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Abstract. Recently Grubbs et al. [GLR17] initiated the formal study
of message franking protocols. This new type of service launched by
Facebook, allows the receiver in a secure messaging application to veri-
fiably report to a third party an abusive message some sender has sent.
A novel cryptographic primitive: committing AEAD has been initiated,
whose functionality apart from confidentiality and authenticity asks for a
compact commitment over the message, which is delivered to the receiver
as part of the ciphertext. A new construction CEP (Committing Encrypt
and PRF) has then been proposed, which is multi-opening secure and
reduces the computational costs for the sender and the receiver.
Despite the merits of the message franking protocols [GLR17], our ob-
servation which launched this work, is that all the designs be it composi-
tional or the CEP construction, leak too much when the receiver needs to
open the abusive message to the third party. Namely, the receiver opens
the entire message along with the opening key to the third party, thus
confidentiality of the message is entirely broken. Moreover, the opening
of the entire message increases the communication cost of the protocol
and in cases of big messages being exchanged (attachments, videos, mul-
timedia files, etc.) it might be unnecessary. We provide to the best of our
knowledge the first formal treatment of message franking protocols with
minimum leakage whereby only the abusive blocks are opened, while the
rest non-abusive blocks of the message remain private.
First we give a new definition for multi-opening indistinguishability with
partial opening (MO-IND-PO), which forces an adversary to distinguish
encryptions of abusive blocks. We then design and analyze two protocols
CEP-AOP1 (Committing Encrypt and PRF with After Opening Privacy)
and CEP-AOP2, which adhere to the new privacy definition. As a side
contribution we show a multi-opening secure CEP2 construction using
only one PRF evaluation over the message, in a weaker but meaningful
security model, relying only on standard assumptions of the underlying
symmetric primitives.

Keywords: message franking protocols, abusive reports, messaging applica-
tions, partial opening, privacy, secure communication
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1 Introduction

We are witnessing the transition to a digital messaging society. Billions of users
are using messaging application to communicate with other end users. The ma-
jority choose messaging applications over the Internet with no extra charging
policy like Facebook messaging [Fac], Whatsapp [Wha], Signal [Sig], Telegram
[Tel], Viber [Vib], etc. The security goals of messaging applications is end to end
confidentiality and integrity: no intermediate party by observing exchanged tran-
scripts over public or private channels can compromise integrity or confidential-
ity. However, it seems that these are not the only required security guarantees for
secure messaging: A potential sender may send illegal harassing content [Cal18].
Recently, Facebook introduced the notion of message franking, which guaran-
tees that when a sender sends a harassing message to a receiver, the latter can
verifiably report it to Facebook.

Facebook messaging protocol for message franking allows a receiver to ver-
ifiability open an abusive message to Facebook, without being able to report
fake messages. At a high level the protocol lies on an authenticated encryp-
tion scheme AE to provide confidentiality and authenticity of the messages and
on a pseudorandom function (PRF), in order the sender to commit to the sent
message M . The PRF should enjoy the property of collision resistance in or-
der to avoid malicious openings of the sender to fake messages. Grubbs et al.
[GLR17] were the first to formalize the security definition for message franking
and showed 3 compositional designs following the Encode-then-Encipher [BR00],
Encrypt-then-Mac [BR00], Mac-then-Encrypt compositions, which are only sin-
gle opening secure, meaning that after the opening the confidentiality-integrity
of the messages is not preserved and the two users should share new keys. Those
protocols need 5 passes over the message for encryption and decryption and 2
for verification.

The authors then presented a multi-opening secure scheme dubbed CEP for
Committing Encrypt-and-PRF, which uses a nonce-based pseudorandom gen-
erator (PRG) and two PRF’s. The scheme needs 3 passes for encryption and
decryption and 2 for verification. Recently, Dodis et al. [DGRW18] revealed a
flaw on the message franking protocol of Facebook for attachments. The authors
also proposed a new neat construction based on a new primitive: encryptment,
which is simply a committing AEAD, but only single pass secure and is based
on hash function chaining (HFC). The final committing AEAD is based on the
proposed encryptment primitive but confidentiality is based on non-standard
assumption of the related-key-attack-secure (RKA) property of the underlying
PRF.

Despite the valuable merits of those works, all those designs suffer from 1)
intensive privacy leakage to the router and 2) augmented, unnecessary commu-
nication overload. The deficiencies can be summarized as follows:

1. A sender sending a message M consisting of abusive information is opened
at its entire form to the router. However, it might be the case the message
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itself holds private information the receiver does not want to reveal to the
router.

2. In cases with large messages such as attachments videos and multimedia files
it might be unnecessary to open all the blocks to the router. The abusive
content is spotted in some block of the entire big message and thus opening
all the blocks of the message to the router skyrockets the communication
complexity of the protocol.

The above realistic scenarios are not captured by current state of the
art [GLR17]. The problem arises from the treatment of messages as single-
ton objects during the protocol execution. The entire message is given as in-
put to the encryption algorithm and the same message feeds the committing
primitive–the PRF. As we are in the symmetric setting, the internals of the
encryption algorithm and the committing primitive treat the messages as a
set of blocks. As such, during the opening procedure the receiver of a pos-
sible abusive message is obliged to open the entire message–all the blocks.
There is little freedom left to the receiver at this point as private and abusive
blocks will all be revealed to the router. For example for an m-block message
M : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 · · · bm , let the green blocks (b5 . . . b10)
consist the abusive information and the red ones the private ones (b1 . . . b4,
b11 . . . bm). Current message franking designs give up privacy entirely for all
the blocks. In this paper we seek to answer the following question:

“Can we improve the privacy and subsequently the communication complexity
of a message franking protocol, after the open-report procedure to the router by
opening only the necessary blocks?”

We answer this question with an affirmative response. First we provide a new
formal model to capture the privacy of message franking protocols and then we
instantiate two message franking protocols with after opening privacy.

Contributions More specifically the contributions of this work are as fol-
lows:

– First, we revisit the security definition for multi-opening ciphertext integrity
as presented in [GLR17] and we realize a CEP scheme with only 2 passes
for encryption, decryption and verification, relying only on standard as-
sumption of the underlying symmetric primitives. Namely the authors in
[GLR17] showed that using one key to commit to the message allows for
forgery attacks. This is doable because an adversary, according to the game,
can obtain a ciphertext on her own without querying the Enc oracle. After
that, it receives the opening key from the Dec oracle and finally forges a valid
commitment during the challenge phase. To circumvent the attack the au-
thors proposed to commit to the ciphertext with a PRF using a key which is
kept secret between the sender and the receiver. After careful altering of the
game, which results in a weaker but meaningful security model for integrity,
we present the CEP2 scheme without the need of an extra PRF and key.
We change the game to capture calls to the Dec oracle through some book-
keeping, thus allowing the challenger during the challenge phase to realize



4 Iraklis Leontiadis and Serge Vaudenay

when the adversary called the Dec oracle without calling the Enc oracle and
discarding the attack as non-valid. In contrast with the [DGRW18] scheme,
which is also 2 passes in the same strong security model for integrity as
[GLR17], our solution lies only on standard assumptions and not on related-
key-attacks security of the PRF.

– We introduce a more realistic privacy definition for abusive message report
enhancing previous definitions, called After Opening Privacy AOP. Intu-
itively, AOP guarantees that if a message with |M |/n blocks, consists of
some α abusive blocks and some β non-abusive ones, where α+ β = |M |/n,
then after the opening procedure the confidentiality of the β private blocks
is preserved.

– Finally, we design to the best of our knowledge the first private message
franking protocols: CEP-AOP1 and CEP-AOP2, which achieve the novel no-
tion of after opening security AOP (cf. Table 1).

Outline The rest of the paper is organized as follows: In Section 2 we depict
the message franking protocol of facebook and the formal security definitions
as formalized by Grubbs et al. [GLR17]. We also describe the commit then au-
thentication (CEP) scheme. We continue in Section 3 with a new security defini-
tion (MO-nCTXT2) for multi-opening ciphertext integrity for the existing CEP
scheme, which allows to tweak CEP in a way with no need for a second PRF, thus
a more efficient construction with less passes over the initial message and the
ciphertext. We also describe our new optimal design CEP2 and its security anal-
ysis in a provable way. In Section 4 we present the definitional framework for our
novel primitive: Committing Nonce based Authenticated Encryption with Par-
tial Opening (CEPO) in order to instantiate our two message franking protocols
with after opening privacy. Furthermore, we describe the new privacy definition
for message franking with after opening privacy (AOP) with a game played be-
tween an adversary and a challenger. We present our two protocols CEP-AOP1
and CEP-AOP2 which adhere to AOP in Sections 5 and 6 with their provable se-
cure analysis. Before concluding and presenting future work directions in Section
8 we depict related work in Section 7.

