
A Message Franking Channel

Löıs Huguenin-Dumittan and Iraklis Leontiadis

LASEC, EPFL, Switzerland
{lois.huguenin-dumittan, iraklis.leontiadis}@epfl.ch

Abstract. We pursue to formalize and instantiate a secure bidirectional
channel with message franking properties. Under this model a sender may
send an abusive message to the receiver and the latter wish to open it in
a verifiable way to a third party. Potential malicious behavior of a sender
requires message franking protocols resistant to sending messages that
cannot be opened later by the receiver. An adversary impersonated by
the receiver may also try to open messages that have not been sent by
the sender. Wrapping a message franking protocol in a secure channel
requires a more delicate treatment in order to avoid drops or replay of
messages and out-of-order delivery. To the best of our knowledge we are
the first to model the security of a message franking channel, which apart
from integrity, confidentiality, resistance to drops, relays and out-of-order
delivery is sender and receiver binding : a sender cannot send a message
which cannot be opened in a verifiable way later by the receiver, and
the receiver cannot claim a message that had not been truly sent by the
receiver. Finally, we instantiate a bidirectional message franking channel
from symmetric primitives and analyze its security.

Keywords: message franking channel, secure communication, channel security,
abusive verifiable reports

1 Introduction

The most popular messaging services such as Facebook Messenger, Whatsapp,
Telegram or Signal offer end-to-end encryption, preventing anyone apart from
the recipients from reading the messages. While preserving privacy, such schemes
increase the difficulty of filtering spam or reporting abusive messages. Indeed,
without the capacity to read the plaintexts, the router (e.g. Facebook) cannot
check for abusive content, malware, malicious links, etc. The problem of abuse
reporting was recently tackled by Facebook, which introduced the concept of
message franking [Fac16]. With this proposed protocol, a user can report abusive
messages to Facebook and can prove that an abusive message was sent by another
user. More recently, Grubbs et al. initiated the formal analysis of such schemes
[GLR17]. In particular, they introduced a new cryptographic primitive called
committing authenticated encryption with associated data (committing AEAD)
along with new security definitions. In the same paper, they analyze the security
of Facebook’s scheme and present a more efficient construction. In a follow up

2 Löıs Huguenin-Dumittan and Iraklis Leontiadis

work Dodis, Grubbs, Ristenpart and Woodage [DGRW18] revealed a flaw in
Facebook message franking protocol for attachment delivery. The authors showed
compromisation of sender binding, letting a malicious sender to send messages
that cannot be reported. To circumvent that flaw they suggest a new design
for message franking based on hashing encryption which provides the requiring
commitment properties on the ciphertext with only one pass.

The security of communication protocols though depends not only on the
underlying cryptographic primitives but also on the behavior of the protocol
itself. For instance, a protocol based on secure primitives accepting out-of-order
messages or an adversary being able to drop or replay messages renders commu-
nication between two end points vulnerable to such malicious behaviors. More
generally, traditional cryptographic primitives cannot model real-world attacks
beyond basic confidentiality and integrity. In particular, the integrity of the com-
munication channel (e.g. security against out-of-order messages, message drops
or replay attacks) is not captured by traditional security definitions. These rea-
sons led to the study of communication protocols as stateful encryption schemes,
so called: cryptographic channels [BKN02,KPB03,Mar17,PR18].

Cryptographic channel. Consider a messaging protocol where several par-
ticipants share a key with each other and want to send and receive end-to-end
encrypted messages. Once all the keys are fixed, a channel with confidentality,
integrity–which includes resistance to replay attacks, out-of-order delivery and
drops–must be established between each pair of participants. The cryptographic
primitive that models the channels and the interaction between the participants
is called a cryptographic channel. A channel where the only actions available
to the clients are send and receive (i.e. as in a traditionnal message exchange
protocol) will be referred to as a standard cryptographic channel.

A standard cryptographic channel Ch = (init, snd, rcv) is a tuple of three
efficient algorithms that allows the participants to send and receive encrypted
messages. If there are two participants and only one can send and only one can
receive, the channel is unidirectional while if both can send and receive, the
channel is bidirectional.

One could imagine that a bidirectional channel made up of two secure unidi-
rectional channels should be secure. However, as shown in [MP17] this does not
hold. In the same paper, the authors show several security results on bidirec-
tional channels constructed from unidirectional channels in a special construction
called the canonic composition. The more interesting ones concerning confiden-
tality, are the following:

IND-1CPA + IND-1CPA ⇐⇒ IND-2CPA (1)

IND-1CCA + IND-1CCA ⇐= IND-2CCA (2)

IND-1CCA + IND-1CCA 6=⇒ IND-2CCA (3)

where IND-1CPA, IND-2CPA are the IND-CPA security for unidirectional
and bidirectional channels, respectively, and IND-1CCA, IND-2CCA are the
IND-CCA security for unidirectional and bidirectional channels, respectively
[MP17]. One can see that if a unidirectional channel is CPA secure, a CPA secure

A Message Franking Channel 3

bidirectional channel can be constructed. On the other hand, two CCA secure
unidirectional channels are not sufficient to create a CCA secure bidirectional
channel. Intuitively, one can understand this result by considering the following
example. We consider a bidirectional channel made up of two independent confi-
dential unidirectional channels that do not guarantee integrity. Let the protocol
be such that if an adversary sends a special ciphertext c′ to Alice, she sends her
password to Bob without a handshake. Note that this contradicts integrity but
not condidentiality. Then, since Bob does not expect this message, he outputs
the message (i.e. the password) in clear for everyone. Obviously, this does not
contradict the confidentiality of the B → A channel. Now, we assume that Alice
sends her password to Bob without a handshake if and only if she receives c′.
Then, the A→ B channel can still be confidential since unidirectional confiden-
tiality (IND-1CCA) does not model the fact that Alice can receive messages in
the A→ B channel, in particular c′. Thus, these results show the importance of
considering protocols in bidirectional cryptographic channels.

Recent results analyze security of secure communication channel over TLS
[BHMS15,BH17,GM17], but without sender and receiver binding guarantees. In
this work we aim to close the gap in the existing literature with the definitions,
design and analysis of a secure communication channel with message franking
properties: sender and receiver binding.

Our contributions. The contributions of this work are summarized as fol-
lows:

1. We first define a message franking channel (MFC) that models a messaging
protocol where users can report abusive messages.

2. Then, we present unidirectional and bidirectional security definitions for our
construction. The most challenging are the uni/bi-directional sender and
receiver binding notions, which were introduced by Grubbs et al. [GLR17].
Specifically, binding definitions guarantee that a delivered message can be
reported and a forged message cannot be reported.

3. We prove that a special construction called hereafter the canonical compo-
sition, made from two binding unidirectional MFC, is sufficient to build a
secure binding bidirectional MFC.

4. Finally we present an instantiation of a message franking channel made from
a secure committing AEAD scheme and a message authentication code.

Outline. In section 2 we introduce some notation for the manuscript. In
section 3 we recap the reader the message franking protocol definitions and
Facebook message franking protocol. We continue in section 4 with the syntac-
tical definition of a message franking channel and in section 5 with the security
properties thereof. Before presenting our concrete instantiation in section 7, we
prove the security of the canonical composition of two unidirectional message
franking channels to build a bidirectional one in section 6. Finally, we conclude
our work in section 8.

4 Löıs Huguenin-Dumittan and Iraklis Leontiadis

2 Notation

A participant is referred to interchangeably as a client, a user or a party. We
write A ‖ B to denote the concatenation of A with B and |A| to denote the
length of A. We write Pr[G ⇒ x] to denote the probability sa game G outputs
x. If X is a set, then X ←$X means that X is uniformly sampled from X . If G
is a randomized algorithm, we write x←$G to denote the fact that x takes the
value output by G. If G is deterministic, we write x← G.
In the different games, we denote the initialization of an array A by A← []. At
each position i, an array can be assigned a single value x or a tuple of values
(x1, . . . , xn). We denote these events by A[i] ← x and A[i] ← (x1, . . . , xn),
respectively. We write abort for ”Stop the game and return 0 as a failure”. If G
is a game that returns a value n, we denote by Pr[G ⇒ n] the probability that
G returns n.
Finally, when this is clear from the context, we denote by ∗ any value that could
fit. For example, if T ∈ X × Y is a tuple of two values and X ∈ X , we write
T == (X, ∗) to denote the event that there exists some Y ∈ Y such that T is
equal to (X,Y).

3 Message franking protocols

3.1 Facebook’s scheme

Facebook recently proposed an abuse-report mechanism (cf. Figure 1) for their
messaging service, referred to as message franking [Fac16]. The idea is that a
client sends a commitment for the message along with the encrypted message.
The router (i.e. Facebook’s server) then tags the commitment and forwards
everything to the receiving party. Then, if the client wants to report the message
as abusive, it sends to Facebook the message, the commitment, the opening key
and the router tag. As such, Facebook can check that the message reported as
abusive was indeed a message sent to the receiver by a specific sender.

Let M be the message and K the secret key shared between Alice and Bob.
The sending party samples a one-time key Kf (i.e. a nonce) from the key space
and computes the HMAC C2 of M ‖ Kf using the one-time key Kf . One can
observe that C2 is a commitment on the message. Then, the message M and the
HMAC key Kf are encrypted with the secret key K. Let C1 be the resulting
ciphertext. Then, both the ciphertext C1 and the commitment C2 are sent to
Facebook. The latter computes a HMAC TR (i.e. a tag) on C2 and some context
value (e.g. sender/receiver, timestamp), with its secret key KR. This will allow
Facebook to verify the commitment C2 in case of message report, without storing
every commitment C2.

If the receiver wants to report an abusive message M , it sends the opening
key Kf , the message M , Facebook’s tag TR and the context data to Facebook.
Then, Facebook can reconstruct the commitment C2 from the received data and
can verify this commitment by computing its HMAC with KR and comparing
with the tag TR sent by the receiver.

