
Delegatable Anonymous Credentials from
Mercurial Signatures

Elizabeth C. Crites? and Anna Lysyanskaya??

Brown University
Providence, RI 02912

September 27, 2018

Abstract. In a delegatable anonymous credential system, participants
may use their credentials anonymously as well as anonymously delegate
them to other participants. Such systems are more usable than tradi-
tional anonymous credential systems because a popular credential issuer
can delegate some of its responsibilities without compromising users’
privacy. They also provide stronger privacy guarantees than traditional
anonymous credential systems because the identities of credential issuers
are hidden. The identity of a credential issuer may convey information
about a user’s identity even when all other information about the user
is concealed.

The only previously known constructions of delegatable anonymous
credentials were prohibitively inefficient. They were based on non-interac
tive zero-knowledge (NIZK) proofs. In this paper, we provide a simple
construction of delegatable anonymous credentials and prove its security
in the generic group model. Our construction is direct, not based on
NIZK proofs, and is therefore considerably more efficient. In fact, in our
construction, only five group elements are needed per link to represent
an anonymous credential chain.

Our main building block is a new type of signature scheme, a mercurial
signature, which allows a signature σ on a message M under public key
pk to be transformed into a signature σ′ on an equivalent but unlinkable
message M ′ under an equivalent but unlinkable public key pk′.
Keywords: Anonymous credentials, signature schemes, generic group
model.

1 Introduction

Anonymous credentials. Anonymous credentials allow a user to prove possession
of a set of credentials, issued by some trusted issuer or issuers, that allow access
to a resource. What makes them anonymous is the fact that the user’s proof
is zero-knowledge and credentials can be obtained anonymously: an issuer need
not know the user’s identity in order to issue a credential.

? Email: elizabeth crites@brown.edu. This work was supported by NSF grant
1422361.

?? Email: anna lysyanskaya@brown.edu. URL: https://cs.brown.edu/people/anna/.
This work is supported by NSF grant 1422361.

2 Elizabeth C. Crites and Anna Lysyanskaya

As a result of decades of research, there are anonymous credential systems
that are provably secure and efficient enough for practical use [Cha86,LRSW99]
[CL01,Lys02,CL04,CKL+14,CDHK15]. These results have attracted wide atten-
tion beyond the cryptographic community: they have been implemented by in-
dustry leaders such as IBM, incorporated into industrial standards (such as the
TCG standard), and underpinned government policy.

And yet traditional anonymous credentials do not in fact protect users’ pri-
vacy. The traditional anonymous credential model assumes that the verifying
party, such as an access provider, knows the public key of the credential issuer
or issuers. This can reveal a lot of information about a user. In the US, for exam-
ple, the identity of the issuer of a user’s driver’s license (the local DMV) might
reveal the user’s zip code. If, in addition, the user’s date of birth and gender are
leaked (as could happen in the context of a medical application), this is enough
to uniquely identify the user the majority of the time [Swe97].

A naive approach to remedy this is as follows. Instead of proving possession
of a credential from a particular issuer (a particular DMV), a user proves pos-
session of a credential from one issuer out of a long list. This simple solution is
undesirable for two reasons: (1) it incurs a significant slowdown, proportional to
the number of potential issuers, and (2) it requires the user herself to know who
the issuer is.

Delegatable anonymous credentials. A more promising approach is to use
delegatable anonymous credentials [CL06] [BCC+09]. First, a non-anonymous
delegatable credential scheme can be constructed as follows. A certification chain
is rooted at some authority and ends at the public key of the user in question,
who then needs to demonstrate that she knows the corresponding secret key to
prove that she is authorized. The simplest case, when the trusted authority issues
certificates directly to each user (so the length of each certification chain is 1), is
inconvenient because it requires the authority to do too much work. A system in
which the authority delegates responsibility to other entities is more convenient:
an entity with a certification chain of length ` can issue certification chains of
length ` + 1. A conventional signature scheme immediately allows delegatable
credentials: Alice, who has a public signing key pkA and a certification chain of
length `, can sign Bob’s public key pkB , which gives Bob a certification chain of
length `+ 1.

Delegatable anonymous credentials allow users to enjoy much more privacy.
Even the users themselves do not know the actual identities of the links on their
certification chains. They only know what they need to know. For example, con-
sider a discount program for senior citizens. An online shopper proves that she
is eligible for the discount by presenting a level-3 credential from the govern-
ment administering the program as follows. Government official Alice receives a
credential directly from the government. She gives a credential to a local grocer,
Bob, who does not need to know who she is or to whom she has issued creden-
tials. Bob’s job is to issue credentials to his customers who are senior citizens
and he gives such a credential to Carol. Carol need not know who Bob is, who
gave him the credential, or who else received credentials from him. Now Carol

Delegatable Anonymous Credentials from Mercurial Signatures 3

can use her credential to shop online with a discount. Her credential does not
reveal the identity of anyone on her credential chain. Thus, even if Bob issues a
discount credential to no other customer, Carol’s anonymity is still preserved.

Delegatable anonymous credentials (DACs) were first proposed by Chase
and Lysyanskaya [CL06], who gave a proof of concept construction based on
non-interactive zero-knowledge (NIZK) proof systems for NP. Their construc-
tion incurred a blow-up that was exponential in L, the length of the certification
chain. Even for constant L it was not meant for use in practice. Belenkiy et
al. [BCC+09] showed that, given a commitment scheme and a signature scheme
that “play nicely” with randomizable NIZK (which they defined and realized),
DACs with only linear dependency on L could be achieved. They also showed
that their approach could be instantiated using Groth-Sahai commitments and
an NIZK proof system [GS08]. Although this was a significant efficiency im-
provement over previous work, the resulting scheme’s use of heavy machinery,
such as the Groth-Sahai proof system, rendered it unsuitable for use in practice
(a back-of-the-envelope calculation shows that several hundred group elements
would be required to represent a certification chain of length two.) Chase et
al. [CKLM13] gave a conceptually novel construction of delegatable anonymous
credentials that relied on controlled-malleable signatures and achieved stronger
security; however, their instantiation of controlled-malleable signatures still re-
quired Groth-Sahai proofs, so the resulting construction was essentially as inef-
ficient as that of Belenkiy et al. A recent paper by Camenisch et al. [CDD17]
suggests a solution in which one can indeed prove possession of a credential chain
in a privacy-preserving manner, but one cannot obtain credentials anonymously.

Our contribution. We provide a simple and efficient construction of delegat-
able anonymous credentials. Our construction does not rely on heavy machinery
such as NIZK proofs. It relies on groups with bilinear pairings, and only five
group elements per level of delegation are needed to represent a credential chain
(i.e. if Alice obtains a credential from the certification authority (CA) and dele-
gates it to Bob, who in turn delegates it to Carol, Carol’s credential chain can be
represented using fifteen group elements.) Our construction is provably secure in
the generic group model. We also give what we believe to be a simpler definition
of DACs.

Our approach. The main building block of our construction is a new type
of a signature scheme, which we call a mercurial signature scheme1. Given a
mercurial signature σ on a message M under public key pk, one can, without
knowing the underlying secret key sk, transform it into a new signature σ′ on
an equivalent message M ′ under an equivalent public key pk′, for some set of
equivalence relations on messages and public keys. Moreover, for an appropriate
choice of message space and public key space, this can be done in such a way
that the new M ′ cannot be linked to the original M , and the new public key pk′

cannot be linked to pk.

The approach to constructing DACs from mercurial signatures is as follows.
Suppose that the certification authority with public key pk0 has issued a cre-

1 No relationship to mercurial commitments [CHK+05]

4 Elizabeth C. Crites and Anna Lysyanskaya

dential to Alice, whose pseudonym is some public key pkA. Alice’s certification
chain (of length 1) will have the form (pkA, σA), where σA is the CA’s signature
on pkA. Alice interacts with Bob, who knows her under a different public key,
pk′A. The public keys pkA and pk′A are equivalent — they both belong to Alice
and have the same underlying secret key — but Bob cannot link them. Mercurial
signatures allow her to translate σA into σ′A, which is the CA’s signature on her
pk′A. Alice delegates her credential to Bob, after which Bob’s certification chain
has the form ((pk′A, pkB), (σ′A, σB)), where pkB is the pseudonym under which
Bob is known to Alice, and σB is the signature on pkB under the public key pk′A.

Now suppose that Bob wants to delegate to Carol, who is known to him
under the pseudonym pkC . He first uses the properties of the mercurial signature
scheme in order to make his credential chain unrecognizable. He transforms pk′A
into an equivalent pk′′A and pkB into an equivalent pk′B , taking care to also
transform the signatures appropriately. Finally, he signs pkC under pk′B .

Our mercurial signatures were inspired by the paper of Fuchsbauer, Hanser
and Slamanig [FHS14] on structure-preserving signatures on equivalence classes
(SPS-EQ). SPS-EQ does not include the feature of transforming a public key
into an equivalent one; this is new with our mercurial signatures. It does intro-
duce the property that a signature on a message M can be transformed into
one on an equivalent message M ′, where M ′ cannot be linked to M . It also
presents a construction of SPS-EQ that is secure in the generic group model.
Our construction of mercurial signatures is adapted from theirs, but our notion
of security requires that the adapted construction is still unforgeable even when
the forger is given the added freedom to modify the public key. In addition, it
requires that we prove pkA and pk′A are unlinkable even when given signatures
under these keys. A recent, independent work by Backes et al. [BHKS18] consid-
ers signatures with flexible public keys, but they don’t consider a scheme that
allows for both messages and public keys to come from an equivalence class.

Open problems. Our paper leaves open the question of how to construct
efficient DACs with desirable features that have been explored in the context
of anonymous credentials, such as credential attributes (e.g. expiration dates),
revocation, identity escrow and conditional anonymity.

2 Definition of Mercurial Signatures

For a relation R over strings, let [x]R = {y | R(x, y)}. If R is an equivalence
relation, then [x]R denotes the equivalence class of which x is a representative.
We say (somewhat loosely) that a relation R is parameterized if it is well-defined
as long as some other parameters are well-defined. For example, if G is a cyclic
group with generators g and h, then the decisional Diffie-Hellman (DDH) relation
R = {(x, y) | ∃α such that x = gα ∧ y = hα} is parameterized by G, g, and h
and is well-defined as long as G, g, and h are well-defined.

Definition 1 (Mercurial signature) A mercurial signature scheme for pa-
rameterized equivalence relations RM , Rpk, Rsk is a tuple of the following polyno-
mial-time algorithms, which are deterministic algorithms unless otherwise stated:

Delegatable Anonymous Credentials from Mercurial Signatures 5

PPGen(1k)→ PP : On input the security parameter 1k, this probabilistic algo-
rithm outputs the public parameters PP . This includes parameters for the
parameterized equivalence relations RM , Rpk, Rsk so they are well-defined.
It also includes parameters for the algorithms sampleρ and sampleµ, which
sample key and message converters, respectively.

KeyGen(PP , `) → (pk, sk): On input the public parameters PP and a length
parameter `, this probabilistic algorithm outputs a key pair (pk, sk). The
message space M is well-defined from PP and `. This algorithm also de-
fines a correspondence between public and secret keys: we write (pk, sk) ∈
KeyGen(PP , `) if there exists a set of random choices that KeyGen could
make that would result in (pk, sk) as the output.

Sign(sk,M) → σ: On input the signing key sk and a message M ∈ M, this
probabilistic algorithm outputs a signature σ.

Verify(pk,M, σ)→ 0/1: On input the public key pk, a message M ∈ M, and a
purported signature σ, output 0 or 1.

ConvertSK(sk, ρ)→ s̃k: On input sk and a key converter ρ ∈ sampleρ, output a

new secret key s̃k ∈ [sk]Rsk
.

ConvertPK(pk, ρ) → p̃k: On input pk and a key converter ρ ∈ sampleρ, output

a new public key p̃k ∈ [pk]Rpk
(correctness of this operation, defined below,

will guarantee that if pk corresponds to sk, then p̃k corresponds to s̃k =
ConvertSK(sk, ρ).)

ConvertSig(pk,M, σ, ρ) → σ̃: On input pk, a message M ∈ M, a signature σ,
and key converter ρ ∈ sampleρ, this probabilistic algorithm returns a new
signature σ̃ (correctness of this will require that whenever Verify(pk,M, σ) =
1, it will also be the case that Verify(p̃k,M, σ̃) = 1.)

ChangeRep(pk,M, σ, µ) → (M ′, σ′): On input pk, a message M ∈ M, a signa-
ture σ, and a message converter µ ∈ sampleµ, this probabilistic algorithm
computes a new message M ′ ∈ [M]RM and a new signature σ′ and out-
puts (M ′, σ′) (correctness of this will require that Verify(pk,M, σ) = 1 ⇒
Verify(pk,M ′, σ′) = 1.)

Similar to a standard cryptographic signature [GMR88], a mercurial signa-
ture must be correct and unforgeable.

Definition 2 (Correctness) A mercurial signature scheme (PPGen, KeyGen,
Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized
equivalence relations RM , Rpk, Rsk is correct if it satisfies the following con-
ditions for all k, for all PP ∈ PPGen(1k), for all ` > 1, for all (pk, sk) ∈
KeyGen(PP , `):

Verification For all M ∈M, for all σ ∈ Sign(sk,M), Verify(pk,M, σ) = 1.
Key conversion For all ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ))
∈ KeyGen(PP , `). Moreover, ConvertSK(sk, ρ) ∈ [sk]Rsk

and ConvertPK(pk, ρ)
∈ [pk]Rpk

.
Signature conversion For all M ∈M, for all σ such that Verify(pk,M, σ) = 1,

for all ρ ∈ sampleρ, for all σ̃ ∈ ConvertSig(pk,M, σ, ρ), Verify(ConvertPK(pk, ρ),
M, σ̃) = 1.

6 Elizabeth C. Crites and Anna Lysyanskaya

Change of message representative For all M ∈ M, for all σ such that
Verify(pk,M, σ) = 1, for all µ ∈ sampleµ, Verify(pk,M ′, σ′) = 1, where
(M ′, σ′) = ChangeRep(pk,M, σ, µ). Moreover, M ′ ∈ [M]RM .

Let us discuss the intuition for the correctness property. Correct verification
is simply the standard correctness property for signature schemes. Correct key
conversion means that if the same key converter ρ is applied to a valid key
pair (pk, sk), the result is a new valid key pair (p̃k, s̃k) from the same pair of
equivalence classes. Correct signature conversion means that if the same key
converter ρ is applied to a public key pk to obtain p̃k and to a valid signature
σ on a message M to obtain σ̃, then the new signature σ̃ is a valid signature
on the same message M under the new public key p̃k. Finally, correct change
of message representative ensures that if a message converter µ is applied to a
valid message-signature pair (M,σ), the result is a new valid message-signature
pair (M ′, σ′), where the new message M ′ is in the same equivalence class as M .

Definition 3 (Unforgeability) A mercurial signature scheme (PPGen, KeyGen,
Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized
equivalence relations RM , Rpk, Rsk is unforgeable if for all polynomial-length pa-
rameters `(k) and all probabilistic, polynomial-time (PPT) algorithms A having
access to a signing oracle, there exists a negligible function ν such that:

Pr[PP ← PPGen(1k); (pk, sk)← KeyGen(PP , `(k)); (Q, pk∗,M∗, σ∗)←

ASign(sk,·)(pk) : ∀M ∈ Q, [M∗]RM 6= [M]RM ∧ [pk∗]Rpk
= [pk]Rpk

∧Verify(pk∗,M∗, σ∗) = 1] ≤ ν(k)

where Q is the set of queries that A has issued to the signing oracle.

The unforgeability property here is similar to existential unforgeability (EUF-
CMA) for signature schemes, except the adversary’s winning condition is some-
what altered. As in the EUF-CMA game, the adversary is given the public key
pk and is allowed to issue signature queries to the oracle that knows the corre-
sponding secret key sk. Eventually, the adversary outputs a public key pk∗, a
message M∗, and a purported signature σ∗. Unlike the EUF-CMA game, the
adversary has the freedom to choose to output a forgery under a different public
key pk∗, as long as pk∗ is in the same equivalence class as pk. This seemingly
makes the adversary’s task easier. At the same time, the adversary’s forgery is
not valid if the message M∗ is in the same equivalence class as a previously
queried message, making the adversary’s task harder. We can more formally re-
late our definitions to the standard definitions of existential unforgeability and
correctness for signature schemes as follows. Suppose the relations RM , Rpk, Rsk

are equality relations (recall that R is an equality relation if (a, b) ∈ R ⇔ a = b.)
Let ConvertSK, ConvertPK, ConvertSig, ChangeRep be algorithms that do nothing
but simply output their input sk, pk, σ, (M,σ), respectively. Then, it is easy to
see that (PPGen, KeyGen,Sign, Verify) is a correct and existentially unforgeable
signature scheme if and only if the mercurial signature scheme (PPGen, KeyGen,

Delegatable Anonymous Credentials from Mercurial Signatures 7

Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for RM , Rpk, Rsk is
correct and unforgeable.