2 Facebook Franking

Facebook franking protocol (cf. Figure 1) operates as follows. Users run a key-
agreement protocol for a common secret encryption key k. The key k is agreed
following the SIGNAL protocol specificiations [Fac16]. It is out of the scope of
the current manuscript to communicate the details of the key exchange protocol,
but we assume a secure key exchange running between the sender S and the
receiver R in order to agree upon the symmetric key k. The sender S runs a key
generation algorithm to generate an HMAC key skf and evaluates the HMAC
on the concatenation M‖skf to compute the image C2. It then encrypts M‖skf
using an authenticated encryption algorithm Enc, which takes as input header
data H as well and results in C1. S forwards C1, C2 to Facebook, who in turn
evaluates HMAC, keyed by fk on C2‖md, where md ← S‖R‖time and sends
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Scheme AOP MO SB RB Enc Dec Verify

EtE[GLR17] 7 7 3 3 - - -
EtM[GLR17] 7 7 3 3 2 + 1 2 + 1 2 + 1
MtE[GLR17] 7 7 3 3 2 + 1 2 + 1 2 + 1
CtE1[GLR17] 7 3 3 3 3 + 1 3 + 1 1 + 1
CtE2[GLR17] 7 3 3 3 3 + 2 3 + 2 1 + 1
CEP[GLR17] 7 3 3 3 2 + 1 2 + 1 1 + 1
HFC[DGRW18] 7 3 3 3 2 2 2
CEP2 7 3 3 3 2 2 2
CEP-AOP1 3 3 3 3 1 +m 1 +m α
CEP-AOP2 3 3 3 3 1 +m 1 +m logm

Table 1: Comparison for EtE, EtM, MtE, CtE1, CtE2, CEP, HFC, CEP2,
CEP-AOP1 and CEP-AOP2. AOP is for after opening privacy, MO stands for
multi-opening security, SB for sender binding and RB for receiver binding. The
concrete numbers under the protocol algorithms demonstrate the number of
passes over the message. m denotes the number of blocks for a message M and
α ≤ m is the number of abusive blocks in M .

a ← HMACfk(C2‖md), C1, C2 to the receiver R. R uses its symmetric key k to
decrypt C1 in M, skf and verifies the correctness of C2 using skf and the HMAC.
If everything is correct it accepts the message M as valid. Later on, R decides
to flag the message M as abusive. R to convince Facebook that the message
M sent by S is abusive sends to Facebook (M, skf ,md, a). Facebook computes
a′ ← HMACfk(HMACskf (M‖skf )‖md) and verification is correct if a′ matches
with a.

2.1 Committing Nonce based Authenticated Encryption

Regardless its simplicity, Facebook abusive message reporting protocol incurs
high computation complexity. Assuming Enc is an authenticated encryption
scheme then for encryption the sender has to process the message M , 5 times, the
receiver passes the message 5 times in order to decrypt and the router-Facebook
verifies whether the message has been truly sent by the sender S to the receiver
R in 2 passes. Grubbs et al. [GLR17] proposed a new protocol dubbed CEP,
which reduces the number of passes. To instantiate their protocol they put forth
the definition of committing authenticated encryption (CE).

A CE scheme consists of four algorithms (KGen,Enc,Dec,Verify), associated
with a message space M ∈ Σ∗, a key space K ∈ Σ∗, a nonce space N ∈ Σ∗, a
header space H ∈ Σ∗, a ciphertext space C ∈ Σ∗, an opening space O ∈ Σ∗ and
a franking space T ∈ Σ∗. The four algorithms are defined as follows:

– k←$ KGen(1λ): A randomized algorithm, which outputs a secret key k ∈ K,
on input a security parameter λ in its unary form.
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S(k, H,M) FB(fk) R(k)

skf ← KGen(1λ)

C2 ← HMACskf
(M‖skf )

C1 ← Enck(H,M‖skf )

H,C1, C2

md← S‖R‖time

a← HMACfk(C2‖md)

H,C1, C2, a

(skf ,M)← Deck(H,C1)

if HMACskf
(M‖skf ) 6= C2

return ⊥

else O = M, skf ,md, a

O

C2 ← HMACskf
(M‖skf )

a
′ ← HMACfk(C2‖md)

return a
′
== a

Fig. 1: Facebook message franking protocol

– (C1, C2)←$ Enc(k, H,N,M): The encryption algorithm, which is determin-
istic, takes as input a key, a header, a nonce and a message (k, H,N,M)
∈ (Σ∗)4 and outputs (C1, C2) ∈ C × T or ⊥. C1 will be usually referred to
as the ciphertext and C2 as the commitment or tag.

– (skf ,M) ← Dec(k, H,N,C1, C2): The decryption algorithm Dec is a deter-
ministic algorithm, which takes as input (k, H,N,C1, C2) ∈ (Σ∗)5 and out-
puts a message M ∈M with an opening key skf ∈ O, or ⊥.

– 0, 1 ← Verify(H,M, skf , C2). This deterministic algorithm takes as input
(H,M, skf , C2) ∈ (H×M×O×T ) and outputs 1 if verification is successful
and 0 otherwise.

For encryption and decryption algorithms we sometimes omit the first input:
the secret key k, and we will write Enck(·, ·, ·) and Deck(·, ·, ·, ·) or Enc(·, ·, ·) and
Dec(·, ·, ·, ·). We also write Enck(·, ·, ·)[1] and Enck(·, ·, ·)[2] to denote C1 and C2

and accordingly Deck(·, ·, ·, ·)[1],Deck(·, ·, ·, ·)[2] for skf and M .
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A CE is correct if it adheres to 1)decryption correctness as in correctness for
encryption schemes: ∀(k, H,N,M) ∈ (K ×H×N ×M) it is true that:

Pr[Dec(k, H,N,Enck(H,N,M)︸ ︷︷ ︸
C1,C2

)[2]

︸ ︷︷ ︸
M

= M ] = 1

and 2) commitment correctness: if ∀(k, H,M) ∈ (K×H×M) it is true that:

Pr[Verify(H,M,Deck(H,N,C1, C2)[1]︸ ︷︷ ︸
skf

,Enck(H,N,M)[2]︸ ︷︷ ︸
C2

) = 1] = 1

The CEP protocol [GLR17] (c.f. Figure 2) operates as follows: The sender
shares a secret key k with the receiver. Afterwards S selects uniformly at random
a keystream P of size m+ 2n using a pseudorandom generator G which takes as
input a key k, a nonce N and a desired output length l. G can be instantiated
with a block cipher E in counter mode with IV ← Ek(N): the ithn bit block is
the output of Ek(IV +i) for messages inGF (2n). The 2n bits of the keystream are
used as keys for two PRF’s FcrP0

and FP1
, where FP0

should be collision resistant.
The rest m bits of P are used as a xor based one-time-pad to encrypt the message
M . The reason for the second PRF is to achieve multi-opening security. For
decryption the receiver R runs the deterministic G on input the secret shared
key k to derive the same keystream P . It decrypts C1 and then checks the
integrity of both C2 and T . Whenever R receives an abusive message M , it
sends to the router the tuple (skf = P0,M) and the router checks whether
C2 == Fcrskf (H‖M). If that is the case the protocol continues with the second
step of verification from Figure 1, which incorporates the validity of a, which
is the tag computed on C2‖S‖R‖timestamp keyed with the secret key of the
router. Overall the CEP results in 3 passes for encryption and decryption and 2
pases for the verification.

2.2 Message Franking Protocol Security Definitions

In terms of security message franking protocols as modeled by Grubbs et al.
[GLR17] are formalized within four flavors of security. The folklore confidentiality
notion, which protects the privacy of the exchanged messages between S and R,
the integrity protection of the message itself against active adversaries and two
novel definitions for binding security.

Binding Security The first one: Sender binding (s-BIND) locks S from sending
an abusive message M ′ which cannot be verifiably reported by R to the router
and the second one: Receiver Binding r-BIND protects S from a maliciousR who
tries to convince the router about a claimed abusive message M ′, which has not
been truly sent by S. r-BIND protects the sender from faulty being accused as a
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CEP-Enck(H,N,M) :

m← |M |/n

P ← G(k, N, 2n+ nm)

C ← (P2‖ · · · ‖Pm+1 ⊕M)

C2 ← FcrP0
(H‖M)

T ← FP1
(C2)

return (C1 = C‖T,C2)

CEP-Deck(H,N,C1, C2):

parse C1 = C‖T

m← |C|/n

P ← G(k, N, 2n+ nm)

M ← (P2‖ · · · ‖Pm+1 ⊕ C)

C
′
2 ← FcrP0

(H‖M)

T
′ ← FP1

(C
′
2)

if T 6= T
′ ∨ C′2 6= C2 then

return ⊥

return (P0,M)

CEP-Verify(H,M, skf , C2):

C
′
2 ← Fcrskf

(H‖M)

if C
′
2 6= C2 then

return ⊥

return 1

Fig. 2: CEP algorithms

sender of an abusive message which has never been sent. It is relevant with the
symmetric setting as simple encryption with a symmetric cipher does not protect
the sender, e.g: as sender and receiver act honestly during the authenticated key
exchange phase they both share the symmetric encryption key k. A malicious
R can encrypt any message she wants and claim that it has been sent by S. As
such, to achieve receiver binding a careful treatment of cryptographic primitives
other than integrity tags and ciphertexts is needed.

