
Forward Secure Signatures on Smart Cards

Full version

Andreas Hülsing?, Christoph Busold, and Johannes Buchmann

Cryptography and Computeralgebra
Department of Computer Science

TU Darmstadt, Germany
{huelsing, buchmann}@cdc.informatik.tu-darmstadt.de,

christoph.busold@cased.de

Abstract. We introduce the forward secure signature scheme XMSS+

and present an implementation for smart cards. It is based on the hash-
based signature scheme XMSS. In contrast to the only previous imple-
mentation of a hash-based signature scheme on smart cards by Rohde et
al., we solve the problem of on-card key generation. Compared to XMSS,
we reduce the key generation time from O(n) to O(

√
n), where n is the

number of signatures that can be created with one key pair. To the best
of our knowledge this is the first implementation of a forward secure sig-
nature scheme and the first full implementation of a hash-based signature
scheme on smart cards. The resulting runtimes are comparable to those
of RSA and ECDSA on the same device. This shows the practicality of
forward secure signature schemes, even on constrained devices.

Keywords forward secure signatures, smart cards, implementation,
hash-based signatures

1 Introduction

In 1997 Anderson introduced the idea of forward secure signature schemes
(FSS) [And97]. The idea behind FSS is the following: Even in the case
of a key compromise, all signatures issued before the compromise should
remain valid. This is an important property for all use cases where sig-
natures have to stay valid for more than a short time period, including
use cases like document signing or certificates. If for example a contract
is signed, it is important that the signature stays valid for at least as long
as the contract has some relevance. The solutions used today require the
use of time stamps [ETS10,ETS12]. This introduces the requirement for a
trusted third party and the overhead of requesting a time stamp for each

? Supported by grant no. BU 630/19-1 of the German Research Foundation
(www.dfg.de).

signature. FSS in turn already provide this property and thereby aban-
don the need for time stamps. To fulfill the forward security property, a
signature scheme has to be key evolving, meaning, the private key changes
over time. The lifetime of a key pair is divided into time periods. While
the public key stays the same, the secret key is updated at the end of each
time period. So far, it was shown that FSS can be efficiently implemented
on PCs [BDH11,CJMM03]. As for common signature schemes, to be us-
able in practice, FSS must be efficiently implementable on smart cards.
This is even more important in the case of FSS, as it has to be ensured
that the secret key is updated and the former secret key is deleted. So far
there exists no implementation of FSS on smart cards.

A candidate FSS is the hash-based FSS XMSS [BDH11] because of
its strong security guarantees (see Section 2). Moreover, XMSS benefits
from hardware acceleration for block ciphers, which is provided by many
smart cards. A severe problem of most FSS, including XMSS, is the costly
key generation. XMSS key generation requires time linear in the number
of signatures that can be generated using the same key pair. While this
might be tolerable on PCs, it makes key generation on smart cards im-
practical. The only existing implementation of a hash-based signature
scheme on smart cards [RED+08] does not include on-card key genera-
tion for this reason. But on-card key generation is necessary for most use
cases that benefit from the forward security property. I.e. to guarantee
non-repudiation in the case of document signing, a signature key pair
has to be generated on the smart card and must never leave this secure
environment.

Our contribution. In this paper we introduce XMSS+ which is based on
XMSS and present an implementation on an Infineon SLE78 smart card.
While the strong security guarantees of XMSS are preserved, XMSS+ key
generation requires only time O(

√
n), for a key pair, that can be used to

sign n messages. Thereby we make on-card key generation practical. This
means we present the first implementation of a forward-secure signature
scheme on a smart card. At the same time, it is the first full (includ-
ing key generation) smart card implementation of a hash-based signature
scheme. To achieve this, we use the tree chaining technique [BGD+06]
and improve the idea of distributed signature generation [BDK+07]. To
improve the performance, we implemented all used (hash) function fami-
lies based on AES and exploit the hardware acceleration provided by the
card. Using our implementation, the generation of a key pair, that can
be used to generate 220 signatures, can be done in 22.2s. For such a key

2

pair, signature generation took less than 106ms, verification took no more
than 44ms. These timings are of the same order of magnitude than the
runtimes for RSA and ECDSA on the same card using the asymmetric
crypto co-processor.

Organization. We start with a description of XMSS in Section 2. XMSS+,
that enables key generation, is presented and analyzed in Section 3. We
describe our implementation and present parameters and runtimes in Sec-
tion 4. Finally, we give a conclusion in Section 5.

2 The eXtended Merkle Signature Scheme XMSS

In this section we describe the FSS XMSS [BDH11]. While there exist
many proposals for FSS, including [BM99, AMN01, AR00, CK06, IR01,
KR03,Kra00,MMM02,Son01], XMSS is the only FSS where the forward
security is based on minimal security assumptions. XMSS uses a function
family F and a hash function family H. It is provably forward secure in
the standard model, if F is pseudorandom and H second preimage resis-
tant. As current research suggests that these properties are not threat-
ened by the existence of quantum computers, XMSS+ is assumed to be
resistant against quantum computer based attacks. We first give a high
level overview. XMSS is build on a one-time signature scheme (OTS),
a signature scheme where a key pair can only be used once. To obtain
a many-time signature scheme, many OTS key pairs are used and their
public keys are authenticated using a Merkle Tree. A Merkle Tree is a
binary hash tree. The leaves of the tree are the hash values of the OTS
public keys. The root of the Merkle Tree is the XMSS public key. To
overcome the need of storing all OTS key pairs, they are generated using
a pseudorandom generator (PRG). We start the detailed description with
the parameters used by XMSS, afterwards we give a description of the
building blocks, namely, the Winternitz-OTS, the XMSS Tree, the leaf
construction, and the PRG. Then we describe the algorithms for key gen-
eration, signature generation and verification. In the following we write

log for log2 and x
$←− X if the value x is chosen uniformly at random

from the set X.

