
Registration-Based Encryption:

Removing Private-Key Generator from IBE

Sanjam Garg∗ Mohammad Hajiabadi†

Mohammad Mahmoody‡ Ahmadreza Rahimi§

September 26, 2018

Abstract

In this work, we introduce the notion of registration-based encryption (RBE for short) with
the goal of removing the trust parties need to place in the private-key generator in an IBE
scheme. In an RBE scheme, users sample their own public and secret keys. There will also be
a “key curator” whose job is only to aggregate the public keys of all the registered users and
update the “short” public parameter whenever a new user joins the system. Encryption can still
be performed to a particular recipient using the recipient’s identity and any public parameters
released subsequent to the recipient’s registration. Decryption requires some auxiliary informa-
tion connecting users’ public (and secret) keys to the public parameters. Because of this, as the
public parameters get updated, a decryptor may need to obtain “a few” additional auxiliary
information for decryption. More formally, if n is the total number of identities and κ is the
security parameter, we require the following.

• Efficiency requirements: (1) A decryptor only needs to obtain updated auxiliary infor-
mation for decryption at most O(log n) times in its lifetime, (2) each of these updates are
computed by the key curator in time poly(κ, log n), and (3) the key curator updates the
public parameter upon the registration of a new party in time poly(κ, log n). Properties
(2) and (3) require the key curator to have random access to its data.

• Compactness requirements: (1) Public parameters are always at most poly(κ, log n)
bits, and (2) the total size of updates a user ever needs for decryption is poly(κ, log n) bits.

We present feasibility results for constructions of RBE based on indistinguishably obfusca-
tion. We further provide constructions of weakly efficient RBE, in which the registration step
is done in poly(κ, n), based on CDH, Factoring or LWE assumptions. Note that registration is
done only once per identity, and the more frequent operation of generating updates for a user,
which can happen more times, still runs in time poly(κ, log n). We leave open the problem of
obtaining standard RBE (with poly(κ, log n) registration time) from standard assumptions.

∗sanjamg@berkeley.edu Berkeley. Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract
N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.
†mdhajiabadi@berkeley.edu Berkeley and University of Virginia. Supported by NSF award CCF-1350939 and

AFOSR Award FA9550-15-1-0274.
‡mohammad@virginia.edu University of Virginia. Supported by NSF CAREER award CCF-1350939, and two

University of Virginia’s SEAS Research Innovation Awards.
§ahmadreza@virginia.edu University of Virginia. Supported by NSF award CCF-1350939.

1

Contents

1 Introduction 3
1.1 Technical Overview . 5

2 Preliminaries 8

3 Formal Definition of Registration-Based Encryption 9

4 IO-Based Construction of RBE 14
4.1 Proofs of Completeness, Compactness and Efficiency 15
4.2 Proof of Security . 16

4.2.1 Simple Case of One User . 16
4.2.2 General Case of Multiple Users . 19

5 Basing Weakly-Efficient RBE on Standard Assumptions 23
5.1 Proof of Security . 26

2

1 Introduction

Public-key encryption [DH76, RSA78, GM82] allows Alice to send Bob private messages without
any a-priori shared secrets. However, before Alice can send any messages to Bob, she must obtain
Bob’s public key. Enabling Alice to obtain Bob’s public key often requires additional public-key
infrastructure and in some cases complex certification authorities; consequently, making implemen-
tation of public-key encryption rather cumbersome.

With the goal of simplifying key-management in public-key encryption, Shamir [Sha84] intro-
duced the notion of identity based encryption (IBE). An IBE scheme allows Alice to encrypt her
messages to Bob knowing just the identity of Bob and some additional system public parameters.
In this setup, Bob can then decrypt Alice’s ciphertexts using an identity-specific secret key that he
obtains from the private key generator (PKG). In their celebrated work, Boneh and Franklin [BF01]
provided the first construction of IBE using bilinear maps. A long line of subsequent research has
provided many other constructions of IBE based on a variety of assumptions [Coc01, DG17]. IBE
serves as the basis of several real-world systems (e.g., in systems by Voltage security) to simplify
key-management.

Despite its significant advantages, one important limitation of IBE schemes is the so-called
key-escrow problem. Namely, in an IBE scheme a PKG can generate the identity-specific secret
key for any identity. This allows the PKG to arbitrarily decrypt messages that are intended for
specific recipients. While in certain applications it is reasonable to place trust in a PKG, doing so
is not always acceptable. This limitation of IBE often attracts significant criticism and restricts
applicability in certain scenarios. In words of Rogaway [Rog15],

“But this convenience is enabled by a radical change in the trust model: Bob’s secret
key is no longer self-selected. It is issued by a trusted authority. That authority knows
everyone’s secret key in the system. IBE embeds key-escrow indeed a form of key-escrow
where a single entity implicitly holds all secret keyseven ones that haven’t yet been issued.
[...] Descriptions of IBE don’t usually emphasize the change in trust model. And the
key-issuing authority seems never to be named anything like that: it’s just the PKG,
for Private Key Generator. This sounds more innocuous than it is, and more like an
algorithm than an entity.”

With the goal of enhancing the applicability of IBE, prior works suggested ways for reducing the
level of trust that parties need to place in the PKG. Boneh and Franklin [BF01] suggested the use
of multiple PKGs, instead of just one, with the goal of making the trust de-centralized. This idea
was further explored in subsequent work (e.g., see [CHSS02, PS08, KG10]). In a different approach,
Goyal [Goy07], later followed by Goyal et al. [GLSW08], studied the notion of accountable IBE,
which allows users to get their decryption keys from the PKG using a secure key generation protocol.
Such schemes provide safeguard against a malicious PKG who might distribute the identity-specific
secret key for a particular user to unauthorized parties, as by doing so it risks the possibility of
being caught in the future. Another approach to the key escrow problem, studied in [CCV04,
Cho09, WQT18], involves settings in which the number of identities is huge, limiting the server’s
ability of finding out the receiver identity when it is chosen at random; hence, guaranteeing a form
of anonymity. Finally, Al-Riyami and Paterson [ARP03] put forward the notion of “Certificateless”
Public Key Cryptography which is a hybrid of IBE and public-key directories, but which, on the
down side, does not let the sender use the system as a true IBE, because more information about
the user needs to be read from the public-key infrastructure before encrypting a message to them.

3

None of the above approaches, however, resolve the key-escrow problem entirely, as the PKG
(or a collection of several of them) can still decrypt all ciphertexts in the system. Indeed even
a trusted PKG may not be able to protect ciphertexts against a subpoena requesting decryption
keys. This state of affairs leads us to the main question of this work:

Can we entirely remove PKG from IBE schemes?