s-BIND definition is depicted in Figure 3 with the notion of a game. The
game starts with the adversary A selecting a key k, a header H, C1 and C2. At
the next step the challenger (benign entity) of the game tries to decrypt C1, C2

with the Dec algorithm and gets skf and M ′. If the decrypted message is empty
the game halts. Otherwise, the challenger runs the Verify algorithm on input
H,M ′, skf , C2. Finally, A wins the game ⇐⇒ the output of the verification
algorithm is 0, which means that the sender managed to send a message M ′,
which cannot be verified by the router as abusive. The advantage of an adversary
A against sender binding equals the probability of the game to s-BIND to output
1:

Advs−bindCEP (A) = Pr[s-BIND⇒ 1]

For the Receiver Binding Game (r-BIND) (cf. Figure 3 ) A first outputs
(H,M, skf ), (H ′,M ′, skf

′), C2. The challenger runs twice the Verify algorithm on
input (H,M, skf , C2) and (H ′,M ′, skf

′, C2) and outputs b and b′. If (H,M) ==
(H ′,M ′) then the game outputs 0 and halts as that models the fact that the
adversary A impersonating the receiver R did not manage to find a different
header and message that will be successfully verified by the router. Otherwise if
(H,M) 6= (H ′,M ′) and b = b′ = 1 meaning the router verified them successfully
then the game returns successfully the value 1. Similarly with the sender binding
notion, the advantage of an adversary A against receiver binding equals the
probability of the game s-BIND to terminate without outputting 1:
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Advr−bindCEP (A) = Pr[r-BIND⇒ 1]

Sender Binding Game(s-BIND)

(k, H,N,C1, C2)←$A

(skf ,M
′
)← Deck(H,N,C1, C2)

if M
′
==⊥ then return 0

b← Verify(H,M ′, skf , C2)

if b == 0 then return 1 else return 0

Receiver Binding Game (r-BIND):

((H,M, skf ), (H
′
,M
′
, skf

′
), C2)←$A

b← Verify(H,M, skf , C2)

b
′ ← Verify(H′,M ′, skf

′
, C2)

if (H,M) == (H
′
,M
′
) then return 0

return (b == b
′
== 1)

Fig. 3: Sender and Receiver binding games

Confidentiality and Integrity Confidentiality is modeled with a Real-or-
Random game whereby the adversary tries to distinguish with non-negligible
probability whether it receives ciphertexts from the real message franking en-
cryption algorithm or it receives encryption of uniformly random bitstrings of the
same length as the real ones. As the construction uses nonce-based authenticated
encryption with authenticated data the authors [GLR17] lifted the corresponding
confidentiality definition tailored for nonce-based encryption with authenticated
header to the message franking setting (cf. Figure 4). In all games A is nonce-
respecting to avoid trivial wins: E.g: A asks the encryption of a message M with
nonce N from the Enc oracle and gets as a response the corresponding cipher-
text C1, C2. Afterwards, it calls the challenge oracle on input (H,N,M) and it
gets back either the faithful encryption of M or the encryption of same length
random bit string. To win the game it compares the result with C1, C2 from the
encryption oracle.

We slightly change the game as first defined by Grubbs et al. [GLR17] in
order to be more precise and avoid ambiguities during its interpretation: It is
not clear why the decryption oracle should only allow decryptions made from
encryption oracle. By doing so, the game correctly forbids decryption for the
challenge ciphertext but it also weakens the model because it forces adversary
to make a query to the encryption oracle to learn a ciphertext, but the adversary
A may compute correctly a ciphertext at its own. As such we keep track of the
challenge in a variable y1 and check at the decryption oracle if the input equals
y1. In that way we give more freedom to A to come up with a valid ciphertext.
Second we add a variable y0 in order to model the nonce respecting adversary.
Finally we control the number of the challenges to equal 1.
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Game MO-nREAL

y0, y1,← ∅, k←$K

b
′←$AEnc,Dec,Chal-Real

return b
′

Chal-Real(H,N,M)

if N ∈ y0 then

return ⊥

if y1 6= ∅ then return ⊥

(C1, C2)← Enck(H,N,M)

y0 ← y0 ∪N

y1 ← {(H,N,C1, C2)}

return C1, C2

Game MO-nRAND

y0, y1 ← ∅, k←$K

b
′←$AEnc,Dec,Chal-Rnd

return b
′

Chal-Rnd(H,N,M)

if N ∈ y0 then return ⊥

if y1 6= ∅ then return ⊥

l← (|M |)

m
′←$ {0, 1}l

(C1, C2)← Enck(H,N,m
′
)

y0 ← y0 ∪N

y1 ← {(H,N,C1, C2)}

return C1, C2

Enc(H,N,M)

if N ∈ y0 then return ⊥

(C1, C2)← Enck(H,N,M)

y0 ← y0 ∪N

return C1, C2

Dec(H,N,C1, C2)

if (H,N,C1, C2) ∈ y1 then

return ⊥

(skf ,M)← Deck(H,N,C1, C2)

y0 ← y0 ∪N

return (skf ,M)

Fig. 4: MO-nREAL and MO-nRAND games

The advantage of an adversary A against the confidentiality of a message
franking protocol is:

Advmo−nror
CEP (A) = |Pr[MO-nREAL⇒ 1]− Pr[MO-nRAND⇒ 1]|

The integrity mechanism protects the integrity of the exchanged messages
either from external adversaries, who try to manipulate the messages, or from
internal adversaries trying to forge a message in order to convince the router for
a delivery of message. Figure 5 demonstrates the game played between an ad-
versary A and a Challenger. A has access to the Enc,Dec oracles, which encrypt
and decrypt arbitrary messages using an underlying nonce-based symmetric en-
cryption algorithm. The adversary wins the game if it manages to present a
ciphertext in the Challenge oracle, which can be successfully decrypted and has
not been given as input to the Dec previously. The success probability of A
winning the integrity game MO-nCTXT equals:

Advmo−nctxt
CEP (A) = Pr[MO-nCTXT⇒ 1]

3 Multi-Opening Security with one PRF

As a first observation we show how to achieve multi-opening security with respect
to ciphertext integrity without the need of the second PRF evaluation over the
PRF evaluated on the message M in a weaker security model but realistic in the
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Game MO-nCTXT

y ← ∅,win← false

k←$K

AEnc,Dec,Challenge

return win

Enc(H,N,M)

if N ∈ y[2] then return ⊥

(C1, C2)← Enck(H,N,M)

y ← y ∪ {(H,N,C1, C2)}

return C1, C2

Dec(H,N,C1, C2)

(skf ,M)← Deck(H,N,C1, C2)

return (skf ,M)

Challenge(H,N,C1, C2)

if (H,N,C1, C2) ∈ y then

return ⊥

(skf ,M)← Deck(H,N,C1, C2)

if M 6=⊥ then win← true

return (skf ,M)

Fig. 5: Game MO-nCTXT and oracles

case of message franking. This tweak results in an efficient CEP with only 2 of
passes for encryption and decryption and 1 for verification. According to Grubbs
et al. [GLR17], during Enc if the protocol ends by evaluating the PRF on the
message: C2 ← FcrP0

(H‖M) (i.e. the tag T is dropped) and during Dec the receiver
only checks whether C2 = FcrP0

(H‖M ′), where M ′ ← (P2‖ . . . ‖Pm+1)⊕ C1 then
there is an attack, which breaks the MO-nCTXT security guarantee. The attack
is described informally [GLR17, Section 7, p15] with some ambiguity and here
we give the two interpretations which result in the same attack:

1. The adversary obtains a valid ciphertext (C1, C2) in the protocol execution
(passive observer), thus it does not call the Enc(H,N,M) oracle and conse-
quently the list y1 for bookkeeping does not contain the tuple (H,N,C1, C2).
Afterwards it calls the Dec oracle on input (H,N,C1, C2) to obtain the open-
ing key skf = P0. With skf it can compute FcrP0

(H‖M ′) on arbitrary mes-
sage M ′, which can be accepted by the Challenge oracle, because the tuple
(H,N,C1, C2) is not in the y list.

2. A second interpretation of the attack contains an adversary A, who calls the
Enc oracle on input (H,N,M) and receives C1, C2. The oracle also stores
the tuple (H,N,C1, C2) in the y list. A then calls the Dec oracle on in-
put (H,N,C1, C2) to obtain the key skf as with the aforementioned first
case. Afterwards, for skf = P0 it computes C ′2 ← FcrP0

(H‖M ′) and presents
(H,N,C1 ⊕ M ⊕ M ′, C ′2) to the Challenge oracle, which sets win ← true
because (H,N,C1, C

′
2) is not in the y list and decrypts well to M ′ with skf .

In either cases the problem arises from the fact that there is no bookkeeping
at the Dec oracle. Thus, any time A obtains a valid ciphertext for any message
M , it can ask for the opening key skf and evaluate the PRF : Fcrskf on input any

message at its choice. Then, at the Challenge oracle check, the tuple H,N,C1, C
′
2

1 The y list corresponds to Figure 4, from [GLR17]
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will never be in the list y, because C ′2 has been computed locally by A. The
authors in [GLR17] proposed as a solution the use of a second PRF : F, which
is used as follows: During encryption after obtaining the tag C2 ← FcrP0

(H‖M)
the sender uses a second key P1 to evaluate another PRF : T ← FP1

(C2), which
takes as input C2. During decryption the receiver accepts the ciphertext when
both C2 and T are correct and during opening it gives only the P0 as a key to
the router.