Parameters. For security parameter n ∈ N, XMSS uses a pseudorandom
function family Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}, and a second
preimage resistant hash function H, chosen uniformly at random from the
family Hn = {HK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n}. It is parameterized

3

by the message length m ∈ N, the tree height h ∈ N, the BDS parameter
k ∈ N, k < h, k − h is even, and the Winternitz parameter w ∈ N, w > 1.
XMSS can be used to sign 2h message digests of m bits. The Winternitz
parameter w allows for a trade off between signature generation time and
signature size. The BDS parameter k allows for a time-memory trade-off
for the signature generation. Those parameters are publicly known.

Winternitz OTS. XMSS uses a variant of the Winternitz-OTS (W-OTS)
introduced in [BDE+11]. W-OTS uses the function family Fn and a value
X ∈ {0, 1}n that is chosen during XMSS key generation. For K,X ∈
{0, 1}n, e ∈ N, and FK ∈ Fn we define FeK(X) as follows. We set F0

K(X) =
K and for e > 0 we define K ′ = Fe−1K (X) and FeK(X) = FK′(X). Also,
define

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

The secret signature key of W-OTS consists of ` n-bit strings ski, 1 ≤ i ≤
`. The generation of the ski will be explained later. The public verification
key is computed as

pk = (pk1, . . . , pk`) = (Fw−1sk1
(X), . . . ,Fw−1sk`

(X)),

with Fw−1 as defined above. W-OTS signs messages of binary length m.
They are processed in base w representation. They are of the form M =
(M1 . . .M`1), Mi ∈ {0, . . . , w− 1}. The checksum C =

∑`1
i=1(w− 1−Mi)

in base w representation is appended to M . It is of length `2. The result
is a sequence of ` base w numbers, denoted by (T1, . . . , T`). The signature
of M is

σ = (σ1, . . . , σ`) = (FT1sk1(X), . . . ,FT`sk`(X)).

It is verified by constructing (T1 . . . , T`) and checking

(Fw−1−T1σ1 (X), . . . ,Fw−1−T`σ`
(X))

?
= (pk1, . . . , pk`).

The sizes of signature, public, and secret key are `n bits. For more detailed
information see [BDE+11].

XMSS Tree. The XMSS tree utilizes the hash function H. The XMSS tree
is a binary tree of height h. It has h + 1 levels. The leaves are on level
0. The root is on level h. The nodes on level j, 0 ≤ j ≤ h, are denoted
by Ni,j , 0 ≤ i < 2h−j . To construct the tree, h bit masks Bj ∈ {0, 1}2n,
0 < j ≤ h, are used. Ni,j , for 0 < j ≤ h, is computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Bj).

4

Leaf Construction. The leaves of the XMSS tree are the hash values of
the W-OTS public keys. To avoid the need of a collision resistant hash
function, another XMSS tree is used to construct the leaves. It is called
L-tree. The ` leaves of an L-tree are the ` bit strings (pk0, . . . , pk`) from
the corresponding verification key. As ` is not necessarily a power of 2,
there might not be sufficiently many leaves to get a complete binary tree.
Therefore the construction is modified. A left node that has no right
sibling is lifted to a higher level of the L-tree until it becomes the right
sibling of another node. In this construction, the same hash function as
above but new bitmasks are used. The bitmasks are the same for all
L-trees. As L-trees have height dlog `e, additional dlog `e bitmasks are
required.

Pseudorandom Generator. The W-OTS key pairs are generated using
two pseudorandom generators (PRG). The stateful forward secure PRG
FsGen : {0, 1}n → {0, 1}n×{0, 1}n is used to generate one seed value per
W-OTS keypair, using the function family Fn. Then the seed is expanded
to the ` W-OTS secret key bit strings using Fn. FsGen starts from a

uniformly random state S0
$←− {0, 1}n. On input of a state Si, FsGen

generates a new state Si+1 and a pseudorandom output Ri:

FsGen(Si) = (Si+1||Ri) = (FSi(0)||FSi(1)).

The output Ri is used to generate the ith W-OTS secret key (sk1, . . . , sk`):

skj = FRi(j − 1), 1 ≤ j ≤ `.