A new primitive: registration-based encryption (RBE). In this work, we pursue a new
approach to constructing IBE schemes by introducing a new notion which we call registration-based
encryption, and which does not suffer from the key-escrow problem. Recall that in traditional
IBE schemes, the PKG plays an active role in maintaining the cryptographic secrets corresponding
to the public parameters of the system, leading to the key-escrow problem. Deviating from this
approach, in our RBE we replace the PKG with a much weaker entity that we call a key curator.
A key curator does not possess any cryptographic secrets and just plays the role of aggregating the
public keys of the users.

In more detail, in an RBE scheme each user samples its own public key and secret key and
provides its identity and the chosen public key to the key curator.1 The key curator is now tasked
with the goal of curating this new user’s public key in the public parameters. Towards this, the
key curator updates the public parameters and publicizes the new public parameters. Thus, unlike
traditional IBE schemes, the public parameters in an RBE scheme evolve as new users register in
the system. For example, let pp0, pp1, . . . , ppn be the different instances of the public parameters in
the system, where ppi is the public parameter after i users have registered in the system. Just like an
IBE scheme, we require that the size of the public parameter is always small: |ppi| ≤ poly(κ, log n)
for i ≤ n, where κ is the security parameter and n is the number of users in the system.

In an RBE scheme, decryption by a user is performed using its secret key and some auxiliary
information that connects its public key with system’s public parameters. Note that as new users
join the system and public parameters are updated, an update to the auxiliary information connect-
ing a user’s public key to the new public parameters is necessary.2 However, it would be prohibitive
to update each user’s auxiliary information (needed for decryption) after each single registration.
Thus, we require that the effect of registration by new users on the previously registered users
is minimal. In particular, we require that a registered user needs to query the key curator for
auxiliary information connecting its public key to the public parameters at most O(log n) times in
its lifetime where n is the total number of registered users. Additionally, we require that the total
size of the auxiliary information provided by the key curator needed for any decryption is at most
poly(κ, log n) for security parameter κ.

Our results. We consider two variants of RBE schemes based on the efficiency of the registration
and give constructions for both of them. In particular, we construct (standard) RBE using indis-
tinguishabiltiy obfuscation, and we construct a “weakly efficient” variant of this primitive based
on more standard assumptions.
• RBE based on IO : First, we construct (standard) RBE schemes in which the running time

of key curator for every new user registration is poly(κ, log n) for security parameter κ assuming
the key curator has random access to its auxiliary information. Other than the desired efficiency

1The key curator will need to verify the identity of the user requesting the registration as it is done by certification
authorities in public-key infrastructure.

2Note that since the public parameters are small, they cannot contain the public keys of all the registered parties.

4

itself, one motivation for such minimization in curator’s complexity is that since the work done
in each user registration is small, it is then more reasonable to distribute the key curator’s job
between the users themselves, removing the need of a dedicated key curator entirely. In such a
system, a new user will only need to do a “small” amount of public computation to update the
public parameters at the time of joining the system. Moreover, any previously registered user
could obtain its updated auxiliary information needed for decryption from the public ledger as
well. We obtain a feasibility result for this notion based on somewhere statistically binding hash
functions [HW15] and indistinguishably obfuscation [BGI+01, GGH+13].
• RBE with weakly-efficient registration: Second, we consider a setting where the key curator

is allowed to be “weakly efficient”; i.e., the running time of key curator for updating the public
parameters as a single new user registers can poly(κ, n). We call such RBE schemes weakly effi-
cient and obtain a construction of weakly-efficient RBE based on any hash garbling scheme. The
notion of hash garbling and its construction has been implicit in prior works [CDG+17, DG17,
DG17, DGHM18, BLSV18], and it was shown there that hash garbling can be realized based on
CDH, Factoring or LWE assumptions. In this work, we give a formal definition of this primitive
(Definition 5.1) and use it to construct RBE.

We leave open constructing RBE with poly(κ, log n) registration based on standard assumptions.

Communication cost of RBE compared with PKE and IBE. We view RBE as a hybrid
between PKE and traditional IBE. PKE schemes are communication heavy for encryptors. In
other words, each encryptor must obtain the public keys of each recipient that it sends encrypted
messages to. In contrast, IBE schemes remove the need for the communication by the encryptors —
specifically, encryptors no longer need to recover the public key of each user separately. However,
the decryptor must still obtain its identity-specific secret key via communication with the PKG.
Note that since this communication with PKG is only done once, the communication cost of an
IBE is much smaller than the communication cost of a PKE. However, this efficiency comes at the
cost of the key-escrow problem. Our RBE achieves, in large parts, the communication benefits of
IBE without the key-escrow problem. More specifically, in an RBE, the encryptors do not need
to recover the public key of each recipient individually. Additionally, a decryptor only needs to
interact with the key curator to obtain the relevant updates at most log n times in total.

IBE was originally proposed with the goal of simplifying key management in IBE, yet the
problem of key-escrow has prevented it from serving as a substitute for PKE — specifically, its
applicability remains limited to specialized settings where trust is not a problem. We believe that
efficient variants of our RBE constructions could indeed provide an alternative for PKE while also
simplifying key management as IBE does.

1.1 Technical Overview

Here we describe the high level ideas behind our two constructions. The main challenge in realizing
our RBE is to have the key curator gather together public keys of registering users in such a way
that no individual’s relation to the public parameter is affected too many times. Doing that is
the key for having few necessary updates for decryption. We start by describing how we resolve
this challenge using indistinguishability obfuscation (IO). Next, we give our ideas for realizing a
(registration) weakly efficient version of this primitive based on standard assumptions such as CDH
and Factoring. The IO-based construction, however, remains conceptually simpler.

5

Our IO based solution is inspired by prior works on using witness encryption [GGSW13], if we
interpret the decryption key (i.e., the secret key together with the required auxiliary updates) as a
witness that enables decryption. Additionally, both our IO-based and the hash obfuscation based
solutions (and in particular their tree-based hashing of the public keys) use ideas developed recently
in the context of laconic OT [CDG+17] and IBE from the CDH assumption [DG17]. In both of
these settings, our contribution is in formalizing the subtle aspects of RBE and then realizing RBE
schemes (as mentioned above) using these ideas.