Here we show how to achieve multi-opening ciphertext integrity in a strictly
weaker but meaningful model without the need for the second PRF and key,
which rends the protocol more efficient and despite being weaker it is more real-
istic. Namely, in the MO-nCTXT game the adversary can compromise opening
key P0, which is at the same time the integrity key for the PRF. However, in
a typical ciphertext integrity game the adversary is not compromising tagging
integrity secret key when she is asked to forge a ciphertext. Thus, when the
adversary is calling the decryption oracle to get the plaintext and the opening
key skf = P0 = the PRF key, we can silence the oracle with an abort in case
the Challenge oracle is called with input a nonce N part of a decryption query.
This abort makes the new security game MO-nCTXT2 weaker because of this
restriction, but still meaningful in a real world model of a messaging application,
where the receiver is reporting with the opening key and there is no delegation
of the procedure to a third party, who should hold the secret opening key skf .

First we change the security game for MO-nCTXT2 (cf. Figure 6). Namely,
the new game keeps track of N tuples in a new list l and Challenge sets win← true
when the decrypted message is not empty and N is not in l. Notice that the in-
clusion in the tuple of information related with the ciphertext C1 and the header
H does not give any advantage to the game to detect an adversary who has called
the Dec oracle on input (H,N,C1, C2). A can call Dec to learn (skf ,M), then
it deduces C1 ⊕M = P0 . . . Pm, where P0 . . . Pm is the keystream. A then picks
H ′,M ′ of the same length as H,M and queries the Challenge oracle on input
H ′, N,C1 = (P1 . . . Pm)⊕M ′, C ′2 = FcrP0

(H ′‖M ′). Thus, an adversary by learning
any valid tuple of M, skf , C1, C2 it can manipulate C1 and C2 to meaningful C ′1
and C ′2 for another message M ′ bypassing any check in the l list. The sufficient
condition to capture trivial attacks is to forbid calls on the Challenge oracle on
input a specific nonce N , which was part of a decryption query through the Dec
oracle. Moreover, to avoid trivial wins whereby A passively listens the commu-
nication channel and submits H,N,C1, C2 to the Challenge oracle, we assume
that any valid H,N,C1, C2 tuple has been produced by a call to the Enc oracle
which keeps track of those tuples in y list.

With those tweaks the attack which has been described before regarding
MO-nCTXT will be discarded with the membership checking at the list. We
present in Figure 7 the new CEP2 scheme which is MO-nCTXT2 secure without
the need of a second PRF. The changes with respect to the old CEP scheme are
the deletion of 1) the second PRF evaluation during encryption, 2) the second
key P1 and 3) the second PRF check during decryption.
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Game MO-nCTXT2

y, l ← ∅,win← false

k←$K

AEnc,Dec,Challenge

return win

Enc(H,N,M)

if N ∈ y[2] then return ⊥

(C1, C2)← Enck(H,N,M)

y ← y ∪ {(H,N,C1, C2)}

return C1, C2

Dec(H,N,C1, C2)

(skf ,M)← Deck(H,N,C1, C2)

l← l ∪N

return (skf ,M)

Challenge(H,N,C1, C2)

if (H,N,C1, C2) ∈ y∨N ∈ l then

return ⊥

(skf ,M)← Deck(H,N,C1, C2)

if M 6=⊥

then win← true

return (skf ,M)

Fig. 6: Game MO-nCTXT2 and oracles. Boxed elements denote the differences
with the MO-nCTXT game.

CEP2-Enck(H,N,M) :

m← |M |/n

P ← G(k, N, n+ nm)

C1 ← (P1‖ . . . ‖Pm ⊕M)

C2 ← FcrP0
(H‖M)

return (C1, C2)

CEP2-Deck(H,N,C1, C2):

m← |C1|/n

P ← G(k, N, 2n+ nm)

M ← (P1‖ . . . ‖Pm ⊕ C1)

C
′
2 ← FcrP0

(H‖M)

if C
′
2 6= C2 then

return ⊥

return (P0,M)

CEP2-Verify(H,M, skf , C2):

C
′
2 ← Fcrskf

(H‖M)

if C
′
2 6= C2 then

return ⊥

return 1

Fig. 7: CEP2 algorithms

MO-nCTXT security implies MO-nCTXT2 : MO-nCTXT ⇒ MO-nCTXT2
or to put it differently from an adversary breaking MO-nCTXT2 with a forgery
we can implement a reduction to another adversary against MO-nCTXT by
simply outputting the same forgery: MO-nCTXT2breaking ⇒ MO-nCTXTbreaking.
The other direction is not doable because a forgery for the MO-nCTXT security
definition may not give a valid forgery for the MO-nCTXT2 definition due to
the restrictions of the game regarding adversarial behavior.

As we change the original CEP scheme by omitting the second PRF we prove
the confidentiality, integrity and binding notions for CEP2. Intuitively the proofs
follow the proofs for the CEP protocol omitting game transitions due to the
second PRF : F since it is not used in CEP2. Interestingly we are getting tighter
bounds for confidentiality and the same for integrity, and binding assuming Fcr

is a also a secure MAC.
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Theorem 1 (CEP2 Ciphertext integrity). Let CEP2 be a message franking
protocol instantiated with a pseudorandom generator G, a pseudorandom func-
tion F cr. Let A be a MO-nCTXT2 adversary issuing q = qEnc, qDec, qChallenge
queries with time complexity t. Then there exist adversaries B and C making
each qPRG = qEnc + qDec + qChallenge and qPRF = qEnc + qDec + qChallenge queries in
time complexity t such that:

Advmo-nctxt2
CEP2 (A) ≤ AdvprgG (B) +

q∑
j=1

AdvprfFcr (Cj)

Proof. Proof follows the game hoping technique through a series of game tran-
sitions, detectable with negligible probability according to the assumptions of
a secure PRNG G and a PRF : Fcr. The proof inherits similarities with the
CEP ciphertext integrity as instead of having F cr ◦ F as a secure MAC we have
MAC = F cr.We assume without loss of generality that all queries (H,N,C1, C2)
to the Dec oracle are in the y list or that N ∈ l. Otherwise we can use the
Challenge oracle. Moreover, we assume that the game stops as soon as win = true.
Hence, Challenge always returns ⊥.

Let G0 be the original game MO-nCTXT2 and G1 equivalent with G0 with
one difference: calls to G are replaced with strings of the same size n+nm from
a random function R. Obviously

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + AdvprgG (B) (1)

where AdvprgG (B) is the advantage of an adversary B to distinguish truly random
string from R from pseudorandom strings from G making qPRG = qEnc + qDec +
qChallenge queries in time complexity t.

We number the pairwise different nonces Nj , j = 1 . . . q as they appear in the
oracle queries. We let J be the index of the nonces appeared in Challenge query
and made win switch to true. Then we have that:

Pr[G1 ⇒ 1] =

q∑
j=1

Pr[G1 ⇒ 1 : J = j] (2)

Recall that A wins the MO-nCTXT2 game only if it manages to present
a tuple (H,N,C1, C2) to the Challenge oracle without having queried the Dec
oracle to avoid the trivial attack given by [GLR17]. For each Nj , j ∈ [1, . . . q],
we define adversaries Cj against the universal unforgeability on chosen messages
against the collision resistance pseudorandom function Fcr, which is keyed by
P0 = G(k, Nj , n). We make the game abort if Nj is queried to the Dec oracle.
Thus:

Pr[G1 ⇒ 1] ≤ Advuf−cma
Fcr (Cj) (3)

Finally from (1), (2), (3) accumulating the distinguishing probabilities of A
against the MO-nCTXT2 game we have:

Advmo-nctxt2
CEP2 (A) ≤ AdvprgG (B) +

q∑
j=1

AdvprfFcr (Cj)
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�

Theorem 2 (CEP2 Confidentiality). Let CEP2 = CEP[F, G] be a mes-
sage franking scheme and a MO-nRoR adversary A making at most q =
(qEnc, qDec, qChallenge) queries in time complexity t. There exist adversaries B, C
making at most qPRG = qEnc + qDec + qChallenge and qPRF = qEnc + qDec + qChallenge
queries in time complexity t accordingly such that:

Advmo−nror
CEP2 (A) ≤ 2 · Advmo-nctxt2

CEP2 (B) + AdvprfFcr (C)

Proof. Let G0 be the MO-nREAL game. We modify G0 in G1, by introducing
y, l and win as in the MO-nCTXT2 game and by making G1 abort if win = true.
Then we have:

Advmo−nror
CEP2 (A) ≤ AdvG1

(A) + 2 · Advmo-nctxt2
CEP2 (B)

In G1 we are ensured that the nonce N submitted to the Challenge oracle is
never submitted to the Dec oracle but to return ⊥. Then we can reduce to the
PRF game such that AdvG1

(A) = AdvprfFcr (C). Finally it holds that:

Advmo−nror
CEP2 (A) ≤ 2 · Advmo-nctxt2

CEP2 (B) + AdvprfFcr (C)

�

Sender binding s-BIND follows trivially from CEP2-Verify algorithm as long
as the router executes honestly the verification algorithm and the receiver R
runs decryption accordingly. Namely R checks whether C2 = C ′2 and the same
check is performed by the router.