A Message Franking Channel 5

Alice(K,H,M) Facebook(KR) Bob(K,H)

Kf ←$Kf

C2 ← HMACKf
(M ‖ Kf)

C1 ← EncK(M ‖ Kf)

C1, C2

context← Alice ‖ Bob ‖ time

TR ← HMACKR
(C2 ‖ context)

C1, C2, TR

M ‖ Kf ← DecK(C1)

if M ‖ Kf =⊥:
return ⊥

C
′
2 ← HMACKf

(M ‖ Kf)

if C2 6= C
′
2 :

return ⊥

. Report abusive message .

M,Kf , TR, context

C
′
2 ← HMACKf

(M ‖ Kf)

T
′
R ← HMACKR

(C
′
2 ‖ context)

check TR = T
′
R

Fig. 1. Facebook message franking scheme where Kf is the space for the one-time keys
Kf .

3.2 Commiting AEAD

Grubbs et al. [GLR17] formalized the concept of message franking into the def-
inition of committing AEAD. Roughly, the idea is to define a cryptographic
primitive that creates a ciphertext and a commitment on the plaintext. Then,
one can decrypt to retrieve the plaintext and an opening key, which is used to
verify the commitement on the plaintext. We present here the definition of com-
mitting AEAD where all randomness is defined by a public nonce. Formally, a
nonce-based committing AEAD is defined as follows:

Definition 1 (Nonce-based Committing AEAD). A nonce-based commit-
ting AEAD scheme nCE = (init, enc, dec, vrf) is a set of four algorithms. Asso-
ciated to this scheme is a key space K, a header space H, a message space M,
a ciphertext space C, an opening space Kf , a franking tag space T and a nonce
space N . An error symbol ⊥ is also required. The four algorithms are as follows:

– K ←$ init: The initialization algorithm init outputs a random key K ∈ K.
– (C1, C2) ← encK(N,H,M): The encryption algorithm enc takes a key K ∈
K, a nonce N ∈ N , a header H ∈ H and a message M ∈M, and it outputs
a ciphertext C1 ∈ C and a franking tag C2 ∈ T .

6 Löıs Huguenin-Dumittan and Iraklis Leontiadis

– (M,Kf) ← decK(N,H,C1, C2): The decryption algorithm dec takes a key
K ∈ K, a nonce N ∈ N , a header H ∈ H, a ciphertext C1 ∈ C and a
franking tag C2 ∈ T , and it outputs a message M ∈ M and an opening
Kf ∈ Kf or an error symbol ⊥.

– b← vrf(H,M,Kf , C2): The verification algorithm vrf takes a header H ∈ H,
a message M ∈ M, an opening value Kf ∈ Kf and a franking tag C2 ∈ T ,
and it outputs a verification bit b, regarding the correctness of the reporting
procedure.

The first procedure init is randomized while the others are deterministic, since
the randomness is defined by the nonce value N .

Correctness. For the correctness of the scheme, we require that for any K ∈ K,
N ∈ N , H ∈ H and M ∈M and (C1, C2) = encK(N,H,M)

Pr[decK(N,H,C1) = (M,Kf)] = 1

for some Kf ∈ Kf .
Also, if we let (C1, C2) = encK(N,H,M) and (M,Kf) = decK(N,H,C1, C2)
then we require that

Pr[vrf(H,M,Kf , C2) = 1] = 1

for any K ∈ K, N ∈ N , H ∈ H and M ∈M.
Finally, we require the length of the ciphertexts (C1, C2) to be deterministic
given H and M . In other words, there is a deterministic function len(H,M) s.t.
(|C1|, |C2|) = len(H,M).

3.3 Security of committing AEAD

Multi and single opening security. In some cases, one would like to encrypt
multiple ciphertexts with the same key and keep all ciphertexts secure even if
an opening is known. This notion is called multi-opening security. For example,
if the key used for encryption is the same as the opening key (i.e. K = Kf), the
scheme would not be multi-opening secure since the knowledge of one opening
Kf would compromise all ciphertexts encrypted with the key K. On the other
hand, if the secret key is meant to be used only once (e.g. Signal protocol),
we can require only single-opening security. In this paper, we focus solely on
multi-opening secure schemes.
Confidentiality. The multiple-opening confidentality of nonce-based committing
AEAD is defined in MO-nREAL and MO-nRAND games (cf. 2). In these games
an adversary A tries to differentiate between ciphertexts (C1, C2) derived from
a legit message and ciphertexts derived from random bitstrings. Observe that
in both games, the adversary can query the decryption oracle Odec only with
ciphertexts that were output by the oracle Oenc. This avoids simple wins, where
the adversary submits the ciphertexts obtained from the Ochal oracle to the
Odec oracle. Also, to avoid trivial wins, we require the adversary playing these
games to be nonce-respecting. This means that an adversary cannot query an

A Message Franking Channel 7

MO-nREALnCE(A)

K ←$ init

E ← []; i← 0

b
′ ← AO

enc,Odec,Ochal

return b
′

Oracle Oenc(N,H,M)

(C1, C2)← encK(N,H,M)

E[i]← (N,H,C1, C2)

i← i + 1

return (C1, C2)

Oracle Odec(N,H,C1, C2)

if (N,H,C1, C2) not in E[] :

return ⊥
(M,Kf)← decK(N,H,C1, C2)

return (M,Kf)

Oracle Ochal(N,H,M)

(C1, C2)← encK(N,H,M)

return (C1, C2)

MO-nRANDnCE(A)

K ←$ init

E ← []; i← 0

b
′ ← AO

enc,Odec,Ochal

return b
′

Oracle Oenc(N,H,M)

(C1, C2)← encK(N,H,M)

E[i]← (N,H,C1, C2)

i← i + 1

return (C1, C2)

Oracle Odec(N,H,C1, C2)

if (N,H,C1, C2) not in E[] :

return ⊥
(M,Kf)← decK(N,H,C1, C2)

return (M,Kf)

Oracle Ochal(N,H,M)

Hr ←$ {0, 1}|H|

Mr ←$ {0, 1}|M|

(C1, C2)← encK(N,Hr,Mr)

return (C1, C2)

Fig. 2. Confidentality games for nonce-based committing AEAD

encryption oracle with the same nonce N more than once (i.e. it cannot query
Oenc or Ochal twice with the same N nor can it query Oenc and Ochal with the
same N).

We define the nonce-based multiple opening real-or-random (MO-nROR) ad-
vantage of any adversary A as

Advmo-nror
nCE (A) = |Pr[MO-nREALnCE(A)⇒ 1]− Pr[MO-nRANDnCE(A)⇒ 1]|

Integrity. The multiple-opening integrity of nonce-based committing AEAD is
defined with the MO-nCTXT game (cf. Figure 3). In this game, an adversary can
query an encryption oracle Oenc and a decryption oracle Odec. Then, it sends a
header, a nonce and ciphertexts (N,H,C1, C2) to a challenge oracle Ochal. If the
decryption is successful and the input values were not previously output by Oenc,
the adversary wins. Informally, the adversary wins if it can forge a valid tuple
(N,H,C1, C2). We define the nonce-based multiple opening ciphertext integrity
(MO-nCTXT) advantage of any adversary A playing the MO-nCTXT game as

Advmo-nctxt
nCE (A) = Pr[MO-nCTXTnCE(A)⇒ true]

8 Löıs Huguenin-Dumittan and Iraklis Leontiadis

MO-nCTXTnCE(A)

K ←$ init;win← false

E ← []; i← 0

AO
enc,Odec,Ochal

return win

Oracle Oenc(N,H,M)

(C1, C2)← encK(N,H,M)

E[i]← (N,H,C1, C2)

i← i + 1

return (C1, C2)

Oracle Odec(N,H,C1, C2)

return decK(N,H,C1, C2)

Oracle Ochal(N,H,C1, C2)

if (N,H,C1, C2) in E[] :

return ⊥
(M,Kf)← decK(N,H,C1, C2)

if (M,Kf) 6=⊥:
win← true

return (M,Kf)

Fig. 3. Integrity game for nonce-based committing AEAD

Binding security. In addition to the standard security definitions (i.e. confi-
dentiality and integrity), Grubbs et al. [GLR17] defined two binding security
notions, namely sender binding and receiver binding.

The intuition behind sender binding is that a participant cannot send a
message which cannot be reported later. The s-BIND game in Figure 4 defines
this security notion. An adversary wins if it can find a ciphertext and a franking
tag such that a receiving participant can decrypt but the verification of the
franking tag with the obtained message fails. For any adversary A playing s-
BIND and any committing AEAD nCE, we define the advantage of A as

Advs-bindnCE (A) = Pr[s-BINDCE(A)⇒ true]

The idea of receiver binding is that a malicious receiver should not be able
to accuse another client of sending an abusive message that was never sent (i.e.
it should not be able to report a message that was not sent). The game r-BIND
in Figure 4 defines this security notion. An adversary wins if it can find two
different messages such that their commitments are the same. For any adversary
A playing the r-BIND game and any committing AEAD nCE, we define the
advantage of A as

Advr-bindnCE (A) = Pr[r-BINDCE(A)⇒ true]

4 Cryptographic channel for message franking (MFC)

A cryptographic channel is a set of algorithms that allows several participants to
exchange messages (i.e. send and receive) with confidentiality, message integrity,
resistance to replay attacks, out-of-order delivery and message drops. For the
reasons exposed above and the fact that a bidirectional channel is more generic
than a unidirectional one, we are going to focus on a bidirectional channel where
two participants (Alice and Bob) exchange messages. However, in the message

A Message Franking Channel 9

r-BINDnCE(A)

win← false

(H,M,Kf , H
′
,M
′
, K
′
f , C2)←$A

b← vrf(H,M,Kf , C2)

b
′ ← vrf(H′,M ′, K′f , C2)

if M 6= M
′
and b = b

′
= 1 :

win← true

return win

s-BINDnCE(A)

win← false

(N,H,C1, C2, K)←$A
(M,Kf)← decK(N,H,C1, C2)

b← vrf(H,M,Kf , C2)

if (M,Kf) 6=⊥ and b = 0 :

win← true

return win

Fig. 4. Games for committing AEAD binding notions.

franking case, the participants do not only exchange messages but they also
report them as abusive to a third entity, which we refer to as router. Therefore, we
need to define a new model for a cryptographic channel, which we call a message
franking channel (MFC). Informally, we raise the nonce-based committing AEAD
concept to the channel level, in the context of message franking.