High level description of our IO-based construction of RBE. A natural first try for the
solution would be for the curator to just Merkle hash together the public keys of all the users in
the system (along with their corresponding identities). Here encryption could be performed by
an obfuscation of the following program P[h,m], with the Merkle hash root h and the encrypted
message m hardwired. Given input (pk, id, pth), the program P[h,m] outputs an encryption of m
under the public key pk only if pth is a “Merkle opening” (i.e., the right leaf to root path with
siblings) for (pk, id) as a pair of sibling leaves in the Merkle hash tree with root h, and it outputs ⊥
otherwise. Decryption can proceed naturally with the right Merkle opening as auxiliary information
that the key curator needs to provide for decryption. The main issue with this solution is that the
Merkle hash root h changes with every new user registering in the system. Our idea for solving this
problem is to maintain multiple Merkle hash trees such that any individual user is affected only a
bounded number of times. Below, we explain this idea in more detail.
• Public parameters and auxiliary information. At a high level, in our construction, after n

parties have registered, the key curator holds an auxiliary information auxn of the following form:
it consists of η full binary Merkle trees, Tree1, . . . ,Treeη with corresponding depths d1 > · · · > dη
and number of leaves 2d1 , . . . , 2dη . The public parameter would be the set of the labels of the roots
of these trees. Every leaf in either of these trees is either an identity id or its public key pk as the
sibling of the leaf id, and every registered identity id appears exactly once as a leaf. Thus, half of the
leaves of these trees contain the strings encoding the registered identities, and for each leaf id, the
sibling leaf contains the public key pk of id. So, if there are n people registered so far in the system,
then the total number of leaves in the trees is equal to 2n. Since we stated that d1 > · · · > dη, it
means that the number of these trees η is at most log(n), simply because (d1, . . . , dη) would be the
binary representation of number 2n. This point implies that the public parameter is indeed short.
• What is needed for decryption. Even though in general it is more natural to describe encryp-

tion first, in our case it is easier to describe the information that is needed for decryption. Each
identity id will hold is own secret key sk which will be necessary for decryption, but it would need
more information for doing so. Indeed, if Tree is the tree hold by the curator that contains (sibling
leaves) (id, pk) in its leaves, then the identity id needs to know the “Merkle opening” of (id, pk) to
the root of Tree in order to do any decryption. Since the length of this path is at most the depth
of Tree, which is at most log(n), the total size of the decryption key dk (which includes sk and the
knowledge of such opening to the root of Tree) is at most κ · log(n). This makes dk compact.
• How to encrypt. For simplicity, suppose there is only one tree Tree held by the key curator

and that all the identities are leaves of this tree. The encryptor, knows the public parameter,
which is the root rt of Tree. For any message m, the encryptor then sends the obfuscation of the
following program P. The program P takes as input any Merkle opening that contains the path
from leaves (id, pk) to the root rt of Tree, and if such opening is given, then P outputs an encryption
of m under the corresponding registered public key pk. Since id is the only identity who knows the

6

corresponding sk to the registered pk, nobody other than id can decrypt the message m encrypted
that way. When there are multiple trees Tree1, . . . ,Treeη held by the key curator, the ciphertext
includes η obfuscations, one for every Treei.
• How to register. When a new party id joins to register, we first create a single tree Tree for

that party, with id, pk as its only leaves. But creating too many trees naively increases the length
of the public parameter. So, to handle this issue we “merge” the trees every now and then. In
particular, upon any registration, so long as there are any two trees Tree1,Tree2 of the same size
held by the key curator, it “merges” them by simply hashing their roots rt1, rt2 into a new root rt.
This way, the key curator keeps the invariance property (stated above) that the trees are always full
binary trees of different sizes. After doing any such merge, the key curator sends the the generated
update of the form (rt1, rt, rt2) to all of the identities that are in either of the trees Tree1,Tree2.
That is because, the identities in Tree1 would now need to know rt2 and the identities in Tree2 now
need the label rt1 in order to decrypt what is encrypted for them. Alternatively, if the key curator
is passive and does not send updates, the users who are in the merged tree Tree would need to
pull their updates whenever they have a ciphertext that they cannot decrypt, realizing that their
auxiliary information is outdated.

To prove security of the above construction, collision-resistance of the used hash function is not
enough, and we rely on somewhere statistically binding hash functions [HW15] (see Definition 2.3).

Weakly-efficient construction based on standard assumptions. In order to replace the use
of obfuscation in the above construction, we build on the techniques by Cho, Döttling, Garg, Gupta,
Miao, and Polychroniadou [CDG+17] and Döttling and Garg [DG17]. We abstract their idea of
using hash encryption and garbled circuits as a new primitive that we call hash garbling. Use of this
abstraction simplifies exposition. A hash garbling scheme consists of algorithms (Hash,HG,HInp).3

Hash function is a function from {0, 1}` to {0, 1}κ. HG takes as input a secret state stt and an
arbitrary program P and outputs P̃. HInp takes as input a secret state stt and a value y ∈ {0, 1}κ
and outputs ỹ. Correctness and security require that C̃, ỹ, x can be used to compute C(x), but also
that they reveal nothing else about C.

Our construction of RBE from standard assumption is very similar to the IO-based construction
except that we replace the use of IO with the less powerful primitive hash garbling. The key
challenge in making this switch comes from the fact that hash garbling, unlike IO, cannot process
the entire root to leaf Merkle opening in one shot. Thus, our construction needs to provide a
sequence of hash garblings that traverse the root to leaf path step by step. Therefore, as the tree
is being traversed, the hash garblings need to identify whether to go left or to go right. Note that
this decision must be taken without any knowledge of what identities are included in the leaves of
the left sub-tree and what identities are included in the leaves of the right sub-tree. We resolve this
challenge by modifying the Merkle tree in two ways:

1. We ensure that the identities in the leave of any tree are always sorted.

2. In addition to the hashes of its two children, in the computation of the Merkle hash, we also
hash the information about the largest identity that is present any leaf of the left subtree
at any node. (The latter information allows us to traverse down a Merkle tree using it as a
binary search tree.)

3The hash function also has a key setup function which we ignore here for the sake of simplicity.

7

Using these enhancements over the simple Merkle trees, we can indeed substitute IO with the less
powerful primitive of hash garbling, which in turn can be obtained from more standard assumptions.
On the down side, this new construction needs to sort the identities for every registration, and in
particular the registration cannot run in sublinear time poly(κ, log n). We refer the reader Section 5
for more details on this construction.

2 Preliminaries

Notation. For a probabilistic algorithm A, by A(x) → y, we denote the randomized process of
running A on input x and obtaining the output y. We use PPT to denote a probabilistic polynomial-
time algorithms, where running time is polynomial over the length of their main input (not the
random seed). For randomized algorithms A1, A2, . . . , by PrA1,A2,...[E] we denote the probability of
event E when the randomness is over the algorithmsA1, A2, . . . as well. For deterministic algorithms
A1, A2, by A1 ≡ A2, we denote that they have the same input-output functionality; namely, for all
x (of the right length, if A1, A2 are circuits), A1(x) = A2(x). For distribution ensembles Xn, Yn,

by Xn
c
≈ Yn we mean that they are indistinguishable against poly(n)-time algorithms. By x||y we

denote the concatenation of the strings x, y. By negl(κ) we denote some function that is negligible
in input κ; namely for all k, negl(κ) ≤ O(1/κk). Un denotes the uniform distribution over {0, 1}n.
For algorithm A, by AB we denote an oracle access by A to oracle B. By A[B] we denote A accessing
oracle B with read and and write operations. So, if A writes y at location x, reading a query x
next time will return y.

