Zn×wq , the LWE decoding problem with tolerance δ on G is to return s
given stG + et mod q for an error ‖e‖∞ < δ.

Specifically, we want to efficiently decode G while maximizing δ ∈ [0, q/2). An efficient LWE decoding
algorithm for a specific, commonly used G (b = 2 in the paragraph below) with tolerance q/4 is provided in
[37].

A G commonly used in lattice crypto-schemes is defined as follows. Fix an integer b ∈ (1, q), known as the
base, and let k = dlogb qe. The block-diagonal gadget matrix is G = In⊗gt with blocks gt := (1, b, · · · , bk−1).
A common basis for Λ⊥q (gt) [23] Sq has a sparse, triangular factorization Sq = SD [23] (restated in Section 4.2
in this paper).

3 Gadget Matrices

In order to guide our search for gadget matrices with efficient inversion and sampling algorithms, we give
a simple general definition of gadget. The definition is modeled after the properties required by the digit
decomposition problem, perhaps the simplest and most natural application of gadgets. But, as we will see,
this simple characterization is enough to guarantee (theoretical) solutions to all problems that arise in the
application of gadgets in lattice cryptography.

Definition 3.1 For any finite additive group A, an A-gadget of size w and quality β is a vector g ∈ Aw such
that any group element u ∈ A can be written as an integer combination u =

∑
i gi ·xi where x = (x1, . . . , xw)

has norm at most ‖x‖ ≤ β.

We are primarily interested in gadgets for A = Znq , in which case the gadget is conveniently represented
as a matrix G ∈ Zn×wq such that for any u ∈ Znq there is a vector x ∈ Zw of length ‖x‖ ≤ β such that Gx = u
(mod q). We defined gadgets in terms of abstract groups to emphasize that the dimension n and modulus
q should be thought of as part of the problem specification (typically mandated by the target application),
while the w and β describe the size and quality of the solution. In particular, for any given n and q, one may
consider multiple gadgets achieving different values of w and β. Naturally, smaller w and β are preferable,
but as we will see there is a natural tradeoff between these two values, and one may increase β in order to
reduce w and vice versa.

Before establishing a formal connection between the above definition and the notion of gadget informally
defined in previous work, we make some important observations.

• The matrix G is necessarily primitive, i.e., GZwq = Znq . Moreover, any primitive matrix is a Znq -gadget
for a sufficiently large β = maxu min{‖x‖ : Gx = u (mod q)}.

• If g ∈ Zk is a Zq-gadget of quality β, then G = I ⊗ gt ∈ Zn×wq is a Znq -gadget of size w = kn and
quality

√
nβ.

• All definitions and constructions are easily adapted to ideal lattices (as used in the Ring-SIS and
Ring-LWE problems) simply by considering “structured gadgets” of the form G ⊗ [α1, . . . , αn] where
[α1, . . . , αn] is an appropriate Z-basis of the underlying ring.

Based on the above observations, constructions may focus on the case n = 1, i.e., gadget vectors g ∈ Zwq ,
and then extend the solution to larger n (and possibly to the ring setting) using general techniques. In fact,
this is how larger gadgets are built in all applications we are aware of. However, all the results in this section
hold for arbitrary matrices, not necessarily with this tensor structure. So, for the sake of generality, we use
matrix notation.

In order to justify our abstract definition of gadget, we show that it guarantees all other properties
of gadgets used by lattice cryptography: it maps the gaussian distribution to an almost uniform vector
GDw

Z,s ≈ Znq (as needed by the trapdoor generation algorithm of [37]), and it supports efficient algorithms to

invert the LWE function gG(x, e), for discrete gaussian sampling on f−1
G (u), and for subgassian decomposition
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with respect to G. All these properties are proved by bounding the relevant parameters of the lattice Λ⊥q (G)
defined by G.

Theorem 3.1 For any gadget matrix G ∈ Zn×wq of quality β, the lattice L = Λ⊥q (G) has a basis S with

orthogonalized length ‖S̃‖ ≤ 2β +
√
w, successive minima λ1(L), . . . , λw(L) ≤ 2β +

√
w and smoothing

parameter η(L) ≤ (2β +
√
w)ω(

√
log n).

Proof: We first bound the covering radius µ(L). Let x ∈ Rw be arbitrary, and let y = bxe be a nearest point
in Zw to x. There exists some integer vector z of norm at most β such that Gz = −Gy mod q. Therefore,
the vector y + z is in Λ⊥q (G) and is at distance at most β+

√
w/2 from x by two applications of the triangle

inequality.
The other bounds immediately follow from general relations (satisfied by any lattice) λw(L) ≤ 2µ(L) and

η(L) ≤ λn(L)ω(
√

log n). Finally, any lattice has a basis with orthogonalized length ‖S̃‖ ≤ λw(L). �

Note, the proof and theorem easily generalizes to any finite abelian group. Using the bound on the
smoothing parameter, and the short (orthogonalized) basis S ∈ Zw×w, we immediately get the following
applications. (E.g., for the subgaussian decomposition algorithm see the Appendix.)

Corollary 3.1 For any gadget matrix G ∈ Zn×wq of quality β and s ≥ (2β +
√
w)
√
ω(log n), the distribu-

tion GDw
Z,s is statistically close to the uniform distribution over Znq . Moreover, there are polynomial-time

algorithms for the following problems:

• Discrete Gaussian Sampling for the function fG(x) = Gx (mod q) and input distribution Dw
Z,s with

s ≥ (2β +
√
w)
√
ω(log n).

• Subgaussian Decomposition w.r.t G with parameter s ≥ (2β +
√
w) ·
√

2π.

• LWE decoding of gG(s, e) for any s ∈ Znq and ‖e‖∞ ≤ q/2 · (2β +
√
w).

We remark that the general solutions provided by this corollary are of theoretical interest, and not
suitable for practice. They are provided here only as a general feasibility result, in order to identify classes
of good gadget matrices. The rest of the paper is dedicated to showing that by carefully choosing the gadget
vector g, one can obtain constructions and algorithms that are not only theoretically efficient, but also easy
to implement and extremely fast.

4 Subgaussian Gadget Decomposition

In this section we present our main algorithms for the problem of subgaussian gadget decomposition, defined
in Section 2.2, using the gadget matrix G = In ⊗ gt. Since this decomposition G−1(u) = (g−1(ui))

n
i=1 can

be computed one component at a time (even in-parallel!) we restrict our attention to efficiently computing
the subgaussian function g−1 : Zq → Zk in the one-dimensional case, i.e., for n = 1.