We define a message franking channel (MFC), using the syntax used by Mar-
son et al. [MP17]:

Definition 2 (Message Franking Channel). A message franking channel
Ch = (init, snd, tag, rcv, rprt) is a five-tuple of algorithms. Associated to this chan-
nel is a key space K, a nonce space N , a header space H, a message space M,
a ciphertext space C, an opening space Kf , a franking tag space T , a router tag
space TR and a state space S. The participants space is P = {A,B} (for Alice
and Bob). We also require a special rejection symbol ⊥/∈ (Kf ×M)∪S. The five
procedures are defined as follows:

– (stA, stB , stR)←$ init: The initialization algorithm init samples a key K ∈ K
and a key KR ∈ K, and it outputs initial states stA, stB , stR ∈ S. K is the
shared key resulting from a secure and authenticated key exchange protocol
between both clients and KR is the secret key of the router.

– (st′u, H,C1, C2) ← snd(stu, N,M): The sending algorithm snd takes the
sender’s state stu ∈ S, a nonce N ∈ N and a message M ∈ M, and it
outputs an updated state st′u ∈ S, a header H ∈ H and a pair of ciphertext
and franking tag (C1, C2) ∈ C × T .

– (st′R, TR)← tag(stR, ids, H,C2): The router tagging algorithm tag takes the
router’s state stR ∈ S, the sender’s identity ids ∈ P, a header H ∈ H and a
franking tag C2 ∈ T , and it outputs an updated state st′R ∈ S and a router
tag TR ∈ TR.

– (st′u,M,Kf)← rcv(stu, N,H,C1, C2): The receiving algorithm rcv takes the
receiver’s state stu ∈ S, a nonce N ∈ N , a header H ∈ H , a ciphertext
C1 ∈ C and a franking tag C2 ∈ T , and it outputs an updated state st′u ∈
S ∪ {⊥}, and an opening value pair (M,Kf) ∈ M× Kf or ⊥. We require
st′u =⊥ if (M,Kf) =⊥.

10 Löıs Huguenin-Dumittan and Iraklis Leontiadis

– (st′R, b) ← rprt(stR, idr, H,M,Kf , C2, TR) : The router’s verification algo-
rithm rprt takes the router’s state stR ∈ S, the reporter’s identity idr ∈ P,
a header H ∈ H, a message M ∈ M, an opening Kf ∈ Kf , a franking tag
C2 ∈ T and a router tag TR ∈ TR, and it outputs an updated router’s state
st′R ∈ S ∪ {⊥} and a verification bit b ∈ {0, 1}. We require st′R =⊥ if b = 0.

We assume the channel is stateful, i.e. the participants save their state between
send/tag/receive/report calls. The rcv procedure can verify the commitment
C2 and outputs ⊥ if the verification fails. Also, note that the rprt procedure
does not depend on the nonce N nor on the ciphertext C1. In particular, this
means that the router must be able to verify the validity of the router tag TR

given only its state stR, the header H and the franking tag C2. The channel
uses ⊥ to indicate an error. Once a state is marked as bogus (i.e. st =⊥), it
cannot be used anymore in the invokation of the functions snd, rcv and rprt, since
⊥/∈ S. This corresponds to the reasonable behaviour of an application refusing
to process any more data once an error has been detected. Error management in
channels is a full topic in itself (e.g. [BDPS13]) and can lead to vulnerabilities
(e.g. padding oracle attack [Vau02]). Here, we assume that an adversary does
not learn anything from an error apart from the failure of the corresponding
procedure. The randomness is uniquely determined by public nonces N . Nonces
can be used to perform randomized encryption but also to generate a random
opening key Kf , as in Facebook’s scheme. The role of the nonce is determined
by the underlying schemes used by the different algorithms. Finally, we give a
visualization of the channel in Figure 5.
Remarks. The key KR is the router’s secret key that can be used to generate
the router tags TR. In a real-life message franking protocol, all messages go
through the router, where they get tagged. Otherwise, clients could bypass the
tagging procedure and messages would not be reportable. Therefore, one could
imagine that a unique procedure for sending and tagging would be sufficient.
While making the MFC definition simpler, this would render the instantiation of
a real MFC difficult. Indeed, snd is meant to be executed by a client while tag
is run by the router. Thus, such a simplification would be impractical. However,
in the oracles of adversarial models used in the following sections, snd and tag
procedures will sometimes be considered as one operation, to model the fact that
a message sent is always seen by the router.

It is important for the security of the scheme, in particular for the receiver-
binding property, that the router knows the identity of the sender and the iden-
tity of the receiver. This is why these identities ids and idr are passed as argu-
ments in the tag and rprt procedures, respectively. Obviously, the router should
be able to verify these identities in order for the whole protocol to be secure,
otherwise one could tag messages on behalf of another user. However, through-
out this paper we assume that the parties and the router have established se-
cure keys and that the router can authenticate the sender and the reporter in
the corresponding procedures. It is a fair assumption since messaging protocols
usually encrypt and authenticate the communications between a client and the
server. For example, TextSecure (Signal’s ancestor) used to encrypt client-to-

A Message Franking Channel 11

snd
N

M

H

C

stsender

stsender

tag
ids

H

C2

TR

strouter

strouter

rcvN

H

C

M

Kf

streceiver

streceiver

rprt
idr

H

M,Kf

C2

TR

b

strouter

strouter

Fig. 5. Visualization of the message franking channel where C stands for the pair
(C1, C2).

router communications with TLS and it used to authenticate the client with
the phone number concatenated with some secret key [FMB+14]. Whatsapp en-
crypts communications to its servers with the Noise Protocol Framework and
it stores the client’s Curve25519 public key, allowing the router to authenticate
the user during the Diffie-Hellman key exchange protocol [Per18,Wha17].

4.1 Correctness of the channel.

As in a standard bidirectional channel [MP17], we require a MFC to have cer-
tain properties. In short, we want messages sent by a client to be decryptable
by the other participant without errors, assuming that the ciphertexts are not
modified in the channel and that the order of the messages is preserved. Also, a
message sent by a honest participant in the channel and correctly deciphered at
the receiving end should be reportable, assuming that all messages sent on the
channel are not modified (i.e. no active adversary).

Such requirements can be represented as a game, where only passive external
adversaries (i.e. adversaries that can only see and relay messages) are allowed and
where the participants are honest. The adversary can schedule snd/tag, rcv and
rprt procedures and it wins if a message sent can not be decrypted or reported
(i.e. rprt fails). This game is represented in Figure 6. We assume u ∈ {A,B},
N ∈ N , H ∈ H, M ∈ M, C1 ∈ C, C2 ∈ T , Kf ∈ Kf and TR ∈ TR. The

12 Löıs Huguenin-Dumittan and Iraklis Leontiadis

variables sA, sB , rA, rB keep track of the number of messages sent and received
by each participant. The variables hA and hB keep track of the state of each
participant (whether it has received modified/out-of-order messages). Note that
an adversary can be external and try to modify the messages on the channel
or it can be a participant who communicates with the other benign participant
and/or the router. If a participant u receives out-of-order/modified data, (i.e. if
the adversary actively attacks u), its variable hu is set to false. If hu = true we
say that u is clean. Observe that the adversary can win only if the participant u
used in the oracle query is clean. MA,B [], MB,A[], CA,B [] and CB,A[] record the
messages and ciphertexts exchanged. The adversary has access to three oracles:

– Osnd(u,N,M): The Osnd oracle takes the client identity u, a message and a
nonce, and it calls the snd and tag procedures on behalf of the participant
u. Then, it records the resulting ciphertext and franking/router tags, if the
client is still clean. This prevents the adversary from winning if the client u
had previously received out-of-order/modified messages.

– Orcv(u,N,H,C1, C2): With the oracle Orcv, an adversary can make a user u
receive (i.e. decrypt). Now, if this participant is still clean and the ciphertext
is delivered without modification (and in the right order) compared to the
one sent (condition in line 4), then the message recovered should be the one
sent. If this is not the case (condition in line 6), then the adversary wins.
Otherwise, if the condition at line 4 is not respected, then the ciphertext/tags
have been modified and the participant is flagged as not clean.

– Orprt(u, n,H,M,Kf , C2, TR): The adversary can use also the Orprt oracle to
report a given message on behalf of a user u, by providing the message along
with the tags. It also must specify the index n of the message (we assume
the adversary records the number of messages sent). As before, if the user
is clean and the header, the franking tag, the router tag and the message
were not modified compared to the one sent (conditions at lines 2-3), then
the participant/adversary should be able to report the message. If this is
not the case, the adversary wins. Otherwise, if the condition in line 3 is not
respected (i.e. the message, ciphertext or tags have been tampered with),
the participant is flagged as not clean.