Definition 2.1 (Public key encryption). A public key encryption scheme consists of three PPT
algorithms (G,E,D) as follows.

• G(1κ) → (pk, sk): This algorithm takes a security parameter 1κ as input and outputs a pair
of public key pk secret key sk. Without loss of generality we assume that |pk| = |sk| = κ.

• E(pk,m)→ ct: takes a message m and a public key pk as input and outputs a ciphertext ct.

• D(sk, ct)→ m: takes a ciphertext ct and a secret key sk as inputs and outputs a message m.

The completeness and security properties are defined as follows.

• Completeness. The PKE scheme is complete if for every message m:

Pr
G,E,D

[D(sk,E(pk,m)) = m : (sk, pk)← G] = 1.

• Semantic Security. Any PPT Adv wins the following game with probability 1
2 + negl(κ):

– The challenger generates (pk, sk)← G(1κ) and sends pk to Adv.

– The challenger chooses a random bit b and sends c← E(pk, b) to Adv.

– Adv outputs b′ and wins if b = b′.

Definition 2.2 (Indistinguishability obfuscation). A uniform PPT algorithm Obf is called an
indistinguishability obfuscator for a circuit class {Cκ}κ∈N (where each Cκ is a set indexed by a
security parameter κ) if the following holds:

8

• Completeness. For all security parameters κ ∈ N and all circuits C ∈ Cκ, we obtain an
obfuscation with the same function:

Pr
Obf

[C′ ≡ C : C′ = Obf(1κ,C)] = 1.

• Security. For any PPT distinguisher D, there exists a negligible function negl(·) such that
for all κ ∈ N, for all pairs of functionally equivalent circuits C1 ≡ C2 from the same family
C1,C2 ∈ Cκ,∣∣∣∣Pr

Obf
[D(1κ,Obf(1κ,C1)) = 1)]− Pr

Obf
[D(1κ,Obf(1κ,C2)) = 1)]

∣∣∣∣ ≤ negl(κ).

The next definition is a special case of the definition of somewhere statistically binding (SSB)
hash functions introduced by Hubacek and Wichs [HW15] for the blockwise setting. Here we only
use two-input blocks.

Definition 2.3 (SSB hash functions [HW15]). A somewhere statistically binding hash system con-
sists of two polynomial time algorithms HGen,Hash.

• HGen(1κ, b)→ hk. This algorithm takes the security parameter κ and an index bit b ∈ {0, 1},
and outputs a hash key hk.

• Hash(hk, x) → y. This is a deterministic algorithm that takes as input x = (x0, x1) ∈
{0, 1}κ × {0, 1}κ and outputs y ∈ {0, 1}κ.

We require the following properties for an SSB hashing scheme:

• Index hiding. No poly(κ)-time adversary can distinguish between hk0 and hk1 by more than
negl(κ), where hkb ← HGen(1κ, b) for b ∈ {0, 1}.

• Somewhere statistically binding. We say that hk is statistically binding for index i ∈
{0, 1}, if there do not exist two values (x0, x1), (x

′
0, x
′
1) ∈ {0, 1}` × {0, 1}` such that xi 6= x′i

and Hash(hk, x) = Hash(hk, x′). We require that for both i ∈ {0, 1},

Pr
HGen

[hk is statistically binding for i : hk← HGen(1κ, i)] ≥ 1− negl(κ).

3 Formal Definition of Registration-Based Encryption

In this section, we formalize the new notion of RBE. After defining the “default” version of RBE,
we define weakened forms of this primitive with a specific relaxation in the efficiency requirements.
The goal of this relaxation is to base the (relaxed) RBE on more standard assumptions.

We start by defining the syntax of the default notion of RBE. We will then discuss the required
compactness, completeness, and security properties.

Definition 3.1 (Syntax of RBE). A registration-based encryption (RBE for short) scheme consists
of PPT algorithms (Gen,Reg,Enc,Upd,Dec) working as follows. The Reg and Upd algorithms are
performed by the key curator, which we call KC for short.

9

• Generating common random string. Some of the subroutines below will need a common
random string crs, which could be sampled publicly using some public randomness beacon.
crs of length poly(κ) is sampled at the beginning, for the security parameter κ.

• Key generation. Gen(1κ) → (pk, sk): The randomized algorithm Gen takes as input the
security parameter 1κ and outputs a pair of public/secret keys (pk, sk). Note that these
are only public and secret keys, not the encryption or decryption keys. The key generation
algorithm is run by any honest party locally who wants to register itself into the system.

• Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic4 algorithm Reg takes as
input the common random sting crs, current public parameter pp, a registering identity id
and a public key pk (supposedly for the identity id), and it outputs pp′ as the updated public
parameters. The Reg algorithm uses read and write oracle access to aux which will be updated
into aux′ during the process of registration.5 (The system is initialized with public parameters
pp and auxiliary information aux set to ⊥.)

• Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes as input the
common random sting crs, a public parameter pp, a recipient identity id and a plaintext
message m and outputs a ciphertext ct.

• Update. Updaux(pp, id) → u: The deterministic algorithm Upd takes as input the current
information pp stored at the KC and an identity id, has read only oracle access to aux and
generates an update information u that can help id to decrypt its messages.6

• Decryption. Dec(sk, u, ct): The deterministic decryption algorithm Dec takes as input a
secret key sk, an update information u, and a ciphertext ct, and it outputs a message m ∈
{0, 1}∗ or in {⊥, GetUpd}. The special symbol ⊥ indicates a syntax error, while GetUpd

indicates that more recent update information (than u) might be needed for decryption.

Remark 3.2 (Key curator is transparent). We emphasize that in the definition above the KC has
no secret state. In fact, the registration and update operations are both deterministic. This makes
KC’s job fully auditable. Even the generation of the crs (that is done before KC takes control of
the server’s information) only needs common random strings (as opposed to a common reference
string), so that can be generated using public randomness beacon as well.

We will now first describe the completeness, compactness, efficiency properties (under the com-
pleteness definition) and then we will describe the security properties. Both definitions are based
on a security game that involves an “adversary” that tries to break the security, completeness, com-
pactness, or efficiency properties by controlling how the identities (including the target/challenge
identity) are registered and when the encryptions and decryptions happen.

4In our constructions, the algorithms Reg,Upd and Reg are deterministic, and this feature makes our KC trans-
parent (see Remark 3.2), so we keep the default definition based on deterministic version of these subroutines.

5This is the step that needs the identity of the registering id to be verified. This verification step is similar to IBE
and its details are outside scope of this work.