The gadgets and algorithms in this section are parametrized by a “base” integer b, which we consider as
fixed throughout the section, but can be used to achieve different efficiency/quality trade-offs. We distinguish
two cases, depending on whether the modulus is a power q = bk of the base b, or an arbitrary integer q < bk.
In either case, no assumption is made about the factorization of the modulus q. Later, in Section 6, we will
extend the gadgets and algorithms from this section to provide optimized treatment of large moduli with
useful co-prime factorization q =

∏
i qi, where the input u ∈ Zq is given in CRT form (u mod q1, . . . , u mod

ql).
All algorithms in this section use the same gadget gt := (1, b, · · · , bk−1), for k = dlogb qe, but with

different subgaussian decomposition procedures depending on the whether q is a power of b. Notice that gt

is a Zq-gadget of size k and quality β =
√
k(b/2).
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The main result of this section is summarized in the following theorem.‡

Theorem 4.1 For any integer base b > 1, integer modulus q > 1, k = dlogb qe and gadget gt = [1, b, · · · , bk−1],
there is a subgaussian decomposition algorithm g−1 as follows:

• If q = bk, the algorithm runs in linear O(k) time (and space), uses log2 q random bits, and achieves
subgaussian parameter at most (b− 1)

√
2π.

• If q 6= bk, the algorithm runs in linear O(k) time (and space), uses at most k log2 q random bits, and
achieves subgaussian parameter at most (b+ 1)

√
2π,

Notice how the generic solution obtained by applying Theorem 3.1 to our gadget g only implies a polyno-
mial time inversion algorithm with subgaussian parameter (b+1)·

√
2kπ, and quadratic O(k2) time complexity

(after a cubic time O(k3) preprocessing). Depending on implementation details, this generic solution would
also require the use of high precision floating point numbers§ and a substantial amount of randomness for
high precision sampling. (For completeness, we provide a more detailed analysis of the generic solution in
the Appendix.) By contrast, the solution described in Theorem 4.1 is much more efficient (linear time and
space, with no need for preprocessing) and also achieves a smaller subgaussian parameter by a factor of

√
k.

Moreover, our specialized algorithms use a relatively small (almost optimal) number of random bits, and
can be implemented without the need for high-precision floating-point arithmetic.

A proof of Theorem 4.1 is given by the algorithms presented and analyzed in the next two subsections
for the two separate cases q = bk and q < bk.

4.1 Power-of-Base Case

Here we consider the subgaussian decomposition problem for the gadget g = (1, b, . . . , bk−1) when q = bk,
and the input is given as a positive coset representative u ∈ {0, 1, · · · , q − 1}. Conceptually, our solution to
this problem is just a specialized/optimized version of the randomized-rounding variant of Babai’s nearest
plane algorithm [7, 5]. The general algorithm uses the Gram-Schmidt orthogonalization of a basis for the
lattice Λ⊥q (gt) associated to the gadget g. The optimization is based on the observation (from [37]) that for

our gadget g and modulus q = bk, the lattice Λ⊥q (gt) has a very simple basis S, and an even simpler GSO S̃:

S =


b

−1
. . .

. . . b
−1 b

 , S̃ = b · I.

Using this special structure, there is no need to explicitly compute and store the GSO, and the randomized-
rounding nearest-plane algorithm can be implemented in linear time and space O(k). The specialized algo-
rithm is best illustrated when b = 2, in which case it computes a randomized “bit” decomposition of u as
follows:

1. For i = 0, · · · , k − 1:

(a) if u is even, then set xi ← 0,

(b) if u is odd, then choose xi ← {−1,+1} uniformly at random

Update u← (u− xi)/2.

‡This theorem is most relevant when q is a relatively small modulus (say q < 264), so that arithmetic operations modulo q
can be performed with unit cost. For larger moduli, the theorem will be used as a building block for a more complex algorithm
described in Section 6 using RNS/CRT representation for the elements of Zq .
§For a general integer basis B, the GSO can have numbers with denominators as large as

∏
i ‖bi‖2.
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Algorithm 1: g−1(u) for q = bk.

Input: u ∈ {0, 1, · · · , q − 1}
Output: subgaussian x ∈ Λ⊥u (gt) with parameter (b− 1)

√
2π

1 Let x← 0
2 for i← 0, · · · , k − 1 do
3 Let y ← u mod b ∈ {0, · · · , b− 1}.
4 if y = 0 then
5 xi ← 0.
6 else
7 with probability y/b, xi ← y − b, and xi ← y otherwise.
8 u← (u− xi)/b.
9 return x

2. Return x = (x0, x1, · · · , xk−1).

This is essentially the same as the standard (deterministic) bit decomposition algorithm, except that when
the bit is 1, we use a random ±1 digit. Since ±1 have the same parity modulo 2, the algorithm works as
expected, with the only difference that now each digit is a zero-mean random variable, and the final output
is subgaussian with parameter

√
2π.

We can modify this algorithm to an arbitrary base b as follows. Let y := u mod b ∈ {0, · · · , b − 1}
for an input u ∈ Zq. Then, at each step, we pick the coset representative (of u with respect to Zb) with
expectation 0 from the set {y − b, y}. The resulting algorithm is given in Figure 1. One can verify that this
is the subgaussian nearest plane algorithm (given in the Appendix) applied to the lattice L(S) = Λ⊥q (gt), so
the correctness of the algorithm is straightforward. Efficiency is also easily analyzed by inspection. Notice
that the algorithm is randomness efficient as it needs only one random number in Zb for every interation,
for a total of k · log2(b) = log2(q) random bits.

We remark that a similar algorithm is analyzed in [4], though with a loose bound on its subgaussian
parameter (there is an unnecessary

√
k factor in their subgaussian analysis). This section’s main contribution

is how to generalize the algorithm to arbitrary modulus q, as described in the next subsection.

4.2 Arbitrary Modulus, Arbitrary Base

Unfortunately, the (randomized) nearest plane algorithm Λ⊥q (gt) does not specialize well when the modulus

q is not a power of b. The reason is that, while we can still use the same gadget g = (1, b, . . . , bk−1), the
corresponding lattice Λ⊥q (gt) has a slightly different basis Sq whose GSO is not diagonal, and not sparse.
Our solution uses a technique developed in [23] for the discrete Gaussian sampling problem. Specifically, we
use the fact that Sq admits a sparse, triangular factorization

Sq =


b q0

−1
. . .

...
. . . b qk−2

−1 qk−1

 =


b

−1
. . .

. . . b
−1 b




1 d0

. . .
...

1 dk−2

dk−1

 = SD (1)

where (q0, · · · , qk−1) are the (base b) digits of q, and the last column of D is defined by the simple recurrence

di = di−1+qi
b with initial condition d−1 = 0. (Note that bi+1di = q mod bi+1 ∈ {0, · · · , bi+1 − 1}.)