Now, for any adversary A playing CORR and any channel Ch, we denote the
advantage of A as

AdvcorrCh (A) = Pr[CORRCh(A)⇒ true]

Definition 3 (Bidirectional Message Franking Channel Correctness).
We say that a message franking bidirectional channel Ch is correct if for any
adversary A playing the CORR game

AdvcorrCh (A) = 0

A Message Franking Channel 13

CORRCh(A)

1 : win← false

2 : (stA, stB , stR)←$ init

3 : sA ← 0; sB ← 0

4 : rA ← 0; rB ← 0

5 : hA ← true;hB ← true

6 : MA,B ← [];MB,A ← []

7 : CA,B ← [];CB,A ← []

8 : AO
snd,Orcv,Orprt

9 : return win

Oracle Orprt(u, n,H,M,Kf , C2, TR)

1 : (stR, b)← rprt(stR, u,H,M,Kf , C2, TR)

2 : if hu :

3 : if Cv,u[n] = (∗, H, ∗, C2, TR) and Mv,u[n] = M :

4 : if b = 0 :

5 : win← true

6 : else :

7 : hu ← false

8 : return b

Oracle Osnd(u,N,M)

1 : (stu, H,C1, C2)← snd(stu, N,M)

2 : (stR, TR)← tag(stR, u,H,C2)

3 : v ← {A,B} \ {u}
4 : if hu :

5 : Mu,v [su]←M

6 : Cu,v [su]← (N,H,C1, C2, TR)

7 : su ← su + 1

8 : return (C1, C2, TR)

Oracle Orcv(u,N,H,C1, C2)

1 : (stu,M,Kf)← rcv(stu, N,H,C1, C2)

2 : v ← {A,B} \ {u}
3 : if hu :

4 : if ru < su and Cv,u[ru] = (N,H,

5 : C1, C2, ∗) :

6 : if (M,Kf) =⊥ or Mv,u[ru] 6= M :

7 : win← true

8 : ru ← ru + 1

9 : else :

10 : hu ← false

11 : return (M,Kf)

Fig. 6. Correctness game for a bidirectional message franking channel.

Unidirectional correctness. Finally, for a unidirectional channel (i.e. only Alice
sends messages to Bob), the game of correctness is equivalent to the bidirectional
game of correctness as we see in Figure 7. The main differences are that the
participants are fixed in each oracle, the sender is always clean (since it cannot
receive messages) and we need less variables (only one copy of s, r, h, M and
C).

5 Security for message franking channel

5.1 Confidentiality

We elevate the MO-nRAND confidentiality game for nonce-based committing
AEAD schemes (see Section 3.3) to the bidirectional MFC case. Confidentiality
means that no adversary is able to retrieve information about the messages
exchanged by the participants. This notion concerns the exchange of messages
and not the reporting phase. In addition, we note that once an abusive message is
reported, it becomes public, in the sense that we do not specify how the message
is sent to the router for reporting (e.g. it could be sent in clear).

14 Löıs Huguenin-Dumittan and Iraklis Leontiadis

1-CORRCh(A)

win← false

(stA, stB , stR)←$ init

s← 0; r ← 0;h← true

M ← [];C ← []

AO
snd,Orcv,Orprt

return win

Oracle Orprt(n,H,M,Kf , C2, TR)

stB ← rprt(stB , N)

(stR, b)← rprt(stR, B,H,M,Kf , C2, TR)

if h :

if C[n] = (∗, H, ∗, C2, TR) and M [n] = M :

if b = 0 :

win← true

else :

h← false

return b

Oracle Osnd(N,M)

(stA, H,C1, C2)← snd(stA, N,H,M)

(stR, TR)← tag(stR, A,H,C2)

M [s]←M

C[s]← (N,H,C1, C2, TR)

s← s + 1

return (C1, C2, TR)

Oracle Orcv(N,H,C1, C2)

(stB ,M,Kf)← rcv(stB , N,H,C1, C2)

if h :

if r < s and C[r] = (N,H,C1, C2, ∗) :

if (M,Kf) =⊥ or M [r] 6= M :

win← true

r ← r + 1

else :

h← false

return (M,Kf)

Fig. 7. Correctness game for a unidirectional message franking channel.

While in a standard channel the adversary is external to the participants, in
the message franking case the adversary can also be the router. Therefore, in
the following games we give the adversary access to the router’s state stR. This
means the adversary does not need a tag and report oracle, as it is able to run
these procedures on its own.

The MO-2nREAL and MO-2nRAND games of Figure 8 are adapted from the
MO-nREAL and MO-nRAND games of Section 3.3. In both games, we assume
the adversary is nonce-respecting (i.e. it cannot query Osnd or Ochal twice with
the same nonce N .

The adversary wins if it can differentiate with non-negligible probability be-
tween the encryption of a message M and the encryption of a random bitstring.
The hu variables, as in the correctness games, let the adversary decrypt ci-
phertexts as long as it remains passive: the adversary only relays messages. In
particular, this prevents the adversary from winning by decrypting the cipher-
texts obtained from the Ochal oracle.

For a bidirectional MFC channel Ch, we define the nonce-based multiple open-
ing real-or-random (MO-2nRoR) advantage of any algorithm A as

Advmo-2nror
Ch (A) = |Pr[MO-2nREALCh(A)⇒ 1]− Pr[MO-2nRANDCh(A)⇒ 1]|

A Message Franking Channel 15

MO-2nREALCh(A)

(stA, stB , stR)←$ init

sA ← 0; sB ← 0; rA ← 0; rB ← 0

hA ← true;hB ← true

CA,B ← [];CB,A ← []

b
′ ← AO

snd,Orcv,Ochal,stR

return b
′

Oracle Osnd(u,N,M)

(stu, H,C1, C2)← snd(stu, N,M)

v ← {A,B} \ {u}
if hu :

Cu,v [su]← (N,H,C1, C2)

su ← su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf)← rcv(stu, N,H,C1, C2)

v ← {A,B} \ {u}
if ru < sv and Cv,u[ru] = (N,H,C1, C2) :

ru ← ru + 1

else :

hu ← false

if hu: return (M,Kf)

else : return ⊥

Oracle Ochal(u,N,M)

(stu, H,C1, C2)← snd(stu, N,M)

return (C1, C2)

MO-2nRANDCh(A)

(stA, stB , stR)←$ init

sA ← 0; sB ← 0; rA ← 0; rB ← 0

hA ← true;hB ← true

CA,B ← [];CB,A ← []

b
′ ← AO

snd,Orcv,Ochal,stR

return b
′

Oracle Osnd(u,N,M)

(stu, H,C1, C2)← snd(stu, N,M)

v ← {A,B} \ {u}
if hu :

Cu,v [su]← (N,H,C1, C2)

su ← su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf)← rcv(stu, N,H,C1, C2)

v ← {A,B} \ {u}
if ru < sv and Cv,u[ru] = (N,H,C1, C2) :

ru ← ru + 1

else :

hu ← false

if hu: return (M,Kf)

else : return ⊥

Oracle Ochal(u,N,M)

Mr ←$ {0, 1}|M|

(stu, H,C1, C2)← snd(stu, N,Mr)

return (C1, C2)

Fig. 8. Confidentality games for nonce-based bidirectional message franking channels.

5.2 Integrity

We adapt the MO-nCTXT integrity notions of committing AEAD to the bidi-
rectional MFC. Ciphertext integrity means that a receiver can only receive and
decrypt in-order and legitimate ciphertexts, which have been sent by another
participant. As in the MO-2nROR confidentiality notion, the adversary can be
the router and thus we give access to the state stR.

Let MO-2nCTXT be the game in Figure 9. By observing the Orcv oracle,
one can see that the adversary wins if the rcv procedure is successful but the
ciphertexts are not legitimate or they are received out-of-order. For a bidirec-
tional MFC Ch, we define the nonce-based multiple opening integrity advantage

16 Löıs Huguenin-Dumittan and Iraklis Leontiadis

MO-2nCTXTCh(A)

(stA, stB , stR)←$ init

sA ← 0; sB ← 0; rA ← 0; rB ← 0

CA,B ← [];CB,A ← []

win← false

AO
snd,Orcv,stR

return win

Oracle Osnd(u,N,M)

v ← {A,B} \ {u}
(stu, H,C1, C2)← snd(stu, N,M)

Cu,v [sA]← (N,H,C1, C2)

su ← su + 1

return (H,C1, C2)

Oracle Orcv(u,N,H,C1, C2)

(stu,M,Kf)← rcv(stu, N,H,C1, C2)

v ← {A,B} \ {u}
if (M,Kf) =⊥: return ⊥
if ru < sv and (N,H,C1, C2) = Cv,u[ru] :

ru ← ru + 1

return (M,Kf)

else : win← true

Fig. 9. Integrity game for nonce-based committing AEAD

of any algorithm A playing the MO-2nCTXT game as

Advmo-2nctxt
Ch (A) = Pr[MO-2nCTXTCh(A)⇒ true]

5.3 Binding security notions

In order to guarantee verifiable reporting of abusive messages, a MFC should ad-
here to sender and receiver binding notions as with message franking protocols
[Fac16,GLR17]. One difference between the committing AEAD binding defini-
tions and the ones defined here, is that in a channel the participants are stateful
and their behavior may evolve over time, whereas such concepts do not exist
in the security definitions of cryptographic primitives like committing AEAD.
The threat in such security definitions is a malicious participant and not an ex-
ternal adversary. Therefore, in all the binding games of this section, we assume
that the adversary can modify the states of the participants (Alice and Bob). In
particular, this allows the adversary to control sthe encryption key K.

Sender binding. Sender binding for MFC guarantees that any message received
without error by a client can be successfully reported to the router. This notion
is defined with the game s-2BIND presented in Figure 10.

The adversary has access to three oracles in addition to the states of Alice
and Bob. Here is a description of the s-2BIND game:

– s-2BINDCh(A): The rA, rB , sA, sB variables keep track of the number of mes-
sages received and sent by each party. The arrays SA,B [], SB,A[] store the
franking tags C2, the headers H and the associated router tags TR sent from
A to B and from B to A, respectively. The arrays RA,B [] and RB,A[] store
the tags and messages corresponding to ciphertexts when the rcv procedure
outputs a valid pair (M,Kf), after decryption.