If one disregards insignificant differences in input-output specification and the
emphasis on structure-preserving properties (not important for the security defi-
nition), our mercurial signatures are a generalization of Fuchsbauer, Hanser and
Slamanig’s [FHS14] structure-preserving signatures on equivalence classes (SPS-
EQ) and in fact were inspired by signatures on equivalence classes in that paper.
In an SPS-EQ signature for an equivalence relation RM , the ChangeRep algo-
rithm is present, but there are no ConvertSK,ConvertPK,ConvertSig algorithms.
The correctness requirement boils down to our correct verification and correct
change of message representative requirements. Unforgeability of SPS-EQ is sim-
ilar to unforgeability of mercurial signatures, except that A does not have the
freedom to pick a different public key pk∗; the forgery must verify under the origi-
nal public key pk. We can more formally relate our definitions to the definitions of
existential unforgeability and correctness for signatures on equivalence classes as
follows. Suppose the relations Rpk and Rsk are equality relations. Let ConvertSK,
ConvertPK,ConvertSig be algorithms that do nothing but simply output their
input sk, pk, σ, respectively. Then, (PPGen,KeyGen,Sign,Verify,ChangeRep) is a
correct and unforgeable signature scheme for the equivalence relation RM if and
only if the mercurial signature scheme (PPGen, KeyGen, Sign, Verify, ConvertSK,
ConvertPK, ConvertSig, ChangeRep) for RM , Rpk, Rsk is correct and unforgeable.

Class- and origin-hiding of mercurial signatures. It is important for our
application that the relations RM and Rpk be class-hiding. Class-hiding for mes-
sages [FHS14] means that given two messages, M1 and M2, it should be hard
to tell whether or not M1 ∈ [M2]RM . Class-hiding for public keys means that,
given two public keys, pk1 and pk2, and oracle access to the signing algorithm
for both of them, it is hard to tell whether or not pk1 ∈ [pk2]Rpk

.
An additional property we will need for our application is that, even if pk∗

is adversarial, a message-signature pair obtained by running ChangeRep(pk∗,
M0, σ0, µ0) is distributed the same way as a pair obtained by running ChangeRep(
pk∗,M1, σ1, µ1), as long as M0 and M1 are in the same equivalence class. Thus,
seeing the resulting message-signature pair hides its origin, whether it came from
M0 or M1. Similarly, even for an adversarial pk∗, a signature on a message M
output by ConvertSig hides whether ConvertSig was given pk∗ as input or another
pk in the same equivalence class.

Definition 4 A mercurial signature scheme (PPGen, KeyGen, Sign, Verify,
ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameterized equivalence
relations RM , Rpk, Rsk is class-hiding if it satisfies the following two properties:

Message class-hiding: For all polynomial-length parameters `(k) and all prob-
abilistic polynomial-time (PPT) adversaries A, there exists a negligible ν
such that:

Pr[PP ← PPGen(1k);M1 ←M;M0
2 ←M;M1

2 ← [M1]RM ;

8 Elizabeth C. Crites and Anna Lysyanskaya

b← {0, 1}; b′ ← A(PP ,M1,M
b
2) : b′ = b] ≤ 1

2
+ ν(k)

Public key class-hiding: For all polynomial-length parameters `(k) and all
PPT adversaries A, there exists a negligible ν such that:

Pr[PP ← PPGen(1k); (pk1, sk1)← KeyGen(PP , `(k));

(pk0
2, sk

0
2)← KeyGen(PP , `(k));

ρ← sampleρ(PP); pk1
2 = ConvertPK(pk1, ρ); sk1

2 = ConvertSK(sk1, ρ);

b← {0, 1}; b′ ← ASign(sk1,·),Sign(skb2,·)(pk1, pk
b
2) : b′ = b] ≤ 1

2
+ ν(k)

A mercurial signature is also origin-hiding if the following two properties hold:

Origin-hiding of ChangeRep: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in
particular, adversarially generated ones), for all M , σ, if Verify(pk∗,M, σ) =
1, if µ ← sampleµ, then ChangeRep(pk∗,M, σ, µ) outputs a uniformly ran-
dom M ′ ∈ [M]RM and a uniformly random σ′ ∈ {σ̂ | Verify(pk∗,M ′, σ̂) = 1}.

Origin-hiding of ConvertSig: For all k, for all PP ∈ PPGen(1k), for all pk∗ (in
particular, adversarially generated ones), for all M , σ, if Verify(pk∗,M, σ) =
1, if ρ ← sampleρ, then ConvertSig(pk∗,M, σ, ρ) outputs a uniformly ran-
dom σ̃ ∈ {σ̂ | Verify(ConvertPK(pk∗, ρ),M, σ̂) = 1}, and ConvertPK(pk∗, ρ)
outputs a uniformly random element of [pk∗]Rpk

if ρ← sampleρ.

3 Construction of Mercurial Signatures

Let e : G1 × G2 → GT be a Type III bilinear pairing for multiplicative groups
G1,G2, and GT of prime order p. Let P, P̂ , and e(P, P̂) be generators, re-
spectively (see Appendix A.1 for a review.) The message space for our mer-
curial signature scheme will consist of vectors of group elements from G∗1, where
G∗1 = G1\{1G1

}. The space of secret keys will consist of vectors of elements from
Z∗p. The space of public keys, similar to the message space, will consist of vectors
of group elements from G∗2. Once the prime p, G∗1, G∗2, and ` are well-defined,
the equivalence relations of interest to us are as follows:

RM = {(M,M ′) ∈ (G∗1)` × (G∗1)` | ∃r ∈ Z∗p such that M ′ = Mr}
Rsk = {(sk, s̃k) ∈ (Z∗p)` × (Z∗p)` | ∃r ∈ Z∗p such that s̃k = skr}
Rpk = {(pk, p̃k) ∈ (G∗2)` × (G∗2)` | ∃r ∈ Z∗p such that p̃k = pkr}

Note that messages, secret keys, and public keys are restricted to vectors con-
sisting of only non-identity group elements. Without this restriction and the
restriction that r 6= 0, the resulting relation would not be an equivalence one.

We introduce our mercurial signature construction with message space (G∗1)`,
but a mercurial signature scheme with message space (G∗2)` can be obtained by
simply switching G∗1 and G∗2 throughout.

Delegatable Anonymous Credentials from Mercurial Signatures 9

PPGen(1k)→ PP : Compute BG← BGGen(1k). Output PP = BG = (G1,G2,
GT , P, P̂ , e). Now that BG is well-defined, the relations RM , Rpk, Rsk are
also well-defined. sampleρ and sampleµ are the same algorithm, namely the
one that samples a random element of Z∗p.

KeyGen(PP , `) → (pk, sk): For 1 ≤ i ≤ `, pick xi ← Z∗p and set secret key

sk = (x1, . . . , x`). Compute public key pk = (X̂1, . . . , X̂`), where X̂i = P̂ xi

for 1 ≤ i ≤ `. Output (pk, sk).
Sign(sk,M) → σ: On input sk = (x1, . . . , x`) and M = (M1, . . . ,M`) ∈ (G∗1)`,

pick a random y ← Z∗p and output σ = (Z, Y, Ŷ), where Z ←
(∏`

i=1M
xi
i

)y
,

Y ← P
1
y , and Ŷ ← P̂

1
y .

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂`), M = (M1, . . . ,M`), and

σ = (Z, Y, Ŷ), check whether
∏`
i=1 e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ).

If it holds, output 1; otherwise, output 0.
ConvertSK(sk, ρ)→ s̃k: On input sk = (x1, . . . , x`) and a key converter ρ ∈ Z∗p,

output the new secret key s̃k = skρ.
ConvertPK(pk, ρ) → p̃k: On input pk = (X̂1, . . . , X̂`) and a key converter ρ ∈

Z∗p, output the new public key p̃k = pkρ.

ConvertSig(pk,M, σ, ρ)→ σ̃: On input pk, message M , signature σ = (Z, Y, Ŷ),

and key converter ρ ∈ Z∗p, sample ψ ← Z∗p. Output σ̃ = (Zψρ, Y
1
ψ , Ŷ

1
ψ).

ChangeRep(pk,M, σ, µ) → (M ′, σ′): On input pk, M , σ = (Z, Y, Ŷ), µ ∈ Z∗p,
sample ψ ← Z∗p. Compute M ′ = Mµ, σ′ = (Zψµ, Y

1
ψ , Ŷ

1
ψ). Output (M ′, σ′).

Proofs of the following theorems can be found in Appendix B.

Theorem 1 (Correctness) The construction described above is correct.

Theorem 2 (Unforgeability) The construction described above is unforgeable
in the generic group model for Type III bilinear groups.

To prove unforgeability, we construct a reduction to the unforgeability of the
SPS-EQ signature scheme. Suppose a PPT algorithm A produces a successful
forgery (M∗, σ∗, pk∗) for a mercurial signature scheme with non-negligible prob-
ability. Then, by definition, there exists some α in Z∗p such that pk∗ = αpk,
where pk is the challenge public key for unforgeability of SPS-EQ. We show that
a PPT reduction B is able to obtain this α and produce a successful forgery
(αM∗, σ∗, pk) for the SPS-EQ scheme, contradicting its proven security in the
generic group model. The full proof can be found in Appendix B.2.

Theorem 3 (Class-hiding) The construction described above is class-hiding
in the generic group model for Type III bilinear groups.

Message class-hiding follows from message class-hiding of the SPS-EQ scheme.
Specifically, (G∗i)` is a class-hiding message space if and only if the decisional
Diffie-Hellman assumption (DDH) holds in Gi [FHS14].

10 Elizabeth C. Crites and Anna Lysyanskaya

For public key class-hiding, we must show that an adversary’s view in a game

in which the challenger computes independent public keys pk1 = (x
(1)
i X̂)i∈[`]

and pk2 = (x
(2)
i X̂)i∈[`] (Game 0) is the same as his view in a game in which

pk2 = αpk1 = (αx
(1)
i X̂)i∈[`] for some α ∈ Z∗p (Game 3). We achieve this by

constructing two intermediate games (Game 1 and Game 2). In Game 1, pk1

and pk2 are independent, but C’s responses to A’s group oracle and signing
queries are computed as formal multivariate Laurent polynomials in the variables

x
(1)
1 , ..., x

(1)
` , x

(2)
1 , ..., x

(2)
` , y1, ...yq, where yi is the secret value the challenger uses

for the ith Sign query. In Game 2, pk2 = αpk1 for some α ∈ Z∗p, and C’s responses
to the oracle queries are again computed as formal multivariate Laurent polyno-

mials, but now in the variables x
(1)
1 , ..., x

(1)
` , y1, ...yq, and α. Demonstrating that

A’s view is the same in Game 0 as it is in Game 1 is a direct application of
the Schwartz-Zippel lemma, which guarantees that the probability that a formal

polynomial in Game 1, in which the variables x
(1)
1 , ..., x

(1)
` , x

(2)
1 , ..., x

(2)
` , y1, ...yq

are given to A as handles, collides with a formal polynomial in Game 0, in which
the handles correspond to the variables that were fixed at the beginning of the
game, is negligible. The same argument applies to Game 2 vs. Game 3.

It is nontrivial to prove that A’s view is the same in Game 1 as it is in Game
2. First, we must show that for computations carried out by the challenger in
each of the three groups, G∗1,G∗2, and GT , A’s view is the same in both games.
In G∗2, for example, we prove that two group oracle queries to G∗2 in Game 1
result in distinct formal polynomials if and only if the same two queries in Game
2 result in distinct polynomials. Then, the same must be shown, by induction,
for signature queries too. If this sounds vague, it is because of the difficulty in
conveying the details, which involve many variables and groups, in a high-level
proof sketch. Please see Appendix B.3 for the full proof.

Theorem 4 (Origin-hiding) The construction described above is origin-hiding
in the generic group model for Type III bilinear groups.

4 Definition of Delegatable Anonymous Credentials

Delegatable anonymous credentials have been studied before and previous def-
initions exist. The first paper to study the subject, due to Chase and Lysyan-
skaya [CL06], does not contain a definition of security. The next paper, by Be-
lenkiy et al. [BCC+09], contains a simulation-extraction style definition. Anonym
ity means there is a simulator that, when interacting with the adversary on be-
half of honest parties, creates for each interaction a transcript whose distribution
is independent on the identity of the honest party interacting with the adversary.
The extractability part means there is an extractor that “de-anonymizes” the
parties under the adversary’s control and guarantees that the adversary cannot
prove possession of a credential that “de-anonymizes” to a credential chain not
corresponding to a sequence of credential issue instances that have actually oc-
curred. A subsequent paper, by Chase et al. [CKLM13], suggested modifying the
Belenkiy et al. definition but preserved the simulation-extraction style.

Delegatable Anonymous Credentials from Mercurial Signatures 11

Our definitional approach is more traditional: we have a single security game,
in which the adversary interacts with the system and attempts to break it either
by forging a credential or de-anonymizing a user, or both. Thus, we do not rely
on the definitional machinery of simulation and extraction that Belenkiy et al.
“inherited” from non-interactive zero-knowledge proof of knowledge (NIZK PoK)
systems. This makes our definition weaker than the Belenkiy at al. definition
(as we will discuss below), but at the same time, doing away with simulation
and extraction requirements means that it can be satisfied with cryptographic
building blocks, such as mercurial signatures and (interactive) zero-knowledge
proofs, that do not necessarily imply NIZK PoK.

Definition 5 (Delegatable anonymous credentials) A delegatable anony-
mous credential scheme consists of algorithms (Setup,KeyGen,NymGen) and pro-
tocols for issuing/receiving a credential and proving/verifying possession of a
credential as follows:

Setup(1k)→ (params): A PPT algorithm that generates the public parameters
params for the system.

KeyGen(params) → (pk, sk): A PPT algorithm that generates an “identity” of
a system participant, which consists of a public and secret key pair (pk, sk).
sk is referred to as the user’s secret identity key, while pk is its public identity
key. WLOG, sk is assumed to include both params and pk so that they need
not be given to other algorithms as separate inputs. A root authority runs
the same key generation algorithm as every other participant.

NymGen(sk, L(p̆k0)) → (nym, aux): A PPT algorithm that, on input a user’s

secret identity key sk and level L(p̆k0) under the root authority whose pub-

lic key is p̆k0, outputs a pseudonym nym for this user and the auxiliary
information aux needed to use nym.

Issuing a credential:
[Issue(LI(p̆k0), p̆k0, skI , nymI , auxI , credI , nymR)↔ Receive(LI(p̆k0), p̆k0, skR,

nymR, auxR, nymI)] → (credR): This is an interactive protocol between an
issuer of a credential, who runs the Issue side of the protocol, and a receiver,
who runs the Receive side. The issuer takes as input his own credential at
level LI(p̆k0) under root authority p̆k0 together with all information asso-

ciated with it. Specifically, this includes LI(p̆k0), the length of the issuer’s

credential chain; p̆k0, the public key of the root authority; skI , the issuer’s
secret key; nymI , the pseudonym by which the issuer is known to the re-
ceiver and its associated auxiliary information, auxI ; and credI , the issuer’s
credential chain. The issuer also takes as input nymR, the pseudonym by
which the receiver is known to him. The receiver takes as input the same
LI(p̆k0) and p̆k0, the same nymI and nymR, her own secret key skR, and
the auxiliary information auxR associated with her pseudonym nymR. The
receiver’s output is her credential credR.

Remarks. Note that there is a single protocol any issuer, including a root au-
thority, runs with any recipient. A root authority does not use a pseudonym,

12 Elizabeth C. Crites and Anna Lysyanskaya

so our convention in that case is LI(p̆k0) = 0, nymI = p̆k0, and auxI =

credI = ⊥. Also, note that credentials, like levels, are dependent on p̆k0 (i.e.

credI = credI(p̆k0)), but this dependency has been omitted for clarity.

Proof of possession of a credential:
[CredProve(LP (p̆k0), p̆k0, skP , nymP , auxP , credP)↔ CredVerify(params, LP (p̆k0),

p̆k0, nymP)] → output (0 or 1): This is an interactive protocol between a
prover, who is trying to prove possession of a credential and runs the CredProve
side of the protocol, and a verifier, who runs the CredVerify side. The prover
takes as input his own credential at level LP (p̆k0) under root authority p̆k0

together with all information associated with it. Specifically, this includes
LP (p̆k0), the length of the prover’s credential chain; p̆k0, the public key of
the root authority; skP , the prover’s secret key; nymP , the pseudonym by
which the prover is known to the verifier and its associated auxiliary infor-
mation, auxP ; and credP , the prover’s credential chain. The verifier takes as
input params and the same LP (p̆k0), p̆k0, and nymP . The verifier’s output
is 1 if it accepts the proof of possession of a credential and 0 otherwise.

A delegatable anonymous credential (DAC) system must be correct and secure.

Definition 6 (Correctness of DAC) A delegatable anonymous credential
scheme is correct if, whenever Setup, KeyGen and NymGen are run correctly and
the Issue-Receive protocol is executed correctly on correctly generated inputs, the
receiver outputs a certification chain that, when used as input to the prover in an
honest execution of the CredProve-CredVerify protocol, is accepted by the verifier
with probability 1.

We now provide a description of the security game along with a definition
of unforgeability and anonymity for delegatable anonymous credentials under a
single certification authority.

Security game. The security game is parameterized by (hard-to-compute)
functions f, fcred, and fdemo. An adversary A interacts with a challenger C,
who is responsible for setting up the keys and pseudonyms of all the honest par-
ticipants in the system and for acting on their behalf when they issue, receive,
prove possession of, or verify possession of credential chains. Throughout the
game, C maintains the following state information:

1. A directed graph G(p̆k0) = (V (p̆k0), E(p̆k0)) that will consist of a single tree
and some singleton nodes. The root of the tree is the node called root, and
it has public key p̆k0.