Then, on input u ∈ {0, 1, · · · , q − 1}, we proceed as follows:

1. Compute an arbitrary element u ∈ Zk of the lattice coset Λ⊥u (gt), for example u = (u, 0, . . . , 0).

2. Map u to t = S−1u by solving a sparse system of linear equations St = u (mod q).
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Algorithm 2: g−1(u)

Input: u ∈ {0, 1, · · · , q − 1}
Output: subgaussian x ∈ Λ⊥u (gt) with parameter (b+ 1)

√
2π

1 Let u← [u]kb , x,y← 0

2 x← 0,q = [q]kb .
3 set xk−1 ← 0 with probability (q − u)/q and xk−1 ← −1 otherwise.
4 for i = k − 2, · · · , 0 do
5 u← u− ui+1b

i+1, q ← q − qi+1b
i+1.

6 Let c← −(u+ xk−1q).
7 if c < 0 then
8 p← (c+ bi+1), z ← −1.
9 else

10 p← c, z ← 0.
11 set xi ← z + 1 with probability p/bi+1 and xi ← z otherwise.

12 for i ∈ {0, · · · , k − 2} do
13 yi ← b · xi − xi−1 + xk−1 · qi + ui.
14 yk−1 ← −xk−2 + xk−1 · qk−1 + uk−1.
15 return y.

3. Pick a subgaussian sample from the lattice coset L(D) + t.

4. Apply the (sparse) linear transformation S to the sample, to obtain a subgaussian sample from Λ⊥u (gt).

Here the (randomized) nearest plane algorithm admits a simple and efficient specialization because it is
applied to a basis, D, which has a diagonal GSO. The linear transformations S−1 and S can also be computed
in linear time because S is sparse and triangular. As a result, the algorithm runs in linear time O(k) and
does not require any pre-processing. Finally, we get an output with subgaussian parameter (b+ 1)

√
2π since

S has small spectral norm.
The actual algorithm is given in Algorithm 2. The algorithm directly implements the outline given above,

but it is specialized/optimized to avoid the explicit computation of the sparse matrices S,D, and to use only
integer numbers (avoids floating point numbers). Details about the correctness and analysis of the algorithm
are provided in the rest of this section.

Lemma 4.1 The first loop of Algorithm 2 performs the subgaussian nearest plane algorithm (described gener-
ically in the Appendix) on the lattice generated by D around target t := −S−1[u]kb .

Proof: Let d be the last column of D. The last entry of t is tk−1 = −u/bk and the last entry of d is

dk−1 = q/bk. Therefore, we are randomly rounding xk−1 around the center
〈
t, d̃
〉
/‖d̃‖2 = −u/q ∈ (−1, 0].

For the remainder of the loop, we note that t = −S−1 ·u has entries ti = −(
∑i
j=0 uj ·bj)/bi+1, represented

by the recurrence relation ti = ti−1/b + ui/b, t0 = −u0/b. This matches the recurrence relation for d,

di = (
∑i
j=0 qj · bj)/bi+1 since d = S−1[q]kb , so we can compute the remaining centers for the nearest plane

algorithm by these recurrences. Specifically, we are performing a randomized rounding around the centers
ci = ti − xk−1di = −(

∑i
l=0 ul · bl + xk−1 ·

∑i
j=0 qj · bj)/bi+1 ∈ (−1, 1). These centers are stored as c in the

pseudocode. The variable z represents the two parallel planes (copies of L([d1, · · · ,di−1]) shifted by integer
multiples of di) separated by d̃i. The lemma follows. �

By storing d = S−1[q]kb in-advance, one can change the code to sample the first k − 1 coordinates of x
in-parallel since L(d0, · · · ,dk−2) = Zk−1 ⊕ {0}. The proof of Theorem 4.1 follows below.
Proof: For the case q = bk, Algorithm 1 returns a subgaussian sample x ∈ Λ⊥u (gt) with parameter (b−1)

√
2π

in time and space O(logb q) while consuming log2(q) of random bits by inspection, and Lemma 2.2.
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Alternatively, let q 6= bk. Now by Lemma 4.1, x after the first loop is so that Dx is the output of
subgaussian nearest plane algorithm on D centered around −S−1u. By Lemma 2.3, Sqx+u is a subgaussian

vector with parameter
√
λmax(S · St)

√
2π, where λmax(S ·St) is the maximum eigenvalue of S ·St. A routine

calculation for S ·St’s entries and the Geršgorin Circle Theorem (Theorem 2.1) imply λmax(S ·St) ≤ (b+1)2.
Since during each iteration in the first loop we draw a random number in Zbi to represent p, the algorithm
consumes exactly log2 b(1 + 2 + · · ·+ k) = log2 b · (k2 + k)/2 random bits. �

5 Gadget Decoding

Here we discuss our main algorithm for the problem of LWE gadget decoding, defined in Section 2.2, on the
gadget matrix G = In ⊗ gt with entries in Zq, for an arbitrary modulus q. Given a vt = stG + et ∈ Znkq
as input, we can break the vector into n components of length k, then decode (in-parallel) each component
with respect to gt. Therefore, we focus on decoding gt as a gadget for Zq.

Our algorithm and its respective gadgets are parameterized by an integer “base” b. We consider b as fixed
in this section, though varying b for a fixed modulus q yields efficiency/quality trade-offs for these gadgets.
Later, in Section 6 we present a CRT gadget that can be used to efficiently decode an input given in CRT
form.

Let k = dlogb qe and the gadget be gt = (1, b, · · · , bk−1). The vector gt is a size k gadget of quality
(b/2)

√
k for Zq. The results in this section are summarized in the following theorem.

Theorem 5.1 For every modulus q, and gadget gt = (1, b, · · · , bk−1), there is a time and space O(k) algo-
rithm decoding gt with tolerance q/2(b+ 1).

A proof of Theorem 5.1 is given by the algorithm presented in this section. Note, Theorem 3.1 implies
a polynomial time decoding algorithm for gt with error tolerance ‖e‖∞ ≤ q/2

√
k(b + 1). Our decoding

algorithm is more efficient and has a higher error tolerance by a factor
√
k than the general gadgets decoding

guarantee given by Theorem 3.1.
An optimized, linear time and space O(k), decoding algorithm is given in [37] for the case q = bk. The

reason for this algorithm’s efficiency is that the commonly used basis for Λbk(gt) results in a linear time
nearest plane algorithm. In more detail, a basis for Λbk(gt) in this case is the triangular matrix Bbk = bk ·S−t,
where S is the commonly used basis for Λ⊥bk(gt) presented in Section 2.2, and this basis has a GSO of (q/b) ·I.