A Message Franking Channel 17

s-2BINDCh(A)

1 : win← false

2 : (stA, stB , stR)←$ init

3 : sA ← 0; sB ← 0

4 : rA ← 0; rB ← 0

5 : SA,B ← [];SB,A ← []

6 : RA,B ← [];RB,A ← []

7 : AO
tag,Orcv,Orprt,stA,stB

8 : return win

Oracle Orprt(u,H,M,Kf , C2, TR)

1 : idr ← u

2 : v ← {A,B} \ {u}
3 : (stR, b)← rprt(stR, idr, H,M,Kf , C2, TR)

4 : if (H,M,Kf , C2, TR) in Rv,u and b = 0 :

5 : win← true

6 : return b

Oracle Orcv(u,N,H,C1, C2)

1 : v = {A,B} \ {u}
2 : if (H,C2, TR) in Sv,u for some TR :

3 : (stu,M,Kf)← rcv(stu, N,H,C1, C2)

4 : if (M,Kf) 6=⊥
5 : Rv,u[ru]← (H,M,Kf , C2, TR)

6 : ru ← ru + 1

Oracle Otag(u,H,C2)

1 : ids ← u

2 : (stR, TR)← tag(stR, ids, H,C2)

3 : v = {A,B} \ {u}
4 : Su,v [su] = (H,C2, TR)

5 : su ← su + 1

6 : return TR

Fig. 10. Game for message franking channel sender-binding security definition.

– Otag(u,H,C2): This oracle is used to modify the router state stR and to
obtain a router tag for a tuple (H,C2), with u as the sender. The header
H, the franking tag C2 and the router tag obtained TR are stored in the
corresponding array Su,v[] (line 4). This array is needed to ensure that a
router tag TR really corresponds to a header,franking tag pair (H,C2). Then,
the number of messages sent by the participant is incremented (line 5).
Finally, the router tag is returned to the adversary (line 6).

– Orcv(u,N,H,C1, C2): The Orcv oracle first checks that H and C2 corre-
sponds to a router tag TR (line 2) computed for a message sent by client
v. If this is the case, the rcv procedure is called and it outputs a plaintext,
opening key pair (M , Kf). If this pair is valid (i.e. not equal to ⊥), it is stored
in the appropriate array Rv,u alongside with the header and the tags (C2,
TR) (line 5). This means that these values correspond to a ciphertext that
decrypts to a valid message. Finally, the number of valid messages received
by u is incremented (line 6).

– Orprt(u,H,M,Kf , C2, TR): The oracle Orprt calls the rprt procedure on the
the header, the message, the opening key and the tags, with u as the reporter.
This allows an adversary to update the router state stR. Then, if the input
values correspond to some ciphertext that outputs a valid message but the
report procedure fails (line 4), the adversary wins.

The adversary can use the Orprt oracle to report a message on behalf of a user u.
If the message was actually sent and correctly decrypted by u then it is in Rv,u

with the corresponding header and tags. Therefore, if the message is in Rv,u but

18 Löıs Huguenin-Dumittan and Iraklis Leontiadis

r-2BINDCh(A)

1 : win← false

2 : (stA, stB , stR)←$ init

3 : sA ← 0; sB ← 0

4 : MA,B ← [];MB,A ← []

5 : AO
snd,Orprt,stA,stB

6 : return win

Oracle Osnd(u,N,H,M)

1 : ids ← u

2 : (stu, , C1, C2)← snd(stu, N,M)

3 : (stR, TR)← tag(stR, ids, H,C2)

4 : v = {A,B} \ {u}
5 : Mu,v [su]←M

6 : su ← su + 1

7 : return (C1, C2, TR)

Oracle Orprt(u,H,M,Kf , C2, TR)

1 : idr ← u; v = {A,B} \ {u}
2 : (stR, b)← rprt(stR, idr, H,M,Kf , C2, TR)

3 : if M not in Mv,u and b = 1 :

4 : win← true

5 : return b

Fig. 11. Game for franking channel receiver-binding security definition.

the rprt procedure fails, the adversary wins. Indeed, we ask an adversary to win
if the decryption is successful but the report procedure fails. We need to use
a second pair of arrays (SA,B , SB,A) to store the router tag TR corresponding
to a pair (H,C2). Otherwise, one could not store TR in the array Rv,u at line
5 of Orcv. Indeed, if TR was not stored in Rv,u, the adversary could specify a
random TR when reporting with legit values, making the verification fail. Finally,
we note that despite the fact the adversary has access to both user states, in a
real-life threat model the adversary would be only one of the participants (e.g.
Alice). However, since both participants share everything, it does not matter
if the adversary has access to one or both states. For any adversary A playing
s-2BIND and any channel Ch, the advantage of A is:

Advs−2bindCh (A) = Pr[s-2BINDCh(A)⇒ true]

Receiver binding. We recall that receiver binding assures that a malicious par-
ticipant cannot report an abusive message that was never sent. Receiver binding
for message franking channels is defined with the game r-2BINDCh presented
in Figure 11. In this game, the adversary represents two colluding participants
that can schedule snd/tag/rprt operations for message exchanges and then one
of the participants tries to report a message never sent to her/him. Since the
adversary controls the users states, it would need only access to tag/rprt oracles
since it can run the other algorithms by itself. However, the game should store
the sent messages (i.e. the ones the adversary requested a router tag for) in order
to compare them with the reported message in the Orprt oracle. Therefore, we
let the Osnd oracle run the snd procedure as well as the tag procedure. Here is
a description of the game:

A Message Franking Channel 19

Ar-2BIND

1 : M ←$M;N ←$N
2 : compute next Kf from (N,H,M, stA)

3 : (H,C1, C2, TR)← Osnd
(A,N,M)

4 : Orprt
(A,H,M,Kf , C2, TR)

Fig. 12. Attack on r-BIND game.

– r-2BINDCh(A): The sA, sB variables keep track of the number of messages
sent by each party. They are used as indexes for the arrays MA,B [],MB,A[]
that store all messages sent by A to B and B to A, respectively.

– Osnd(u,N,H,M): In the Osnd oracle, the message sent M is recorded in the
corresponding array (line 5) and the number of messages sent by the partici-
pant is incremented (line 6). The ciphertext, franking tag and router tag are
returned to the adversary (line 7). In short, this oracle allows an adversary
to obtain the router tag for any header/message tuple, while recording the
message. We let the adversary pass the header H as an argument since we
want the adversary to be able to get a router tag for any header.

– Orprt(u,H,M,Kf , C2, TR): The Orprt takes a header H, the message to be
reported M , an opening key Kf , a franking tag C2, a router tag TR and the
identity of the reporter u. At line 3, the condition checks that the submitted
message was not sent to the reporting participant and that the message
passes the rprt procedure. If this is the case, the adversary wins.

In order to respect this receiver binding notion, the router must be able
to check the sender and receiver of a message. Indeed, if this is not the case,
one can construct an adversary Ar-2BIND that always wins, as shown in Figure
12. Let Alice be the malicious participant. She picks a random message and a
random nonce and sends the corresponding ciphertext to Bob using the sending
oracle. Thus, the message is in the array MA,B . Note that Alice can compute the
opening key Kf since she controls stA, N,H and M . Finally, she reports Bob
as the sender of the message by calling the Orprt oracle. Since the message is
in MA,B but not in MB,A, the first part of the condition in line 3 of Orprt is
fulfilled. Thus, since all values used to report are legitimate, the report procedure
will succeed unless the router knows the message was actually sent by Alice to
Bob.
One solution to this problem is to incorporate the receiver/sender identities
in the router tag TR. This is done in the Facebook protocol by putting the
sender and receiver identities in some context data. The router tag TR becomes
TR = HMACKR

(C2 ‖ sender ‖ receiver) and the router can check whether the
participant A reporting an abusive message from participant A is telling the
truth or not and accept or reject accordingly. This shows the importance to
correctly manage the identity of the participants.

20 Löıs Huguenin-Dumittan and Iraklis Leontiadis

For any adversary A playing r-2BIND and any channel Ch, we write the ad-
vantage of A as

Advr−2bindCh (A) = Pr[r-2BINDCh(A)⇒ true]

In other words, in addition to the control of participants’ states, the adversary
must be able to modify the state of the router, as in a real exchange of messages.
Unidirectional binding notions. We present in Figure 13 the games r-1BIND
and s-1BIND defining unidirectional receiver and sender binding notions, re-
spectively. These games are similar to their bidirectional equivalent. However, in
a unidirectional MFC, if A is the sender and B is the receiver, then snd(stu, ∗)
fails if u 6= A , tag(stR, ids, ∗) fails if ids 6= A, rprt(stR, idr, ∗) fails if idr 6= B
and rcv(stu, ∗) fails if u 6= B. Therefore, the adversary can query Osnd,Otag

only with u = A and Orcv,Orprt only with u = B. For simplicity we omit the
argument u in all oracles.

6 Binding notions in the canonic composition

A bidirectional standard cryptographic channel made of two secure unidirec-
tional channels is not necessarily secure [MP17]. Therefore, it is of interest to
study the binding security of such constructions adapted to the MFC. More
precisely, we want to analyze the relations between unidirectional and bidirec-
tional receiver/sender binding, in a special channel called the canonic composi-
tion [MP17]. This channel captures the idea that real-life communication proto-
cols are often designed to be the composition of two independent unidirectional
secure channels.

6.1 Message franking canonic composition

The canonic construction is the straightforward composition of two unidirec-
tional MFC, when one party sends and the other receives and reports. Let
Ch = (init, snd, tag, rcv, rprt) be a unidirectional MFC with a participants space
P, a key space K, a nonce space N , a header space H, a message space M, a
ciphertext space C, an opening key space Kf , a franking tag space T , a router
tag space TR and a state space S. The canonic composition will use one instance
of Ch for the communication from Alice to Bob (→) and another for the com-
munication from Bob to Alice (←).
Let Ch′ = (init′, snd′, tag′, rcv′, rprt′) be the bidirectional MFC resulting from the
canonical composition of Ch described in Figure 14. Associated to this channel
Ch′ is a participants space P ′ = P, a key space K′ = K × K, a nonce space
N ′ = N , a header space H′ = H, a message space M′ =M, a ciphertext space
C′ = C, an opening key space K′f = Kf , a franking tag space T ′ = T , a router
tag space T ′R = TR and a state space S ′ = S × S.