2. Corresponding to every node v ∈ V (p̆k0), the following information:

(a) v’s level L(p̆k0, v) (i.e. v’s distance to root p̆k0).
(b) status(v), which specifies whether v corresponds to an honest or adver-

sarial user.
(c) If status(v) = honest , then

Delegatable Anonymous Credentials from Mercurial Signatures 13

– pk(v), the public key associated with v;
– sk(v), the secret key corresponding to pk(v);
– all pseudonyms nym1(v), . . . , nymn(v) associated with v (if they ex-

ist) and their corresponding auxiliary information aux1(v), . . . , auxn(v);

– the user’s credential credv := credv(p̆k0) (if it exists);

– a value p̂kv, determined using the function f (as we will see, p̂kv =
f(pk(v)) = f(nymi(v)) for nymi(v) ∈ {nym1(v), . . . , nymn(v)}.)

(d) If status(v) = adversarial , a value p̂kv, determined using the function f ,

that will be used as this node’s identity. As we will see, p̂kv = f(nym(v))
if nym(v) is a pseudonym used by the adversary on behalf of node v.
Note that for two different adversarial nodes v, v′, it is possible that
p̂kv = p̂kv′ . This is not possible for honest nodes.

3. A forgery flag, which is set to true if the adversary forges a credential.
4. An anonymity bit b ∈ {0, 1}, a pair of anonymity challenge nodes (u0, u1),

and the status of the anonymity attack. Define S to be the set of pairs of
pseudonyms (nym(ub), nym(ub̄)) that the adversary has seen for the anonymity
challenge node ub and the other node in the pair, ub̄, where b̄ = 1 − b. The
challenger keeps track of S along with the auxiliary information for the pairs
of pseudonyms it contains.

The security game is initialized as follows. The params are generated and
given to the adversary A. Then, A(params) specifies whether the status of the
root node is going to be honest or adversarial . If it is honest , the challenger
C generates the root key pair, (p̆k0, s̆k0) ← KeyGen(params); else, A supplies

p̆k0 to C. Next, C sets the forgery flag to false and picks a random value for
the anonymity bit b: b ← {0, 1}. At this point, the anonymity attack has not

begun yet, so its status is undefined . C stores G(p̆k0) = (V (p̆k0), E(p̆k0)) =
({root}, ∅) (i.e. the graph consisting of the root node and no edges) and sets

status(root) to be as specified by A: pk(root) = p̆k0, and when status(root) =

honest , sk(root) = s̆k0. Next, A can add nodes/users to G(p̆k0), both honest
and adversarial, and have these users obtain, delegate, and prove possession of
credentials by interacting with C using the following oracles:

AddHonestParty(u): A invokes this oracle to create a new, honest node u. C runs

(pk(u), sk(u))← KeyGen(params), sets L(p̆k0, u) =∞, and returns pk(u) to
A.

SeeNym(u): A invokes this oracle to see a fresh pseudonym for an honest node

u. C runs (nym(u), aux(u)) ← NymGen(sk(u), L(p̆k0, u)) and returns nym(u)
to A.

CertifyHonestParty(p̆k0, u, v): A invokes this oracle to have the honest party as-
sociated with u issue a credential to the honest party associated with v. A se-
lects pseudonyms nym(u), nym(v) that he has seen for u, v (unless u = root),

and C runs the protocols: [Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu,

nym(v))↔ Receive(L(p̆k0, u), p̆k0, sk(v), nym(v), aux(v), nym(u))]→ credv. If

u = root , then p̆k0 is given as input instead of nym(u). C adds the edge (u, v)

to the graph and sets L(p̆k0, v) = L(p̆k0, u) + 1.

14 Elizabeth C. Crites and Anna Lysyanskaya

VerifyCredFrom(p̆k0, u): The honest party associated with u proves to A that it

has a credential at level L(p̆k0, u). A selects a pseudonym nym(u) that he has

seen for u, and C runs the CredProve protocol with A: CredProve(L(p̆k0, u),

p̆k0, sk(u), nym(u), aux(u), credu)↔ A.
GetCredFrom(p̆k0, u, nymR): The honest party associated with u issues a cre-

dential to A, whom it knows by nymR. C creates a new adversarial node v

and sets its identity to be p̂kv = f(nymR). A selects a pseudonym nym(u)
that he has seen for u (unless u = root), and C runs the Issue protocol with

A: Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nymR)↔ A. If u = root ,

then p̆k0 is given as input instead of nym(u). C adds the edge (u, v) to the

graph and sets L(p̆k0, v) = L(p̆k0, u) + 1.
GiveCredTo(p̆k0, LI(p̆k0), nymI , v): A issues a credential to the honest party

associated with v under a pseudonym nymI (or p̆k0 if he is the root).A selects
a pseudonym nym(v) that he has seen for v, and C runs the Receive protocol

with A: [A ↔ Receive(LI(p̆k0), p̆k0, sk(v), nym(v), aux(v), nymI)] → credv. If

A is the root , then p̆k0 is given as input instead of nymI . If credv 6= ⊥, C sets

L(p̆k0, v) = LI(p̆k0) + 1 and computes the function fcred on v’s credential,

fcred(credv) = (p̂k0, p̂k1, . . . , p̂kLI), revealing the identities in v’s credential

chain. If according to C’s data structure, there is some p̂ki in this chain such

that p̂ki = f(nym(u)) for an honest user u, but p̂ki+1 6= f(nym(v′)) for any
v′ that received a credential from u, then C sets the forgery flag to true.
If credv 6= ⊥ and the forgery flag remains false, C fills in the gaps in the
graph as follows. Starting from the nearest honest ancestor of v, C creates
a new node for each (necessarily adversarial) identity in the chain between

that honest node and v and sets its identity to be the appropriate p̂kj . C
then adds edges between the nodes on the chain from the nearest honest
ancestor of v to v.

DemoCred(p̆k0, LP (p̆k0), nymP): A proves possession of a credential at level

LP (p̆k0). C runs the Verify protocol withA: [A ↔ CredVerify(params, LP (p̆k0)

, p̆k0, nymP)] → output (0 or 1). If output = 1, C computes the function

fdemo on the transcript of the output, fdemo(transcript) = (p̂k0, p̂k1, . . . ,

p̂kLP), and determines if a forgery has occurred as in GiveCredTo. If output
= 1 and the forgery flag remains false, C creates a new adversarial node v
for the identity p̂kLP and sets L(p̆k0, v) = LP (p̆k0). C fills in the gaps in the
graph as in GiveCredTo.

SetAnonChallenge(u0, u1): A will try to distinguish between the honest parties
associated with u0 and u1.

SeeNymAnon: A invokes this oracle to see fresh pseudonyms for ub and ub̄. C
runs (nym(ub), aux(ub)) ← NymGen(sk(ub), L(p̆k0, ub)), repeats this for ub̄,
and returns (nym(ub), nym(ub̄)) to A.

CertifyHonestAnon(p̆k0, u): A invokes this oracle to have the honest party asso-
ciated with u issue credentials to ub and ub̄. A selects pseudonyms (nym(ub),
nym(ub̄)) and nym(u) that he has seen for ub, ub̄, and u, and C runs the proto-

cols: [Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nym(ub))↔ Receive(

Delegatable Anonymous Credentials from Mercurial Signatures 15

L(p̆k0, u), p̆k0, sk(ub), nym(ub), aux(ub), nym(u))] → credub . If u = root , then

p̆k0 is given as input instead of nym(u). C adds the edge (u, ub) to the graph

and sets L(p̆k0, ub) = L(p̆k0, u) + 1. C repeats these steps for ub̄, using the
same nym(u) (if u 6= root).

CertifyAnonHonest(p̆k0, b
∗, v):A invokes this oracle to have one of the anonymity

challenge nodes, ub∗ , where b∗ = b or b̄, issue a credential to the honest party
associated with v. A selects pseudonyms (nym(ub), nym(ub̄)) and nym(v) that

he has seen for ub, ub̄, and v, and C runs the protocols: [Issue(L(p̆k0, ub∗), p̆k0,

sk(ub∗), nym(ub∗), aux(ub∗), credub∗ , nym(v))↔ Receive(L(p̆k0, ub∗), p̆k0,
sk(v), nym(v), aux(v), nym(ub∗))] → credv. C adds the edge (ub∗ , v) to the

graph and sets L(p̆k0, v) = L(p̆k0, ub∗) + 1.
VerifyCredFromAnon(p̆k0): The honest parties associated with ub and ub̄ prove

to A that they have credentials at level L(p̆k0, ub) = L(p̆k0, ub̄). C checks that

the two paths from ub and ub̄ to the root p̆k0 consist entirely of honest nodes,

with the exception that p̆k0 may be adversarial. If this check fails, C updates
the status of the anonymity attack to forfeited . Next, A selects pseudonyms
(nym(ub), nym(ub̄)) that he has seen for ub and ub̄, and C runs the CredProve

protocol with A: CredProve(L(p̆k0, ub), p̆k0, sk(ub), nym(ub), aux(ub), credub)
↔ A. C repeats this step for ub̄.

GetCredFromAnon(p̆k0, b
∗, nymR): The honest party associated with ub∗ , where

b∗ = b or b̄, issues a credential toA, whom it knows by nymR. C checks the two

paths from ub∗ and ub̄∗ to the root p̆k0 as in VerifyCredFromAnon. Next, C cre-

ates a new adversarial node v and sets its identity to be p̂kv = f(nymR). Note
that A can have ub∗ , ub̄∗ issue credentials to two different adversarial nodes

v, v′, respectively, with the same underlying adversarial identity p̂kv = p̂kv′ .
A selects pseudonyms (nym(ub∗), nym(ub̄∗)) that he has seen for ub∗ and ub̄∗ ,

and C runs the Issue protocol withA: Issue(L(p̆k0, ub∗), p̆k0, sk(ub∗), nym(ub∗),
aux(ub∗), credub∗ , nymR)↔ A. C adds the edge (ub∗ , v) to the graph and sets

L(p̆k0, v) = L(p̆k0, ub∗) + 1.
GiveCredToAnon(p̆k0, LI(p̆k0), nymI): A issues credentials to ub and ub̄ under a

pseudonym nymI (or p̆k0 if he is the root). A selects pseudonyms (nym(ub),
nym(ub̄)) that he has seen for ub and ub̄, and C runs the Receive proto-

col with A: [A ↔ Receive(LI(p̆k0), p̆k0, sk(ub), nym(ub), aux(ub), nymI)] →
credub . If A is the root, then p̆k0 is given as input instead of nymI . C re-

peats this step for ub̄. If both credub 6= ⊥ and credub̄ 6= ⊥, C sets L(p̆k0, ub)

= LI(p̆k0)+1, computes the function fcred on ub’s credential, fcred(credub) =

(p̂k0, p̂k1, . . . , p̂kLI), and determines if a forgery has occurred as in GiveCredTo.
C repeats this step for ub̄. If both credub 6= ⊥ and credub̄ 6= ⊥ and the forgery
flag remains false, C fills in the gaps in the graph as follows. If there is already
an adversarial node v corresponding to the pseudonym nymI with an edge
connecting it to an honest parent, then C only adds an edge between v and
ub. Else, C creates a chain of edges and (adversarial) nodes from the nearest
honest ancestor of ub to ub as in GiveCredTo. C repeats this step for ub̄.

GuessAnon(b′): If b′ = b, the status of the anonymity attack is set to success.

16 Elizabeth C. Crites and Anna Lysyanskaya

Definition 7 (Unforgeability and Anonymity) A delegatable anonymous
credential scheme is unforgeable and anonymous if there exist functions f, fcred,
and fdemo such that for all PPT A, there exists a negligible function ν such that:

1. the probability that the forgery flag will be true in the single-authority game
is at most ν(k), where k is the security parameter.

2. the probability that the status of the anonymity attack in the single-authority
game will be success is at most 1/2 + ν(k).

Strengthening anonymity. Note that this flavor of anonymity is weaker than
the previous one by Belenkiy et al., and not only because it is not based on sim-
ulatability. In our anonymity game, two nodes, u0 and u1, may have credentials
at the same level but still may not be appropriate candidates for the anonymity
challenge; the two paths from u0 and u1 to the root must consist entirely of
honest nodes, with the exception that the root may be adversarial. The reason
is that our definition allows the adversary to recognize himself on a credential
chain, so if he were on u0’s credential chain but not u1’s, he would be able to
distinguish the two. It would be relatively straightforward to “fix” our definition
to not allow this: we would just need to remove the requirement that u0 and
u1 have entirely honest paths to the root. Unfortunately, our construction only
satisfies the weaker anonymity notion in which this requirement must be met.

Other types of composition. Note that in our definition, the adversary invokes
the oracles sequentially. Our definition gives no security guarantees when the or-
acles are invoked concurrently and the adversary orchestrates the order in which
protocol messages are exchanged. There are standard techniques for turning cer-
tain sequentially secure protocols into concurrently secure ones; there are also
well-known subtleties [Dam00,Lin03b,Lin03a]. As far as stronger types of com-
position, such as universal composition [Can01], are concerned, our definition,
even if modified somewhat, does not seem to provide this level of security.

5 Construction of DAC from Mercurial Signatures

Suppose we have a mercurial signature scheme such that the space of public
keys is a subset of the message space and RM = Rpk. Furthermore, suppose it
has the property that sampleµ = sampleρ and on input ChangeRep(pk,M, σ, µ),

where M = pk′, it outputs (M ′, σ′) such that M ′ = ConvertPK(pk′, µ).
To generate a key pair, each participant runs the KeyGen algorithm of the

mercurial signature scheme to get (pk, sk). To generate a new pseudonym and
its auxiliary information, pick ρ and let nym = ConvertPK(pk, ρ), aux = ρ.

A credential chain of length L will consist of a series of pseudonyms (nym1, . . .,
nymL) and a series of signatures (σ1, . . . , σL) such that (1) σ1 is a signature on

the message nym1 under the certification authority’s public key p̆k0; (2) for
2 ≤ i ≤ L, σi is the signature on the message nymi under the public key nymi−1.
This is possible because the message space contains the space of public keys and
the relations RM and Rpk are the same.

Delegatable Anonymous Credentials from Mercurial Signatures 17

A credential chain can be randomized so as to be unrecognizable by using
the ConvertSig and ChangeRep algorithms as follows. The input to this step
is (nym1, . . . , nymL) and (σ1, . . . , σL). In order to randomize it, pick random

(ρ1, . . . , ρL) ← sampleLρ . Define nym′0 = p̆k0, σ̃1 = σ1. Now, perform two steps:
(1) for 2 ≤ i ≤ L, set σ̃i = ConvertSig(nymi−1, nymi, σi, ρi−1), and (2) for 1 ≤
i ≤ L, set (nym′i, σ

′
i) = ChangeRep(nym′i−1, nymi, σ̃i, ρi). This way, nym′i is the

new, unrecognizable pseudonym corresponding to the same underlying identity
as nymi, and σ′i is a signature attesting to that fact, which verifies under the
already updated pseudonym nym′i−1 (treated as a public key for the purposes of
message verification). Finally, output (nym′1, . . . , nym

′
L) and (σ′1, . . . , σ

′
L).

In order to issue a credential, the issuer first has the receiver prove, via an
interactive zero-knowledge proof of knowledge (ZKPoK), that the receiver knows
the secret key associated with his pseudonym, nymR. Then, the issuer random-
izes his certification chain as described above and uses the last pseudonym on
the randomized chain, nym′L, as his issuer’s pseudonym, nymI (alternatively, he
can give a zero-knowledge proof that the two are equivalent.) He then computes
σL+1 = Sign(skI , nymR), where skI is the secret key that corresponds to nymI .
He sends the randomized chain as well as σL+1 to the receiver, who stores the
resulting credential chain (nym′1, . . . , nym

′
L, nymR) and (σ′1, . . . , σ

′
L, σL+1). In or-

der to prove possession of a credential, a prover first randomizes the credential
chain, reveals it to the verifier, and proves knowledge of the secret key that
corresponds to the last pseudonym, nym′L, on the certification chain.

Unfortunately, we do not know of a construction of a mercurial signature in
which the public key space is a subset of the message space. Our mercurial sig-
nature construction does not enjoy that property because messages are vectors
in G∗1, while public keys are vectors in G∗2. However, we know how to construct
a pair of mercurial signature schemes in which the public key space of one is
the message space of the other, and vice versa. That is accomplished by just
switching G∗1 and G∗2 in one of the schemes; the secret key space is the same in
both. We can use this pair of mercurial signature schemes to construct delegat-
able anonymous credentials similar to the intuitive way described above, except
that we must invoke different algorithms for even positions on the certification
chain than we do for odd positions.

Let MS1 = (PPGen1,KeyGen1,Sign1,Verify1,ConvertSK1,ConvertPK1,
ConvertSig1,ChangeRep1) and MS2 = (PPGen2,KeyGen2,Sign2,Verify2,
ConvertSK2,ConvertPK2,ConvertSig2,ChangeRep2) be two mercurial signature
schemes that share the same parameter generation algorithm PPGen1 = PPGen2.
Let R1, R2, Rsk be parameterized relations such that MS1 has message relation
R1, public key relation R2, and secret key relation Rsk, while MS2 has message
relation R2, public key relation R1, and the same secret key relation Rsk. Sup-
pose sampleµ = sampleρ for both schemes and that the message space for the
first scheme consists of public keys for the second one, and vice versa. Finally,
suppose that both schemes satisfy class- and origin-hiding.