However, the simple decoding idea presented in [37] fails when q 6= bk. Because Λq(g
t)’s commonly used

basis has a dense GSO, Babai’s nearest plane algorithm takes time O(k2) and space O(k3) when naively
applied on Λ⊥q (gt).

Efficient Decoding Algorithm The intuition for our algorithm is best initially viewed through the
case when q = bk. Given an input v, another way to decode the lattice Λbk(gt) is to use St as a linear
transformation, decode Stv to the lattice bk · Zk with the nearest plane algorithm, then map the nearest
point in bk · Zk back to Λbk(gt). This leads to a slightly stronger condition on the noise vector e since we
now need Ste ∈ P1/2(q · I), which is satisfied if ‖e‖∞ < q/2(b+ 1). Though there is no need to do this given

the algorithm in [37], this is essentially what we will do in the case when q 6= bk.

Overview The overview of our efficient decoding algorithm for an arbitrary modulus is as follows. First
recall the sparse, triangular factorization of Λ⊥q (gt)’s commonly used basis given in section 2.2, Sq = SD. The

duality relation for q-ary lattices, Λq(g
t) = q·Λ⊥q (gt)∗, dictates that a basis for Λq(g

t) is q·S−tq = S−t(q·D−t).
Luckily, the matrix D−t is sparse with a diagonal GSO, and P1/2(q · D̃−t) ⊇ P1/2(q · I) (meaning we can
decode as long as ‖e‖∞ < q/2(b+ 1)). Therefore, we can decode gt by the following.

1. Given v, first apply St as a linear transformation.

2. Then, decode the vector Stv to the lattice generated by qD−t using the nearest plane algorithm.
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Algorithm 3: DecodeG(v, b, r[q]kb )

Input: v ∈ Zk, b, and q = [q]kb .
Output: s ∈ Zq where v = sgt + et as long as ‖e‖∞ < q/2(b+ 1).

1 for i← 0, · · · , k − 2 do
2 vi ← bvi − vi+1.
3 vk−1 ← b · vk−1.
4 Let x← 0 and reg← 0.
5 for i← 0, · · · , k − 2 do
6 xi ← dvi/qc and reg← reg/b+ bk−1 · qi.
7 vk−1 ← vk−1 + xi · reg.

8 xk−1 ← dvk−1/b
kc.

9 Let s← xk−1 and reg← 0.
10 for i← k − 2, · · · , 0 do
11 reg← b · reg + qi+1.
12 s← s+ xi · reg

13 return s mod q.

Both steps can be computed in linear time and space, O(k), given the sparsity of S and qD−t, and qD−t’s
diagonal GSO.

The pseudocode for our algorithm is shown in DecodeG. In short, the algorithm has three components,
where each is represented by a loop in the pseudocode. These components are to first compute the linear
transformation on the input v ← Stv, then to run the nearest plane algorithm on the lattice generated by
q ·D−t, and finally to return s represented as the first entry of the nearest lattice point in Λq(g

t) modulo q.
The proof of Theorem 5.1 follows from Lemmas 5.1 and 5.2 below.

Lemma 5.1 The second loop in DecodeG is an instantiation of Babai’s nearest plane algorithm on the
lattice q ·D−t given target Stv, running in time and space O(k).

Proof: Recall the structure of D from section 2.2, D = [M|d] where Mt = [Ik−1|0] and d has entries
di = (q mod bi+1)/bi+1, with q mod bi+1 ∈ {0, 1, · · · , bi+1 − 1}. Then, it follows that qD−t has a similar

triangular, sparse structure. This is given by q ·D−t =

(
qIk−1 0

ct bk

)
and the vector c ∈ Zk−1 has entries

ci = −bk−1−i · (q0 + bq1 + · · · + biqi) = −bk−1−i · (q mod bi+1) ∈ [−q, 0]. Further, the entries of c satisfy

the recurrence relation −ci = −(ci−1)
b + bk−1qi with the initial condition −c0 = bk−1q0. The variable reg in

DecodeG stores ci, and it is updated using the recurrence relation for c. The vector x in the pseudocode
stores the coefficients of the nearest lattice point expressed in the basis qD−t. The Lemma follows by
inspection. �

Lemma 5.2 The last loop in DecodeG computes s mod q in time and space O(k).

Proof: Represent the first row of B = S−tqD−t as h, and note 〈h,x〉 = s mod q. A careful analysis of

qD−t and S−t gives us an expression for h’s entries: hi = qi+1 +bqi+2 + · · ·+bk−i−2qk−1 = q−(q mod bi+1)
bi+1 for

i ∈ {0, 1, · · · , k−2} and hk−1 = 1. All but the last entry of h satisfy the recurrence relation hi = qi+1+b·hi+1

for i ∈ {0, · · · , k − 2}, with an initial value of qk−1 (which is not the actual value of h’s last entry). We use
this recurrence relation to compute h’s entries one at a time in the last loop, stored in the variable reg. The
Lemma follows by inspection. �
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6 Gadgets for the CRT Representation

Many applications of lattice gadgets require a large modulus that, for secure and functional sets of parameters,
surpasses the native 64-bit integer arithmetic in a modern machine’s hardware. One common method to
circumvent the use of multi-precision numbers is to pick a modulus of the form q =

∏
qi with each qi less

than 64 bits. Then, one can store an element u ∈ Zq as its Chinese Remainder representation (CRT form¶)
as (u mod q1, · · · , u mod ql) and perform computations via the Chinese Remainder Theorem, utilizing the
ring isomorphism Zq ∼= Zq1 × · · · × Zql . Simple forms of the gadget matrix (e.g. power of two matrix) are
not compatible with this representation because the binary digits of a number cannot be easily recovered
from the CRT components without a costly reconstruction phase involving large numbers modulo q.

In this section, we discuss a gadget for the CRT form. As usual, the gadget admits a compact (implicit)
representation, and does not need to be computed and stored explicitly. Most importantly, the gadget
allows us to use the algorithms in Sections 4 and 5 in order to perform subgaussian decomposition, discrete
Gaussian sampling, and LWE gadget decoding all given input represented in CRT form. This has several
theoretical and practical advantages: (1) the algorithms can be directly used by efficient applications that
already store their numbers in CRT form, (2) our algorithms can be easily parallelized as they operate on
each CRT component independently, (3) all algorithms only require arithmetic on small numbers (at most
maxi qi) even if the modulus q =

∏
i qi may be very big. (Efficient solutions to Discrete Gaussian Sampling

for the individual moduli qi, as needed by our CRT DGS algorithm, are given in [37, 23].) We remark that
a balanced, deterministic digit decomposition is provided in [18, 40], and an LWE decoding algorithm for a
CRT/RNS hybrid gadget for general rings is given in the library’s code‖ (without an analysis). Our results are
summarized in the following theorem. We emphasize the analysis below assumes integer operations, including
reductions modulo qi, are done in constant time. This is because our algorithms are best implemented when
each qi is less than 64 bits, avoiding the use of multi-precision numbers.