Key Generation. The key generation algorithm takes as input all of the
above parameters. Then the whole XMSS Tree has to be constructed to
obtain the value of the root node. We now detail this procedure. First,
the bitmasks (B1, . . . , Bh+dlog `e) and the value X are chosen uniformly
at random. Then, the initial state of FsGen, S0 is chosen uniformly at
random and a copy of it is stored as part of the secret key SK. The
tree is constructed using the TreeHash algorithm, listed as Algorithm
1 below. Starting with an empty stack Stack and S0, all 2h leaves are
successively generated and used as input to the TreeHash algorithm to
update Stack. This is done by evaluating FsGen on the current state Si,
obtaining Ri and replacing Si with Si+1. Then Ri is used to compute the
W-OTS public key, which in turn is used to compute the corresponding
leaf using an L-tree. The leaf and the current Stack are then used as
input for the TreeHash algorithm to obtain an updated Stack. The

5

W-OTS key pair and Ri are deleted. After all 2h leaves were processed
by TreeHash, the only value on Stack is the root of the tree, which is
stored in the public key PK. The XMSS signature generation algorithm

Algorithm 1 TreeHash
Input: Stack Stack, node N1

Output: Updated stack Stack

1. While top node on Stack has same height as N1 do
(a) t← N1.height() + 1
(b) N1 ← H ((Stack.pop()||N1)⊕Bt)

2. Stack.push(N1)
3. Return Stack

uses as subroutine the BDS algorithm [BDS08] that is explained there.
The BDS algorithm uses a state StateBDS which is initialized during
the above computation of the root. For details see [BDS08]. The initial
XMSS secret key SK = (S0, StateBDS) contains the initial states of FsGen
and the BDS algorithm. The XMSS public key consists of the bitmasks
(B1, . . . , Bh+dlog `e), the value X, and the root of the tree. As shown in

[BDH11], key generation requires 2h(` + 1) evaluations of H and 2h(2 +
`(w + 1)) evaluations of functions from Fn.

Signature Generation The signature generation algorithm takes as input
a message M , the secret key SK and the index i. It outputs an updated
secret key SK′ and a signature Σ on the message M . To sign the ith mes-
sage (we start counting from 0), the ith W-OTS key pair is used. The
signature Σ = (i, σ,Auth) contains the index i, the W-OTS signature σ,
and the authentication path for the leaf N0,i. The authentication path is
the sequence Auth = (Auth0, . . . ,Authh−1) of the siblings of all nodes on
the path from N0,i to the root. Figure 1 shows the authentication path for
leaf i. We now explain how a signature is generated. On input of the ith
message, SK contains the ith state Si of FsGen. So, FsGen is evaluated
on Si to obtain Si+1, which becomes the updated secret key, and Ri. Ri
is used to generate the ith W-OTS secret key, which in turn is used to
generate the one-time signature σ on M . Then the authentication path
is computed using the BDS tree traversal algorithm from [BDS08] which
we explain next. The BDS algorithm uses TreeHash to compute the
nodes of the authentication path. The computation of a node on level i
takes 2i leaf computations and 2i evaluations of TreeHash. If all this

6

Fig. 1. The authentication path for leaf i

j = h

j = 0

i

computation is done when the authentication path is needed, the com-
putation of an authentication path requires 2h− 1 leaf computations and
evaluations of TreeHash in the worst case. The BDS algorithm reduces
the worst case signing time to (h−k)/2 leaf computations and evaluations
of TreeHash. More specifically, the BDS algorithm does three things.
First, it uses the fact that a node that is a left child can be computed from
values that occurred in an authentication path before, spending only one
evaluation of H. Second, it stores the right nodes from the top k levels of
the tree during key generation. So these nodes, that are most expensive to
compute, do not have to be computed again during signature generation.
Third, it distributes the computations for right child nodes among previ-
ous signature generations. This is done, using one instance of TreeHash
per tree level. The computation of the next right node on a level starts,
when the last computed right node becomes part of the authentication
path. The BDS algorithm uses a state StateBDS of 2(h − k) states of
FsGen and at most

(
3h+

⌊
h
2

⌋
− 3k − 2 + 2k

)
tree nodes. StateBDS is ini-

tialized during key generation. After initialization, it contains the right
nodes on the k top levels, the first authentication path (for N0,0) and the
second right node on each level. To compute the authentication paths, the
BDS algorithm spends only (h− k)/2 leaf computations and evaluations
of TreeHash to update its state per signature. This update is done such
that at the end of the ith signature generation, StateBDS already contains
the authentication path for leaf i+ 1. For more details see [BDS08].

Signature Verification The signature verification algorithm takes as input
a signature Σ = (i, σ,Auth), the message M and the XMSS public key PK.
To verify the signature, the values (T0, . . . , T`) are computed as described
in the W-OTS signature generation, using M . Then the ith verification
key is computed using the formula

(pk1, . . . , pk`) = (Fw−1−T1σ1 (X), . . . ,Fw−1−T`σ`
(X)).

7

The corresponding leaf N0,i of the XMSS tree is constructed using an
L-tree. This leaf and the authentication path are used to compute the
path (P0, . . . , Ph) to the root of the XMSS tree, where P0 = N0,i and

Pj =

{
H((Pj−1||Authj−1)⊕Bj), if

⌊
i/2j

⌋
≡ 0 mod 2

H((Authj−1||Pj−1)⊕Bj), if
⌊
i/2j

⌋
≡ 1 mod 2

for 0 ≤ j ≤ h. If Ph is equal to the root of the XMSS tree given in the
public key, the signature is accepted. Otherwise, it is rejected.