Our construction consists of the following algorithms and protocols. Initially,
a user runs KeyGen to obtain two key pairs, an odd pair and an even pair. Once

18 Elizabeth C. Crites and Anna Lysyanskaya

a user receives a credential, her level is fixed, so she only uses the relevant key
pair - the odd pair to be used at an odd level and the even pair at an even level.

Setup(1k)→ (params): Compute PP ← PPGen1(1k) = PPGen2(1k) and output
params = PP .

KeyGen(params) → (pk, sk): There are two cases. For the root authority, com-

pute (p̆k0, s̆k0)← KeyGen1(PP , `) and output it. For others, compute (pkeven,
skeven) ← KeyGen1(PP , `) and (pkodd, skodd) ← KeyGen2(PP , `) and output
both pairs of keys (pkeven, skeven), (pkodd, skodd).

NymGen(sk, L(p̆k0)) → (nym, aux): If L(p̆k0) = 0, output (p̆k0,⊥). Otherwise,
pick random key converters ρeven, ρodd and compute s̃keven ← ConvertSK1(
skeven, ρeven) and nymeven ← ConvertPK1(pkeven, ρeven). Similarly, compute
s̃kodd ← ConvertSK2(skodd, ρodd) and nymodd ← ConvertPK2(pkodd, ρodd). Out-
put both pairs (nymeven, ρeven), (nymodd, ρodd).

In the following protocols, each algorithm is either from MS1 or MS2, but
the even/odd subscripts have been omitted for clarity. For example, σ1 ←
Sign(s̆k0, nym1) is computed as σ1 ← Sign1(s̆k0, nym1,odd) since the user nym1

is fixed at odd level 1.

Issuing a credential:
Issue(LI(p̆k0), p̆k0, skI , nymI , auxI , credI , nymR)↔ Receive(LI(p̆k0), p̆k0, skR,

nymR, auxR, nymI)]→ credR: {(nym′1, . . . , nym′LI , nymR), (σ′1, . . . , σ
′
LI
, σLI+1)}

The issuer first has the receiver prove, via an interactive ZKPoK, that the
receiver knows the secret key, skR, associated with his pseudonym, nymR.

Issue: Randomize credential chain.

1. If LI(p̆k0) = 0, credI = ⊥. Define nym′0 = p̆k0, σ̃1 = σ1.

Compute σ1 ← Sign(s̆k0, nym1).
Output credR = (nym1, σ1) and send it to the receiver.

2. If LI(p̆k0) 6= 0, credI = {(nym1, . . . , nymLI), (σ1, . . . , σLI)}.
Pick random (ρ1, . . ., ρLI)← sampleLIρ .

If LI(p̆k0) = 1, nym′0 = p̆k0, σ̃1 = σ1 as above.
Compute (nym′1, σ

′
1)← ChangeRep(nym′0, nym1, σ̃1, ρ1).

If LI(p̆k0) > 1, for 2 ≤ i ≤ LI ,
Compute σ̃i ← ConvertSig(nymi−1, nymi, σi, ρi−1).
Then, compute (nym′i, σ

′
i)← ChangeRep(nym′i−1, nymi, σ̃i, ρi).

Finally, output (nym′1, . . . , nym
′
LI

) and (σ′1, . . . , σ
′
LI

).
Compute σLI+1 ← Sign(skLI , nymR).
Send the randomized chain as well as σLI+1 to the receiver.

Receive: Store the resulting credential chain credR : {(nym′1, . . . , nym′LI , nymR),
(σ′1, . . . , σ

′
LI
, σLI+1

)}.

Proof of possession of a credential:
[CredProve(LP (p̆k0), p̆k0, skP , nymP , auxP , credP)↔ CredVerify(params,

LP (p̆k0), p̆k0, nymP)]→ output (0 or 1)

Delegatable Anonymous Credentials from Mercurial Signatures 19

CredProve: Randomize the credential chain credP = {(nym1, . . . , nymLP),
(σ1, . . . , σLP)} as above and send the chain to the verifier. The prover then
proves knowledge of the secret key that corresponds to the last pseudonym,
nym′LP , on the randomized chain.

CredVerify: If credP 6= ⊥, output 1; else, output 0.

Theorem 5 The construction presented in Section 5 is correct, unforgeable, and
anonymous in the single-authority security game,

Unforgeability follows from unforgeability of mercurial signatures, while anon
ymity follows from class- and origin-hiding. The proof is in Appendix D.

Efficiency analysis. Let us see what happens when this scheme is instantiated
with our mercurial signature construction presented in Section 3. First of all, we
need to establish an appropriate value for the length parameter `. It is easy to
see that ` = 2 is good enough for our purposes, so that public keys and messages
consist of two group elements each (` = 1 is not good enough because then all
messages and all public keys are equivalent.) A certification chain of length L
will then have two group elements per pseudonym on the chain and three group
elements per signature (according to our construction). Therefore, it takes 5L
group elements to represent a credential chain of length L.

Trust assumptions. Note that the only system-wide setup that needs to take
place is the generation of the parameters for the system. When instantiated with
mercurial signature from Section 3, this boils down to just the bilinear pairing
setup. Even if the setup is carried out by a less-than-trustworthy party, it is
unclear that this party can necessarily introduce trapdoors that would allow it
to forge credentials or break anonymity. This is in contrast with previous con-
structions, in which the setup had to be carried out by a completely trustworthy
process because trapdoors gleaned during this process would allow an adversary
to completely break these systems (since these trapdoors allowed simulation and
extraction, thus breaking both unforgeability and anonymity).

References

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In CRYPTO 2009, v. 5677 of LNCS, p. 108–125.
Springer, 2009.

[BHKS18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider.
Signatures with flexible public key: A unified approach to privacy-preserving
signatures (full version). https://eprint.iacr.org/2018/191.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, p. 136–145. IEEE Computer Society
Press, 2001.

[CDD17] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-
secure delegatable credentials with attributes and their application to
blockchain. In ACM CCS 17, pages 683–699. ACM Press, 2017.

20 Elizabeth C. Crites and Anna Lysyanskaya

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In ASIACRYPT 2015, Part II, v. 9453 of
LNCS, p. 262–288. Springer, 2015.

[Cha86] David Chaum. Showing credentials without identification: Signatures trans-
ferred between unconditionally unlinkable pseudonyms. In Franz Pichler,
editor, EUROCRYPT’85, v. 219 of LNCS, p. 241–244. Springer, 1986.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In
Ronald Cramer, editor, EUROCRYPT 2005, v. 3494 of LNCS, p. 404–421.
Springer, 2005.

[CKL+14] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. http://eprint.iacr.org/2014/708.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. Malleable signatures: Complex unary transformations and delegatable
anonymous credentials. http://eprint.iacr.org/2013/179.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, v. 2045 of LNCS, p. 93–118.
Springer, May 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, v. 3152 of LNCS, p. 56–72. Springer, August 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Cynthia Dwork, editor, CRYPTO 2006, v. 4117 of LNCS, p. 78–96. Springer,
August 2006.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In Bart Preneel, editor, EUROCRYPT 2000, v. 1807 of LNCS, p.
418–430. Springer, May 2000.

[FHS14] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. http://eprint.iacr.org/2014/944.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, v. 4965 of
LNCS, p. 415–432. Springer, April 2008.

[Lin03a] Yehuda Lindell. Bounded-concurrent secure two-party computation without
setup assumptions. In 35th ACM STOC, p. 683–692. ACM Press, June 2003.

[Lin03b] Yehuda Lindell. Brief announcement: impossibility results for concurrent se-
cure two-party computation. In Elizabeth Borowsky and Sergio Rajsbaum,
editors, 22nd ACM PODC, page 200. ACM, July 2003.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Howard M. Heys and Carlisle M. Adams, editors,
SAC 1999, v. 1758 of LNCS, p. 184–199. Springer, August 1999.

[Lys02] Anna Lysyanskaya. Signature schemes and applications to cryptographic
protocol design. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, September 2002.

Delegatable Anonymous Credentials from Mercurial Signatures 21

[Swe97] Latanya Sweeney. Weaving technology and policy together to maintain con-
fidentiality. International Journal of Law, Medicine and Ethics, 2,3(25):98–
110, 1997.

A Construction of Mercurial Signatures in Additive
Notation

Proofs of correctness, unforgeability, message and public key class-hiding of mer-
curial signatures are written in additive notation for clarity, so here we provide
preliminaries on bilinear groups and the mercurial signature construction in ad-
ditive notation.

A.1 Preliminaries on bilinear groups

Let G1,G2,GT be groups of prime order p, where G1,G2 are written additively
and GT is written multiplicatively. Let P, P̂ be generators of G1,G2, respectively.
A bilinear pairing is a map e : G1 ×G2 → GT that satisfies:

Bilinearity: ∀a, b ∈ Zp,∀R ∈ G1,∀S ∈ G2 : e(aR, bS) = e(R,S)ab.

Non-degeneracy: e(P, P̂) 6= 1 (i.e. e(P, P̂) generates GT).
Computability: There exists an efficient algorithm to compute e.

Bilinear groups can be classified into three types:

Type I (symmetric): G1 = G2.
Type II (asymmetric): G1 6= G2, but there exists an efficiently computable

homomorphism φ : G2 → G1 (none in the reverse direction).
Type III (asymmetric): G1 6= G2, but there exists no efficiently computable

homomorphism in either direction.

Let BGGen be a polynomial-time algorithm that, on input the security pa-
rameter 1k, outputs descriptions of the groups G1,G2,GT , generators P, P̂ of
G1,G2, and the algorithm for the bilinear map e. Let BG denote all of these
parameters together.

A.2 Mercurial signature construction in additive notation

Let G1,G2, and GT be as above. The message space for our mercurial signature
scheme will consist of vectors of group elements from G∗1, where G∗1 = G1\{0G1}.
The space of secret keys will consist of vectors of elements from Z∗p. The space of
public keys, similar to the message space, will consist of vectors of group elements
from G∗2. Once the prime p, G∗1, G∗2, and ` are well-defined, the equivalence
relations of interest to us are as follows:

RM = {(M,M ′) ∈ (G∗1)` × (G∗1)` | ∃r ∈ Z∗p such that M ′ = r ·M}

Rsk = {(sk, s̃k) ∈ (Z∗p)` × (Z∗p)` | ∃r ∈ Z∗p such that s̃k = r · sk}

22 Elizabeth C. Crites and Anna Lysyanskaya

Rpk = {(pk, p̃k) ∈ (G∗2)` × (G∗2)` | ∃r ∈ Z∗p such that p̃k = r · pk}

Note that messages, secret keys, and public keys are restricted to vectors with
nonzero entries. Without this restriction and the restriction that r 6= 0, the
resulting relation would not be an equivalence one.

Here is the mercurial signature construction with message space (G∗1)` in
additive notation.

PPGen(1k)→ PP : Compute BG← BGGen(1k). Output PP = BG = (G1,G2,
GT , P, P̂ , e). Note that now that BG is well-defined, the relations RM , Rpk,
Rsk are also well-defined. sampleρ and sampleµ are the same algorithm,
namely the one that samples a random element of Z∗p.

KeyGen(PP , `) → (pk, sk): For 1 ≤ i ≤ `, pick xi ← Z∗p and set secret key

sk = (x1, . . . , x`). Compute public key pk = (X̂1, . . . , X̂`), where X̂i = xiP̂
for 1 ≤ i ≤ `. Output (pk, sk).

Sign(sk,M) → σ: On input sk = (x1, . . . , x`) and M = (M1, . . . ,M`) ∈ (G∗1)`,
pick a random y ← Z∗p and output σ = (Z, Y, Ŷ), where

Z ← y
∑̀
i=1

xiMi Y ← 1

y
P Ŷ ← 1

y
P̂

Verify(pk,M, σ) → 0/1: On input pk = (X̂1, . . . , X̂`), M = (M1, . . . ,M`), and
σ = (Z, Y, Ŷ), check whether∏

i∈[`]

e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ)

If the above holds, output 1; otherwise output 0.
ConvertSK(sk, ρ)→ s̃k: On input sk = (x1, . . . , x`) and a key converter ρ ∈ Z∗p,

output the new secret key s̃k = ρ · sk.
ConvertPK(pk, ρ) → p̃k: On input pk = (X̂1, . . . , X̂`) and a key converter ρ ∈

Z∗p, output the new public key p̃k = ρ · pk.

ConvertSig(pk,M, σ, ρ)→ σ̃: On input pk, message M , signature σ = (Z, Y, Ŷ),
and key converter ρ ∈ Z∗p, sample ψ ← Z∗p. Output σ̃ = (ψρZ, 1

ψY,
1
ψ Ŷ).

ChangeRep(pk,M, σ, µ) → (M ′, σ′): On input pk, M , σ = (Z, Y, Ŷ), µ ∈ Z∗p,
sample ψ ← Z∗p. Compute M ′ = µM , σ′ = (ψµZ, 1

ψY,
1
ψ Ŷ). Output (M ′, σ′).

B Proofs of correctness, unforgeability, message and
public key class-hiding

B.1 Correctness of mercurial signatures

Correct verification and correct key conversion can be seen by inspection. We
show correct signature conversion, and correct change of message representative
is similar.

Delegatable Anonymous Credentials from Mercurial Signatures 23

Proof. We wish to show that for allM ∈M, for all σ such that Verify(pk,M, σ) =
1, for all ρ ∈ sampleρ, for all σ̃ ∈ ConvertSig(pk,M, σ, ρ), Verify(ConvertPK(pk, ρ),

M, σ̃) = 1. We proceed as follows. ConvertSig returns σ̃ = (ψρZ, 1
ψY,

1
ψ Ŷ) and

ConvertPK returns p̃k = ρ · pk. The second verification equation, e(Y, P̂) =
e(P, Ŷ), holds because e(Y, P̂) = e(1

yP, P̂) = e(P, 1
y P̂) = e(P, Ŷ). Plugging in

p̃k ← ρ · pk and σ̃ = (ψρZ, 1
ψY,

1
ψ Ŷ), we see that the first verification equation

holds as well:

e(ψρZ,
1

ψ
Ŷ) = e(ρZ, Ŷ)ψ·

1
ψ = e(ρy

∑
i∈[`]

xiMi,
1

y
P̂) = e(

∑
i∈[`]

ρxiMi, P̂)y·
1
y

=
∏
i∈[`]

e(ρxiMi, P̂) =
∏
i∈[`]

e(Mi, ρX̂i)

B.2 Unforgeability of mercurial signatures

We now prove unforgeability for our construction of mercurial signatures. We
require the following definition of unforgeability from [FHS14].

Definition 8 (EUF-CMA for SPS-EQ [FHS14]) A structure-preserving sig-
nature scheme for equivalence relation R over Gi is existentially unforgeable un-
der adaptive chosen-message attacks if for all ` > 1 and all PPT algorithms A
having access to a signing oracle Sign(sk, ·), there is a negligible function ν such
that:

Pr[BG← BGGen(1k), (pk, sk)← KeyGen(BG, `), (Q,M∗, σ∗)← ASign(sk,·)(pk) :

∀M ∈ Q, [M∗]RM 6= [M]RM ∧ Verify(M∗, σ∗, pk) = 1] ≤ ν(k)

where Q is the set of queries that A has issued to the signing oracle.

In the generic group model, an adversary has access to encodings of group
elements from G∗1,G∗2, and GT . A can query the respective group oracles for
tests of group membership or equality, group operations, or bilinear pairings. If
A requests a group operation or pairing on (encodings of) two group elements,
A receives the encoding of the result.

We wish to show that no generic PPT adversary with access to a signing
oracle can forge a mercurial signature with greater than negligible probability.
We suppose such an adversary exists and arrive at a contradiction.

Proof. (of Theorem 2.) Suppose there exists a PPT algorithm A that can break
the unforgeability of a mercurial signature scheme; that is, suppose A is able
to produce a forgery (M∗, σ∗, pk∗) that satisfies the following conditions with
non-negligible probability:

∀M ∈ Q, [M∗]RM 6= [M]RM ∧ [pk∗]Rpk
= [pk]Rpk

∧ Verify(M∗, σ∗, pk∗) = 1

24 Elizabeth C. Crites and Anna Lysyanskaya

where Q is the set of queries that A has issued to the signing oracle. The fact
that pk∗ belongs to the same equivalence class as pk implies there exists some
α ∈ Z∗p such that pk∗ = αpk. We construct a reduction from B to A, where B is
a PPT algorithm that can break a secure SPS–EQ scheme using A.

The challenger in the SPS–EQ unforgeability game for B chooses values
(xi)i∈[`] ← (Z∗p)`, sets pk = (X̂i)i∈[`] = (xiP̂)i∈[`], and forwards pk to B. B
operates as follows:

On input pk,
1. B forwards pk to A and runs A(pk). B forwards A’s group operation and

signature queries to the respective oracles and forwards the results to A.
2. B obtains A’s forgery (pk∗,M∗, σ∗).
3. If, via this process, it is possible for B to obtain α, B outputs (pk, αM∗, σ∗)

as his forgery; else, B outputs 0.
Now, let us analyze this reduction.