Receiver binding r-BIND for CEP2 lies on the collision resistance property of
Fcr, similarly with CEP:

Theorem 3 (CEP2 Receiver Binding). Let CEP2 be a message franking
scheme and A an adversary against r-BIND with time complexity t. Then, there
exists an adversary B finding a collision of Fcr with time complexity t:

Advr−bindCEP2 (A) ≤ AdvcrFcr (B)

Proof (Sketch). B runs A until the latter outputs a tuple
((H,M, skf ), (H ′,M ′, skf

′), C2), whereby the r-BIND game outputs 1. That
is, Verify(H,M, skf , C2) = Verify(H ′,M ′, skf , C2) = 1 ⇒ Fcrskf (H‖M)′ =

Fcrskf (H ′‖M ′), thus a valid collision of Fcr. �

4 PMF: Private Message Franking

4.1 Privacy Leakage with CEP

CEP [GLR17] introduces an increased leakage of confidentiality for the non-
abusive message due to the way the protocol and the security games treat the
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entire message as a singleton object. Namely, each time a benign receiverR opens

an abusive message M̃ all the blocks {bi}|M |/ni=1 are revealed to the router. A single
message though consists of multiple blocks of equal length n. Some α blocks of
them may render the entire message abusive, but the rest β, α + β = |M |/n
may need to be kept secret and not be open to the router. Moreover, opening
all blocks of a message such as attachments with multimedia content may be
unnecessary because only a small excerpt is needed to render the entire message
as abusive. Consequently when the entire message is opened communication
overhead is increased unreasonably. The current CEP construction does not treat
the message M as a set of blocks, rather operates during the opening procedure
at the entire M .

In our approach we first extend the current model for message franking in
order to adhere to the partial opening property, which protects the non-abusive
blocks from the abusive ones in one messageM . Namely, we introduce a predicate
relationship R(), which takes as input a message M and outputs 1 whenever
the message contains abusive blocks and 0 otherwise. We also separate from
the decryption function Dec the opening functionality in a separate algorithm
Proof, which outputs a proof Π, demonstrating to a router that a message M
is considered as abusive, due to some blocks, which are opened to the router.
The latter verifies the proof calling the Verify algorithm which takes as input
the proof Π. More formally we define our new syntactical model for Committing
Nonce based Authenticated Encryption with Partial Opening in the following
subsection.

4.2 Committing Nonce based Authenticated Encryption with
Partial Opening(CEPO)

A CEPO scheme consists of five algorithms (KGen,Enc,Dec,Proof,Verify), associ-
ated with a message spaceM∈ Σ∗, a key space K ∈ Σ∗, a nonce space N ∈ Σ∗,
a header space H ∈ Σ∗, a ciphertext space C ∈ Σ∗, an opening space O ∈ Σ∗,
a franking space T ∈ Σ∗ and a proof space P ∈ Σ∗. The five algorithms are
defined as follows:

– k←$ KGen(1λ): A randomized algorithm, which outputs a secret key k ∈ K,
on input a security parameter λ in its unary form.

– (C1, C2)←$ Enc(k, H,N,M): The encryption algorithm, which is determin-
istic, takes as input a key, a header, a nonce and a message (k, H,N,M)
∈ (Σ∗)4 and outputs (C1, C2) ∈ C × T or ⊥. C1 will be usually referred to
as the ciphertext and C2 as the commitment.

– (skf ,M) ← Dec(k, H,N,C1, C2): The decryption algorithm Dec is a deter-
ministic algorithm, which takes as input (k, H,N,C1, C2) ∈ (Σ∗)5 and out-
puts a message M ∈M with an opening key skf ∈ O, or ⊥.

– Π ← Proof(R,H,M, skf ): This is a deterministic algorithm, which takes
as input (R,M,H, skf ) ∈ (Σ∗)4 and outputs a proof Π ∈ P, which demon-
strates correctness of the predicate R on input the message M . The predicate
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R is defined as follows:

R(M) =


1, B = (i, . . . , j) if ∃i, j ∈ [1 . . .m] s.t. bi, . . . bj = xi, . . . xj ,

xi ∈ {0, 1}n
0, otherwise

where b1 . . . bm are the blocks of the message M . The predicate returns 1 and
a set B of the indeces i, . . . j, whenever some blocks of the message bi, . . . bj
equal to some specific bitstrings xi, . . . xj , xi ∈ {0, 1}n which are regarded as
abusive. What is flagged as abusive is inherently implied in the protocol. It is
up to the choice of the receiver/router what it will be considered as abusive
and what not. A malicious receiver, who always opens blocks of a message
to the router, even if these are not flagged as abusive by the router is not
captured in the model, as this seems impossible to be enforced technically.

– 0, 1← Verify(H,Π, fk): This deterministic algorithm takes as input (H,Π, fk)
∈ (H×P ×K) and outputs 1 if verification is successful and 0 otherwise.

We write Enck(·, ·, ·)[1] and Enck(·, ·, ·)[2] to denote C1 and C2 and accordingly
Deck(·, ·, ·, ·)[1],Deck(·, ·, ·, ·)[2] for skf and M .

A CEPO is correct if it adheres to 1)decryption correctness as in correctness
for encryption schemes: ∀(k, H,N,M) ∈ (K ×H×N ×M) it is true that:

Pr[Dec(k, H,N,Enck(H,N,M)︸ ︷︷ ︸
C1,C2

)[2]

︸ ︷︷ ︸
M

= M ] = 1

and 2) commitment correctness: if ∀(k, H,M) ∈ (K ×H×M) it is true that:

Pr[Verify(H,

Π︷ ︸︸ ︷
Proof(R,H,M, skf ), fk) = 1] = 1

where skf = Deck(H,N,Enck(H,N,M))[1].
Throughout the model for message franking as first captured [GLR17] and

instantiated with the CEP protocol, the tasks performed by Facebook are omitted
in the model and during costs analysis. That is, the signing operation performed
by Facebook on C2 and on the metadata md = S‖R‖timestamp are discarded
in the protocol. We conjecture that this is due to the fact that Facebook at the
Verify algorithm always acts honestly and the cost for one extra signing and
verification operation is negligible. In our two protocols we enhance the model
to be more accurate with the existing API of Facebook, including an algorithm
called Process, which illustrates the tasks performed by a router when receiving
C1, C2 by the sender S.

With our two protocols CEP-AOP1 and CEP-AOP2 for message franking with
after opening privacy we enhance the privacy and the communication efficiency of
the current message franking protocols with after opening privacy : The message
is not treated as a singleton object, rather it is split in blocks and only the
abusive blocks are opened by the receiver R to the router. We present in the
next section the stronger privacy guarantee modeled with a cryptographic game.
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4.3 After Opening Privacy

In order to enhance the security guarantees of messaging protocols with after
opening privacy, we introduce a game based definition for multi opening indis-
tinguishable partial openings (MO-IND-PO). Intuitively that security definition
guarantees the confidentiality of the closed blocks: those which did not open to
the router by the receiver R, when the latter blacklists a message M as abusive
due to some abusive blocks.

The game is presented in Figure 8. We omit the explanation of the Enc and
Dec oracles since these are replicated directly from the confidentiality game of
the CEP scheme [GLR17]. Apart from the Enc and Dec oracles, A has access
to the Proof oracle. That oracle takes as input the partial opening predicate
function R. The oracle first checks if the challenged pair of messages results in
the same predicateR evaluation to capture trivial attacks, whereby the adversary
A guesses correctly with probability 1 during the challenge. Namely A can open
some blocks of the message, which evaluate correctly the predicate R and verify
with the opening key (because the predicate of that message equals 1) which
message has been encrypted by the Challenge oracle. If the predicate evaluation
over the challenged messages M0 and M1 is equal then Proof oracle proceeds
with the decryption of the input tuple (H,N,C1, C2) to learn (skf ,M) and then
runs the Proof algorithm on input (R,H,M, skf ) to learn the proof Π. Finally
it forwards Π to A.