3 XMSS+: On-card Key Generation

In [RED+08], a hash-based signature scheme similar to XMSS is imple-
mented on smart cards. But they did not implement on-card key gener-
ation, because of the heavy computations required. In this section we
introduce XMSS+, which allows for fast on-card key generation. The
techniques used are based on the tree chaining technique introduced
in [BGD+06] and distributed signature generation from [BDK+07]. The
basic idea is the following. To obtain an instance of XMSS+ that can be
used to make 2h signatures, we use two levels of XMSS key pairs with
height h/2 instead of one key pair with height h: One key pair on the
upper level (U) of height h/2 is used to sign the roots of 2h/2 key pairs
on the lower level (Ls) of height h/2. The root of U becomes the public
key and the Ls are used to sign the messages. During key generation,
U and the first L are generated. The generation of the remaining Ls is
distributed among signature generations. As a result, the time to generate
a key pair, that can be used to sign 2h messages, goes down from O(2h)
to O(2h/2).

A signature always contains the current index, the signature of the
message using the current L, and the signature of the root of L under U .
To decrease the worst case signing time, the authors of [BDK+07] propose
to equally distribute the costs for signing the roots of the Ls among the
message signatures. For XMSS+ we propose a new approach to distribute
these costs. We use the observation that the BDS algorithm does not
always use all updates it receives. These unused updates can be used to
compute the signatures of the roots from the Ls. Thereby we reduce the
worst case signing time, again. We use the same bit masks and the same X
value for all trees. Thereby the public key size is reduced, as it contains
less bit masks. To generate the secret keys, we select a random initial
state for FsGen for each key pair, just in time. Now we describe the key
generation, signature generation and signature verification algorithms in
detail.

8

Key generation. The XMSS+ key generation algorithm takes as inputs
the security parameter n, the message length m, the hash function H,
the function family F , and the overall height h, h is even. We set the
internal tree height h′ = h/2. In contrast to the last section, it takes two
Winternitz parameters wu, wl and two BDS parameters ku, kl such that
h′− ki is even for i ∈ {l, u} and (h′− ku)/2 + 1 ≤ 2h

′−kl+1. As for XMSS,
the bitmasks and the X are chosen uniformly at random, but this time
h′ + max{log `u, log `l} bitmasks are chosen. Both, the bitmasks and the
X are used for both levels. Then the two XMSS key pairs L and U are
generated. This is done as described in the last section. For L, wl, kl, and
the message length m are used. For U , wu and ku are used. The message
length for U is n, because this is the size of the root nodes of the Ls.
Next, the root of L is signed using the first W-OTS keypair of U . Then,
a FsGen state for the next L is chosen uniformly at random, and a new
TreeHash stack Stacknext is initialized.

The XMSS+ secret key SK consists of the two FsGen states Sl and
Su and the BDS states StateBDS,l and StateBDS,u for U and L and the
signature on the root of L. Additionally, it contains a FsGen state Sn, a
TreeHash stack Stacknext and a BDS state StateBDS,n for the next L.
The public key PK consists of the h′ + max{log `1, log `2} bitmasks, the
value X and the root of U .

Signature generation. The signature generation algorithm takes as input
a message M , the secret key SK, and the index i. First, M is signed.
This is done as described in the last section, using Sl and StateBDS,l

as secret key for L and i mod 2h
′

as index. During this signature gen-
eration, BDS receives (h′ − kl)/2 updates. If not all of these updates
are used to update StateBDS,l, the remaining updates are used to up-
date StateBDS,u. Then one leaf of the next lower tree is computed and
used as input for TreeHash to update Stacknext. The signature Σ =
(σu,Authu, σl,Authl, i) contains the one-time signatures from U and L
and the two authentication paths, as well as the index i.

If i mod 2h
′

= 2h
′ − 1 the last W-OTS key pair of the current L was

used. In this case, Stacknext now contains the root of the next L. Now,
U is used to sign this root. The key pair consists of Su and StateBDS,u.
The used index is di/2h′e. In contrast to the signing algorithm from the
last section, BDS receives no updates at this time. The updates needed
to compute the next authentication path are received during the next 2h

′

message signatures. In SK StateBDS,l, Sl, and the signature of the root of
the L are replaced by StateBDS,n, Sn and the new computed signature,

9

respectively. Afterwards, the data structures for the next L are initialized
and used to replace the ones in SK.

Signature verification. The signature verification algorithm takes as input
a signature Σ = (σu,Authu, σl,Authl, i), the message M and the public
key PK. To verify the signature, M and σl are used to construct the
corresponding W-OTS public key, and then the corresponding leaf node.
This leaf node, Authl and the index j = i mod 2h

′
are used to compute

the root of L. This root in turn, is used together with σu to compute
the W-OTS public key and the corresponding leaf node of U . This leaf
node, Authu and the index j = bi/2h′c are used to compute a root for
U . The root computations are done as described in the last section. If
the resulting root equals the root node included in the public key, the
signature is accepted and rejected otherwise.

3.1 Analysis

In the following we provide an analysis of XMSS+. We show that the dis-
tributed authentication path computation works and revisit the security
of the scheme. We start with key and signature sizes and the runtimes
of the algorithms. A theoretical comparison with XMSS can be found in
Appendix A.