Theorem 6.1 Let q have factorization q =
∏l
i=1 qi into coprime factors {qi}, (bi)

l
i=1 be an l-tuple of bases

with bi < qi for all i, and let k =
∑
ki where ki = dlogbi qie. There exists a gadget, gtCRT , for Zq of size k

and quality maxi bi/2. Further, the gadget satisfies the following properties:

• Subgaussian decomposition can be performed in-parallel with l processors, each using time and space
O(ki), consuming less than ki log2 qi random bits ((log2(qi) random bits if qi = bkii )) and with parameter
at most (maxi(bi) + 1)

√
2π.

• For any ε > 0, discrete Gaussian sampling can be performed in-parallel with l processors, each in time
and space O(ki) with width s ≥ O(b1.5j )ηε(Zkj ) for index j maximizing

√
2bj(bj + 1) · ηε(Zkj ).

• gtCRT is decodable in-parallel with l processors in time and space O(ki) with tolerance q/(2 maxi(bi)+1).

As expected, each processor gets slightly more efficient whenever qi = bkii . The algorithms are represented
in Figure 1.

The CRT Gadget For each coprime factor qi, fix the base-bi gadget vector as gti := (1, bi, · · · , bki−1
i ) where

ki = dlogbi(qi)e. Let k =
∑
i ki, q

∗
i = q/qi, and q̂i = (q∗i )−1 mod qi. Consider the gadget vector, which we

call the general CRT gadget, gtCRT = (q∗1 q̂1 · gt1, · · · , q∗l q̂l · gtl) mod q ∈ Z1×k
q . This is a generalization of the

gadgets (or implicit in algorithms) used in [11, 31, 32, 8]. As before, the gadget matrix is the block-diagonal
matrix G := In⊗gtCRT . Theorem 6.1 follows from the fact Λ⊥q (gtCRT ) = Λ⊥q1(gt1)⊕· · ·⊕Λ⊥ql(g

t
l), Theorem 4.1,

and Proposition 3.1 in [23]. The parallel decoding algorithm is obtained by a slight adaptation to DecodeG
presented in Section 5, and is analyzed in the Section 6.1. We prove the direct sum decomposition of
Λ⊥q (gtCRT ) below.

Proof: For the inclusion ⊇, let xi ∈ Λ⊥qi(g
t
i) be arbitrary with x = (x1, · · · ,xl) as their concatenation.

Then, 〈xi,gti〉 = aqi ∈ qi · Z and 〈x,gCRT 〉 mod q =
∑l
i=1 q

∗
i q̂i 〈xi,gi〉 mod q = 0 + · · · + 0 mod q. We

¶This is also known as the residue number system (RNS) in previous works.
‖https://github.com/cpeikert/Lol/blob/master/lol/Crypto/Lol/Gadget.hs
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Algorithm 4: Sampling in CRT form.

Input: (u1, · · · , ul)
Output: g−1

CRT (u1, · · · , ul).
1 for i ∈ {1, · · · , l} do
2 xi ← g−1

i (ui).
3 return x = (x1, · · · ,xl).

Algorithm 5: Decoding in CRT form.

Input: vt = s · gCRT + et mod q
Output: (s1, · · · , sl).

1 Let v = (v1, · · · ,vl) for each vi ∈ Zkiq .

2 for i ∈ {1, · · · , l} do
3 si ← DecodeCRT(vi)
4 return (s1, · · · , sl).

Figure 1: Pseudocode for the parallel algorithms given in Theorem 6.1. We let g−1
i (·) denote either the

subgaussian decomposition algorithm given in Section 4 or a discrete Gaussian sampler. The subroutine
DecodeCRT is a variation of the decoding algorithm given in Section 5 and is described in Section 6.1.

Algorithm 6: DecodeCRT(vi, bi, t = [qi]
ki
bi
, q, q∗i )

Input: vi ∈ Zki , bi, q∗i , q, and t = [qi]
ki
bi

.
Output: s mod qi where v = sgt + et mod q as long as ‖e‖∞ < q/2(bi + 1).

1 for j ← 0, · · · , ki − 1 do
2 vj ← bjvj − vj+1.
3 Let x← 0.
4 for j ∈ {0, · · · , ki − 2} do
5 xj ← dvj/qc.
6 xk−1 ← d(vk−1 −

〈
c,xk−2

0

〉
)/(q∗i bi

ki)c.
7 Let si ← xk−1 and reg← 0.
8 for j ← ki − 2, · · · , 0 do
9 reg← b · reg + tj+1 · q∗i .

10 si ← si + xj · reg

11 return si mod qi.

prove the converse by inducting on l, the number of q’s coprime factors. The base case is routine. Now
consider x = (x1, · · · ,xl) ∈ Λ⊥q (gtCRT ) with xi ∈ Λ⊥qi(g

t
i) for i = 0, · · · , l − 1 and xl ∈ Zkl . By the inductive

hypothesis, 〈x,gCRT 〉 mod q = q∗l q̂l ·〈xl,gtl〉 = 0 mod q. Viewing this equation in Z and dividing both sides
by q∗l implies q̂l · 〈xl,gl〉 mod ql = 0. Finally, we conclude 〈xl,gl〉 mod ql = 0 since q̂l is a multiplicative
unit in Zql . �

6.1 Decoding the CRT Gadget

Here we show how the efficient gadget decoding algorithm from Section 5 adapts to the general CRT gadget
described in Section 6. Recall the decomposition of gt’s lattice, Λ⊥q (gt) = Λ⊥q1(gt1)⊕· · ·⊕Λ⊥ql(g

t
l) = L(Sq1)⊕

· · · ⊕ L(Sql). The duality relation for q-ary lattices yields Λq(g
t) = q · (Λ⊥q (gt))∗ = q ·

(⊕
i L(S−tqi D−tqi )

)
=
(⊕

i L(S−tqi q
∗
i · (qi ·D−tqi ))

)
.