A participant’s state consists of a state used to receive and another to send,
initialized in the init′ procedure. This procedure also creates a router state for

A Message Franking Channel 21

r-1BINDCh(A)

win← false

(stA, stB , stR)←$ init

s← 0;M ← []

AO
snd,Orprt,stA,stB

return win

Oracle Osnd(N,H,M)

ids ← A

(stu, , C1, C2)← snd(stu, N,M)

(stR, TR)← tag(stR, ids, H,C2)

M [s]←M

s← s + 1

return (C1, C2, TR)

Oracle Orprt(H,M,Kf , C2, TR)

idr ← B

(stR, b)← rprt(stR, idr, H,M,Kf , C2, TR)

if M not in M [] and b = 1 :

win← true

return b

s-1BINDCh(A)

win← false

(stA, stB)←$ init

stR ←$ initR

s← 0; r ← 0

S ← [];R← []

AO
tag,Orcv,Orprt,stA,stB

return win

Oracle Otag(H,C2)

ids ← A

(stR, TR)← tag(stR, ids, H,C2)

S[s] = (H,C2, TR)

s← s + 1

return TR

Oracle Orcv(N,H,C1, C2)

if (H,C2, TR) in S for some TR :

(stB ,M,Kf)← rcv(stB , N,H,C1, C2)

if (M,Kf) 6=⊥
R[r]← (H,M,Kf , C2, TR)

r ← r + 1

Oracle Orprt(H,M,Kf , C2, TR)

idr ← B

(stR, b)← rprt(stR, idr, H,M,Kf , C2, TR)

if (H,M,Kf , C2, TR) in R and b = 0 :

win← true

return b

Fig. 13. Games for receiver and sender binding security definitions in the unidirectional
MFC case.

the → channel and another for the ← channel. Then, when a party wants to
send a message, snd′ extracts the sending state and uses it as the state in the
snd call. The sender and reporter’s identities ids and idr are used in tag′ and
rprt′ to determine the direction of the communication (i.e. → or ←). This is
necessary for choosing the right router state stR, which is itself needed to invoke
tag and rprt. When a client receives a message, the receiving state is extracted
and rcv is called. If an error occurs during this procedure, the state is set to ⊥.

22 Löıs Huguenin-Dumittan and Iraklis Leontiadis

init′

(st
→
snd, st

→
rcv, st

→
R)←$ init

(st
←
snd, st

←
rcv, st

←
R)←$ init

stA ← (st
→
snd, st

←
rcv)

stB ← (st
←
snd, st

→
rcv)

stR ← (st
→
R , st

←
R)

return (stA, stB , stR)

snd′(st,N,M)

(stsnd, strcv)← st

(stsnd, H,C1, C2)← snd(stsnd, N,M)

st← (stsnd, strcv)

return (st,H,C1, C2)

tag′(stR, ids, H,C2)

(st
→
R , st

←
R)← stR

if ids = A :

(st
→
R , TR)← tag(st→R , H,C2)

else :

(st
←
R , TR)← tag(st←R , H,C2)

stR ← (st
→
R , st

←
R)

return (stR, TR)

rcv′(st,N,H,C1, C2)

(stsnd, strcv)← st

(strcv,M,Kf)← rcv(strcv, N,H,C1, C2)

if (M,Kf) 6=⊥:
st← (stsnd, strcv)

else :

st←⊥
return (st,M,Kf)

rprt′(stR, idr, H,M,Kf , C2, TR)

(st
→
R , st

←
R)← stR

if idr = B :

(st
→
R , b)← rprt(st→R , H,M,Kf , C2, TR)

else :

(st
←
R , b)← rprt(st←R , H,M,Kf , C2, TR)

stR ← (st
→
R , st

←
R)

if b = 1 : return (stR, 1)

else : return (⊥, 0)

Fig. 14. Canonic composition of two unidirectional MFC.

A Message Franking Channel 23

6.2 Security analysis

Let Ch be a unidirectional MFC and Ch′ be the bidirectional MFC resulting from
the canonic composition of two channels Ch. We study the relations between
the bidirectional binding notions r-2BIND, s-2BIND and their equivalent in the
unidirectional case r-1BIND, s-1BIND. We prove the two following results:

r-1BIND + r-1BIND ⇐⇒ r-2BIND (4)

s-1BIND + s-1BIND ⇐⇒ s-2BIND (5)

The⇐ direction is trivial in both cases, as if one is able to break the binding
security of one of the two channels composing Ch′, then Ch′ will not be binding
either. Therefore, we state only the =⇒ relations.

Theorem 1 (Receiver binding). Let Ch be a receiver binding unidirectional
MFC (r-1BIND). Then, its canonic composition Ch′ is receiver binding (r-
2BIND). More precisely, for any adversary A playing r-2BIND against Ch′,
there exists a r-1BIND adversary B against Ch s.t.

Advr-2bindCh′ (A) ≤ 2 · Advr-1bindCh (B)

Theorem 2 (Sender binding). Let Ch be a sender binding unidirectional MFC
(r-1BIND). Then, its canonic composition Ch′ is sender binding (s-2BIND).
More precisely, for any adversary A playing s-2BIND against Ch′, there exists
a s-1BIND adversary B against Ch s.t.

Advs-2bindCh′ (A) ≤ 2 · Advs-1bindCh (B)

Due to space contraints proofs for Theorem 1 and 2 are deffered in the appendix
section.

6.3 Generic Composition

Both Theorem 1 and Theorem 2 hold in the case of the canonic composition
but not for any composition. For example, one can easily design a bidirectional
MFC which is not r-2BIND from two r-1BIND unidirectional MFC. Consider the
canonic composition of Figure 14 but we modify it such that the communication
keys and the router keys are the same in both directions (i.e. K→ = K← and
K→R = K←R). That can be achieved by making only one call to init in init′ and
making each state equal in both directions. These modifications do not change
the r-1BIND security of the channel. In particular, if the unidirectional MFC
used in the composition is r-1BIND, then the composition is still r-1BIND in
each direction.

Now consider the adversary Ar-2BIND of Figure 12 presented in Section 5.3.
It is easy to see that this adversary will win with probability 1 against the

24 Löıs Huguenin-Dumittan and Iraklis Leontiadis

new composition. Indeed, it is interesting to observe that the original canonic
composition is r-2BIND secure because the router keys K→R and K←R are likely
to be different. Therefore, they prevent Ar-2BIND from winning since the router
key from the → channel is used to generate the router tag TR but the adversary
tries to report a message in the ← channel. In fact, the router keys act as the
identifiers of the sender/receiver in the router tag. Hence, if the router keys
are the same for both directions (as in the modified composition), the resulting
bidirectional MFC will not be r-2BIND secure.

7 MFC Instantiation

Now that the security properties of a MFC have been defined, we wish to instan-
tiate a practical MFC that fulfills these properties. Our construction is based
on two cryptographic primitives, namely a committing AEAD and a message
authentication code (MAC) scheme. We show how to combine these primitives
with some message counters to obtain a practical bidirectional MFC.

7.1 Message Authentication Code (MAC)

We recall the definition of MAC:

Definition 4. A message authentication code (MAC) scheme is a tuple of three
algorithms MAC = (initmac, tagmac, vrfymac). Associated to the scheme is a key
space K, a message space M and a tag space T . The three procedures of a MAC
scheme operate as follows:

– K ←$ initmac: The initialization procedure samples a new key K ←$K and
returns it.

– T ← tagmac(K,M): The tagging procedure tagmac takes a key K ∈ K and a
message M ∈M, and it outputs a tag T ∈ T .

– b ∈ vrfymac(K,M, T): The verification algorithm vrfymac takes a K ∈ K, a
message M ∈ M and a tag T ∈ T , and it outputs a result bit b ∈ {0, 1}.
It is required that vrfymac(K,M, T) outputs 1 if T = tagmac(K,M) and 0
otherwise.

The usual security property for a MAC scheme MAC is unforgeability under
chosen-message attack (UF-CMA). It is defined by the game UF-CMA presented
in Figure 15. In this game, the adversary can query tags for any message and
verify any tag given a message. The adversary wins if the verification is successful
in Ovrfy but the message was not queried to the tag oracle Otag. For a given
MAC scheme MAC, we define the UF-CMA advantage of any adversary A as

Advuf-cma
MAC (A) = Pr[UF-CMAMAC(A)⇒ true]

A Message Franking Channel 25

UF-CMAMAC(A)

win← false ;K ←$K
i← 0;S ← []

AO
tag,Ovrfy

return win

Oracle Otag(M)

S[i]←M

i← i + 1

T ← tagmac(K,M)

return T

Oracle Ovrfy(M,T)

b← vrfymac(K,M, T)

if b = 1 and M /∈ S[]

win← true

return b

Fig. 15. Unforgeability under chosen-message attack game.

7.2 Construction

Let nCE = (initnCE, enc, dec, vrfynCE) be a secure nonce-based committing AEAD
and MAC = (initmac, tagmac, vrfymac) be a secure MAC scheme. Our MFC con-
struction is given in Figure 16. We refer to it as MF. The channel operates as
follows:

– (stA, stB , stR)←$ init: The initialization procedure samples the keys and cre-
ates the states. Alice and Bob states are made of their identity, the secret
key and the send and receive counters. The router’s state is made of the
router key.

– (st,H,C1, C2)← snd(st,N,M): The sending procedure computes the header
H as the identity concatenated with the number of sent messages. Then, the
ciphertexts are computed, the sent counter is incremented and the values
are returned.

– (stR, TR) ← tag(stR, ids, H,C2): The router tag is computed as a MAC on
the sender/receiver identities, the header and the franking tag, with the
router key KR.

– (st,M,Kf) ← rcv(st,N,H,C1, C2): The sender identity and the message
sequence number are extracted from the header and the ciphertext is de-
crypted. If this fails or if the number of received messages is not equal to
the message sequence number, an error is returned. Otherwise, the number
of received messages is incremented and the new state, the plaintext and the
opening key are returned.

– (stR, b)← rprt(stR, idr, H,M,Kf , C2, TR): The reporter’s identity u and the
alleged sender’s identity v are extracted. Then, the router’s tag TR is verified
with the identities v and u along with the header H and the franking tag
C2. Finally, the message is verified to be legit using the franking tag and
the opening key Kf . If everything is successful, the procedure returns 1, as
a success.