6Looking ahead, we will aim for schemes that require the identity id to launch this request as rarely as possible.
However, we note that this information u does not need to be kept secret for the security of the scheme, and any user
can request this update without its identity being checked.

10

Definition 3.3 (Completeness, compactness, and efficiency of RBE). For any interactive compu-
tationally unbounded adversary Adv that still has a limited poly(κ) round complexity, consider the
following game CompAdv(κ) between Adv and a challenger Chal.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, crs ← Upoly(κ)

and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
Adv chooses exactly one of the actions below to be performed.

(a) Registering new (non-target) identity. Adv sends some id 6∈ D and pk to Chal. Chal
registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already (i.e., id∗ 6= ⊥), skip
this step. Otherwise, Adv sends some id∗ 6∈ D to Chal. Chal then samples (pk∗, sk∗) ←
Gen(1κ), updates pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

(c) Encrypting for the target identity. If id∗ = ⊥ then skip this step. Otherwise, Chal
sets t = t + 1, then Adv sends some mt ∈ {0, 1}∗ to Chal who then sets m′t := mt and
sends back a corresponding ciphertext ctt ← Enc(crs, pp, id∗,mt) to Adv.

(d) Decryption by target identity. Adv sends a j ∈ [t] to Chal. Chal then lets m′j =
Dec(sk∗, u, ctj). If m′j = GetUpd, then Chal obtains the update u = Updaux(pp, id∗) and
then lets m′j = Dec(sk∗, u, ctj).

3. The adversary Adv wins the game if there is some j ∈ [t] for which m′j 6= mj .

Let n = |D| be the number of identities registered till a specific moment. We require the following
properties to hold for any Adv (as specified above) and for all the moments (and so for all the
values of D and n = |D| as well) during the game CompAdv(κ).

• Completeness. Pr[Adv wins in CompAdv(κ)] = negl(κ).

• Compactness of public parameters and updates. |pp|, |u| are both ≤ poly(κ, log n).

• Efficiency of runtime of registration and update. The running time of each invocation
of Reg and Upd algorithms is at most poly(κ, log n). (This implies the compactness property.)

• Efficiency of the number of updates. The total number of invocations of Upd for identity
id∗ in Step 2d of the game CompAdv(κ) is at most O(log n) for every n during CompAdv(κ).

Remark 3.4 (Other definitions based on quantifying compactness and efficiency parameters). Even
though Definition 3.3 requires compactness and efficiency requirements using function c(κ, n) ≤
poly(κ, log n), one can consider a more general definition that uses different (e.g., sublinear) func-
tions to obtain various versions of RBE. In general, one can consider (c1, . . . , c5)-RBE schemes
where ci’s are functions of (κ, n), and that functions c1, c2 describe the compactness requirements
(of public-key and updates), and functions c3, c4, c5 describe the efficiency requirements.

The following definition instantiates the general quantified definition of Remark 3.4 by relaxing
the efficiency of the registration and keeping the other efficiency and compactness requirements to
be as needed for Definition 3.3.

11

Definition 3.5 (WE-RBE). A registration weakly efficient RBE (or WE-RBE for short) is defined
similarly to Definition 3.3, where the specified poly(κ, log n) runtime efficiency of the registration
algorithm is not required anymore, but instead we require the registration time to be poly(κ, n).

Remark 3.6 (Denial of service attacks using fake ciphertexts). A class of malicious adversaries
that are not captured by Definition 3.3 can potentially launch a “denial of service” attack against
the efficiency of the decryption procedure as follows. Specifically, such malicious completeness
adversary (that can also be seen as a form of “environment”) can cause an honest user to request
too many updates by continually providing it with fake ciphertexts that seem to require an update
for decryption. Here, we propose a generic approach for dealing with this issue. We can generalize
the RBE primitive and allow the KC to have a secret state. This will take away the appealing
transparency feature of the KC, but it will instead allow the KC to sign the public parameters, and
those signed public parameters can then be included in the ciphertexts. Doing this will allow the
decryption algorithm to detect fake ciphertexts that (maliciously) indicate that the population has
grown beyond the last update, and that new update is needed for recent decryptions.

Security. For security, we require that no PPT adversary should be able to distinguish between
encryptions of two messages (of equal lengths) made to a user who has registered honestly into the
system, even if the adversary colludes and obtains the secret keys of all the other users. This is
formalized by the adversary specifying a challenge identity and distinguishing between encryptions
made to that identity. In order to prevent the adversary from winning trivially, we require that the
adversary does not know any secret key for a public key registered for the challenge identity.

We present the formal definition only for the case of bit encryption, but any scheme achieving
this level of security can be extended to arbitrary length messages using independent bit-by-bit
encryption and a standard hybrid argument.

Definition 3.7 (Security of RBE). For any interactive PPT adversary Adv, consider the following
game SecAdv(κ) between Adv and a challenger Chal. (Steps that are different from the completeness
definition are denoted with purple stars (??). Specifically, Steps 2c and 2d from Definition 3.3 are
replaced by Step 3 below. Additionally, Step 3 from Definition 3.3 is replaced by Step 4 below.)

1. Initialization. Chal sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Upoly(κ) and sends the
sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
Adv chooses exactly one of the actions below to be performed.

(a) Registering new (non-target) identity. Adv sends some id 6∈ D and pk to Chal. Chal
registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already (i.e., id∗ 6= ⊥), skip
this step. Otherwise, Adv sends some id∗ 6∈ D to Chal. Chal then samples (pk∗, sk∗) ←
Gen(1κ), updates pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

3. (??) Encrypting for the target identity. If no id∗ was chosen by Adv before (i.e., id∗ = ⊥)
then Adv first sends some id∗ 6∈ D to Chal. Next, Chal generates ct← Enc(crs, pp, id∗, b), where
b← {0, 1} is a random bit, lets D = D ∪ {id∗}, and sends ct to Adv.

4. (??) The adversary Adv outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if Pr[Adv wins in SecAdv(κ)] < 1
2 + negl(κ) for any PPT Adv.

12

Equivalence to other definitions. One might consider a seemingly stronger security definition
in which the adversary chooses its challenge identity from a set of previously chosen identities for
which it does not know the keys. However, since the adversary can guess its own selection with
probability 1/ poly(κ), that definition becomes equivalent to Definition 3.7 above. Another seem-
ingly stronger definition would allow the adversary to register even more identities after receiving
the challenge ciphertext (and before answering the challenge), however this is again an equivalent
definition as the information distributed in this extra step is simulatable by the adversary and thus
not helpful to her.

Choosing a registered or an unregistered identity. Here we note a subtle aspect of Defi-
nition 3.7. If the adversary chooses Step 2b, it means that it is attacking a target identity that is
registered in the system. Otherwise, the adversary shall choose the target identify in Step 3, which
means that the attacked target identity is not even registered in the system. In both cases, we
require that the adversary has negligible advantage in guessing the encrypted bit.