When A decides to get challenged, it calls the Challenge oracle on input
(H,N,M0,M1, R), under the condition that the nonce N has not been queried
before, |M0| = |M1|, chall is empty and messages evaluate to the same output
on the predicate R. The challenger also checks whether the same nonce has
been given as input at any call to the Enc oracle and halts the game if so, to
avoid distinguishing attacks on the underlying authenticated encryption scheme.
Then it encrypts Mb and returns to A the ciphertext C1 with the tag C2. In
the indistinguishable flavor we say that the advantage of an adversary A while
playing the MO-IND-PO is the probability of A to output b′ = b at the end of
the game:

Advmo−ind−po
CEPO (A) = |Pr[MO-IND-PO(0)⇒ 1]− Pr[MO-IND-PO(1)⇒ 1]|

After enhancing the privacy requirements of a message franking protocol
with the after opening privacy notion as formalized in the previous section we
can embark on our solution ideas. We first give a naive solution, which hides
the non-abusive messages, but introduces an increased communication complex-
ity. We call this protocol CEP-AOP1. We then present our optimized protocol
CEP-AOP2, and analyze its security in a formal way.
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Game MO-IND-PO(b)

y ← ∅, k←$K

chall,Mchall←⊥

b
′←$AEnc,Dec,Proof,Challenge

return b
′

Enc(H,N,M)

if N ∈ y then return ⊥

(C1, C2)← Enck(H,N,M)

y ← y ∪N

return C1, C2

Proof(R,H,N,C1, C2)

if Mchall =⊥ then

return ⊥

else

(skf ,M)← Dec(H,N,C1, C2)

Π ← Proof(R,H,M, skf )

return Π

Dec(H,N,C1, C2)

if (H,N,C1, C2) = chall then

return ⊥

(skf ,M)← Deck(H,N,C1, C2)

return (skf ,M)

Challenge(H,N,M0,M1, R)

if (N ∈ y) ∨ (|M0| 6= |M1|) ∨ (chall 6=⊥)

∨ (R(M0) = 0) ∨ (R(M1) = 0) then

return ⊥

else

Mchall← (M0,M1)

(C1, C2)← Enck(H,N,Mb)

chall← (H,N,C1, C2)

y ← y ∪N

return C1, C2

Fig. 8: Game MO-IND-PO

5 CEP-AOP1

5.1 Description

We consider as the basis for our message franking protocol with after opening
privacy the CEP construction [GLR17], which achieves the multi-opening confi-
dentiality and integrity notions and needs less passes over the message, compared
with the compositional designs of Encode-then-Encipher [BR00], Encrypt-then-
Mac [BR00] and Mac-then-Encrypt. The privacy leakage of the CEP protocol
occurs during the opening phase. The receiver of a message thinking that it
violates its abusiveness limits, reports it in a verifiable manner to the router.
Namely, the router is exposed to the CEP-Verify(H,M, skf , C2) algorithm, which
takes as input the entire message M with the authentication tag key skf and the
commitment C2. The challenge is dual: First, the new protocol has to maintain
the receiver binding property for the abusive blocks of the message such as it
cannot faulty blame the sender for message that it did not send. In parallel, the
router after receiving the secret authentication tag key skf should not be able
to compromise the blocks which have not be opened by R, while verifying the
integrity of the claimed as abusive by R blocks.
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CEP-AOP1-Enck(H,N,M) :

m← |M |/n

parse M as mi[0 . . .m− 1]

P ← G(k, N, 2mn)

C1 ← (Pm‖ . . . ‖P2m−1 ⊕M)

for i = 0 . . .m− 1 do :

c
i
2 ← FcrPi

(H‖mi)

return (C1, C2 = c
i
2[0 . . .m− 1])

CEP-AOP1-Process(S,R, C1, C2, fk):

parse C2 as c
i
2[0 . . .m− 1]

md← S‖R‖time

for i = 0 . . .m− 1 do :

si ← c
i
2‖md

ai ← Ffk(si)

return (C1, C2 = c
i
2[0 . . .m− 1], ai[0 . . .m− 1])

CEP-AOP1-Deck(H,N,C1, C2):

m← |C1|/n

parse C2 as c
i
2[0 . . .m− 1]

P ← G(k, N, 2nm)

M ← (Pm‖ . . . ‖P2m−1 ⊕ C1)

parse M as mi[0 . . .m− 1]

for i = 0 . . .m− 1 do :

c
′i
2 ← FcrPi

(H‖mi)

if c
′i
2 6= c

i
2 then return ⊥

return (skf = Pi[0 . . .m− 1],M)

CEP-AOP1-Proof(R,H,M, skf ):

if R(M) = 0 then return ⊥

parse skf as Pi[0 . . .m− 1]

parse M as bi[0 . . .m− 1]

return Π = (H, {bi}, Pi, ai, i ∈ B)

CEP-AOP1-Verify(H,Π, fk):

parse Π as H, {bi}, Pi, ai, i ∈ B

for i ∈ B do :

c
′i
2 ← FcrPi

(H‖bi)

a
′
i ← Ffk(c

′i
2 ‖md)

if a
′
i 6= ai then return ⊥

return 1

Fig. 9: CEP-AOP1 algorithms

The shared encryption key k is never opened to the router. Consequently,
encryption and decryption algorithms are not altered. Our first solution principle
which is described in Figure 9 works as follows:

During encryption the sender S calls the nonce-based pseudorandom genera-
tor G2 with desired output size 2mn, where m = |M |/n, for a block size of n bits.

2 We use the same naming with [GLR17] for the pseudorandom generator G introduced
as a nonce-based taking as input the nonce N , however the model is reminiscent to
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The encryption as with the CEP scheme operates as a xor based one time pad.
The first blocks of randomness Pi, i ∈ [0 . . .m − 1] are used to key the collision
resistant PRF Fcr. Pi denotes the ith block of randomness of size n bits. The
main difference with the CEP [GLR17] scheme is that there is one tag per block
instead for one tag for the entire message in order to adhere to after opening
privacy of the non-abusive blocks. S forwards the encrypted ciphertect C1 and
the commitment C2 = ci2[0 . . .m−1] to the router. The latter iterates over all the
tags, and computes one authentication tag ai per block using its own secret key
fk. Finally, the router forwards to R C1, C2 = ci2[0 . . .m−1], ai[0 . . .m−1]. Upon
receipt of C1, C2 the router tags C2 with its private key fk and forwards C1, C2,
and the tags to the receiver R, with the CEP-AOP1-Process(S,R, C1, C2, fk) al-
gorithm. C1 is given as input to the algorithm even if is not used internally to
denote the fact that the router receives C1 from the sender S.

When the receiver R gets C1, C2 calls the CEP-AOP1-Deck(H,N,C1, C2)
algorithm to decrypt the message and check its integrity. It first parses the
ciphertext C1 and the commitment C2 as ci2[0 . . .m− 1]. It then calls the nonce-
based pseudorandom generator on input the common agreed key k to produce
the pad P of size 2mn bits. Afterwards it parses the decrypted message M in
message blocks mi[0 . . .m− 1] and recomputes the tags c′i2 , for i ∈ [0 . . .m− 1]
using as keys the pads Pm+i for the PRF : FcrPm+i

.

R calls the CEP-AOP1-Proof(R,H,M,C2, skf ) algorithm in order to provide
a proof to the router, demonstrating that some message M sent by the sender
S contains abusive blocks bi, i ∈ B indexed in the set B. The algorithm outputs
a proof consisting of the opening keys Pi, i ∈ B only for the abusive blockss
bi, i ∈ B. Finally the router verifies the correctness of the proof by calling the
CEP-AOP1-Verify(H,Π,C2) algorithm and checks whether the tags of abusive
blocks are consistent, using the opening keys Pi, i ∈ B to re-evaluate the collision
resistant PRF : Fcr.

5.2 Security Analysis

Theorem 4 (CEP-AOP1 Integrity). Let CEP-AOP1[F, G] be a CEP-AOP
scheme and a MO − nCTXT adversary A making at most q queries. Then
there exist adversaries B and C making each qPRG = qEnc + qDec + qChallenge and
qPRF = qEnc + qDec + qChallenge queries in time complexity t such that:

Advmo-nctxt2
CEP-AOP1(A) ≤ AdvprgG (B) +

m·q∑
j=1

AdvprfFcr (Cj)

Proof. Similarly with the integrity proof for the CEP2 protocol we assume with-
out loss of generality that all queries (H,N,C1, C2) to the Dec oracle are in the
y list or that N ∈ l. Otherwise we can use the Challenge oracle. The game halts
also as soons as win = true. Let G0 be the original game MO-nCTXT2 and G1 is

pseudorandom generators with input as first introduced in [BH05] and later enhanced
in [DPR+13] with stronger security guarantee: robustness.
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equivalent with G0 except that calls to G are replaced with strings of the same
size 2nm from a random function R. Then, it holds:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + AdvprgG (B) (4)

where AdvprgG (B) is the advantage of an adversary B to distinguish truly random
string from R from pseudorandom strings from G making qPRG = qEnc + qDec +
qChallenge queries in time complexity t.

We enumerate the pairwise different nonces Nj , j = 1 . . . q ·m as they appear
in the oracle queries. We let J be the index of the nonces appeared in Challenge
query and made win switch to true. Notice that compared with CEP2, enumer-
ation of nonces goes for each different key stream Pi, i = 1 . . .m, for each block
bi. We let q queries for each different key stream. Then we have that:

Pr[G1 ⇒ 1] =

q·m∑
j=1

Pr[G1 ⇒ 1 : J = j] (5)

A wins the MO-nCTXT2 game only if it manages to present a tuple
(H,N,C1, C2) to the Challenge oracle without having queried the Dec oracle
to avoid the trivial attack given by [GLR17]. For each Nj , j ∈ [1, . . . q], we define
adversaries Cj against the universal unforgeability on chosen messages against
the collision resistance pseudorandom function Fcr keyed by Pj , j ∈ [1 . . .m]. We
make Cj abort if Nj is queried to the Dec oracle. Thus:

Pr[G1 ⇒ 1] ≤ Advuf−cma
Fcr (Cj) (6)

Finally from (4), (5), (6) and accumulating the distinguishing probabilities of
A against the MO-nCTXT2 game we have:

Advmo-nctxt2
CEP-AOP1(A) ≤ AdvprgG (B) +

m·q∑
j=1

AdvprfFcr (Cj).