7.3 Security analysis

Confidentiality. The ciphertexts sent by MF are output by the nonce-base com-
mitting AEAD nCE. Then, if an adversary can differentiate between real and
random ciphertexts output by MF, then it can differentiate between real and
random ciphertexts output by nCE. Therefore, if nCE is MO-nRoR secure, then

26 Löıs Huguenin-Dumittan and Iraklis Leontiadis

init

K ←$K;KR ←$K
sA ← 0; sB ← 0

rA ← 0; rB ← 0

stA ← A||K||sA||rA
stB ← B||K||sB ||rB
stR ← KR

return (stA, stB , stR)

snd(st,N,M)

u||K||su||ru ← st;H ← u||su
(C1, C2)← encK(N,H,M);

su ← su + 1; st← u||K||su||ru
return (st,H,C1, C2)

tag(stR, ids, H,C2)

KR ← stR;u← ids

if u /∈ {A,B} :

return (⊥,⊥)
v ← {A,B} \ {u}
TR ← tagmac(KR, u||v||H||C2)

return (stR, TR)

rcv(st,N,H,C1, C2)

u||K||su||ru ← st; v||sv ← H

(M,Kf)← decK(N,H,C1, C2)

if ru 6= sv or (M,Kf) =⊥:
return (⊥,⊥)

ru ← ru + 1

st← u||K||su||ru
return (st,M,Kf)

rprt(stR, idr, H,M,Kf , C2, TR)

KR ← stR;u← idr

if u /∈ {A,B} :

return (⊥, 0)
v ← {A,B} \ {u}
if vrfymac(KR, v||u||H||C2, TR) = 0 :

return (⊥, 0)
if vrfynCE(H,M,Kf , C2) = 0 :

return (⊥, 0)
return (stR, 1)

Fig. 16. Instantiation of a real MFC.

MF is MO-2nRoR secure. We state this formally in Theorem 3, skipping the
proof that simply follows from the observation given above.

Theorem 3 (MF confidentiality). Let MF be the MFC given in Figure 16,
based on a secure committing AEAD scheme nCE. Then, for any adversary A
playing the MO-2nRoR game there exists an adversary B such that

Advmo-2nror
MF (A) ≤ Advmo-nror

nCE (B)

Integrity. The integrity property of MF follows from the use of send and receive
counters and from the integrity of nCE. Formally, the following theorem holds:

Theorem 4. Let MF be the MFC given in Figure 16, based on a committing
AEAD scheme nCE. Then, for any adversary A playing the MO-2nCTXT game
there exists an adversary B such that

Advmo-2nctxt
MF (A) ≤ Advmo-nctxt

nCE (B)

Proof. We give here a sketch of the proof. We consider the MO-2nCTXT game
of Figure 9. For A to win either sv ≤ ru or (N,H,C1, C2) 6= Cv,u[ru] in Orcv.
Bboth cannot happen since Cv,u[ru] is not defined if ru ≥ sv.

Let cond1 be the event that the adversary wins with the first condition eval-
uating to true. It means that MF decrypted successfully but more messages were
received by u than sent by v. However, MF keeps track of the number of mes-
sages sent and received by putting the number of sent messages in the header.

A Message Franking Channel 27

Therefore, cond1 happens only if the rcv procedure of Figure 16 is invoked with
H ′ = v||s′v, where s′v is greater or equal than the actual sent messages, and
the decryption was successful. Therefore, we know that the adversary found
(N ′, H ′, C ′1, C

′
2) that decrypts successfully, with H ′ different from all headers

previously sent.
Now, let cond2 be the event that the adversary wins and the second condition

is satisfied, which implies that cond1 is false. As for the first condition, one can
deduce by inspection that if cond2 is true, then the adversary found a tuple
(N ′, H ′, C ′1, C

′
2) that was not output by the Osnd oracle before. Hence, these

two arguments mean that one can construct an adversary B playing the MO-
nCTXT game with nCE, which wins with a probability at least Pr[A wins] =
Pr[{cond1} ∪ {cond2}].

Sender binding. The sender binding property follows directly from the sender
binding property of nCE. Formally, we state the following theorem:

Theorem 5. Let MF be the MFC given in Figure 16, based on a committing
AEAD scheme nCE. Then, for any adversary A playing the S-2BIND game
there exists an adversary B such that

Advs-2bindMF (A) ≤ Advs-bindnCE (B)

Proof. In the s-2BIND game (Figure 10), the adversary wins if the values
(H,M,Kf , C2, TR) were successfully received by user u (i.e. it is in the Rv,u

array) but the rprt procedure fails. In the MF construction, rprt can fail for two
reasons:

1. The first reason is that the verification of the router tag TR failed. Now, in
the s-2BIND game, if the adversary wins by querying Orprt as client u, then
the tuple (H,C2, TR) is in the Rv,u array. This means that this tuple was pre-
viously in the Sv,u array and therefore, TR was output by tag(stR, v,H,C2),
with v = {A,B} \ {u}. Thus, TR = tagmac(KR, v||u||H||C2) and the router
tag verification algorithm outputs the result of vrfymac(KR, v||u||H||C2, TR),
which can only be a success if we assume the MAC scheme to be correct.
Hence, if the adversary wins, that contradicts the failure of the router tag
verification procedure.

2. The second reason is that the franking tag verification vrfynCE(H,M,Kf , C2)
fails. Since the input values are in Rv,u (assuming A queried Orprt as user
u), it means that rcv was successful, implying that decK(N,H,C1, C2) was
successful. This means that A found a tuple (N,H,C1, C2,K) such that the
decryption is successful but the verification fails.

Hence, given an adversary A who plays s-2BIND, it is trivial to construct an
adversary B that wins the s-BIND game with at least the same probability as
A. ut

28 Löıs Huguenin-Dumittan and Iraklis Leontiadis

Receiver binding. The receiver binding property of our construction is a conse-
quence of the receiver binding property of the committing AEAD scheme and
of the security against forgery of the MAC scheme used. We state the following
theorem:

Theorem 6. Let MF be the MFC given in Figure 16, based on a committing
AEAD scheme nCE and a MAC scheme MAC. Then, for any adversary A playing
the S-2BIND game there exists an adversary B and an adversary C such that

Advr-2bindMF (A) ≤ Advr-bindnCE (B) + Advuf-cma
MAC (C)

Proof. We proceed with the game hopping technique. Let the game G0 in Figure
17 be the r-2BIND game played by adversary A against MF, except that the rprt
procedure has been made explicit in Orprt and that the router tags TR output
by the Osnd oracle are stored in an array T [] along with the corresponding
(u, v,H,C2) tuple.

Now, consider the modified game G1 (modifications boxed in Figure 17),
which aborts if the router tag verification is successful but TR was not obtained
from a tag query with (v, u,H,C2) in the sending oracle Osnd. Let this con-
dition be forge. Then, we have |Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]| ≤ Pr[forge]. By
inspection, we see that if forge happens, it means that the adversary found a
message m′ = v||u||H||C2 and a corresponding tag TR, without having queried
tagmac(KR,m

′). Hence, given A one can construct a straightforward UF-CMA
adversary C against MAC that achieves an advantage of Pr[forge].

Let G2 be the game G1 but Orprt is modified such that it aborts if everything
is successful, but the message M is not in Mv,u (modifications in grey in Figure
17). In other words, we modify G1 such that the adversary never wins. If this
condition is fulfilled in line 11 of Orprt, we know that (v, u,H,C2, TR) was ob-
tained from a query to Osnd with some message M ′ because line 7 of Orprt was
not executed. Therefore, M ′ is in Mv,u and thus M 6= M ′. If this condition is
satisfied, it means that the adversary found a tuple (H,M,M ′,Kf ,K

′
f , C2) with

M 6= M ′ such that vrfnCE(H,M,Kf , C2) = vrfnCE(H,M ′,K ′f , C2) = 1. Hence,
given the adversary A, one can construct a straightforward r-BIND adversary
B against nCE such that |Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Advr-bindnCE (B). Finally, we
have Pr[G2 ⇒ 1] = 0, which concludes the theorem. ut

8 Conclusion

In this paper, we introduced a message franking channel (MFC) which apart
from message confidentiality/integrity, resistance to message drops, out of order
delivery and replay attacks guarantees sender and receiver binding: Namely,
the sender cannot send an abusive message, which cannot be reported to a
third party and the receiver cannot report a fake message. Even if all of the
definitions were presented in the unidirectional and bidirectional case, we focused
mainly on bidirectional security definitions. We presented two results on binding

A Message Franking Channel 29

G0(A), G1(A) , G2(A)

1 : win← false

2 : (stA, stB , stR)←$ init

3 : sA ← 0; sB ← 0

4 : MA,B ← [];MB,A ← []

5 : AO
snd,Orprt,stA,stB

6 : t← 0;T ← []

7 : return win

Oracle Osnd(u,N,H,M)

1 : ids ← u

2 : (stu, , C1, C2)← snd(stu, N,M)

3 : (stR, TR)← tag(stR, ids, H,C2)

4 : v = {A,B} \ {u}
5 : Mu,v [su]←M

6 : T [t]← (u, v,H,C2, TR); t← t + 1

7 : su ← su + 1

8 : return (C1, C2, TR)

Oracle Orprt(u,H,M,Kf , C2, TR)

1 : idr ← u; v = {A,B} \ {u}
2 : KR ← stR;u← idr

3 : if u /∈ {A,B} :

4 : stR ←⊥; return 0

5 : if vrfymac(KR, v||u||H||C2, TR) = 0 :

6 : stR ←⊥; return 0

7 : if (v, u,H,C2, TR) not in T : abort

8 : if vrfynCE(H,M,Kf , C2) = 0 :

9 : stR ←⊥; return 0

10 : if M not in Mv,u :

11 : abort

12 : win← true

13 : return 1

Fig. 17. Games for proof of Theorem 6.

properties in the canonic composition of two unidirectional MFC. In particular,
we proved that two unidirectional receiver binding MFC are sufficient to create
a bidirectional receiver binding MFC. In addition, we stressed that these results
do not necessarily hold in general but only in the canonic composition. Finally,
we gave an instantiation of a bidirectional MFC given a secure nonce based
committing AEAD [GLR17] and a message authentication code.