Why not giving update oracle to adversary? In Definition 3.7, we did not provide explicit
oracle access to Upd subroutine for the adversary. The reason is that the adversary receives the crs,
chooses the identities and receives the public keys. Moreover, KC is deterministic, has no secret
state, and all the inputs it receives in maintaining the auxiliary information is crs, identities, and
the public-keys. Therefore, throughout the attack, the adversary knows the exact state of (pp, aux)
hold by the key curator, and thus it can run the update operation itself. However, if one considers
a KC with a secret state (perhaps for the goal of signing the public parameters as discussed in
Remark 3.6) then the corresponding security definition shall give the adversary oracle access to the
update subroutine.

Remark 3.8 (Unauthorized registration of an identity). A malicious KC K∗, not following the
protocol as modeled in the security game of Definition 3.7 can generate a pair of keys (pk, sk)
on its own and register pk on behalf of an identity id. By that, K∗ can read messages that are
subsequently encrypted to the identity id. Here we describe two approaches to tackle this problem.

1. Bootstrapping public-key directories. RBE schemes could be launched with respect to
an external public-key directory D. Namely, only public-keys in D could be registered for
matching identities. This way, a malicious key curator K∗ can only register the actual public
keys of the identities, and thus it is not able to decrypt the messages encrypted to them.
Moreover, by also including (public) verification keys of the signatures by the identities in the
public-key directory D, we can even prevent K∗ from successfully registering any identities
in the RBE scheme without having their permission (even by using their real public keys) as
follows. Whenever the public parameter pp is updated, a signature of pp by the registering
identity is added to the public auxiliary aux. This way, a public auditor can detect a fake
registration.

2. Proof of Knowledge. An alternative method to prevent fake identity registrations is to
use a similar approach to the one mentioned above, but replace the signature with a zero-
knowledge proof of knowledge of an actual certificate from some trusted party (e.g., their
driving licence information) that validates the ownership of an identity.

13

4 IO-Based Construction of RBE

In this section we present a formal construction of (efficient) RBE based on indistinguishability
obfuscation and SSB hash functions (see Section 2 for formal definitions of the standard primitives
used). We first describe the construction along the line of Definition 3.1 and then will prove its
completeness, compactness, and security based on Definitions 3.3 and 3.7. We will then describe
minor modifications that make the construction efficient according to Definition 3.5 (basically by
not producing the updates in the registration).

Notation on binary trees. In our construction below, Tree is always a full binary tree (with 2i

leaves for some i), where the label of each node in Tree is calculated as the “hash” of its left and
right children. We define the size of a tree Tree as the number of its leaves, denoted by size(Tree)
(so if size(Tree) = s, the total number of nodes will be 2s − 1), and we denote the root of Tree as
rt(Tree), and we use d(Tree) to refer to the depth of Tree. Since we assume that Tree is always a
full tree, we always have 2d(Tree) = size(d(Tree)). When it is clear from the context, we use rt and
d to denote the root and the depth of Tree.

Simplifying assumption on lengths. We note that without loss of generality, we can assume
that public keys, secret keys and identities are all of the length security parameter κ.

Construction 4.1 (RBE from IO and SSB Hashing). We will use an IO scheme (Obf,Eval) and a
SSB hash function system (Hash,HGen) and a PKE scheme (G,E,D). Using them, we show how
to implement the subroutines of RBE according to Definition 3.1.

• Stp(1κ)→ (pp0, aux0). This algorithm outputs pp0 = (hk1, . . . , hkκ) where each hki is sampled
from HGen(1κ, 0) and aux = ∅ is empty.

• Reg[aux](ppn, id, pk)→ ppn+1. This algorithm works as follows:

1. Parse aux := ((Tree1, . . . ,Treeη), (id1, . . . , idn)) where the trees have corresponding depths
d1 > d2 · · · > dη, and (id1, . . . , idn) is the order by which the current identities have reg-
istered.7

2. Parse ppn as a sequence ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)) where rti ∈ {0, 1}κ repre-
sents the root of Treei, and di represents the depth of Treei.

3. Create new tree Treeη+1 with leaves id, pk and set its root as rtη+1 := Hash(hk1, id||pk)
and thus its depth would be dη+1 = 1.

4. Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in steps below.)

5. While there are two different trees TreeL,TreeR ∈ T of the same depth d, same size
s = 2d (as our trees are always full binary trees), and roots rtL, rtR, do the following.

(a) Let Tree be a new tree of depth d+ 1 that contains TreeL as its left subtree, TreeR
as its right subtree, and rt = Hash(hkd+1, rtL||rtR) as its root.

(b) Remove both of TreeL,TreeR from T and add Tree to T instead.

7Keeping this list is not necessary, but simplifies the presentation of the updates.

14

6. Let T := (Tree1, . . . ,Treeζ) be the final set of trees with depths d′1 > · · · > d′ζ and roots
rt′1, . . . , rt

′
ζ . Set ppn+1 and aux as follows:

ppn+1 := ((hk1, . . . , hkκ), (rt′1, d
′
1), . . . , (rt

′
ζ , d
′
ζ)) and

aux := (T , (id1, . . . , idn, idn+1 = id)).

• Enc(pp, id,m) → ct: First parse pp := ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)). Generate pro-
grams P1, . . . ,Pη where each program Pi works as follows:

Hardwired values: rti, di, (hk1, . . . , hkdi),m, id, r (the randomness)

Input: pth

1. Parse pth := [(h00, h
1
0), (h

0
1, h

1
1, b1) . . . , (h

0
di−1, h

1
di−1, bdi−1), rt].

2. If rti 6= rt, then output ⊥.

3. If id 6= h00, then output ⊥.

4. If rt = Hash(hkdi , h
0
di−1||h

1
di−1) and h

bj
j = Hash(hkj , h

0
j−1||h1j−1) for all j ∈ [di − 1], then

output E(h10,m; r) by using h10 as the public key and r as the randomness, otherwise
output ⊥.

Then, output ct := (pp,Obf(P1), . . . ,Obf(Pη)) where Obf is IO obfuscation.

• Updaux(pp, id) → u: Letting aux := (Tree1, . . . ,Treeζ) and letting i be the index of the tree
that holds id, return the whole Merkle opening of the path that leads to id in Treei.

• Dec(sk, u, ct) → m: Parse ct = (pp,P1, . . . ,Pη). Form mi = Decsk(Pi(u)) for each program
Pi. Output the first mi 6= ⊥.

Theorem 4.2. The RBE of Construction 4.1 satisfies the compactness, completeness properties
according to Definition 3.3 and security according to Definition 3.7.

In the rest of this section, we prove Theorem 4.2. Along the way, we describe the modifications
that are needed to Construction 4.1 to make it efficient according to Definition 3.5.