Claim 1 If [pk∗]Rpk
= [pk]Rpk

, then the generic group model reduction B can
obtain α ∈ Z∗p such that pk∗ = αpk.

Proof. Initially, before any queries are made, the elements of G∗2 that A has
seen are P̂ and (X̂i)i∈[`] = (xiP̂)i∈[`]. After q signature queries, A has seen the

additional elements (Ŷj)j∈[q] ∈ G∗2. Since A is a generic forger, his forged public

key pk∗ = (X̂∗1 , X̂
∗
2 , ..., X̂

∗
`) must be computed as a linear combination of these

elements:

X̂∗i = πx∗,iP̂ +
∑
j∈[`]

χx∗,i,jX̂j +
∑
k∈[q]

ψx∗,i,kŶk

for some πx∗,i, χx∗,i,j , ψx∗,i,k ∈ Zp for k ∈ [q] and j ∈ [`]. Taking discrete loga-

rithms base P̂ , we get:

x∗i = πx∗,i +
∑
j∈[`]

χx∗,i,jxj +
∑
k∈[q]

ψx∗,i,k
1

yk

This is a multivariate Laurent polynomial of total degree O(q) in x1, ..., x`, y1, . . .,
yq. Suppose that, despite seeing A’s queries to the group and signing oracles and
their results, there exists some n ∈ [`] for which B cannot obtain α ∈ Z∗p such
that x∗n = αxn. By the Schwartz-Zippel lemma, the probability that that the
two formally different polynomials x∗n and αxn collide by evaluating to the same
value (or, equivalently, that the difference polynomial evaluates to zero) is O(qp),
which is negligible.

By Claim 1, ifA succeeds in producing a forgery, B obtains α and can produce
(pk, αM∗, σ∗), which has the following relationship to A’s forgery (pk∗,M∗, σ∗) :

σ∗ = (Z∗, Y ∗, Ŷ ∗) = (y
∑
i∈[`]

x∗iM
∗
i , Y

∗, Ŷ ∗) = (y
∑
i∈[`]

xiαM
∗
i , Y

∗, Ŷ ∗)

Delegatable Anonymous Credentials from Mercurial Signatures 25

Therefore, a signature on M∗ under pk∗ is identical to a signature on αM∗ under
pk. Moreover, since [αM∗]RM = [M∗]RM , we have that:

∀M ∈ Q, [αM∗]RM 6= [M]RM ∧ Verify(pk, αM∗, σ∗) = 1

with non-negligible probability. Thus, B has produced a successful forgery against
the SPS–EQ scheme in the generic group model, contradicting its proven security
in that model.

B.3 Message and public key class-hiding of mercurial signatures

Proof. (of Theorem 3.) In [FHS14], the following result relating message class-
hiding to the decisional Diffie-Hellman (DDH) assumption was shown.

Proposition 1 Let ` > 1. Then (G∗i)` is a message-hiding space if and only if
the DDH assumption holds in Gi.

Now, we prove public key class-hiding.
Consider the following games involving a challenger in the generic group

model. Without loss of generality, the message space is (G∗1)`, and the public
key space is (G∗2)`. The adversary’s bit b ∈ {0, 1} is used to distinguish between
public keys pk1 and pk2 in the following argument.

Game 0. The generic group challenger computes the public parameters PP ,
which include a description of the bilinear group BG and generators P, P̂ of
G∗1,G∗2, respectively. The challenger also computes two independent public keys

pk1 and pk2 as follows. He chooses (x
(1)
i)i∈[`] ← (Z∗p)` and computes pk1 ←

(X̂
(1)
i)i∈[`] = (x

(1)
i P̂)i∈[`]. Similarly, he chooses (x

(2)
i)i∈[`] ← (Z∗p)` and computes

pk2 ← (X̂
(2)
i)i∈[`] = (x

(2)
i P̂)i∈[`]. He then sends PP and “handles” for pk1 and pk2

to a generic adversary A. The adversary can query the respective group oracles
for tests of group membership or equality, group operations or bilinear pairings
and can also query the signing oracle. In response, the challenger computes the
discrete logarithms of the handles given to him by A and computes the desired
operation or signature. The challenger keeps a table of handles he has already
computed. If the results of A’s query are new group elements, he forms new
handles in the table and returns the new handles to A; else, he returns the
appropriate existing handles from the table.

Game 1. The challenger computes the public parameters PP . He then sends
PP and handles for pk1 and pk2 to A, where pk1 and pk2 are again independent.
The adversary makes queries to the generic group oracles and signing oracle, and
the challenger computes the formal multivariate Laurent polynomials associated
with each query (we will see this in detail below.) For new polynomials, the
challenger forms new corresponding handles in the table and returns the new
handles to A; else, he returns the appropriate existing handles from the table.

Game 2. The challenger computes the public parameters PP . In this game,
pk2 is in the same equivalence class as pk1, so there exists some α ∈ Z∗p such that
pk2 = αpk1. The challenger sends PP and handles for pk1 and pk2 to A. The

26 Elizabeth C. Crites and Anna Lysyanskaya

adversary makes queries to the generic group oracles and signing oracle. As in
Game 1, the challenger computes the formal multivariate Laurent polynomials
associated with each query, creates new handles in its table for new polynomials,
and returns new or existing handles to A appropriately. Note that the formal
multivariate Laurent polynomials will now include the additional variable α.

Game 3. The challenger computes the public parameters PP . In this game,
pk2 is again in the same equivalence class as pk1, and the challenger computes

them as follows. He chooses (x
(1)
i)i∈[`] ← (Z∗p)` and computes pk1 ← (X̂

(1)
i)i∈[`] =

(x
(1)
i P̂)i∈[`]. He then chooses α ∈ Z∗p and computes pk2 = (x

(2)
i P̂)i∈[`] = αpk1 =

(αx
(1)
i P̂)i∈[`]. The challenger sends PP and “handles” for pk1 and pk2 to A. The

adversary makes queries to the generic group oracles and signing oracle. The
challenger computes the discrete logarithms of the handles it receives from A,
performs the appropriate computations, creates new handles in its table for new
group elements if necessary, and returns new or existing handles to A appropri-
ately.

In order to achieve class-hiding for public keys, A’s view in each of these
games must be the same.

Claim 2 A generic adversary’s view in Game 1 is the same as it is in Game 2.

This holds if in each of the groups, G∗1,G∗2 and GT , the adversary’s view is
the same in both games.

Proof. Step 1. We first consider computations the challenger carries out in G∗2.
Initially, before any queries are made, the elements of G∗2 the adversary has

seen are P̂ , (X̂
(1)
i)i∈[`] = (x

(1)
i P̂)i∈[`], and (X̂

(2)
i)i∈[`] = (x

(2)
i P̂)i∈[`]. When A

makes a query to a generic group oracle, the challenger computes a formal multi-

variate Laurent polynomial in the variables x
(1)
1 , x

(1)
2 , . . . , x

(1)
` , x

(2)
1 , x

(2)
2 , . . . , x

(2)
` .

Suppose A submits a query in Game 1, in which pk1 and pk2 are unrelated, the
result of which will also be an element of G∗2. The handle computed by the
challenger will be a linear combination:

Ĥi = πh,iP̂ +
∑
j∈[`]

χ
(1)
h,i,jX̂

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jX̂

(2)
j (1)

for some πh,i, χ
(1)
h,i,j , χ

(2)
h,i,j ∈ Zp for j ∈ [`]. Taking discrete logarithms base P̂ ,

we get:

hi = πh,i +
∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jx

(2)
j (2)

This is a formal multivariate Laurent polynomial in the variables x
(1)
1 , x

(1)
2 , . . .,

x
(1)
` , x

(2)
1 , x

(2)
2 , . . . , x

(2)
` . If A submits the same query in Game 2, in which pk1

and pk2 are related by pk2 = αpk1 for some α ∈ Z∗p, the handle computed by
the challenger will be a linear combination:

Delegatable Anonymous Credentials from Mercurial Signatures 27

Ĥ
(α)
i = πh,iP̂ +

∑
j∈[`]

χ
(1)
h,i,jX̂

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jαX̂

(1)
j (3)

for the same πh,i, χ
(1)
h,i,j , χ

(2)
h,i,j ∈ Zp for j ∈ [`] as in Equation (1). Taking discrete

logarithms base P̂ , we get:

h
(α)
i = πh,i +

∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jαx

(1)
j (4)

This is a formal multivariate Laurent polynomial in the variables x
(1)
1 , x

(1)
2 , . . .,

x
(1)
` , and α.

Remark 1 The formal Laurent polynomials in Equations (2) and (4) have iden-
tical coefficients, so there is a one-to-one correspondence between their mono-
mials; however, they are formally different Laurent polynomials because α is a
variable. We now show that two generic group queries to G∗2 in Game 1 result in
distinct formal polynomials if and only if the same two queries in Game 2 result
in distinct polynomials.

Consider a second query in Game 1, resulting in an element of G∗2 corre-
sponding to the formal Laurent polynomial:

h̃i = π̃h,i +
∑
j∈[`]

χ̃
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ̃
(2)
h,i,jx

(2)
j (5)

Consider the same query in Game 2, which corresponds to the formal Laurent
polynomial:

h̃
(α)
i = π̃h,i +

∑
j∈[`]

χ̃
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ̃
(2)
h,i,jαx

(1)
j (6)

Suppose hi and h̃i resulting from the two queries in Game 1 are formally
different polynomials. Then there exists some coefficient where their monomials

differ. Because of the one-to-one correspondence between hi and h
(α)
i , they dif-

fer at the corresponding monomial. Because of the one-to-one correspondence

between h̃i and h̃
(α)
i , they differ at the same corresponding monomial too. Thus,

h
(α)
i and h̃

(α)
i are formally different polynomials in Game 2. The other direction

is similar.
Now, consider A’s first query to the signing oracle. A chooses a public key,

either pk1 or pk2, and a message M to be signed under that public key. The
challenger returns the signature (Z, Y, Ŷ) on M under the desired public key.
This introduces the element Ŷ ∈ G∗2, so a handle computed by the challenger in
Game 1 will be a linear combination:

hi = πh,i +
∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jx

(2)
j + ψh,i

1

y
(7)

28 Elizabeth C. Crites and Anna Lysyanskaya

where πh,i, χ
(1)
h,i,j , χ

(2)
h,i,j , ψh,i ∈ Zp for j ∈ [`]. This is a formal multivariate Lau-

rent polynomial in x
(1)
1 , ..., x

(1)
` , x

(2)
1 , ..., x

(2)
` , and y. The same query in Game 2

corresponds to the linear combination:

h
(α)
i = πh,i +

∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jαx

(1)
j + ψh,i

1

y
(8)

for the same πh,i, χ
(1)
h,i,j , χ

(2)
h,i,j , ψh,i ∈ Zp for j ∈ [`]. Since the 1/y term is identical

in hi and h
(α)
i , the one-to-one correspondence still holds. Thus, the statement

that two queries to G∗2 in Game 1 result in distinct formal polynomials if and
only if the same two queries in Game 2 result in distinct polynomials still holds
with the addition of one signature query.

As A makes more signature queries, the elements in G∗2 are P̂ , (X̂
(1)
i)i∈[`],

(X̂
(2)
i)i∈[`] and (Ŷj)j∈[q], where q is the number of queries A has issued to the

signing oracle. Thus, any handle in G∗2 must be computed as a linear combination
of these elements:

Ĥi = πh,iP̂ +
∑
j∈[`]

χ
(1)
h,i,jX̂

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jX̂

(2)
j +

∑
k∈[q]

ψh,i,kŶk (9)

for some πh,i, χ
(1)
h,i,j , χ

(2)
h,i,j , ψh,i,k ∈ Zp for j ∈ [`] and k ∈ [q]. Taking discrete

logarithms base P̂ , we get:

hi = πh,i +
∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jx

(2)
j +

∑
k∈[q]

ψh,i,k
1

yk
(10)

This is a formal Laurent polynomial of total degreeO(q) in x
(1)
1 , ..., x

(1)
` , x

(2)
1 , ...,

x
(2)
` , y1, ...yq. The same query in Game 2 corresponds to the linear combination:

h
(α)
i = πh,i +

∑
j∈[`]

χ
(1)
h,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
h,i,jαx

(1)
j +

∑
k∈[q]

ψh,i,k
1

yk
(11)

Since the 1/yk terms are identical in hi and h
(α)
i , the one-to-one correspon-

dence still holds. Thus, the statement that two queries to G∗2 in Game 1 result in
distinct formal polynomials if and only if the same two queries in Game 2 result
in distinct polynomials still holds with the addition of q signature queries. This
captures precisely the notion that A’s view for queries in G∗2 is the same in both
games.
Step 2. We now consider computations the challenger carries out in G∗1.
Before any signature queries, the only element of G∗1 that A has seen is P .
Therefore, she must form her first message M1 to be signed as M1 = (m1,iP)i∈[`],
where m1,i = πm,1,i for some πm,1,i ∈ Zp. A chooses the public key, either pk1 or

pk2, under which M1 is to be signed. We recall that pk1 = (x
(1)
i P)i∈[`] for some

x
(1)
i ∈ Z∗p, and pk2 = (x

(2)
i P)i∈[`] for some x

(2)
i ∈ Z∗p. The challenger returns the

Delegatable Anonymous Credentials from Mercurial Signatures 29

signature (Z
(1)
1 , Y

(1)
1 , Ŷ

(1)
1) on M1 under pk1 or the signature (Z

(2)
1 , Y

(2)
1 , Ŷ

(2)
1) on

M1 under pk2. In each case, this introduces two new elements in G∗1: (Z
(1)
1 , Y

(1)
1)

or (Z
(2)
1 , Y

(2)
1). The discrete logarithms base P of Y

(1)
1 and Y

(2)
1 are 1/y

(1)
1 and

1/y
(2)
2 , respectively. The discrete logarithms base P of Z

(1)
1 and Z

(2)
1 are as

follows:

z
(1)
1 = y

(1)
1

∑
i∈[`]

x
(1)
i m1,i = y

(1)
1

∑
i∈[`]

x
(1)
i πm,1,i (12)

z
(2)
1 = y

(2)
1

∑
i∈[`]

x
(2)
i m1,i = y

(2)
1

∑
i∈[`]

x
(2)
i πm,1,i (13)

Equation (12) is a formal Laurent polynomial in x
(1)
1 , x

(1)
2 , . . . , x

(1)
` and y

(1)
1 ,

and Equation (13) is a formal Laurent polynomial in x
(2)
1 , x

(2)
2 , . . . , x

(2)
` and y

(2)
1 .

A makes a second signature query by choosing a message M2 = (m2,iP)i∈[`]

and a public key, pk1 or pk2, under which M2 is to be signed. For all i,m2,i

is now a linear combination of elements in G∗1 that A has seen as result of the
first signature query, so m2,i takes one of the following two forms according to
whether M1 was signed under pk1 or pk2:

m
(1)
2,i = π

(1)
m,2,i + ρ

(1)
m,2,i,1z

(1)
1 + ψ

(1)
m,2,i,1

1

y
(1)
1

(14)

m
(2)
2,i = π

(2)
m,2,i + ρ

(2)
m,2,i,1z

(2)
1 + ψ

(2)
m,2,i,1

1

y
(2)
1

(15)

for some π
(1)
m,2,i, ρ

(1)
m,2,i,1, ψ

(1)
m,2,i,1, π

(2)
m,2,i, ρ

(2)
m,2,i,1, ψ

(2)
m,2,i,1,∈ Zp. Equation (14) cor-

responds to M1 having been signed under pk1, and Equation (15) corresponds
to M1 having been signed under pk2. Given that M2 can take one of the two
forms above, there are four possibilites for signatures output by the challenger:

(Z
(1,1)
2 , Y

(1,1)
2 , Ŷ

(1,1)
2) (Z

(1,2)
2 , Y

(1,2)
2 , Ŷ

(1,2)
2)

(Z
(2,1)
2 , Y

(2,1)
2 , Ŷ

(2,1)
2) (Z

(2,2)
2 , Y

(2,2)
2 , Ŷ

(2,2)
2)

The first element of an upper index denotes the public key under which M1 is
signed, and the second element denotes the public key under which M2 is signed.
Taking discrete logarithms base P , we have:

z
(1,2)
2 = y

(1,2)
2

∑
i∈[`]

x
(2)
i m

(1)
2,i (16)

= y
(1,2)
2

∑
i∈[`]

x
(2)
i (π

(1)
m,2,i + ρ

(1)
m,2,i,1z

(1)
1 + ψ

(1)
m,2,i,1

1

y
(1)
1

) (17)

= y
(1,2)
2

∑
i∈[`]

x
(2)
i (π

(1)
m,2,i + ρ

(1)
m,2,i,1(y

(1)
1

∑
j∈[`]

x
(1)
j πm,1,j) + ψ

(1)
m,2,i,1

1

y
(1)
1

) (18)

30 Elizabeth C. Crites and Anna Lysyanskaya

The equations for z
(2,1)
2 , z

(1,1)
2 and z

(2,2)
2 are similar. This is a formal Laurent

polynomial in x
(1)
1 , x

(1)
2 , . . . , x

(1)
` , x

(2)
1 , x

(2)
2 , . . . , x

(2)
` and y

(1)
1 , y

(1,2)
2 . It can be seen

by inspection that the monomials in z
(1,2)
2 take three forms: (1) y

(1,2)
2 x

(2)
i ; (2)

y
(1,2)
2 x

(2)
i y

(1)
1 x

(1)
j ; (3) y

(1,2)
2 x

(2)
i

1

y
(1)
1

for 1 ≤ i, j ≤ `. We summarize the three

forms of monomials in each case:

z
(1,2)
2 : y

(1,2)
2 x

(2)
i y

(1,2)
2 x

(2)
i y

(1)
1 x

(1)
j y

(1,2)
2 x

(2)
i

1

y
(1)
1

z
(2,1)
2 : y

(2,1)
2 x

(1)
i y

(2,1)
2 x

(1)
i y

(2)
1 x

(2)
j y

(2,1)
2 x

(1)
i

1

y
(2)
1

z
(1,1)
2 : y

(1,1)
2 x

(1)
i y

(1,1)
2 x

(1)
i y

(1)
1 x

(1)
j y

(1,1)
2 x

(1)
i

1

y
(1)
1

z
(2,2)
2 : y

(2,2)
2 x

(2)
i y

(2,2)
2 x

(2)
i y

(2)
1 x

(2)
j y

(2,2)
2 x

(2)
i

1

y
(2)
1

Note that in each monomial in z
(β1,β2)
2 , there is at least one y and one x, and

there is the same number of y’s and x’s in the numerator. There is at most one
y in the denominator, which does not cancel out.