References

BDPS13. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G Paterson, and Mar-
tijn Stam. On symmetric encryption with distinguishable decryption fail-
ures. In International Workshop on Fast Software Encryption, pages 367–
390. Springer, 2013.

BH17. Colin Boyd and Britta Hale. Secure channels and termination: The last
word on tls. Cryptology ePrint Archive, Report 2017/784, 2017. https:

//eprint.iacr.org/2017/784.
BHMS15. Colin Boyd, Britta Hale, Stig Frode Mjolsnes, and Douglas Stebila. From

stateless to stateful: Generic authentication and authenticated encryption
constructions with application to tls. Cryptology ePrint Archive, Report
2015/1150, 2015. https://eprint.iacr.org/2015/1150.

BKN02. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenti-
cated encryption in ssh: provably fixing the ssh binary packet protocol. In
Proceedings of the 9th ACM conference on Computer and communications
security, pages 1–11. ACM, 2002.

https://eprint.iacr.org/2017/784
https://eprint.iacr.org/2017/784
https://eprint.iacr.org/2015/1150

30 Löıs Huguenin-Dumittan and Iraklis Leontiadis

DGRW18. Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, 2018.

Fac16. Facebook. Messenger secret conversations, 2016. https://fbnewsroomus.

files.wordpress.com/2016/07/secret_conversations_whitepaper-1.

pdf.
FMB+14. Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg

Schwenk, and Thorsten Holz. How secure is textsecure? Cryptology ePrint
Archive, Report 2014/904, 2014. https://eprint.iacr.org/2014/904.

GLR17. Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via
committing authenticated encryption. Cryptology ePrint Archive, Report
2017/664, 2017. https://eprint.iacr.org/2017/664.

GM17. Felix Günther and Sogol Mazaheri. A formal treatment of multi-key
channels. Cryptology ePrint Archive, Report 2017/501, 2017. https:

//eprint.iacr.org/2017/501.
KPB03. Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure cryp-

tographic transforms, or how to encrypt and mac. Cryptology ePrint
Archive, Report 2003/177, 2003. https://eprint.iacr.org/2003/177.

Mar17. Giorgia Azzurra Marson. Real-World Aspects of Secure Channels: Fragmen-
tation, Causality, and Forward Security. PhD thesis, Technische Universität
Darmstadt, 2017.

MP17. Giorgia Azzurra Marson and Bertram Poettering. Security notions for bidi-
rectional channels. Cryptology ePrint Archive, Report 2017/161, 2017.
https://eprint.iacr.org/2017/161.

Per18. Trevor Perrin. The noise protocol framework. http://noiseprotocol.

org/noise.html, 2018. Accessed: 2018-09-03.
PR18. Bertram Poettering and Paul Rösler. Ratcheted key exchange, revisited.

Cryptology ePrint Archive, Report 2018/296, 2018. https://eprint.iacr.
org/2018/296.

Vau02. Serge Vaudenay. Security flaws induced by cbc padding — applications
to ssl, ipsec, wtls... In Lars R. Knudsen, editor, Advances in Cryptology
— EUROCRYPT 2002, pages 534–545, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

Wha17. Whatsapp. Whatsapp encryption overview, 2017. https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf.

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://eprint.iacr.org/2014/904
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2017/501
https://eprint.iacr.org/2017/501
https://eprint.iacr.org/2003/177
https://eprint.iacr.org/2017/161
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html
https://eprint.iacr.org/2018/296
https://eprint.iacr.org/2018/296
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

A Message Franking Channel 31

A Supplementary Material

A.1 Proofs

Theorem 1 (Receiver binding). Let Ch be a receiver binding unidirectional
MFC (r-1BIND). Then, its canonic composition Ch′ is receiver binding (r-
2BIND). More precisely, for any adversary A playing r-2BIND against Ch′,
there exists a r-1BIND adversary B against Ch s.t.

Advr-2bindCh′ (A) ≤ 2 · Advr-1bindCh (B)

Proof. In order to prove this statement, we follow the same method used to
prove Theorem 2 in [MP17]. Let win→ be the event that A wins the r-2BIND
game by querying Orprt(u, ∗) with u = B. In other words, win→ happens when
line 4 of Orprt in Figure 11 is executed and u = B. Similarly, win← is the event
that line 4 of Orprt in Figure 11 is executed and u = A.
Now, we consider a sequence of games. Let G0 be the r-2BIND game played by
adversary A against the channel Ch′. Let G1 be the same game as G0 but the
game returns false when win→ happens. Let G2 be the same as G1 but the game
returns false when win← happens. We deduce the following results:

|Pr[G0 ⇒ true]− Pr[G1 ⇒ true]| ≤ Pr[win→]

|Pr[G1 ⇒ true]− Pr[G2 ⇒ true]| ≤ Pr[win←]

Pr[G2 ⇒ true] = 0

Also,

Advr-2bindCh′ (A) = Pr[G0 ⇒ true]

≤ |Pr[G0 ⇒ true]− Pr[G1 ⇒ true]|
+ |Pr[G2 ⇒ true]− Pr[G1 ⇒ true]|
+ Pr[G2 ⇒ true]

Hence,
Advr-2bindCh′ (A) ≤ Pr[win→] + Pr[win←] (6)

Now, given the adversary A, we construct a r-1BIND adversary B→ (respec-
tively B←) against channel Ch that wins with probability Pr[win→] (respectively
Pr[win←]). Consider the adversary B→ playing the r-1BIND game with chan-
nel Ch in Figure 18. It has access to the Osnd and Orprt oracles and the states
st→snd, st

→
rcv (i.e. stA and stB in the r-1BIND game in Figure 13). The adversary

B→ creates its own instance of Ch by sampling the necessary states randomly
(line 1-4). Then, B→ runs A. The latter calls Osnd

A and Orprt
A oracles. In both

of these oracles, A’s queries in the → direction (Alice sends/Bob reports) are
relayed to B→’s own oracles (line 3 in Osnd

A and Orprt
A). A’s queries in the other

direction are answered by B→ running its own channel (lines 5-8 in Osnd
A and

32 Löıs Huguenin-Dumittan and Iraklis Leontiadis

line 5 in Orprt
A). Overall, B→ creates a canonic composition of its own channel

for the ← direction and of the channel created in the r-1BIND game for the →
direction. A runs exactly as in the G0 game, except when it wins. Now, consider
A winning in the G0 game with a → report query (i.e. win→ event). Then, in
the r-1BIND game, the winning query is forwarded to Orprt by B→ and line 5 of
Orprt in the r-1BIND game of Figure 13 is executed, making B→ win. B→ wins
because the array M in the r-1BIND game played by B→ is modified exactly as
the array MA,B in the game G0 played by A. Thus, if win→ happens, then the
condition allowing B→ to win in r-1BIND (line 4 of Orprt in Figure 13) evaluates
to true. Therefore, we obtain

Advr-1bindCh (B→) ≥ Pr[win→]

Similarly, one can construct an adversary B← by inverting the directions accord-
ingly in Figure 18, obtaining

Advr-1bindCh (B←) ≥ Pr[win←]

Finally, we construct an adversary B that chooses uniformly at random to run
B→ or B←, achieving a total advantage of

Advr-1bindCh (B) ≥ 1

2
Pr[win→] +

1

2
Pr[win←]

Hence, by Eq. (6), we conclude that

Advr-2bindCh′ (A) ≤ Pr[win→] + Pr[win←] ≤ 2 · Advr-1bindCh (B)

ut

Theorem 2 (Sender binding). Let Ch be a sender binding unidirectional MFC
(r-1BIND). Then, its canonic composition Ch′ is sender binding (s-2BIND).
More precisely, for any adversary A playing s-2BIND against Ch′, there exists
a s-1BIND adversary B against Ch s.t.

Advs-2bindCh′ (A) ≤ 2 · Advs-1bindCh (B)

Proof. The proof is similar to the one of Theorem 1.

A Message Franking Channel 33

B→(Osnd,Orprt, st→snd, st
→
rcv)

1 : (st
←
snd, st

←
rcv, st

←
R)←$ init

2 : stA ← (st
→
snd, st

←
rcv)

3 : stB ← (st
←
snd, st

→
rcv)

4 : AO
tag
A ,Orprt

A ,stA,stB

Oracle Orprt
A (u,H,M,Kf , C2, TR)

1 : idr ← u

2 : if u 6= A :

3 : b← Orprt
(H,M,Kf , C2, TR)

4 : else :

5 : (st
←
R , b)← rprt(st←R , idr, H,M,Kf , C2, TR)

6 : return b

Oracle Osnd
A (u,N,H,M)

1 : ids = u

2 : if u 6= B :

3 : (C1, C2, TR)← Osnd
(N,H,M)

4 : else :

5 : (stsnd, strcv)← stB

6 : (stsnd, , C1, C2)← snd(stsnd, N,M)

7 : (st
←
R , TR)← tag(st←R , ids, H,C2)

8 : stB ← (stsnd, strcv)

9 : return C1, C2, TR

Fig. 18. Reduction for the proof of Theorem 1.

	A Message Franking Channel
	Introduction
	Notation
	Message franking protocols
	Facebook's scheme
	Commiting AEAD
	Security of committing AEAD

	Cryptographic channel for message franking (MFC)
	Correctness of the channel.

	Security for message franking channel
	Confidentiality
	Integrity
	Binding security notions

	Binding notions in the canonic composition
	Message franking canonic composition
	Security analysis
	Generic Composition

	MFC Instantiation
	Message Authentication Code (MAC)
	Construction
	Security analysis

	Conclusion
	Supplementary Material
	Proofs