Sizes and Runtimes. First we look at the sizes. The signature size grows
by the size of one W-OTS signature and is (h+ `u + `l)n bits. The public
key size slightly decreases, as the number of bitmasks decreases and is
(h+ 2 max{log `u, log `l}+ 2)n bits. The secret key stays about the same
size, depending on the parameter choices, and is at most (7.5h − 7kl −
5ku + 2kl + 2ku + `u)n bits. For the runtimes we only look at the worst
case times and get the following. The key generation time is reduced to
2h/2(`u + `l + 2)tH + 2h/2(4 + `u(wu + 1) + `l(wl + 1))tF, where tH and tF
denote the runtimes of one evaluation of H and F, respectively. The worst
case signing time also decreases because the trees are smaller and requires
less than maxi∈{l,u}{(((h′−kl+2)/2)·(h′−ki+`i)+h′)tH+(((h′−kl+4)/2)·
(`i(wi + 1)) + h′ − kl)tF} (Recall that h′ = h/2). Signature verification
increases by the costs of verifying one W-OTS signature and computing
the corresponding leaf. It requires (`u + `l + h)tH + (`uwu + `lwl)tF.

Correctness. In the following we show, that the unused updates from L
suffice to compute the authentication paths and to sign the next root.
For the computation of the ith authentication path Authi in U and the

10

signature on the (i+1)th root, all unused updates from the (i−1)th L can
be used. The signature algorithm spends (h′−kl)/2 updates per signature.
Hence, the BDS algorithm receives (h′ − kl)2h

′−1 updates while the (i−
1)th L is used. For all authentication paths of L, the BDS algorithm has to
compute all right nodes of the tree, that are on a height < h′−kl, besides
the two first right nodes on every height as these nodes are already stored
during initialization. The number of required updates for 2 ≤ kl ≤ h′ is

h′−kl−1∑
i=0

(2h
′−i−1 − 2)2i = (h′ − kl)2h

′−1 − 2h
′−kl+1

so there are (h′ − kl)2h
′−1 − (h′ − kl)2h

′−1 + 2h
′−kl+1 = 2h

′−kl+1 unused
updates. As (h′ − ku)/2 + 1 ≤ 2h

′−kl+1, the BDS algorithm for the U
receives all (h′ − ku)/2 updates to compute Authi before it is needed and
one update is left for the signature on the next root. Doing the same
computation for kl = 0 there are even more (3 · 2h′−1) unused updates.
For kl = h′, it follows from (h′ − ku)/2 + 1 ≤ 2h

′−kl+1 that ku = h′ and
therefore all nodes of both trees are stored.

Security. In [BDH11], an exact proof is given which shows that XMSS
is forward secure, if F is a pseudorandom function family and H a sec-
ond preimage resistant hash function family. The tree chaining technique
corresponds to the product composition from [MMM02]. In [MMM02]
the authors give an exact proof for the forward security of the product
composition if the underlying signature schemes are forward secure. It is
straight forward to combine both security proofs to obtain an exact proof
for the forward security of XMSS+.

4 Implementation

In this section we present our smart card implementation. First we give a
description of our implementation. Then we present our results and give
a comparison with XMSS, RSA and ECDSA. At the end of the section
we discuss an issue regarding the non-volatile memory (NVM).

Implementation Details. For the implementation we use an Infineon SLE78
CFLX4000PM offering 8 KB RAM and 404 KB NVM. Its core consists
of a 16-bit CPU running at 33 MHz. Besides other peripherals, it pro-
vides a True Random Number Generator (TRNG), a symmetric and an
asymmetric crypto co-processor. We use the hardware accelerated AES

11

implementation of the card to implement the function families F and
H. As proposed in [BDH11], we use plain AES for F . To implement
H we build a compression function using the Matyas-Meyer-Oseas con-
struction [MMO85] and iterate it using the Merkle-Darmgard construc-
tion [Mer90,Dam90]. As the input size ofH is fixed, we do not require M-D
strengthening. Figure 2 shows the whole construction. As shown there,
the construction requires two AES evaluations per evaluation of HK ∈ H.
All random inputs of the scheme are generated using the TRNG. Besides
XMSS+, we also implemented XMSS for comparison.

Fig. 2. Construction of H using AES with the Matyas-Meyer-Oseas construction in
M-D Mode.

 AES AES

M1 M2

K HK(M)

Results. Tables 1 and 2 show the runtimes of our implementation with
different parameter sets. We use the same k and w for both trees. The last
column shows the security level for the given parameter sets. Following the
updated heuristic of Lenstra and Verheul [Len04] the configurations with
a security level of 81 (85, 86) bits are secure until the year 2019 (2025,
2026). In Appendix B we explain how the security level is computed.
Please note that these numbers represent a lower bound on the provable
security level. A successful attack would still require an adversary to either
find a second preimage in a 128 bit hash function or to launch a successful
key retrieval attack on AES 128. This would result in 128 bit security for
all parameter sets. In Table 1, the signature time is the worst case time
over all signatures of one key pair. The secret key size in the table differs
from the values we would obtain using the theoretical formulas from the
last section. This is because it includes all data that has to be stored on
the card to generate signatures, including the bitmasks and X.