4.1 Proofs of Completeness, Compactness and Efficiency

Completeness is straightforward. Below we sketch why compactness holds.

Compactness of public parameters and updates. The public parameter’s format is of the
form pp = ((hk1, . . . hkκ), (rt1, d1), . . . (rtη, dη)) where rti ∈ {0, 1}κ. Also, the identities are of length
κ, so the depth of each tree is at most κ bits. It only remains to show that the number of trees
at any moment is at most log(n). This is because the trees are full binary trees (of size 2di) and
the size of the trees are always different (otherwise, the registration step keeps merging them).
Therefore, η ≤ log(n), and so the length of the ppn will be at most O(κ2 + κ · log(n)). In fact,
we can optimize this length to be at most O(κ · log(n)) by only generating the hash keys when
needed (i.e., when the registered population reaches 2k, we will generate hkk and put it in the
public parameter). Compactness of updates is trivial.

15

Efficiency of runtime of registration and update. The efficiency of registration follows from
the fact that the total number of merges is at most log n. The efficiency of update runtime can
also be easily guaranteed by using an appropriate data structure that maps a given identity to the
leafs containing it in each tree (e.g., we can use a Trie data structure for this purpose to get such
list in minimal time over the input length).

All other measures of efficiency either follows trivially, or by the log(n) upperbound on the
number of merges.

4.2 Proof of Security

We now prove the security of Construction 4.1. We start by giving intuition about the security
proof for a simple case. We will then give a detailed proof for the general case.

4.2.1 Simple Case of One User

Consider the case in which only one user has registered, and that the adversary wants to distinguish
between encryptions of m ∈ {0, 1} made to that user. Let id∗ be the identity of the user who has
registered, and let (pk∗, sk∗) ← G(1κ) be the pair of public/secret keys that the challenger Chal
produced at the time of registration as per Definition 3.7. Since we have only one user, the public
parameter is pp := Hash(hk, id∗||pk∗), where hk ← HGen(1κ, 0). Recall that w.l.o.g., we have
|id∗| = |pk∗| = |pp| = κ.

An encryption of a bit m ∈ {0, 1} to identity id∗ is an IO obfuscation of the circuit P in Figure 1.

Hardwired: m ∈ {0, 1}, id∗, pp, hk and randomness r

Input: (id, pk)

1. If Hash(hk, id||pk) 6= pp, then output ⊥ and end.

2. If id 6= id∗, then output ⊥ and end.

3. Output E(pk,m; r) and end.

Figure 1: Circuit P used for encryption of m to identity id∗

Theorem 4.3 (Security). For any id∗ we have

Obf(P[0, id∗, pp, hk, r])
c
≈ Obf(P[1, id∗, pp, hk, r]), (1)

for (pk∗, sk∗)← G(1κ), hk← HGen(1κ, 0), pp := Hash(hk, id∗||pk∗), r← {0, 1}∗.

Roadmap for the proof of Theorem 4.3. We first alter the circuit P to obtain a circuit P1,
which works similarly except that P1 checks whether or not its given input path is exactly (id∗, pk∗)
(i.e., the already registered identity along with its public key); if not, P1 will return ⊥, even if the
two leaves (id, pk) correctly hashe to pp. If yes, P1 will encrypt the hardwired bit m under the
public key pk∗ and the hardwired randomness r. The circuit P1 is defined in Figure 2.

16

Equipped with this new circuit P1, first in Lemma 4.4 we show that under P1 we may switch
the underlying hardwired plaintext bit m from 0 to 1 while keeping the obfuscations of the resulting
circuits indistinguishable. Then, in Lemma 4.5 we will show that for any fixed plaintext bit m, the
obfuscations of P and P1 are indistinguishable. Lemmas 4.4 and 4.5 together imply Theorem 4.3.

We start by defining the circuit P1, which is a modified version of P.

Hardwired: m ∈ {0, 1}, id∗, pk∗, pp, hk and randomness r

Input: (id, pk)

1. If (id, pk) 6= (id∗, pk∗), then output ⊥ and end.

2. Output E(pk,m; r) and end.

Figure 2: Circuit P1

We now formally show that under P1 we may switch the underlying plaintext bit while keeping
their obfuscations indistinguishable.

Lemma 4.4. For any id∗ and hk we have

Obf(P1[0, id
∗, pk∗, pp, hk, r])

c
≈ Obf(P1[1, id

∗, pk∗, pp, hk, r]), (2)

where (pk∗, sk∗)← G(1κ), r← {0, 1}∗ and pp := Hash(hk, id∗||pk∗).

Proof. Fix id∗ and hk. We slightly change the circuit P1 into a circuit P2, so that the circuit P2,
instead of getting m, pk∗ and r hardwired into itself, it gets the resulting ciphertext c∗ hardwired,
and it will return this ciphertext if the check inside the program holds. This new circuit P2 is
defined in Figure 3.

Notice that for all fixed m ∈ {0, 1}, id∗, pk∗, r and pp := Hash(hk, id∗||pk∗),

Obf(P1[m, id
∗, pk∗, pp, hk, r])

c
≈ Obf(P2[id

∗, pp, hk, c∗]), (3)

where c∗ := E(pk∗,m; r). The reason behind Equation 3 is that the underlying two circuits are
functionally equivalent, and so their obfuscations must be computationally indistinguishable by
the property of IO.

We now show that under P2 we may switch the hardwired ciphertext from an encryption of
zero to one, by relying on semantic security of the PKE. Formally,

Obf(P2[id
∗, pp, hk, c∗0])

c
≈ Obf(P2[id

∗, pp, hk, c∗1]), (4)

for (pk∗, sk∗)← G(1κ), c∗0 ← E(pk∗, 0), c∗1 ← E(pk∗, 1), pp := Hash(hk, id∗||pk∗). Equation 4 directly
follows from the semantic security of the underlying public-key encryption scheme. Finally, note
that Equations 4 and 3 imply Equation 2 of the lemma, and so we are done.

17

Hardwired: id∗, pp, hk and c∗

Input: (id, pk)

1. If (id, pk) 6= (id∗, pk∗), then output ⊥ and end.

2. Output c∗ and end.

Figure 3: Circuit P2

We now show that for any fixed plaintext m ∈ {0, 1}, the obfuscations of the two circuits P and
P1 are computationally indistinguishable.

Lemma 4.5. For fixed m ∈ {0, 1}, id∗ ∈ {0, 1}κ, pk∗ ∈ {0, 1}κ and randomness r, it holds that

Obf(P[m, id∗, pp, hk, r])
c
≈ Obf(P1[m, id

∗, pk∗, pp, hk, r]), (5)

where hk← HGen(1κ, 0) and pp := Hash(hk, id∗||pk∗).