Now, consider Game 2, in which pk2 = αpk1 for some α ∈ Z∗p. The same
queries in Game 2 result in the following monomials:

z
(1,2)
2 : y

(1,2)
2 αx

(1)
i y

(1,2)
2 αx

(1)
i y

(1)
1 x

(1)
j y

(1,2)
2 αx

(1)
i

1

y
(1)
1

z
(2,1)
2 : y

(2,1)
2 x

(1)
i y

(2,1)
2 x

(1)
i y

(2)
1 αx

(1)
j y

(2,1)
2 x

(1)
i

1

y
(2)
1

z
(1,1)
2 : y

(1,1)
2 x

(1)
i y

(1,1)
2 x

(1)
i y

(1)
1 x

(1)
j y

(1,1)
2 x

(1)
i

1

y
(1)
1

z
(2,2)
2 : y

(2,2)
2 αx

(1)
i y

(2,2)
2 αx

(1)
i y

(2)
1 αx

(1)
j y

(2,2)
2 αx

(1)
i

1

y
(2)
1

(19)

In Game 1, all of the monomials are distinct. We see that in Game 2, the
monomials are also distinct. Thus, two formal Laurent polynomials in Game 1
formed after two signature queries are distinct if and only if they are distinct in
Game 2. We now show that this property holds even after q signing queries.

Claim 3 In Game 1, for all n ≥ 1, the monomials that constitute z
(β1,β2,...βn)
n ,

where βi ∈ {1, 2}, have the form:

1

(y
(β1,β2,...βs)
s)b

∏
k∈[t]

y
(β1,β2,...βjk)

jk

∏
k∈[t]

x
βik
ik

(20)

where (1) 1 ≤ t ≤ n, (2) for all k, jk ≤ n and s < jk, and (3) for all k1 6=
k2, jk1

6= jk2
, (4) jt = n, and (5) b ∈ {0, 1}.

Proof. We proceed by induction on n. The cases when n = 1 and n = 2 have

been shown above. Assume for all k ∈ [n] that the monomials of z
(β1,β2,...βk)
k are

of the form in Equation (20). We have:

Delegatable Anonymous Credentials from Mercurial Signatures 31

m
(β1,β2,...,βn)
n+1,i = π

(β1,β2,...,βn)
m,n+1,i + ρ

(β1,β2,...,βn)
m,n+1,i,n z(β1,β2,...,βn)

n

+ ψ
(β1,β2,...,βn)
m,n+1,i,n

1

y
(β1,β2,...,βn)
n

+ ρ
(β1,β2,...,βn)
m,n+1,i,n−1z

(β1,β2,...,βn−1)
n−1 + ψ

(β1,β2,...,βn)
m,n+1,i,n−1

1

y
(β1,β2,...,βn−1)
n−1

and:

z
(β1,β2,...,βn+1)
n+1 =

∑
i∈[`]

y
(β1,β2,...,βn+1)
n+1 x

βn+1

i

{
π

(β1,β2,...,βn)
m,n+1,i (21)

+
∑
k∈[n]

ρ
(β1,β2,...,βk)
m,n+1,i,k z

(β1,β2,...,βk)
k +

∑
k∈[n]

ψ
(β1,β2,...,βk)
m,n+1,i,k

1

y
(β1,β2,...,βk)

k

}

=
∑
i∈[`]

y
(β1,β2,...,βn+1)
n+1 x

βn+1

i π
(β1,β2,...,βn)
m,n+1,i

+
∑
i∈[`]

∑
k∈[n]

y
(β1,β2,...,βn+1)
n+1 x

βn+1

i ρ
(β1,β2,...,βk)
m,n+1,i,k z

(β1,β2,...,βk)
k

+
∑
i∈[`]

∑
k∈[n]

y
(β1,β2,...,βn+1)
n+1 x

βn+1

i ψ
(β1,β2,...,βk)
m,n+1,i,k

1

y
(β1,β2,...,βk)

k

The monomials in the first and the last sum are in the form of Equation
(20). Now, let’s analyze the monomials in the middle sum. By the induction
hypothesis, any monomial in zk is of the form:

1

(y
(β1,β2,...βs)
s)b

∏
p∈[t]

y
(β1,β2,...βjp)

jp

∏
p∈[t]

x
βip
ip

where t ≤ n, jt = k and s < jp for all jp as well as jp < k, for all jp with p < t
(which are all different). Each monomial of this form results in a monomial in
the middle sum of the form:

1

(y
(β1,β2,...βs)
s)b

(y
(β1,β2,...βn+1)
n+1)

∏
p∈[t]

y
(β1,β2,...βjp)

jp
)(x

βn+1

i

∏
p∈[t]

x
βip
ip

)

=
1

(y
(β1,β2,...βs)
s)b

∏
p∈[t′]

y
(β1,β2,...βjp)

jp

∏
p∈[t′]

x
βip
ip

(22)

where t′ = t + 1 ≤ n + 1, jt′ = n + 1, it+1 = i. Moreover, t′ ≤ n + 1, all jp are
still different and ≤ n and s < jp for all jp, which completes the induction.

32 Elizabeth C. Crites and Anna Lysyanskaya

Claim 3 implies that in each monomial in z
(β1,β2,...,βk)
k , there is at least one y

and one x, and there is the same number of y’s and x’s in the numerator. There
is at most one y in the denominator, which does not cancel out; furthermore,
Claim 3 implies the following corollary.

Corollary 1. Any monomial can only occur in one unique z
(β1,β2,...,βn)
n .

Proof. For a given monomial, let k be the maximal value such that the monomial

contains y
(β1,β2,...βk)
k . Then the monomial is not contained in z

(β1,β2,...,βn)
n with

n > k; it would contradict maximality because z
(β1,β2,...,βn)
n contains y

(β1,β2,...,βn)
n .

The monomial is not contained in z
(β1,β2,...βn)
n) with n < k either since all

y
(β1,β2,...βj)
j contained in z

(β1,β2,...βn)
n are such that j ≤ n. This would imply

that y
(β1,β2,...βk)
k is not contained in z

(β1,β2,...βn)
n , which is a contradiction.

We have shown distinctness among monomials within z
(β1,β2,...,βn)
n . The set

of z
(β1,β2,...,βn)
n are distinct from one other because each one represents a unique

combination of (β1, β2, . . . , βn) ∈ {1, 2}n with corresponding y
(β1,β2,...,βn)
n . Thus,

all monomials in Game 1 are distinct.

In Game 2, in which pk2 = αpk1, monomials containing x
(2)
i become mono-

mials containing αx
(1)
i . It might seem that monomials involving products of the

form x
(1)
i x

(2)
i (ignoring the y’s in these terms for a moment), which are distinct in

Game 1, could no longer be distinct in Game 2 because x
(1)
i x

(2)
i = x

(1)
i αx

(1)
i =

αx
(1)
i x

(1)
i = x

(2)
i x

(1)
i ; however, because the y’s for the terms on the left-hand

side of the equation are distinct from the y’s for the terms on the right-hand
side, distinctness of monomials is preserved in Game 2. We see this explicitly in
Equations (19) for the case of two signature queries. Thus, two formal Laurent
polynomials in Game 1 formed after q signature queries are distinct if and only
if they are distinct in Game 2. This captures precisely the notion that A’s view
for queries in G∗1 is the same in both games. Thus, A’s view for queries in either
G∗1 or G∗2 is the same in Game 1 and Game 2.

Step 3. We finally consider computations carried out by the challenger in GT .
A formal Laurent polynomial in GT arises as product of a formal polynomial
in G∗1 and a formal polynomial in G∗2 via the bilinear map. Recall that a for-

mal polynomial in G∗2 has monomials of the form x
(1)
i , x

(2)
j , and 1/y

(β1,β2,...βk)
k ,

and a formal polynomial in G∗1 has monomials of the form 1/y
(β1,β2,...βk)
k and

z
(β1,β2,...βn)
n . In Game 2, when every x

(2)
j is replaced by αx

(1)
j , the possibility of

distinct monomials in Game 1 becoming indistinct in Game 2 could only occur

for product monomials x
(2)
j z

(β1,β2,...βn)
n , which in Game 2 have the form (after q

signature queries):

αx(1)
r

1

(y
(β1,β2,...βs)
s)b

∏
k∈[t]

y
(β1,β2,...βjk)

jk

∏
k∈[t]

x
βik
ik

(23)

Delegatable Anonymous Credentials from Mercurial Signatures 33

Suppose there were a monomial that in Game 2 appeared the same as Equa-
tion (23), but with the α “absorbed” into the product of x’s on the right, chang-

ing an x
(1)
i to an x

(2)
i . This would still be distinct from Equation (23) because

the y
(β1,β2,...βjk)

jk
’s would be distinct. We see this clearly in the example of two

queries:

z
(1,2)
2 : y

(1,2)
2 αx

(1)
i αx

(1)
i y

(1,2)
2 αx

(1)
i y

(1)
1 x

(1)
j αx

(1)
i y

(1,2)
2 αx

(1)
i

1

y
(1)
1

αx
(1)
i

z
(2,1)
2 : y

(2,1)
2 x

(1)
i αx

(1)
i y

(2,1)
2 x

(1)
i y

(2)
1 αx

(1)
j αx

(1)
i y

(2,1)
2 x

(1)
i

1

y
(2)
1

αx
(1)
i

z
(1,1)
2 : y

(1,1)
2 x

(1)
i αx

(1)
i y

(1,1)
2 x

(1)
i y

(1)
1 x

(1)
j αx

(1)
i y

(1,1)
2 x

(1)
i

1

y
(1)
1

αx
(1)
i

z
(2,2)
2 : y

(2,2)
2 αx

(1)
i αx

(1)
i y

(2,2)
2 αx

(1)
i y

(2)
1 αx

(1)
j αx

(1)
i y

(2,2)
2 αx

(1)
i

1

y
(2)
1

αx
(1)
i

The first two monomials in the third column do not collide because of distinct
y’s. Thus, in GT , two formal Laurent polynomials in Game 1 formed after q
signature queries are distinct if and only if they are distinct in Game 2.

Claim 4 The adversary’s view in Game 0 is the same as it is in Game 1.

Proof. We first consider the computations the challenger carries out in G∗2. In
both of these games, the public keys pk1 and pk2 are unrelated, so the formal
polynomials are in the form of Equation (10). By the Schwartz-Zippel lemma,
the probability that a formal polynomial in Game 1, in which the variables

x
(1)
1 , ..., x

(1)
` , x

(2)
1 , ..., x

(2)
` , y1, ...yq are given to A as handles, collides with a poly-

nomial in Game 0, in which the handles correspond to the variables that were
fixed at the beginning of the game, is negligible. The case for queries in G∗1 is
similar.

Claim 5 The adversary’s view in Game 2 is the same as it is in Game 3.

Proof. We first consider the computations the challenger carries out in G∗2. In
both of these games, the public keys pk1 and pk2 are related by pk2 = αpk1, so
the formal polynomials are of the form:

hi = πh,i +
∑
j∈[`]

χ
(1)
x,i,jx

(1)
j +

∑
j∈[`]

χ
(2)
x,i,jαx

(1)
j +

∑
k∈[q]

ψh,i,k
1

yk
(24)

By the Schwartz-Zippel lemma, the probability that a formal polynomial in

Game 2, in which the variables x
(1)
1 , ..., x

(1)
` , α, y1, ...yq are given to A as handles,

collides with a polynomial in Game 3, in which the handles correspond to the
variables fixed at the beginning of the game, is negligible. The case for queries
in G∗1 is similar.

This completes the proof of Theorem 3.

34 Elizabeth C. Crites and Anna Lysyanskaya

B.4 Origin-hiding of mercurial signatures

Proof.

Origin-hiding of ChangeRep: Let pk∗,M, σ = (Z, Y, Ŷ) be such that Verify(pk∗,
M, σ) = 1, where pk∗ is possibly adversarially generated. For µ ∈ Z∗p,
ChangeRep(pk∗,M, σ, µ) outputs (M ′, σ′) = (µM, (ψµZ, 1

ψY,
1
ψ Ŷ)), which is

a uniformly random element of [M]RM and a uniformly random element in
the space of signatures σ̂ satisfying Verify(pk∗, µM, σ̂) = 1.

Origin-hiding of ConvertSig: Let pk∗,M, σ = (Z, Y, Ŷ) be such that Verify(pk∗,
M, σ) = 1, where pk∗ is possibly adversarially generated. For ρ ∈ Z∗p,
ConvertSig(pk∗,M, σ, ρ) outputs σ̃ = (ψρZ, 1

ψY,
1
ψ Ŷ), which is a uniformly

random element in the space of signatures σ̂ satisfying Verify(ConvertPK(pk∗,
ρ),M, σ̂) = 1, where ConvertPK(pk∗, ρ) = ρ · pk∗ is a uniformly random ele-
ment of [pk∗]Rpk

.

C Security Game for DAC

Below are formal descriptions of the oracles in the single-authority security game.

AddHonestParty(u): The adversary A invokes this oracle to create a new, honest

node u. Let the current graph be G(p̆k0) = (V (p̆k0), E(p̆k0)). If u ∈ V (p̆k0)
(i.e. it is not a new node), abort. Else, the challenger C adds a new node

u to G(p̆k0) (so G(p̆k0) := (V (p̆k0) ∪ {u}, E(p̆k0))). C then runs KeyGen to
obtain (pk(u), sk(u)) ← KeyGen(params) and sets status(u) = honest and

L(p̆k0, u) =∞. C returns pk(u) to A.
SeeNym(u): A invokes this oracle to see a fresh pseudonym for an honest node u.

If u /∈ V (p̆k0) or status(u) 6= honest , abort. Else, C runs NymGen to obtain

(nym(u), aux(u)) ← NymGen(sk(u), L(p̆k0, u)) and stores nym(u), aux(u) at
u. C returns nym(u) to A.

CertifyHonestParty(p̆k0, u, v): A invokes this oracle to have the honest party
associated with u issue a credential to the honest party associated with v.
1. First, C checks that indeed u and v correspond to honest users and that
v is ready to receive a credential from u, as follows:
(a) If u, v /∈ V (p̆k0), abort.
(b) If status(u) 6= honest or status(v) 6= honest , abort.

(c) If L(p̆k0, v) 6=∞ (i.e. if v already has a credential), abort.

(d) If L(p̆k0, u) =∞ (i.e. if u does not have a credential), abort.
2. Next, A selects a pseudonym nym(v) that he has seen for v under which
v will interact with u.

3. If u is the root, then p̆k0 is given as input to the Issue protocol instead
of a pseudonym. More precisely, if u = root , then C runs:

[Issue(0, p̆k0, s̆k0, p̆k0,⊥,⊥, nym(v))↔

Delegatable Anonymous Credentials from Mercurial Signatures 35

Receive(0, p̆k0, sk(v), nym(v), aux(v), p̆k0)]→ credv

If u is not the root, A selects a pseudonym nym(u) that he has seen for
u under which u will interact with v. Then, C runs:

[Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nym(v))↔

Receive(L(p̆k0, u), p̆k0, sk(v), nym(v), aux(v), nym(u))]→ credv

4. C stores v’s new credential credv at v, adds the edge (u, v) to E(p̆k0),

and sets L(p̆k0, v) = L(p̆k0, u) + 1.

VerifyCredFrom(p̆k0, u): The honest party associated with u proves to A that it

has a credential at level L(p̆k0, u).

1. First, C checks that in fact u is honest and has a credential: if u /∈ V (p̆k0),

status(u) 6= honest , or L(p̆k0, u) =∞, abort.
2. Next, A selects a pseudonym nym(u) that he has seen for u.
3. Then, C runs the CredProve protocol with A as follows:

CredProve(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu)↔ A

GetCredFrom(p̆k0, u, nymR): The honest party associated with u issues a cre-
dential to A, whom it knows by nymR.