Now we have a clear way to decode the general CRT gadget. First, break the input into l blocks,
vt = sgt + et mod q = (vt1, · · · ,vtl) where vti = s · q∗i q̂igti + eti mod q. Then, we compute the following.
First, transform vi to Stqivi. Then, decode Stqivi to the lattice q∗i (qiD

−t
qi ). Finally, return s mod qi. The

pseudocode is given as the algorithm DecodeCRT. Another change is that we store the vector c in memory.
Recall, c has k− 2 entries of the form cj = −bki−1−j

i (qi mod bji ). Note that the correctness condition of our
algorithm is still ‖et‖∞ < q/2(maxi(bi) + 1).
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Decoding in CRT Form Here we describe how DecodeCRT can decode v = sg + e where the input
is given in its CRT representation. The ideas sketched here follow from [32]. The linear transformation
v → Stv is easily computed given the CRT form of v. Really, we are only concerned with divisions and
integer rounding. In the second loop, note that xj ← dvj/qc = d

∑l
o=1[(v mod qo) · (q̂o/qo)]c. Next we

consider the line xk−1 ← d(vk−1 +
〈
c,xk−2

0

〉
)/(q∗i bi

ki)c. First, note that vk−1/(b
ki
i q
∗
i ) = b−kii ·

∑l
o=1(vk−1

mod qo) · q̂o(qi/qo). This should be a small number in nearly all practical instantiations. Lastly, we note
that we return s in CRT form, but we can alter the algorithm to return s ∈ (−q/2, q/2] via a simple change.
The s computed in the last loop is actually s · q∗i q̂i. So, we can remove the mod qi in the return statement
and sum up the output from the l parallel processors,

∑
i(s · q∗i q̂i) = s ·

∑
i(q
∗
i q̂i) = s · 1 mod q.

7 Toolkit Implementation and Its Application

7.1 Software Implementation

We implemented most of the algorithms presented in this work in PALISADE [41], a modular open-source
lattice cryptography library that includes ring-based implementations of homomorphic encryption, proxy
re-encryption, identity-based encryption, attribute-based encryption, and other lattice schemes. More con-
cretely, we added a new lattice gadget toolkit module to PALISADE that implements the following algo-
rithms:

• Subgaussian gadget decomposition (Algorithm 2) for arbitrary moduli and gadget bases.

• Efficient gadget in CRT representation, enabling both trapdoor sampling and subgaussian gadget
decomposition in the CRT representation.

• Subgaussian gadget decomposition for cyclotomic rings both in positional and CRT number systems,
which wraps around Algorithm 2.

The toolkit module complements/improves the lattice gadget algorithms previously added to PALISADE,
such as trapdoor sampling for cyclotomic rings proposed in [23] and implemented in [30, 17]. The full lattice
gadget capability will be included in the next major public release of PALISADE.

7.2 Optimized Variant of Key-Policy Attribute-Based Encryption

We use the lattice gadget toolkit algorithms to build and implement a full RNS/CRT variant of the short-
secret Key-Policy Attribute-Based Encryption (KP-ABE) scheme originally proposed in [10] and imple-
mented for cyclotomic rings in [19]. The KP-ABE scheme is a complex cryptographic primitive that can
be used for attribute-based access control applications, as well as a building block for audit log encryption,
targeted broadcast encryption, predicate encryption, functional encryption, and some forms of program
obfuscation [10, 27].

7.2.1 Overview

ABE is a public key cryptography primitive that enables the decryption of a ciphertext by a user only if a
specific access policy (defined over ` attributes) is satisfied. In the key-policy scenario, a message is encrypted
using the attribute values as public keys, and a specific access policy is typically defined afterwards. When
the access policy becomes known, a secret key for the policy is generated (using trapdoor sampling in our
KP-ABE scheme), and the ciphertexts and public keys are homomorphically evaluated over the policy circuit
(using a GSW-type homomorphic multiplication in our KP-ABE scheme).

The short-secret KP-ABE scheme is a tuple of functions, namely Setup, Encrypt, EvalPK, KeyGen,
EvalCT, and Decrypt, whose definitions are:
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• Setup(1λ, `) → {MPK, MSK}: Given a security parameter λ and the number of attributes `, a trusted
private key generator (PKG) generates a master public key MPK and a master secret key MSK. MPK
contains the ABE public parameters while MSK includes the trapdoor that is used by PKG to generate
secret keys for access policies.

• Encrypt(µ,x, MPK)→ C: Using MPK and attribute values x ∈ {0, 1}`, sender encrypts the message µ
and outputs the ciphertext C.

• EvalPK(MPK,x, f)→ PKf : Homomorphically evaluate MPK over a policy (Boolean circuit) f : {0, 1}` →
{0, 1} to generate a public key PKf for the policy f .

• KeyGen(MSK, MPK, PKf ) → SKf : Given MSK, MPK and policy-specific PKf , PKG generates the secret
key SKf corresponding to f . PKG sends SKf to the receiver that is authorized to decrypt ciphertexts
encrypted under f .

• EvalCT(C,x, f) → Cf : Homomorphically evaluate C over the policy f to generate the ciphertext
Cf .

• Decrypt(Cf , SKf ) → µ̄: Given the homomorphically computed ciphertext Cf and corresponding
secret key SKf , find µ̄, which is the same as the original message µ if the receiver has the secret key
matching the policy f .

The most computationally expensive operations are EvalPK and EvalCT, which homomorphically
evaluate a circuit of depth dlog2 `e using the GSW homomorphic multiplication approach. At each level of a
Boolean circuit composed of NAND gates (which are used for benchmark evaluation in [19]), the algorithms

compute matrix products B2iG
−1(−Bi) and

(
G−1(−Ci)

)t
C2i for public keys and ciphertexts, respectively.

Here, Bi ∈ R1×m
q , Ci ∈ Rmq , Rq = Zq[x]/ 〈xn + 1〉, and m = dlogb qe + 2 (the latter corresponds to the

Ring-LWE trapdoor construction). Note that that the gadget G is extended in this case to m by adding
two zero entries to the decomposed digits.

The work [19] presents a CPU implementation of the ring variant of the KP-ABE scheme along with
an efficient GPU implementation for policy evaluation and encryption. The CPU implementation was done
for a binary gadget base and used the conversion from CRT to the positional number system for digit
decomposition both in trapdoor sampling and gadget decomposition. To avoid the linear noise growth
O(nm) in gadget decomposition, the authors used a balanced digit decomposition, namely the binary non-
adjacent form (NAF), that replaces digits in (0,1) with a zero-centered representation in (-1,0,1). Although
this approach allows one to achieve a heuristic growth close to O(

√
nm) in the case of the KP-ABE scheme,

the noise properties depend on the randomness of the input, i.e., this approach is deterministic.
The CPU runtimes for policy evaluation and encryption operations in [19] were far from practical (the

CPU results only for ` up to 8 are presented), and hence the authors developed an efficient GPU implemen-
tation for these operations.