�

Sender binding is guaranteed as long as decryption algorithm Dec decrypts cor-
rectly: it outputs the correct message M or ⊥ when there is an error, and Verify
run by an honest router.

Theorem 5 (CEP-AOP1 Confidentiality). Let CEP-AOP1[F, G] be a
CEP-AOP scheme and a MO-nRoR adversary A making at most q =
qEnc, qDec, qChallenge queries with time complexity t. Then there exist adversaries B
making qPRG = qEnc + qDec + qChallenge and C making qPRG = qEnc + qDec + qChallenge
queries in time complexity t each, such that:

Advmo−nror
CEP-AOP1(A) ≤ 2 · Advmo-nctxt2

CEP-AOP1(B) +m · AdvprfFcr (C)
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Proof. Let G0 be the MO-nREAL game. We change G0 in G1 as with the con-
fidentiality proof for CEP2. We introduce y, l lists and win variable as in the
MO-nCTXT2 game and make G1 abort if win = true. Then it holds that:

Advmo−nror
CEP-AOP1(A) ≤ AdvG1

(A) + 2 · Advmo-nctxt2
CEP-AOP1(B)

In G1 we are ensured that the nonce N submitted to the Challenge oracle is
never submitted to the Dec oracle but to return ⊥. Then we can reduce to the
PRF game such that AdvG1

(A) = m · AdvprfFcr (C).
Finally it holds that:

Advmo−nror
CEP-AOP1(A) ≤ 2 · Advmo-nctxt2

CEP-AOP1(B) +m · AdvprfFcr (C)

�

Theorem 6 (CEP-AOP1 After Opening Privacy). Let CEP-AOP1[F, G]
be a CEP-AOP scheme and a MO-IND-PO adversary A making q =
(qEnc, qDec, qProof , qChallenge) queries in time complexity t. Then there exist ad-
versaries B and C making each qPRG = qEnc + qDec + qChallenge + qProof and
qPRF = qEnc + qDec + qChallenge + qProof queries in time complexity t such that:

Advmo-ind-po
CEP-AOP1(A) ≤ Advmo−nror

CEP-AOP1(B) +m · AdvprfFcr (C)

Proof. Let game G0 be identical with the MO-IND-PO game.
In game G1 we substitute y with y0 and we introduce y1 similarly with the

confidentiality game MO-nRoR. Whenever MO-nRoR halts G0 also halts. In the
Challenge oracle A submits messages M0 and M1 such that (N 6∈ y0) ∧ (|M0| =
|M1|)∧(chall =⊥)∧(R(M0) = 1)∧(R(M1) = 1). Whenever b = 0 in the Challenge
of G1 the game returns to A (C1, C2) ← Enck(H,N,M0). When b = 1 G1 runs
(C1, C2)← Enck(H,N, {0, 1}|M |). Thus:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + Advmo−nror
CEP-AOP1(B)

A can also win the MO-IND-PO game if she manages to forge C2 in order
to issue a chal = (H,N,C1, C

′
2) tuple in the Dec oracle, bypasses the check,

decrypts the chal query and distinguishes with non negligible probability.
Finally it holds:

Advmo-ind-po
CEP-AOP1(A) ≤ Advmo−nror

CEP-AOP1(B) +m · AdvprfFcr (C)

�

Theorem 7 (CEP-AOP1 Receiver Binding). Let CEP-AOP1 be a message
franking scheme and A an adversary against r-BIND with time complexity t.
Then, there exists an adversary B finding a collision of Fcr with time complexity
t:

Advr−bindCEP-AOP1(A) ≤ m · AdvcrFcr (B)
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Proof (Sketch). B runs A until the latter outputs a tuple
{((H, bi, skf ), (H ′, b′i, skf

′), C2)}i∈B , whereby the r-BIND game outputs 1.
That is, Verify(H, bi, skf , C2) = Verify(H ′, b′i, skf , C2) = 1 ⇒ Fcrskf (H‖bi)′ =

Fcrskf (H ′‖b′i) for some i′s ∈ B, thus a valid collision of Fcr. The maximum value
of B equals the number of blocks m, thus

Advr−bindCEP-AOP1(A) ≤ m · AdvcrFcr (B)

�

5.3 Shortcomings for CEP-AOP1

For each encrypted message the sender S is willing to send to the receiver R
through the router, S has to call a pseudorandom generator G in order to extract
2nm bits of randomness. mn bits are used as a one time pad encryption of the
m blocks of the message M and the rest mn are used to key the Fcr call for
every block. Whenever R reports to the router the abusive blocks bi, i ∈ B it
has to communicate the opening keys for the β PRF evaluations of the collision
resistant pseudorandom function Fcr.

In CEP-AOP1, the cost of the router is not negligible: The router receives
m tags ci2, i ∈ [1 . . .m] for a single message M and has to sign with its private
signing key fk all ci2 tags and then verify the authentication tags on β presumably
abusive blocks on top of the individual PRF evaluation with the opening keys,
as received by R.

In the following section we design and analyze our final protocol dubbed
CEP-AOP2, which reduces the computation complexity at the router side and
the communication cost between S and the router. Namely, the router is required
to perform only one signing operation per message and still adhere to AOP,
independently on the number of the blocks at each message M and S sends one
commitment for all blocks. At the same time R can select the abusive blocks
and keep the rest privy to the router, allowing him to verify only the validity
of the abusive ones. For our protocol we exploit the Merkle Hash Tree (MHT),
which acts as a signature over all the blocks, with efficient verification of a
subset of leaves, without requiring the opening of the rest leaves for verification,
thus adhering to AOP. Despite the increased computation cost the receiver is
now charged for the computation of the Merkle tree, we conjecture that in a
messaging application senders are dynamic but the router remains the same. As
such, the overall computation workload cost per party is decreased.

6 CEP-AOP2

Before delving in the description of CEP-AOP2 protocol we put forth the Merkle
Hash tree (MHT) data structure in the following subsection.
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Fig. 10: Merkle Tree construction for the dataset l = l1, l2, l3, l4, l5, l6, l7, l8.
White nodes are leaf nodes. Grey nodes are intermediate-parent nodes.Black
nodes consist the authentication path apl4 = {h4, h9, h14} of the dashed line
leaf node l3. Note that there is no requirement the number of elements to be
hashed to be a power of two. In that case the tree is not balanced.

6.1 Merkle Trees

The use of Merkle Trees to authenticate streams of data has already been pro-
posed by Merkle [Mer89]. A binary tree whereby the leaf nodes correspond to
data and intermediate nodes keep digest thereof reduce the authentication pro-
cedure to logarithmic costs on the height of the tree and the size of data subse-
quently. Let H be a collision resistant hash function: H{0, 1}∗ → {0, 1}λ, mapping
strings of arbitrary length to λ-bit strings. Assume a vector of data elements
l = {l1, l2, l3, . . . , ln}. The MHT(l) algorithm computes the Merkle tree for the
data vector l and outputs its rtl (cf. figure 10-left). All leaf nodes correspond to
the hash of each element H(l) and parent nodes are computed as the hash of the
concatenated children hashes. A prover who claims membership of data element
lx runs the ProveMT(x, l) algorithm and sends the authentication path aplx to
the verifier. A verifier can check the correctness of the authentication path with
respect to the membership of the element lx in l by recomputing the Merkle
tree based on the authentication path aplx running the CheckPath algorithm.

Finally it checks if the computed root H′
?
= rtl. For example in figure 10-right

apl3 = {h4, h9, h14}.

Security The security guarantee for a Merkle tree hash algorithm demonstrates
that it is impossible for an adversary to forge a Merkle Tree Hash rtl ← MHT(l)
claiming valid membership proof for elements which do not belong in l.