1. First, C checks that in fact u is honest and has a credential: if u /∈ V (p̆k0),

status(u) 6= honest , or L(p̆k0, u) =∞, abort.
2. Next, C creates a new adversarial node v, sets status(v) = adversarial ,

and sets the identity to be p̂kv = f(nymR).
3. If u is the root, then C runs the Issue protocol with A as follows:

Issue(0, p̆k0, s̆k0, p̆k0,⊥,⊥, nymR)↔ A

If u is not the root, A selects a pseudonym nym(u) that he has seen for
u, and C runs the Issue protocol with A as follows:

Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nymR)↔ A

4. C adds the edge (u, v) to E(p̆k0) and sets L(p̆k0, v) = L(p̆k0, u) + 1.

GiveCredTo(p̆k0, LI(p̆k0), nymI , v): A issues a credential to the honest party

associated with v under a pseudonym nymI (or p̆k0 if he is the root).

1. If v /∈ V (p̆k0), status(v) 6= honest , or L(p̆k0, v) 6=∞, abort.
2. A selects a pseudonym nym(v) that he has seen for v.

3. If LI(p̆k0) = 0, then A issues a credential to v acting as the root node
(which he may do if status(root) = adversarial in the game setup). C runs
the Receive side of the protocol on behalf of the honest party associated
with v. More precisely, credv is computed as follows:

[A ↔ Receive(0, p̆k0, sk(v), nym(v), aux(v), p̆k0)]→ credv

36 Elizabeth C. Crites and Anna Lysyanskaya

If LI(p̆k0) 6= 0, A issues a credential to v acting as some non-root node.
C runs the Receive side of the protocol on behalf of the honest party
associated with v, and credv is computed as follows:

[A ↔ Receive(LI(p̆k0), p̆k0, sk(v), nym(v), aux(v), nymI)]→ credv

4. If credv 6= ⊥, C tells A that it didn’t fail, stores v’s new credential credv
at v, and sets L(p̆k0, v) = LI(p̆k0) + 1. Next, C computes the function

fcred on v’s credential, fcred(credv) = (p̂k0, p̂k1, . . . , p̂kLI), revealing the
identities in v’s credential chain. If according to C’s data structure, there
is some p̂ki in this chain such that p̂ki = f(nym(u)) for an honest user

u, but p̂ki+1 6= f(nym(v′)) for any v′ that received a credential from u,
then C sets the forgery flag to true.

5. If credv 6= ⊥ and the forgery flag remains false, C fills in the gaps in
the graph G(p̆k0) as follows. Starting from the nearest honest ancestor
of v, C creates a new node for each (necessarily adversarial) identity in
the chain between that honest node and v, sets status = adversarial and
the appropriate level for each node, and stores this information at each
node along with its identity (e.g. p̂kj). C then adds edges between the
nodes on the chain from the nearest honest ancestor of v to v.

DemoCred(p̆k0, LP (p̆k0), nymP): A proves possession of a credential at level

LP (p̆k0).
1. C runs the Verify side of the protocol with A as follows:

[A ↔ CredVerify(params, LP (p̆k0), p̆k0, nymP)]→ output (0 or 1)

2. If output = 1, C tells A and computes the function fdemo on the tran-
script of the output, fdemo(transcript) = (p̂k0, p̂k1, . . . , p̂kLP), revealing
the identities in the credential chain. If according to C’s data structure,
there is some p̂ki in this chain such that p̂ki = f(nym(u)) for an honest

user u, but p̂ki+1 6= f(nym(v′)) for any v′ that received a credential from
u, then C sets the forgery flag to true.

3. If output = 1 and the forgery flag remains false, C fills in the gaps in
the graph G(p̆k0) as follows. C creates a new adversarial node v for the

identity p̂kLP , sets status(v) = adversarial and L(p̆k0, v) = LP (p̆k0),

and stores this information at the node v along with its identity p̂kLP .
Then, starting from the nearest honest ancestor of v, C creates a new
node for each (necessarily adversarial) identity in the chain between that
honest node and v, sets status = adversarial and the appropriate level
for each node, and stores this information at each node along with its
identity (e.g. p̂kj). C then adds edges between the nodes on the chain
from the nearest honest ancestor of v to v.

SetAnonChallenge(u0, u1): If this oracle has ever been called before (so the sta-
tus of the anonymity attack is not undefined), abort. Else, A will try to
distinguish between the honest parties associated with u0 and u1. C checks
that u0, u1 ∈ V (p̆k0) and status(u0) = status(u1) = honest . If these checks

Delegatable Anonymous Credentials from Mercurial Signatures 37

pass, C sets the anonymity challenge pair to be (u0, u1) and updates the
status of the anonymity attack to defined . Else, it updates the status of the
anonymity attack to forfeited .

SeeNymAnon:A invokes this oracle to see fresh pseudonyms for ub and ub̄. C runs

NymGen to obtain (nym(ub), aux(ub)) ← NymGen(sk(ub), L(p̆k0, ub)) and
stores nym(ub), aux(ub) at ub. Similarly, C runs NymGen to obtain (nym(ub̄),

aux(ub̄))← NymGen(sk(ub̄), L(p̆k0, ub̄)) and stores nym(ub̄), aux(ub̄) at ub̄. C
adds the pair (nym(ub), nym(ub̄)) to the set S and returns the pair to A.

CertifyHonestAnon(p̆k0, u): A invokes this oracle to have the honest party asso-
ciated with u issue credentials to ub and ub̄.
1. If u /∈ V (p̆k0), status(u) 6= honest , or L(p̆k0, u) =∞, abort. If L(p̆k0, ub)

= L(p̆k0, ub̄) = ∞ does not hold, abort (i.e. ub and ub̄ must both be

standalone nodes in G(p̆k0) so that they may receive credentials.)
2. A selects from the set S a pair of pseudonyms (nym(ub), nym(ub̄)) that

he has seen for ub and ub̄.

3. If u is the root, then p̆k0 is given as input to the Issue protocol instead
of a pseudonym. More precisely, if u = root , then C runs:

[Issue(0, p̆k0, s̆k0, p̆k0,⊥,⊥, nym(ub))↔

Receive(0, p̆k0, sk(ub), nym(ub), aux(ub), p̆k0)]→ credub

If u is not the root, A selects a pseudonym nym(u) that he has seen for
u under which u will interact with ub, and C runs:

[Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nym(ub))↔

Receive(L(p̆k0, u), p̆k0, sk(ub), nym(ub), aux(ub), nym(u))]→ credub

C repeats this step for ub̄, using the same nym(u) (if u 6= root).

4. C stores ub’s new credential credub at ub, adds the edge (u, ub) to E(p̆k0),

and sets L(p̆k0, ub) = L(p̆k0, u) + 1. C repeats this step for ub̄.
CertifyAnonHonest(p̆k0, b

∗, v):A invokes this oracle to have one of the anonymity
challenge nodes, ub∗ , where b∗ = b or b̄, issue a credential to the honest party
associated with v.
1. If v /∈ V (p̆k0), status(v) 6= honest , or L(p̆k0, v) 6=∞, abort. If L(p̆k0, ub∗)

= L(p̆k0, ub̄∗) 6= ∞ does not hold, abort (i.e. ub∗ and ub̄∗ must possess

credentials at the same level under p̆k0.)
2. A selects a pseudonym nym(v) that he has seen for v.
3. Note that ub∗ cannot be the root. A selects from the set S a pair of

pseudonyms (nym(ub∗), nym(ub̄∗)) that he has seen for ub∗ and ub̄∗ . Then,
C runs:

[Issue(L(p̆k0, ub∗), p̆k0, sk(ub∗), nym(ub∗), aux(ub∗), credub∗ , nym(v))↔

Receive(L(p̆k0, ub∗), p̆k0, sk(v), nym(v), aux(v), nym(ub∗))]→ credv

38 Elizabeth C. Crites and Anna Lysyanskaya

4. C stores v’s new credential credv at v, adds the edge (ub∗ , v) to E(p̆k0),

and sets L(p̆k0, v) = L(p̆k0, ub∗) + 1.

VerifyCredFromAnon(p̆k0): The honest parties associated with ub and ub̄ prove

to A that they have credentials at level L(p̆k0, ub) = L(p̆k0, ub̄).

1. If L(p̆k0, ub) = L(p̆k0, ub̄) 6= ∞ does not hold, abort. Additionally, C
checks that the two paths from ub and ub̄ to the root p̆k0 consist entirely

of honest nodes, with the exception that p̆k0 may be adversarial. If this
check fails, C updates the status of the anonymity attack to forfeited .

2. Next, A selects from the set S a pair of pseudonyms (nym(ub), nym(ub̄))
that he has seen for ub and ub̄.

3. Then, C runs the CredProve protocol with A as follows:

CredProve(L(p̆k0, ub), p̆k0, sk(ub), nym(ub), aux(ub), credub)↔ A

C repeats this step for ub̄.

GetCredFromAnon(p̆k0, b
∗, nymR): The honest party associated with ub∗ , where

b∗ = b or b̄, issues a credential to A, whom it knows by nymR.

1. If L(p̆k0, ub∗) = L(p̆k0, ub̄∗) 6= ∞ does not hold, abort. Additionally, C
checks that the two paths from ub∗ and ub̄∗ to the root p̆k0 consist entirely

of honest nodes, with the exception that p̆k0 may be adversarial. If this
check fails, C updates the status of the anonymity attack to forfeited .

2. Next, C creates a new adversarial node v, sets status(v) = adversarial ,

and sets the identity to be p̂kv = f(nymR). Note that A can have ub∗ , ub̄∗
issue credentials to two different adversarial nodes, v, v′, respectively,
with the same underlying adversarial identity p̂kv = p̂kv′ .

3. Note that ub∗ cannot be the root. A selects from the set S a pair of
pseudonyms (nym(ub∗), nym(ub̄∗)) that he has seen for ub∗ and ub̄∗ . Then,
C runs the Issue protocol with A as follows:

Issue(L(p̆k0, ub∗), p̆k0, sk(ub∗), nym(ub∗), aux(ub∗), credub∗ , nymR)↔ A

4. C adds the edge (ub∗ , v) to E(p̆k0) and sets L(p̆k0, v) = L(p̆k0, ub∗) + 1.

GiveCredToAnon(p̆k0, LI(p̆k0), nymI): A issues credentials to ub and ub̄ under a

pseudonym nymI (or p̆k0 if he is the root).

1. If L(p̆k0, ub) = L(p̆k0, ub̄) =∞ does not hold, abort.

2. A selects from the set S a pair of pseudonyms (nym(ub), nym(ub̄)) that
he has seen for ub and ub̄.

3. If LI(p̆k0) = 0, then A issues a credential to ub acting as the root node
(which he may do if root = adversarial in the game setup). C runs the
Receive side of the protocol on behalf of the honest party associated with
ub. More precisely, credub is computed as follows:

[A ↔ Receive(0, p̆k0, sk(ub), nym(ub), aux(ub), p̆k0)]→ credub

Delegatable Anonymous Credentials from Mercurial Signatures 39

If LI(p̆k0) 6= 0, A issues a credential to ub acting as some non-root node.
C runs the Receive side of the protocol on behalf of ub, and credub is
computed as follows:

[A ↔ Receive(LI(p̆k0), p̆k0, sk(ub), nym(ub), aux(ub), nymI)]→ credub

C repeats this step for ub̄, using the same nymI (or p̆k0).
4. If both credub 6= ⊥ and credub̄ 6= ⊥, C tells A that they didn’t fail, stores

ub’s new credential credub at ub, and sets L(p̆k0, ub) = LI(p̆k0) + 1.
Next, C computes the function fcred on ub’s credential, fcred(credub) =

(p̂k0, p̂k1, . . . , p̂kLI), revealing the identities in ub’s credential chain. If

according to C’s data structure, there is some p̂ki in this chain such that

p̂ki = f(nym(u)) for an honest user u, but p̂ki+1 6= f(nym(v′)) for any v′

that received a credential from u, then C sets the forgery flag to true.
C repeats this step for ub̄.

5. If both credub 6= ⊥ and credub̄ 6= ⊥ and the forgery flag remains false,

C fills in the gaps in the graph G(p̆k0) as follows:
(a) If there already exists an adversarial node v corresponding to the

pseudonym nymI with an edge connecting it to an honest parent,
then C only adds an edge between v and ub.

(b) Else, starting from the nearest honest ancestor of ub, C creates a
new node for each (necessarily adversarial) identity in the chain be-
tween that honest node and ub, sets status = adversarial and the
appropriate level for each node, and stores this information at each
node along with its identity (e.g. p̂kj). C then adds edges between
the nodes on the chain from the nearest honest ancestor of ub to ub.
C repeats this step for ub̄.

GuessAnon(b′): If this oracle has ever been called before or it is premature to
call it (so the status of the anonymity attack is not defined), abort. If b′ = b,
the status of the anonymity attack is set to success. Else, the status is set
to fail .

D Proof of Security for DAC

D.1 Unforgeability of DAC

Proof. (of Theorem 5.) We wish to show that if there exists a PPT adversary
A such that there is non-negligible probability that the forgery flag will be set
to true in the single-authority security game, then we can construct a PPT ad-
versary A′ that breaks unforgeability of mercurial signatures with non-negligible
probability. There are two scenarios in which the forgery flag is set to true: (1)
A proves possession of a credential at a level closer to the root than his own for
a specific adversarial identity, or (2) A delegates a credential (possibly to a node
in the anonymity challenge pair) at a level closer to the root than his own for a
specific adversarial identity.

40 Elizabeth C. Crites and Anna Lysyanskaya

Supposing there exists such an adversary A, we construct an adversary A′
as a reduction B running A as a subroutine. We construct the reduction B for
breaking unforgeability of mercurial signatures as follows.

B receives as input public parameters params and a fixed public key pk for
one of the mercurial signature schemes, either MS1 or MS2, for which he will try
to produce a forgery. He forwards params to A, and the public key of the root,
p̆k0, is established as in the single-authority security game by B, who acts as
A’s challenger C. As in the unforgeability game for mercurial signatures, B has
access to a signing oracle Sign(sk, ·), where sk is the secret key corresponding to
pk.

A proceeds to make queries to the single-authority oracles. WLOG, let qa
be an upper bound, known a priori, on the number of queries A will make to
the AddHonestParty oracle. Acting as the challenger for A, B is responsible for
computing responses to the oracle queries, forwarding them to A, and updating
the graph G(p̆k0) with the appropriate information. B maintains the graph as
A’s challenger C would, but without any edges. B does not have oracle access to
the (hard-to-compute) functions f, fcred, and fdemo required to maintain edges
correctly.

For one of A’s AddHonestParty queries, chosen uniformly at random from
among all qa such queries, B makes his challenge pk the public key for that user
u∗ and updates the graph with the new node. For a query to the SeeNym oracle
on u∗, B forms a new pseudonym nym from pk by running ConvertPK.

SupposeA subsequently makes a query to either the CertifyHonestParty oracle
or the GiveCredTo oracle to have u∗ receive a credential. If u∗ is at an even
level and pk is odd, or vice versa, abort. This will lead the reduction to abort,
independently of the adversary’s view, with probability 1/2. If B has not aborted,
it proceeds as follows. In the case of CertifyHonestParty, B has all the information
required to run exactly the same steps as the challenger C would. In the case of
GiveCredTo, B forms a new pseudonym nym from pk by running ConvertPK and
invokes the zero-knowledge simulator to prove to A that he knows the secret key
associated with nym. Then, B receives from A a certification chain for nym.

If A subsequently queries the CertifyHonestParty oracle or the GetCredFrom
oracle to have u∗ delegate a credential, B must forward that request to his signing
oracle since he does not know the corresponding secret key sk.

If A queries VerifyCredFrom(u∗), B randomizes u∗’s certification chain cor-
rectly and invokes the zero-knowledge simulator to convince A that he knows
u∗’s secret key.

For A’s oracle queries that do not take u∗ as input, B has all the information
required to run exactly the same steps as the challenger C would, with the
exception that B does not have oracle access to the (hard-to-compute) functions
f, fcred, and fdemo.

Suppose A forges at least one credential chain, and consider A’s first forgery.
Either when showing or when issuing a credential (possibly to a node in the
anonymity challenge pair), A produces a certification chain (nym0, nym1, . . . ,
nymn) such that: (1) the underlying identities of (nym0, nym1, . . . , nymn) are

Delegatable Anonymous Credentials from Mercurial Signatures 41

(p̂k0, p̂k1, . . . , p̂kA), ending in A’s identity p̂kA, (2) ˆpk0 = p̆k0, and (3) there is

some p̂ki in this chain such that p̂ki = f(nym(u)) for an honest user u, but

p̂ki+1 6= f(nym(v′)) for any v′ that received a credential from u.

The forgery flag must be set to true the first time A forges a credential chain
or A will know he is operating inside the reduction, and the reduction will fail.
Up until A forges a credential chain, the view that A receives in his interaction
with B is exactly the same view that he would receive in the security game.
Indeed, the description of B’s responses to A’s oracle queries above demonstrates
that B is able to compute each step of each of A’s oracle queries exactly as A’s
challenger in the security game would, with one exception: B does not have oracle
access to the (hard-to-compute) functions f, fcred, and fdemo. However, these are
internal, bookkeeping functions that are only needed to establish whether or not
A has successfully forged a credential. Thus, even if B does not carry them out
correctly, it’s hidden from A as long as A’s first forged credential chain is caught.