We used parameter sets with two heights. A key pair with h = 16
allows to generate more than 65, 000, one with h = 20 to generate more
than one million signatures. Assuming a validity period of one year, this
corresponds to seven signatures per day and two signatures per minute,
respectively. The runtimes show, that XMSS+ key generation can be done

12

Table 1. Results for XMSS and XMSS+ for message length m = 256 on an Infineon
SLE78. We use the same k and w for both trees. b denotes the security level in bits.
The signature times are worst case times.

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 85
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 81
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 71
XMSS+ 16 2 32 10,500 173 28 3,056 480 1,588 54
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 81
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 77
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 67
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 50

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 92
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 78
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 86
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 72

on the smart card in practical time. For all but one used parameter set,
the key generation time is below 30 seconds. The times for signature gen-
eration and verification are all below 200 ms and 30 ms, respectively. The
size of the secret key is around four kilo byte and signatures are around
two kilo byte, while the public keys are around 500 bytes. Increasing the
tree height for XMSS almost doubles key generation time. For XMSS+

the key generation time is almost doubled if one increases the height by
two, as this means that the height of each internal tree is increased by
one.

The results show that we can reduce the signature size by increasing
the Winternitz parameter w. The behavior of the implementation reflects
the theory. The factor for the reduction of the W-OTS signature size is
only logarithmic in w. The increase of the runtime is negligible for small
w. This can be explained by the following. While the length of the single
function chains increases, the number of chains decreases. For w > 16 the
increase of the runtime becomes almost linear. So from this point, w = 16
seems to be a good choice. On the other hand, the provable security level
also decreases almost linearly in w. While this only reflects a provable
lower bound on the security of the scheme, it is still another reason to
keep w small.

Table 2 shows two things. On the one hand, it is possible to decrease
the average case signing time spending more storage for the secret key
state, by increasing k. This is what one assumes given the theory. On

13

Table 2. Results for XMSS+ for message length m = 256 on an Infineon SLE78 for
different values of k. We use the same k and w for both trees. The table shows the
worst case signing times, as well as the average case times

Timings (ms) Size (byte)
Scheme h k w KeyGen Sign (w.c.) Sign (avg.c.) Secret key

XMSS+ 16 0 16 6,700 133 96 3,312
XMSS+ 16 2 16 6,700 118 96 3,200
XMSS+ 16 4 16 6,700 97 83 3,232
XMSS+ 16 6 16 7,000 95 67 4,352
XMSS+ 16 8 16 8,000 94 53 10,112

the other hand, the worst case signing time can only be reduced up to
a certain limit. For the given parameters this limit is 94ms, the worst
case signing time, when both trees are completely stored. These 94ms are
mainly caused by the write operations, when one key pair on the lower
level is finished. While all the computations are done in previous rounds,
the data structures for the next lower level key pair have to be copied
to the data structure for the current lower level key pair. Further the
new data structures for the next lower level key pair must be initialized.
Choosing k = 4 seems to be the most reasonable choice for h = 16.

Comparison. The last rows of Table 1 show the results for classical XMSS.
The results show that XMSS key generation can be done on the smart
card, but is impractical as it already takes more than 15 minutes for
h = 16. Increasing the height by one almost doubles the runtime of key
generation. Generating a key with XMSS+ is already for h = 16 almost
200 times faster than with XMSS. While XMSS+ signature generation is
slightly faster for comparable parameters, verification is faster for XMSS.
The faster key generation is paid by slightly bigger secret keys and sig-
natures, while the XMSS+ public keys are smaller, because of the reused
bitmasks.

Now we compare XMSS+ with RSA 2048 and ECDSA 256 on the
same smart card. The key generation performance of XMSS+ is similar to
RSA 2048, which needs on average 11 seconds, but slower than ECDSA
256 (95ms). Signature generation is comparable to RSA 2048 (190ms)
and ECDSA 256 (100ms). Only verification takes slightly longer than
with RSA 2048 (7ms), but it is faster than with ECDSA 256 (58ms). The
security level of RSA 2048 and ECDSA 256 is 95 and 128 bits, respectively.
In contrast to the security level shown in Table 1, these numbers are not
based on a security proof, but on the best known attacks. As mentioned

14

above, the security level of XMSS+ is 128 bit, when we only assume the
best known attacks.

NVM. The changing key presents a challenge for the implementation of
XMSS+ and XMSS on smart cards. NVM is organized in sectors and
pages. Due to physical limitations only complete pages can be written
(erased and reprogrammed) at once. Furthermore they wear out and can-
not be programmed anymore after a certain number of write cycles, de-
pending on the technology (about 500, 000 in our case). However, as write
operations are distributed over all 33 physical pages of a sector, the com-
plete available cycles are around 16.5 million per sector.

Generating a key takes only a few hundred write cycles, but its state
has to be updated after each signature step. Overall, one million available
signatures require one million write cycles for the modification of the
state. Using careful memory management, layout and optimization, we
managed to keep the number of write cycles below five million for a key
pair with h = 20, which is far below the 16.5 million available per sector.
This includes key generation and all 220 signatures. It should be noted,
that this affects only one NVM sector of the card. To use multiple keys,
they can be placed in different sectors in order to preserve NVM quality.