Definition 1. If H is a collision resistant hash function then the MHT(l) hash
algorithm outputs a merkle hash tree for the dataset l which is also collision
resistant, i.e: an adversary A can claim to authenticate an element x 3 l by
generating the same rtl ← MHT(l) algorithm with negligible probability.
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CEP-AOP2-Enck(H,N,M) :

m← |M |/n

parse M as mi[0 . . .m− 1]

P ← G(k, N, 2mn)

C1 ← (Pm‖ . . . ‖P2m−1 ⊕M)

for i = 0 . . .m− 1 do :

c
i
2 ← FcrPm+i

(H‖mi‖i)

rtC2
← MHT(C2 = c

i
2, i ∈ [0 . . .m− 1])

return (C1, C2 = rtC2
)

CEP-AOP2-Process(S,R, C1, C2, fk):

parse C2 as rtC2

md← S‖R‖time

s← rtC2
‖md

a← Ffk(s)

return (C1, C2, a)

CEP-AOP2-Deck(H,N,C1, C2):

m← |C1|/n

parse C2 as rtC2

P ← G(k, N, 2nm)

M ← (Pm‖ . . . ‖P2m−1 ⊕ C1)

parse M as mi[0 . . .m− 1]

for i = 0 . . .m− 1 do :

c
′i
2 ← FcrPm+i

(H‖mi‖i)

rt′C2
← MHT(C2 = c

′i
2 [i . . .m])

if rtC2
6= rt′C2

then return ⊥

return (skf = FcrPm+i
,M)

CEP-AOP2-Proof(R,H,M, skf ):

if R(M) = 0 then return ⊥

parse skf as Pi[0 . . .m− 1]

parse M as bi[0 . . .m− 1]

ap← ProveMT(c
i
2[i ∈ B], C2)

return Π = (H, ap, {bi}, Pi, a, i ∈ B)

CEP-AOP2-Verify(H,Π, fk):

parse Π as (H, ap, {bi}, Pi, a, i ∈ B)

for i ∈ B do :

c
′i
2 ← FcrPm+i

(H‖bi)

if CheckPath(ap, rtC2
, c
′i
2 , i ∈ B) 6= 1 then return ⊥

a
′ ← Ffk(rtC2

‖md)

if a
′ 6= a then return ⊥

return 1

Fig. 11: CEP-AOP2 algorithms

6.2 Description

CEP-AOP2 (cf. Figure 11) operates as follows. Similarly with CEP-AOP1 the
sender S encrypts its message M with the CEP-AOP2-Enck(H,N,M) algorithm
by choosing a sequence of 2nm random blocks. The first nm bits are used to
encrypt m blocks of size n bits each. The rest are used to key a collision resistance
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PRF,Fcr. In contrast with CEP-AOP1, CEP-AOP2 forwards to the router C1

and the root rtC2
of a Merkle tree constructed over the tags ci2[0 . . .m − 1].

That is, as leaves we consider the evaluation of a PRF on each message block
with different keys and the tree is constructed using a collision resistant hash
function H. That drastically reduces the router costs as it only tags with its secret
key only one element at the Process algorithm: the root rtC2 of the Merkle tree,
which authenticates the tags ci2[0 . . .m − 1]. Process similarly with CEP-AOP1
takes as input the ciphertext C1 even if it is not processed to show that the S
forwards C1 to the router which handles it to R.

During decryption the CEP-AOP2-Deck(H,N,C1, C2) algorithm reproduces
the same sequence of random blocks and uses them to decrypt C1 and to re-
construct the Merkle tree. If the computed new root rt′C2

agrees with rtC2 , R
accepts the message M as valid, otherwise it halts the procedure. If R con-
siders some of the blocks bi[i ∈ B] as abusive, then it forwards them to the
router, along with the opening keys skf = Pm+i, i ∈ B and the sibling path
ap corresponding to the abusive block indexes. The router in turn, with the
CEP-AOP2-Verify(H, bi, skf , C2) algorithm reevaluates the PRF using the open-
ing keys and verifies that those leaves with the sibling path ap correctly verify
the Merkle tree.

6.3 Security Analysis

Theorem 8 (CEP-AOP2 Integrity). Let CEP-AOP2[F, G] be a CEP-AOP
scheme and a MO − nCTXT adversary A making at most q queries and H

is a collision resistant hash function. Then for adversaries B, C :

Advmo-nctxt2
CEP-AOP2(A) ≤ AdvprgG (B) +

m·q∑
j=1

AdvprfFcr (Cj)

Theorem 9 (CEP-AOP2 Confidentiality). Let CEP-AOP = CEP-AOP2[F, G]
be a CEP-AOP scheme, H is a collision resistant hash function and a MO-nRoR
adversary A making at most q = qEnc, qDec, qChallenge queries with time complexity
t. Then there exist adversaries B making qPRG = qEnc + qDec + qChallenge and C
making qPRG = qEnc+qDec+qChallenge queries in time complexity t each, such that:

Advmo−nror
CEP-AOP2(A) ≤ 2 · Advmo-nctxt2

CEP-AOP2(B) +m · AdvprfFcr (C)

Theorem 10 (CEP-AOP2 After Opening Privacy). Let CEP-AOP =
CEP-AOP2[F, G] be a CEP-AOP scheme, H is a collision resistant hash func-
tion and a MO-IND-PO adversary A making q = (qEnc, qDec, qProof , qChallenge)
queries in time complexity t. Then there exist adversaries B and C making each
qPRG = qEnc + qDec + qChallenge + qProof and qPRF = qEnc + qDec + qChallenge + qProof
queries in time complexity t such that:

Advmo-ind-po
CEP-AOP2(A) ≤ Advmo−nror

CEP-AOP2(B) +m · AdvprfFcr (C)
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Sender binding is guaranteed as long as decryption algorithm Dec decrypts
correctly: it outputs the correct message M or ⊥ when there is an error, and
Verify run by an honest router.

Theorem 11 (CEP-AOP2 Receiver Binding). Let CEP-AOP2 be a message
franking scheme and A an adversary against r-BIND with time complexity t and
H is a collision resistant hash function. Then, there exists an adversary B finding
a collision of Fcr with time complexity t:

Advr−bindCEP-AOP2(A) ≤ m · AdvcrFcr (B)

The proofs of the theorems follow trivially akin to the CEP-AOP1 proofs.

7 Related Work

After Facebook launched their message franking protocol [Fac16] on Facebook
Messenger [Fac], Grubbs et al. [GLR17] initiated a formal study for verifiable
report on abusive messages. The authors first model a new cryptographic prim-
itive called committing AEAD, which demonstrates an encryption scheme with
ciphertext integrity, in which part of the ciphertext acts like a commitment for
the encrypted plaintext. This flavor of commitment comes with two formal defi-
nitions of: a) sender binding, which locks a sender from sending a message that
cannot be reported by a receiver and b) receiver binding, which prevents a mali-
cious receiver from reporting successfully a message which has not been sent from
a sender. However the notion of achieved privacy excludes the confidentiality of
non-abusive blocks. A recent work by Dodis et al. [DGRW18] proposes a new
committing AEAD scheme with only two passes as in CEP2, but confidential-
ity is based on the non-standard related-key-attack resistance of the underlying
PRF. We stress though that the security model for integrity is the strong one
which gives the opening key to an adversary willing to compromise integrity.

A relevant primitive which resembles to receiver binding is the notion of
robust PKE [GH03,ABN10,FLPQ13]. Robustness in PKE ensures that a cipher-
text cannot be decrypted with two different keys. However, those schemes there
are in the public key setting and second they do not model in conjunction with
receiver binding the needed sender binding notion for message franking proto-
cols. Farshim et al. [FOR17] analyzed Security of Symmetric Primitives under
Incorrect Usage of Keys, however that work is not tailored for a message franking
protocol as it does not achieve multi-opening security per se and the commitment
is computed under the key and not the message.

8 Conclusion

In this work we continued the footsteps in message franking protocols for mes-
saging applications. Under this new primitive a receiver of an abusive message
can verifiably report it to a third party. We first showed an efficient protocol that
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captures a weaker but still meaningful notion of MO-nCTXT as with [GLR17].
Namely our CEP2 protocol needs one PRF less, thus reducing the number of
passes for encryption and decryption by one evaluation and it lies on standard
security assumptions of the underlying symmetric primitives.

We initiated a stronger model for message franking protocols where only the
necessary information is opened to the router while the rest is kept privy. We
demonstrate the privacy notion with the new MO-IND-PO game definition, for
multi-opening indistinguishability with partial openings. In a nutshell, a proto-
col adhering to MO-IND-PO reveals only the abusive blocks of a message to a
third party router, while an adversary cannot break the confidentiality of the
remaining blocks, which are not abusive and thus have not been opened to the
router. We then model the syntactical framework of a new primitive: Commit-
ting Nonce based Authenticated Encryption with Partial Opening and designed
two protocols CEP-AOP1 and CEP-AOP2 (Committing Encrypt and PRF with
After Opening Privacy), which are provably secure under the new enhanced se-
curity definition. CEP-AOP1 is a vanilla protocol, which treats the blocks of a
message as individual information given as input for encryption. This approach
increases the computation complexity at the router, as it has to authenticate all
individual commitment-tags on blocks separately and the communication com-
plexity for transferring all the commitments-tags from the sender to the router.
Our second protocol builds upon Merkle trees as a membership proof for tags of
a message. The router now has only to sign the root of the tree and the sender
sends only one commitment-tag for the root of the Merkle tree per message.

We leave it as an open problem the design and analysis of message franking
protocols with after opening privacy, whereby the communication complexity is
reduced to a singleton key instead of the receiver sending all the keys for all the
abusive message blocks. Messaging application protocols over the Internet are
realized over a secure channel, which apart from confidentiality and integrity of
the messages, guarantees resistance to replay attacks and out-of-order delivery.
Current literature in secure channels [GM17,MP17a,MP17b,BKN02,BDPS12] is
lacking an analysis of a secure channel with message franking properties. Thus,
a second future direction is the formal study of a message franking channel with
pragmatic properties such as bidirectionality, group messaging and attachment
delivery.
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