For detailed algorithms of the KP-ABE scheme, the reader is referred to [19].

7.2.2 Our Optimizations

We present a full CRT/RNS ring variant of the KP-ABE scheme that leverages the lattice gadget toolkit to
significantly (by more than one order of magnitude) speed up the policy evaluation operations. In particular,
our implementation includes the following optimizations as compared to [19]:

• The subgaussian gadget decomposition in CRT representation to minimize the noise growth instead
of the NAF decomposition with the conversion from CRT representation to positional system. This
provides a theoretical guarantee of the square-root noise growth. To achieve the repeatability of
randomized decomposition in EvalPK and EvalCT, we use the same seed for the random operations
in subgaussian gadget decomposition. The seed is treated as part of the master public key.
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Figure 2: Runtime baseline of subgaussian sampling rate for native uniformly random integers (w.r.t a 60-bit
modulus). When b = 2r, the modulo reduction in digit decomposition is performed by simple bit shifting.
When b is arbitrary, the slower hardware modulo operation is used. The plateaus correspond to the same
number of digits, i.e., the same value of d60/ log2 be.

• The CRT variant of trapdoor sampling using the gadget decomposition technique discussed in this
paper in contrast to the multiprecision digit decomposition in [19].

• The RNS/CRT scaling proposed in [32] for decryption in constrast to the multiprecision scaling.

• Increased gadget base b (both in trapdoor and subgaussian gadget decomposition) instead of the binary
base.

7.2.3 Parameter Selection

As the correctness constraint in [19] was derived for the classical binary-base gadget decomposition, we
provide here a modified version incorporating the effect of a larger gadget base for the case of subgaussian
gadget decomposition:

q > 4C1sσ
√
mn
(
b
√
mn
)d
, (2)

where C1 = 128, s = C · σ2(b+ 1) · (
√
n logb q +

√
2n+ 4.7), C = 1.8, σ ≈ 4.578, and d = dlog2 `e. Here, C

and C1 are empirical parameters chosen the same way as in [19].
The differences compared to [19] are the b factor in the exponentiation base (as the digits vary between

−b and b in subgaussian gadget decomposition) and a (b+1) factor in the expression for s (contributed by
Gaussian sampling; see [23, 17] for a more detailed discussion of the Gaussian distribution parameter for
arbitrary gadget bases).
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Figure 3: Comparison of sampling rates for CRT and multiprecision (MP) variants of subgaussian gadget
decomposition for ring elements with 4096 coefficients and 60-bit CRT moduli at r = dlog2 be = 20. The
MP variant requires converting from CRT representation to positional number system followed by digit
decomposition w.r.t. a large integer.

8 Experimental Results

We ran the experiments in PALISADE version 1.2, which includes NTL version 10.5.0 and GMP version
6.1.2. The evaluation environment was a commodity desktop computer system with an Intel Core i7-3770
CPU with 4 cores rated at 3.40GHz and 16GB of memory, running Linux CentOS 7. The compiler was g++
(GCC) 5.3.1.

8.1 Subgaussian Gadget Decomposition

The experiments described in this section were all performed in the single-threaded mode. The goal of
these results is to provide the performance baselines for subgaussian gadget decomposition, demonstrate the
benefits of the efficient gadget in CRT representation, and illiustrate the effect of subgaussian sampling on
the noise growth in GSW-type products.

Figure 2 shows the dependence of subgaussian gadget decomposition rate (per decomposed integer) on
the gadget base for native (64-bit) integers. The results are shown both for a power-of-two base, which
supports fast modulo reduction by bit shifting, and an arbitrary base, which requires a division-based
modulo operation on x86 architectures. In our implementation, the native arithmetic is a building block for
performing operations in CRT representation for integers that are larger than 60 bits, and, therefore, these
results can be used to estimate the runtimes for larger CRT-represented integers. Figure 2 illustrates that
the sampling rate increases in a discrete manner as we raise the gadget base because the number of digits
is determined by d60/ log2 be. The runtime is dominated by the randomized operations (as the difference
between a power-of-two-base and arbitrary-base scenarios is relatively small), thus limiting the advantages
of choosing the faster power-of-two bases. This suggests that a CRT representation in terms of powers of
primes, where the primes are used as the residue bases, might be preferred in some instances (where an
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Figure 4: Noise growth for GSW-type multiplication in the ring-based KP-ABE variant (k = 180, n = 1024,
b = 2). The base in the exponentiation is (mn)β , where m = k + 2 = 182 and β describes the rate of
noise growth. The slope of the linear interpolation is β log2(mn). The values of β are 0.497 and 0.893 for
subgaussian and classical gadget decomposition, respectively.

efficient implemention of arithmetic over prime powers is available) over power-of-two bases.
Figure 3 illustrates the benefits of using the efficient gadget in CRT representation when working with

cyclotomic rings. The conversion from CRT representation to the positional system followed by digit decom-
position w.r.t a large modulus slows down subgaussian gadget decomposition rate by almost one order of
magnitude. We also observe that the difference in performance between a power-of-two base and an arbitrary
base is relatively small for both cases.

Figure 4 demonstrates the differences in the noise growth of GSW-type products using the subgaussian
and classical binary gadget decomposition methods. For this experiment, we generated an error vector in Rm

and iteratively multiplied it by G−1(Ui), where Ui is a vector of unformly random ring elements in Rmq at
level i. We applied the tree multiplication approach (rather than a sequential evaluation in a right-associative
manner, which reduces the noise when dealing with a chained product of fresh encryptions in GSW [14, 5]) to
emulate the noise growth in evaluating a Boolean policy circuit in the KP-ABE scheme. We considered both
the cases when the same U was used at all levels (correlated ciphertexts) and different Ui at each level. The
results were approximately the same for both scenarios because the classical gadget decomposition matrix
is centered at 0.5 (see [19] for a more detailed discussion of the classical gadget decomposition case).

Figure 4 suggests that the noise growth in the subgaussian gadget decomposition case has a square-root
dependence on mn (β ≈ 0.5) while the classical gadget decomposition approach results in almost linear noise
growth (β ≈ 0.9). Note that the intercept is lower for classical gadget decomposition because the infinity
norm of digits is 1 (only 0 or 1 are possible) vs. 2 in the case of subgaussian decomposition (the allowed
integer values are in the range from -2 to 2). However, this advantage does not propagate to the second
level of the circuit as the square-root dependence of subgaussian gadget decomposition already plays a more
dominant role here.
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Table 1: Comparison of performance results for our KP-ABE variant (in bold) vs. the
implementation in [19] (in parentheses). EvalCT* = EvalPK + EvalCT corresponds to the
scenario when the policy evaluation of public keys and ciphertexts is done at the same
time.