5 Conclusion

We presented the first smart card implementation of a forward secure
signature scheme. The results presented in Section 4 show that the im-
plementation is practical and that key generation can be done on the
card in less than a minute. This is in contrast to previous implemen-
tations of similar schemes, that did not achieve on-card key generation.
To achieve this, we introduced XMSS+, an improved version of XMSS.
Besides the improved key generation, the worst case signing time is also
reduced. While the presented improvement is necessary for an implemen-
tation on smart cards, it might also show to be useful for implementations
on other hardware (At least in cases, where key generation time or worst
case signing time are critical).

Given the results of the last section, we propose the parameter set
h = 16, w = 16 and k = 4. These parameters seem to lead the optimal
performance as long as 65, 000 signatures per key pair are enough. The
provable lower bound on the security level of 71 bits is too low from a
theoretical point of view. But if we compute the security level according
to the best known attacks - as it is common practice - we get a security

15

level of 128 bit. This leads to interesting directions for future work. One
would be to either tighten the security proofs or find better reductions
from different security assumptions. Another one would be to implement
XMSS+ with co-processors for block ciphers with a bigger block size than
AES. Alternatively, it would be possible to use hash functions with a
digest length of more than 128 bit, using the constructions from [BDH11]
to construct the PRF.

One topic we did not address in this work is the side channel re-
sistance. But the forward security property already protects against the
most common attack vector for side channel attacks. If a user looses her
smart card and revokes her key pair, an attacker can not gain any ad-
vantage of a successful side channel attack. The secret key the adversary
learns is revoked from this time on and it is not possible to learn the
keys of prior time periods. Nevertheless, as there exist other attack vec-
tors, it would be interesting to analyze the side channel resistance of our
implementation.

References

[AMN01] Michel Abdalla, Sara Miner, and Chanathip Namprempre. Forward-secure
threshold signature schemes. In David Naccache, editor, Topics in Cryptol-
ogy — CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 441–456. Springer Berlin / Heidelberg, 2001.

[And97] Ross Anderson. Two remarks on public key cryptology. In Manuscript.
Relevant material presented by the author in an invited lecture at the 4th
ACM Conference on Computer and Communications Security, CCS, pages
1–4. Citeseer, 1997.

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature
scheme. In Tatsuaki Okamoto, editor, Advances in Cryptology — ASI-
ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
116–129. Springer Berlin / Heidelberg, 2000.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the Winternitz one-time signature
scheme. In A. Nitaj and D. Pointcheval, editors, Africacrypt 2011, volume
6737 of Lecture Notes in Computer Science, pages 363–378. Springer Berlin
/ Heidelberg, 2011.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a prac-
tical forward secure signature scheme based on minimal security assump-
tions. In Bo-Yin Yang, editor, Post-Quantum Cryptography, volume 7071
of Lecture Notes in Computer Science, pages 117–129. Springer Berlin /
Heidelberg, 2011.

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya,
and Camille Vuillaume. Merkle signatures with virtually unlimited signa-
ture capacity. In Jonathan Katz and Moti Yung, editors, Applied Cryp-
tography and Network Security, volume 4521 of Lecture Notes in Computer
Science, pages 31–45. Springer Berlin / Heidelberg, 2007.

16

[BDS08] Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree
traversal revisited. In Johannes Buchmann and Jintai Ding, editors, Post-
Quantum Cryptography, volume 5299 of Lecture Notes in Computer Science,
pages 63–78. Springer Berlin / Heidelberg, 2008.

[BGD+06] Johannes Buchmann, L. C. Coronado Garćıa, Erik Dahmen, Martin Döring,
and Elena Klintsevich. CMSS - an improved Merkle signature scheme. In
INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages
349–363. Springer, 2006.

[BM99] Mihir Bellare and Sara Miner. A forward-secure digital signature scheme. In
Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, volume
1666 of Lecture Notes in Computer Science, pages 786–786. Springer Berlin
/ Heidelberg, 1999.

[CJMM03] Eric Cronin, Sugih Jamin, Tal Malkin, and Patrick McDaniel. On the per-
formance, feasibility, and use of forward-secure signatures. In Proceedings of
the 10th ACM conference on Computer and communications security, CCS
’03, pages 131–144, New York, NY, USA, 2003. ACM.

[CK06] Jan Camenisch and Maciej Koprowski. Fine-grained forward-secure sig-
nature schemes without random oracles. Discrete Applied Mathematics,
154(2):175 – 188, 2006. Coding and Cryptography.

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard,
editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, volume 435
of Lecture Notes in Computer Science, pages 416–427. Springer Berlin /
Heidelberg, 1990.

[ETS10] ETSI. XML advanced electronic signatures (XAdES). Standard TS 101
903, European Telecommunications Standards Institute, December 2010.

[ETS12] ETSI. CMS advanced electronic signatures (CAdES). Standard TS 101
733, European Telecommunications Standards Institute, March 2012.

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal
signing and verifying. In Joe Kilian, editor, Advances in Cryptology —
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
332–354. Springer Berlin / Heidelberg, 2001.

[KR03] Anton Kozlov and Leonid Reyzin. Forward-secure signatures with fast key
update. In Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi, edi-
tors, Security in Communication Networks, volume 2576 of Lecture Notes
in Computer Science, pages 241–256. Springer Berlin / Heidelberg, 2003.