Using A’s forged credential chain, B constructs his forgery of a mercurial
signature as follows. With probability 1/2, B picks i uniformly at random from
{0, 1, . . . , n−1} and outputs his forgery as (pk∗,M∗, σ∗) = (nymi, nymi+1, σi+1),

where nym0 = p̆k0. This is the “forged chain” case.

With remaining probability 1/2: (1) if the forgery occurred as part of
GiveCredTo, B outputs (pk∗,M∗, σ∗) = (nymn, nymR, σR), where nymR is the
recipient’s pseudonym and σR is the signature A issued to nymR under his nymn;
(2) if the forgery occurred as part of DemoCred, B uses the knowledge extractor
to extract skn that corresponds to nymn, computes a pk∗ that corresponds to
skn, and uses the corresponding key pair to sign a random message. He outputs
the resulting (pk∗,M∗, σ∗). This is the “forged identity” case.

Now, let us analyze the likelihood that B’s forgery is successful. Note that,
given that B has not aborted, the identity of u∗ is independent of A’s view.

By inspecting (nym0, nym1, . . . , nymn), we could relate the pseudonyms to
the underlying public keys, if they exist, of the honest parties under B’s control
(this cannot be done efficiently, but we don’t have to worry about efficiency
here.) If each of these public keys exists and is under B’s control, then nymn

is equivalent to the public key of some honest user u. With probability 1/qa,
this user is u∗. Since A succeeded in either proving knowledge of the secret key
corresponding to nymn or issuing a new signature on behalf of nymn, if B acts as
in the “forged identity” case (which he does with probability 1/2), he successfully
breaks unforgeability of the mercurial signature scheme.

Suppose that in fact one of the pseudonyms on the list (nym0, nym1, . . . , nymn)
does not correspond to an honest identity. Suppose the first one in the list that
doesn’t correspond to an honest user’s identity is nymi+1. Then (nymi, nymi+1,
σi+1) is a successful forgery for the mercurial signature as long as nymi ∈ [pk]Rpk

,
which is true with probability 1/qa. Thus, if B acts as in the “forged chain” case
(which he does with probability 1/2), he successfully breaks unforgeability of
the mercurial signature scheme.

Putting everything together, if A’s success probability is ε, B’s success prob-
ability is ε/4qa. If the mercurial signature scheme is unforgeable, A’s success

42 Elizabeth C. Crites and Anna Lysyanskaya

probability must be negligible. Therefore, the DAC construction is unforgeable
in the single-authority setting.

D.2 Anonymity of DAC

Proof. (of Theorem 5, continued.) Let Γ (k) be a polynomial. For 0 ≤ i ≤
Γ (k), let Hi be the hybrid experiment defined as the following modified single-
authority security game.

For an adversary A’s jth query to AddHonestParty, j ≤ i, the challenger
creates a new, honest node with some fixed underlying odd public key pkodd,
which he randomizes using ConvertPK, and a distinct even public key. For the
jth query to AddHonestParty, j > i, the oracle creates a new, honest node with
distinct even and odd public keys. All of the other single-authority oracles are
the same as in the single-authority security game.

By definition,H0 (andH1) corresponds to the security game in which all hon-
est nodes have distinct identities (i.e. the real single-authority security game),
while HΓ (k) corresponds to the security game in which all odd-level honest nodes
have the same underlying identity pkodd and all even-level nodes have distinct
identities. By the hybrid argument, it is sufficient to show that for every polyno-
mial Γ and for every probabilistic, polynomial-time adversary making at most
Γ (k) queries to the AddHonestParty oracle, there exists a negligible function ν(k)
such that for every k and for every i such that 0 ≤ i ≤ Γ (k)− 1, the advantage
of the adversary in distinguishing Hi from Hi+1 is at most ν(k).

Suppose that for the functions f, fcred, and fdemo (not necessarily easy to
compute), there exists a polynomial Γ and a PPT adversary A making at most
Γ (k) queries to the AddHonestParty oracle in the single-authority hybrid security
game such that there exists a non-negligible ε(k) such that for some i(k), A can
distinguish Hi(k) from Hi(k)+1 with advantage ε(k) for the functions f, fcred,
and fdemo. Then, let us show that there exists a probabilistic, polynomial-time
B that breaks public key class-hiding of mercurial signatures. We construct B as
a reduction running A as a subroutine. B serves as the challenger for A in the
single-authority hybrid security game and as the adversary for his own challenger
in the public key class-hiding game for mercurial signatures.

We construct the reduction B for breaking public key class-hiding of mercurial
signatures as follows. B receives as input public parameters params and two fixed
public keys pk1, pk2. B will try to distinguish whether or not they belong to the
same equivalence class. He forwards params to A, and the public key of the root,
p̆k0, is established in the usual way by B, who acts as A’s challenger C. As in the
public key class-hiding game for mercurial signatures, B has access to signing
oracles Sign(sk1, ·),Sign(sk2, ·), where sk1, sk2 are the secret keys corresponding
to pk1, pk2, respectively.

A proceeds to make queries to the single-authority oracles. Acting as the chal-
lenger for A, B is responsible for computing the responses to the oracle queries,
forwarding them to A, and updating the graph G(˘pk0) with the appropriate
information. B maintains the graph as A’s challenger C would, but without any

Delegatable Anonymous Credentials from Mercurial Signatures 43

edges. B does not have oracle access to the (hard-to-compute) functions f, fcred,
and fdemo required to maintain edges correctly.
B responds to the single-authority oracle queries as follows:

AddHonestParty(u): The adversary A invokes this oracle to create a new, hon-

est node u. Let the current graph be G(p̆k0) = (V (p̆k0), E(p̆k0)). If u ∈
V (G(p̆k0)) (i.e., it is not a new node), abort. Else, B adds a new node u to

G(p̆k0) (so G(p̆k0) := (V (p̆k0) ∪ {u}, E(p̆k0))) for the jth query as follows.

(1) j ≤ i: B samples a key converter ρ ← sampleρ and runs ConvertPK to

obtain p̃k1 ← ConvertPK(pk1, ρ). B sets status(u) = honest , pk(u) = p̃k1,

aux(u) = ρ, and L(p̆k0, u) =∞. B returns pk(u) to A.

(2) j = i + 1: B sets status(u) = honest , pk(u) = pk2, and L(p̆k0, u) = ∞.
B returns pk(u) to A.

(3) j > i + 1: B runs KeyGen to obtain (pk(u), sk(u)) ← KeyGen(1k) and

sets status(u) = honest and L(p̆k0, u) =∞. B returns pk(u) to A.

SeeNym(u): The adversary A invokes this oracle to see a fresh pseudonym for

an honest node u. If u /∈ V (G(p̆k0)) or status(u) 6= honest , abort. Else, B
computes a pseudonym for u as follows. First, B samples a key converter
ρ← sampleρ. B runs ConvertPK to obtain p̃k← ConvertPK(pk(u), ρ), where
pk(u) has underlying public key pk1, pk2, or some distinct public key. B sets
nym(u) = p̃k, aux(u) = ρ and stores nym(u), aux(u) at u. B returns nym(u)
to A.

CertifyHonestParty(p̆k0, u, v): The adversary A invokes this oracle to have the
honest party associated with u issue a credential to the honest party associ-
ated with v.
First, A selects two nodes, u and v, and B carries out the required checks
in step 1, which he can do because for each node, he maintains its status,
honest or adversarial , and its level inG(p̆k0). In step 2,A selects pseudonyms
nym(u), nym(v) under which u and v will interact with one another (unless
u is the root). In step 3, B is responsible for computing:

[Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nym(v))↔

Receive(L(p̆k0, u), p̆k0, sk(v), nym(v), aux(v), nym(u))]→ credv

B runs both the Issue and the Receive side, producing credv, as follows.
First, B computes u’s randomized credential chain: {(nym′1, . . . , nym(u)′),
(σ′1, . . . , σ

′
L(u))}.

B then computes σL(u)+1 = Sign(sk(u), nym(v)) as follows. If u’s underlying
public key is pk1 or pk2, B invokes the appropriate mercurial signing oracle,
Sign(sk1, nym(v)) or Sign(sk2, nym(v)), respectively; otherwise, B computes
Sign(sk(u), nym(v)) himself.
The resulting credential chain is credv : {(nym′1, . . . , nym(u)′, nym(v)),
(σ′1, . . . , σ

′
L(u), σL(u)+1)}.

44 Elizabeth C. Crites and Anna Lysyanskaya

In step 4, B stores v’s new credential credv at v and sets L(p̆k0, v) =

L(p̆k0, u) + 1.

VerifyCredFrom(p̆k0, u): The honest party associated with u proves to A that it

has a credential at level L(p̆k0, u).
First, A selects a node u, and B carries out the required checks in step 1,
which he can do because for each node, he maintains its status, honest or
adversarial , and its level in G(p̆k0). In step 2, A selects a pseudonym nym(u)
under which u will prove posession of its credential. In step 3, B is responsible
for computing:

CredProve(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu)↔ A

B runs the CredProve side as follows.
B randomizes u’s credential chain credu : {(nym1, . . . , nym(u)), (σ1, . . . , σL(u))}
and sends {(nym′1, . . . , nym(u)′), (σ′1, . . . , σ

′
L(u))} to A. B then proves knowl-

edge of the secret key that corresponds to the last pseudonym in the chain,
nym(u)′, as follows. If u’s public key is pk1 or pk2, B invokes the zero-
knowledge simulator to convince A that he knows u’s secret key. Otherwise,
he proves knowledge of sk(u) directly.

GetCredFrom(p̆k0, u, nymR): The honest party associated with u issues a cre-
dential to the adversary, whom it knows by nymR.
First, A selects a node u and provides an adversarial pseudonym nymR.
Then, B carries out the required checks in step 1. B is not able to carry out
step 2 as written, as he does not know the (hard-to-compute) function f ,
but he does create an adversarial node v associated with nymR.
In step 3, B is responsible for computing:

Issue(L(p̆k0, u), p̆k0, sk(u), nym(u), aux(u), credu, nymR)↔ A

B runs the Issue side as follows.
B randomizes u’s credential chain credu and computes σL(u)+1 the exact same
way as in CertifyHonestParty. B sends credv = {(nym′1, . . . , nym(u)′, nymR),
(σ′1, . . . , σ

′
L(u), σL(u)+1)} to A.

In step 4, B sets L(p̆k0, v) = L(p̆k0, u) + 1.

GiveCredTo(p̆k0, LI(p̆k0), nymI , v): A issues a credential to the honest party

associated with v under a pseudonym nymI (or p̆k0 if he is the root).
First, A selects a node v and provides an adversarial pseudonym nymI and

level LI(p̆k0). Then, B carries out the required checks in step 1. In step 2, A
selects a pseudonym nym(v) under which v will interact with the adversary.
In step 3, B is responsible for computing:

[A ↔ Receive(LI(p̆k0), p̆k0, sk(v), nym(v), aux(v), nymI)]→ credv

B runs the Receive side as follows.
First, B proves to A that he knows the secret key sk(v) corresponding to
nym(v) as follows. If v’s public key is pk1 or pk2, B invokes the zero-knowledge

Delegatable Anonymous Credentials from Mercurial Signatures 45

simulator to convince A that he knows v’s secret key. Otherwise, he proves
knowledge of sk(v) directly. He then receives from A a credential chain credv.
In step 4, if credv 6= ⊥, B tells A it didn’t fail, stores v’s new credential
credv at v, and sets L(p̆k0, v) = LI(p̆k0) + 1. B cannot compute the (hard-
to-compute) function fcred on v’s credential to reveal the identities on v’s

credential chain and therefore cannot fill in the gaps in G(p̆k0) as in step 5.

DemoCred(p̆k0, LP (p̆k0), nymP): A proves possession of a credential at level

LP (p̆k0).

First, A provides an adversarial pseudonym nymP and level LP (p̆k0). In step
1, B is responsible for computing:

[A ↔ CredVerify(params, LP (p̆k0), p̆k0, nymP)]→ output (0 or 1)

B knows params, LP (p̆k0), p̆k0, and nymP , so he has all of the information
required to run the CredVerify protocol. If credP 6= ⊥, B outputs 1 and tellsA;
otherwise, he outputs 0. In step 2, B cannot compute the (hard-to-compute)
function fdemo on the transcript of the output to reveal the identities on the
credential chain and therefore cannot fill in the gaps in G(p̆k0) as in step 3.
However, he creates a new, adversarial node v corresponding to nymP and

sets L(p̆k0, v) = LP (p̆k0).

The remaining oracles in the security game are invoked during the anonymity
challenge. B handles the anonymity challenge by selecting a random value for
an “anonymity bit” β, β ← {0, 1}. B responds to each anonymity oracle query
as follows:

SetAnonChallenge(u0, u1): B sets the anonymity challenge nodes u0, u1. That
is, A selects two nodes, u0 and u1, and B carries out the necessary checks,
which he can do because for each node, he maintains its status, honest or
adversarial ,.

SeeNymAnon: B executes SeeNym(uβ) and SeeNym(uβ̄), where β̄ = 1− β.

CertifyHonestAnon(p̆k0, u): B executes CertifyHonestParty(p̆k0, u, uβ) and

CertifyHonestParty(p̆k0, u, uβ̄).

CertifyAnonHonest(p̆k0, b
∗, v): If b∗ = β, B executes CertifyHonestParty(p̆k0, uβ , v).

If b∗ = β̄, B executes CertifyHonestParty(p̆k0, uβ̄ , v).

VerifyCredFromAnon(p̆k0): B executes VerifyCredFrom(p̆k0, uβ) and

VerifyCredFrom(p̆k0, uβ̄).

GetCredFromAnon(p̆k0, b
∗, nymR): If b∗ = β, B executes GetCredFrom(p̆k0, uβ ,

nymR). If b∗ = β̄, B executes GetCredFrom(p̆k0, uβ̄ , nymR).

GiveCredToAnon(p̆k0, LI(p̆k0), nymI): B executes GiveCredTo(p̆k0, LI(p̆k0), nymI ,

uβ) and GiveCredTo(p̆k0, LI(p̆k0), nymI , uβ̄). Note that the forgery flag may
be set to true during these executions.

GuessAnon(b′): If this oracle has ever been called before, or it is premature to
call it (so the status of the anonymity attack is not defined), abort. If b′ = β,
B sets the status of the anonymity attack is set to success. Else, B sets the
status to fail .

46 Elizabeth C. Crites and Anna Lysyanskaya

The above description of B’s responses to A’s oracle queries demonstrates
that B is able to emulate the appropriate hybrid and compute each step of each
of A’s oracle queries exactly as A’s challenger in the security game would, with
one exception: B does not have oracle access to the (hard-to-compute) functions
f, fcred, and fdemo. Also, note that in the description of B’s responses, we have
substituted the zero-knowledge prover with a zero-knowledge simulator, which
is standard.

Claim 6 For all 0 ≤ i ≤ Γ (k)− 1, A cannot distinguish Hi from Hi+1.

There exists a node u with underlying public key pk2 in hybrid Hi but with
underlying public key pk1 in hybrid Hi+1, by definition. Thus, A’s non-negligible
probability of distinguishing the hybrids translates into B’s success probability
of determining if pk1 and pk2 are in the same equivalence class in the public
key class-hiding game. We have therefore constructed a PPT algorithm B that
breaks the public key class-hiding game for the functions f, fcred, and fdemo in
the single-authority setting.

Since B does not have oracle access to the (hard-to-compute) functions
f, fcred, and fdemo, he is unable to catch forgeries. However, A cannot forge
in hybrid H0 because it corresponds to the security game in which all honest
nodes have distinct identities (i.e. the real single-authority security game). Since
all hybrids are indistinguishable by Claim 6, forgeries do not occur in any hybrid.

Now, let H̃i be the hybrid experiment defined as the following modified single-
authority security game.

For an adversary A’s jth query to AddHonestParty, j ≤ i, the challenger
creates a new, honest node with some fixed underlying odd public key pkodd,
and a some fixed underlying even public key pkeven, both of which he randomizes
using ConvertPK. For the jth query to AddHonestParty, j > i, the oracle creates
a new, honest node with distinct even and odd public keys. All of the other
single-authority oracles are the same as in the single-authority security game.

By definition, H̃0 (and H̃1) corresponds to the security game in which all
odd-level honest nodes have the same underlying identity pkodd and all even-
level nodes have distinct identities (i.e. hybrid HΓ (k) from before), while HΓ (k)

corresponds to the security game in which all odd-level honest nodes have the
same underlying identity pkodd and all even-level nodes have the same underlying
pkeven.

We construct a reduction B for breaking public key class-hiding of mercurial
signatures as before, where B answers the single-authority oracle queries with
the appropriate underlying public keys as described above. A cannot distinguish
hybrids or else B can break public key class-hiding.

Claim 7 A’s view is independent on the anonymity bit.

H∆(k) corresponds to the security game in which all odd-level honest nodes
have the same underlying identity, and all even-level nodes have the same un-
derlying identity. A’s view is independent on the anonymity bit in this hybrid

Delegatable Anonymous Credentials from Mercurial Signatures 47

because the challenge node provides a chain that amounts to the same two keys
signing each other over and over, so it’s distributed the same way.

By the hybrid argument, A’s view is therefore independent on the anonymity
bit in hybrid H0, which corresponds to the real single-authority security game.