` k log2 n r KeyGen Encrypt EvalCT* EvalPK Decrypt RAM

[ms] [ms] [s] [s] [ms] [MB]

2 50 (44) 11 (11) 5 (1) 40 (126) 7 (33) 0.023 (0.44) 0.021 (0.42) 1.8 (3.0) 19 (58.5)

4 100 (52) 12 (12) 20 (1) 64 (143) 15 (57) 0.072 (1.76) 0.064 (1.68) 3.9 (3.5) 36.4 (86.3)

8 120 (60) 13 (13) 15 (1) 151 (317) 56 (222) 0.59 (10.8) 0.53 (10.4) 8.9 (7.7) 94.1 (255)

16 180 (70) 13 (13) 20 (1) 177 (419) 157 (1,483) 1.68 (429) 1.48 (427) 11.5 (18.1) 230 (2,867)

32 180 13 15 206 414 5.67 5.0 13.46 508

64 204 13 17 226 1,052 13.1 11.2 16.39 1,229

128 300 14 25 568 6,454 98.3 85.5 45.43 7,024

8.2 Key-Policy Attribute-Based Encryption

Table 1 shows the performance results for our implementation along with the corresponding results for the
implementation in [19]. The first three rows for the results in [19] were obtained using native (64-bit)
integer arithmetic and the last row used a multiprecision backend in PALISADE based on NTL/GMP. The
experiments were run for 4 threads on a commodity desktop system, i.e., Intel Core i7-3770 CPU with 4
cores at 3.40GHz and 16GB of memory running CentOS 7. Both variants were implemented in PALISADE
v1.2.

To choose the ring dimension n for both implementations, we ran the LWE security estimator∗∗ (commit
560525) [3] to find the lowest security levels for the uSVP, decoding, and dual attacks following the standard
homomorphic encryption security recommendations [2]. We selected the least value of the number of security
bits λ for all 3 attacks on classical computers based on the estimates for the BKZ sieve reduction cost model.
All results are presented for at least 128 bits of security.

Table 1 suggests there is a speed-up of 2.1x to 3.2x for key generation, where the lattice trapdoor sampling
subroutine is called. The speed-up for encryption is 3.8x to 9.5x, which is mostly attributed to the use of
a larger gadget base. The speed-ups for the main botteneck operations of homomorphic public key and
ciphertext evaluation are in the range from 18x to 289x, which is a combined effect of subgaussian gadget
decomposition in CRT and a larger gadget base. The decryption runtimes are comparable, and already fast
for both implementations. The memory requirements for our optimized variant are 2.4x to 12.5x smaller.

Note that the peformance of the KP-ABE variant in [19] dramatically degrades after switching from the
native arithmetic (when k ≤ 60 bits) to the multiprecision backend (for gadget decomposition), which is
observed for ` = 16 in Table 1. This implies the efficient gadgets in CRT representation are critical for
supporting deeper Boolean circuits with CPU systems.

We also profiled the contributions of subgaussian gadget decomposition and the number theoretic trans-
forms (NTT) of the digit-decomposed matrix (needed for matrix multiplication) to the runtimes for homo-
morphic policy evaluation of ciphertexts (EvalCT*). The contribution of subgaussian gadget decomposition
was in the range from 15% to 22% w.r.t. the total homomorphic policy evaluation runtime. The contribu-
tion of the related NTTs was between 47% and 63%, suggesting that the latter is the main bottleneck of
homomorphic circuit evaluation in our KP-ABE variant.
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A Subgaussian Nearest Plane

Now we describe the subgaussian nearest plane algorithm, SGNP (B, t), used in throughout the paper.
Clearly, it is a randomized version of Babai’s algorithm (Theorem 2.2), and it was first used in a theoretical
sense in [5]. The algorithm takes as input a target t ∈ Rn, a lattice basis B, and its GSO. It returns a lattice
point x that is randomly chosen so that x − t is a subgaussian vector. The subgaussian parameter, as we
will see, is maxi ‖b̃i‖.

Let B∗k be the GSO of the basis Bk. As in the nearest plane algorithm, we partition the lattice L(Bk)
into parallel planes L(Bk) =

⋃
i∈Z(L(Bk−1) + i · bk), but here we randomly round to the plane j or j − 1,

the planes between which the target lies, with a probability which depends on the target’s distance from the
nearest plane instead of directly rounding. In more detail, given an input vector t, we perform the following:
First project the target orthogonally onto the span of b∗k and store the coefficient t ← 〈t,b∗k〉 /‖b∗k‖2. If
t ∈ Z, set c ← t. Otherwise, pick c ← btc + 1 with probability t mod 1 and c ← btc otherwise. Finally,
return c ·bk+SGNP (Bk−1, t−c ·bk). The following lemma is easily proved by induction through expanding
the expectation and the definition of the GSO.

Lemma A.1 The expected value of SGNP (Bk, t) is t projected to span(Bk).

Proof: We prove this by induction on the dimension. For the base case, let the basis and target be b, t ∈ R,
respectively. Let p = t/b mod 1 (or equivalently t/b− bt/bc). Then the expectation of SGNP (b, t) is

E[SGNP (b, t)] = b[bt/bc(1− p) + (bt/bc+ 1)p] = b(t/b) = t.

For the inductive step, we assume E[SGNP (Bk−1, t)] = spanBk−1
(t). The coefficient c’s expectation is

c′ := 〈t,b∗k〉 /‖b∗k‖2 via the same computation as the base case. The law of iterated expectation gives us

E[SGNP (Bk, t)] = c′bk +

k−1∑
i=1

〈t− c′bk,b∗i 〉
‖b∗i ‖2

b∗i .

The result follows from the definition of the GSO. �

To see SGNP (Bk, t) − t is subgaussian, we view the space in the basis generated by B∗k. Since the
coefficients of the output vector in this basis are chosen independently and by the definition of the GSO,
SGNP (Bk, t)− t is a subgaussian vector with parameter maxi ‖b∗i ‖.
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Lemma A.2 SGNP (Bk, t)− t is a subgaussian vector with parameter maxi ‖b∗i ‖.

Proof:(Sketch.) The result is seen through expressing SGNP (Bk, t)−t in the GSO basis B∗k. Each coordinate
ci (coefficient of b∗i ) is subgaussian with parameter

√
2π and is independent of the previous coordinates. As

in Lemma A.1’s proof, the result follows from the definition of the GSO. �
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