[Kra00] Hugo Krawczyk. Simple forward-secure signatures from any signature
scheme. In CCS ’00: Proceedings of the 7th ACM conference on Computer
and communications security, pages 108–115, New York, NY, USA, 2000.
ACM.

[Len04] Arjen K. Lenstra. Key lengths. Contribution to The Handbook of Infor-
mation Security, 2004.

[Mer90] Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 428–446. Springer Berlin / Heidelberg,
1990.

[MMM02] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic forward-
secure signatures with an unbounded number of time periods. In Lars
Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 400–417. Springer Berlin
/ Heidelberg, 2002.

17

[MMO85] Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating strong one-
way functions with cryptographic algorithms. In IBM Technical Disclosure
Bulletin 27, pages 5658–5659. IBM, 1985.

[RED+08] Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen, Johannes Buchmann,
and Christof Paar. Fast hash-based signatures on constrained devices. In
Gilles Grimaud and François-Xavier Standaert, editors, Smart Card Re-
search and Advanced Applications, volume 5189 of Lecture Notes in Com-
puter Science, pages 104–117. Springer Berlin / Heidelberg, 2008.

[Son01] Dawn Xiaodong Song. Practical forward secure group signature schemes. In
Proceedings of the 8th ACM conference on Computer and Communications
Security, CCS ’01, pages 225–234, New York, NY, USA, 2001. ACM.

A Comparison with XMSS

In the following, we compare sizes and runtimes of XMSS+ and XMSS. To
get a fair comparison, we assume that the same number of nodes is stored
in the BDS states in both schemes. Therefore we set ku = kl = k − 1,
where k is the BDS parameter for XMSS. Note that this parameter se-
lection can not be compared in practice, as h − k must be even because
otherwise the number of updates is no integer. For the theoretical com-
parison this is no problem. Further we assume, that the same Winternitz
parameter is chosen for both schemes and for both levels. Last we assume,
that messages are the output of a collision resistant hash function and
therefore set m = 2n. Given this, `u ≈ `/2 as the message length of U is
n. The signature size grows by `un bits, the size of one W-OTS signature,
as both authentication paths together contain only h nodes, which is the
same as for the single authentication path of XMSS and the index stays
the same. The public key is slightly decreased, as the number of bitmasks
decreases from h+dlog `e to h′+max{log `u, log `l}, while X and the root
value stay the same size. The secret key contains two BDS states with
2(h′ − ki) states of FsGen and at most

(
3(h′) + bh′/2c − 3ki − 2 + 2ki

)
tree nodes for i ∈ {u, l}. Using ku = kl = k − 1, the two states together
contain 4(h′−k+ 1) states of FsGen and

(
6h′ + bh′c − 6k + 2 + 2k

)
tree

nodes. So here we save k − 2 states of FsGen and 3k − 2 tree nodes, or
(4k − 4)n bits. On the other hand, we have to store 2 additional FsGen
states for the seeds of U and the next L, one additional W-OTS signature
of `un bits, and StateBDS,n. StateBDS,n requires only h′ − k + 1 states
of FsGen and at most (3h′ − k + 1) tree nodes, as some of the space
is not needed during initialization and the space for the nodes of the k
upper levels can be shared with the space for those nodes in StateBDS,l.
All together this results in an overhead of (`u + 2h − 6k + 8)n which
might even be negative depending on the choice of parameters. For the

18

runtimes we only look at the worst case times and get the following. The
key generation time is reduced from 2h(` + 1)tH + 2h(2 + `(w + 1))tF to
2h/2(`u + `l + 2)tH + 2h/2(4 + `u(wu + 1) + `l(wl + 1))tF, where tH and tF
denote the runtimes of one evaluation of H and F, respectively. The worst
case signing time also decreases. While a signature using XMSS required
((h−k+2)/2·(h−k+`))tH+((h−k+2)/2·(`(w+1))+h−k)tF, a signature
for XMSS+ requires less than maxi∈{l,u}{(((h/2− kl + 2)/2) · (h/2− ki +
`i)+h/2)tH+((h/2−kl+4)/2 ·(`i(wi+1))+h/2−kl)tF}. This is the case,
because the computation of a node in the trees requires less computation
as the trees are smaller. Signature verification increases by the costs of
verifying one W-OTS signature and computing the corresponding leaf.
This is an increase of `utH + (`uwu)tF.

B Security Level

We compute the security level in the sense of [Len04]. This allows a com-
parison of the security of XMSS+ with the security of a symmetric prim-
itive like a block cipher for given security parameters. Following [Len04],
we say that XMSS+ has security level b if a successful attack on the scheme
can be expected to require approximately 2b−1 evaluations of functions
from Fn and Hn. Following the reasoning in [Len04], we only take into ac-
count generic attacks on Hn and Fn. A lower bound for the security level
of XMSS was computed in [BDH11]. For XMSS+, we combined the exact
security proofs from [BDH11] and [MMM02]. Following the computation
in [BDH11], we can lower bound the security level b by

b ≥ min {n− h/2− 4− wu − 2log(`uwu), n− h− 4− wl − 2log(`lwl)}

for the used parameter sets.

19