Proof. Let a hash key hk1 be sampled as follows: hk1 ← HGen(1κ, 1). We show that Equation 5 will
hold if hk is replaced with hk1. This will complete our proof because by the index hiding property

of (HGen,Hash) we know hk
c
≈ hk1. Thus, it only remains to prove

Obf(P[m, id∗, pk∗, pp, hk1, r])
c
≈ Obf(P1[m, id

∗, pk∗, pp, hk1, r]), (6)

where hk1 ← HGen(1κ, 1) and pp := Hash(hk1, id
∗||pk∗). To prove Equation 6 we claim that the

underlying two circuits are functionally equivalent; namely,

P[m, id∗, pk∗, pp, hk1, r] ≡ P1[m, id
∗, pk∗, pp, hk1, r]. (7)

Note that by security definition of IO, Equation 7 implies Equation 6, and thus we just need to
prove Equation 7. To prove equivalence of the circuits, assume to the contrary that there exists an
input (id, pk) for which we have P(id, pk) 6= P1(id, pk). (Here for better readability we dropped the
hardwired values.) By simple inspection, we can see that we have P(id, pk) 6= P1(id, pk) iff all the
following conditions hold:

1. Hash(hk1, (id, pk)) = pp; and

2. id = id∗; and

3. pk 6= pk∗.

This, however, is a contradiction. By the somewhere statistical binding property of (HGen,Hash)
and by the fact that hk1 ← HGen(1κ, 1), Conditions 1 and 2 imply pk = pk∗, a contradiction to
Condition 3.

18

4.2.2 General Case of Multiple Users

We will prove our security for the case in which at the time of encryption, we only have one tree
(of any arbitrary depth). This is without loss of generality for the following reason. Recall that for
encryption, if we have m roots, we obfuscate a circuit individually for each root. Suppose at the
time of encryption, we have m trees with respective roots rt1, . . . , rtm. Then, between the two main
hybrids which correspond to an encryption of zero and an encryption of one, we may consider m
intermediate hybrids, where under the ith hybrid we encrypt 0 under the roots {rt1, . . . , rti} and we
encrypt 1 under the roots {rti+1, . . . , rtm}. Thus, using a hybrid argument, the result will follow.

Roadmap of the security proof. We will define four hybrids, where the first hybrid corresponds
to an encryption of bit 0 and the last hybrid corresponds to an encryption of bit 1. We will prove that
the views of the adversary in each of the two adjacent hybrids are computationally indistinguishable.

High-level proof sketch. Let Tree be the underlying tree at the time of encryption. An en-
cryption of a bit m to an identity id corresponds to an IO obfuscation of a circuit P, which takes
as input a path, and which will release an encryption of m under a public key given as a leaf of
the path, if the given path is “valid.” As a hybrid, we will consider a circuit P1, which does all
the checks that are already performed by P, but which also does the following: if the given path
is not present in the tree, then P1 will return ⊥, even if the path is valid. We will show that
for any fixed bit m, if we encrypt m by obfuscating either the circuit P or P1, the result will be
indistinguishable. We will make use of the somewhere statistical binding and index hiding of the
underlying hash function in order to prove this. Now under an obfuscation of P1, one may easily
switch the hardwired plaintext bit. The reason is that since under P1, a given input path to the
circuit must be present in the tree, and since the challenge identity id∗ is registered only once (say
under a public key pk), one may consider a related circuit which, instead of hardwiring a plaintext
bit m, it hardwires into itself an encryption c← E(pk,m). The rest follows by semantic security of
the PKE scheme.

We now go over the formal proof. We start by defining some notation.

Notation. Consider a path pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt−1), rt] where rt is the

root and id and pk are the two leaves and b1, . . . , bt−1 ∈ {left, right}. For a tree Tree of depth t, we
write pth ⊆ Tree if pth is a valid path in Tree in the usual sense. The procedure Valid(hk1, . . . , hkt, pth)
checks if the given path is a ‘valid path’ according to the given hash keys hk1, . . . , hkt then it output
>, otherwise outputs ⊥. For a path pth and interger i we write Last(pth, i) to refer to the last i
node “elements” in pth. Note that we do not consider the left-or-right bits as part of this counting.
For example, letting pth be as above,

Last(pth, 5) = ((h0t−2, h
1
t−1, bt−2), (h

0
t−1, h

1
t−1, bt−1), rt).

We also extend the notation ⊆ given above to define Last(pth, i) ⊆ Tree in the straightforward way.

Hardwired: m ∈ {0, 1}, id∗, rt, hk1, . . . , hkt and randomness r

Input: pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt

′]

19

1. If id 6= id∗, rt 6= rt′ or Valid(hk1, . . . , hkt, pth) 6= >, then output ⊥ and end.

2. Output E(pk,m; r).

Figure 4: Circuit P

Circuit P1

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r

Input: pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt

′]

1. If pth = pth∗, then output E(pk,m; r) and end.

2. Else, output ⊥ and end.

Figure 5: Circuit P1

Notation used in hybrids. We will write id∗ ← Adv(hk1, . . . , hkκ) to mean that the adversary
Adv receives pp := (hk1, . . . , hkκ) as input, interacts with the challenger Chal as per Definition 3.7
and outputs id∗ as the challenge identity.

• Hybrid H1: Encrypt m = 0 using P. The ciphertext ct given to the adversary is formed
as follows.

1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).

2. id∗ ← Adv(hk1, . . . , hkκ).

3. ct ← Obf(P[0, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the tree, t is the depth of
the tree, and r← {0, 1}∗.

• Hybrid H2: Encrypt m = 0 using P1. The ciphertext ct given to the adversary is formed
as follows.

1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).

2. id∗ ← AdvRegsel,Regsmp(hk1, . . . , hkκ).

3. ct← Obf(P1[0, id
∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the tree leading to

the challenge node, rt is the root of pth∗, t is the depth of the tree, and r← {0, 1}∗.

• Hybrid H3: Encrypt m = 1 using P1. The ciphertext ct given to the adversary is formed
as follows.

1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).

2. id∗ ← Adv(hk1, . . . , hkκ).

20

3. ct← Obf(P1[1, id
∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the tree leading to

the challenge node, rt is the root of pth∗, t is the depth of the tree, and r← {0, 1}∗.

• Hybrid H4: Encrypt m = 1 using P. The ciphertext ct given to the adversary is formed
as follows.

1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).

2. id∗ ← Adv(hk1, . . . , hkκ).

3. ct← Obf(P[1, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the underlying tree, t is the
depth of the tree, and r← {0, 1}∗.

Notation. We use ct〈Hi〉 to denote the value of the ciphertext ct in Hybrid Hi.

Lemma 4.6. We have,

1. ct〈H1〉
c
≈ ct〈H2〉,

2. ct〈H3〉
c
≈ ct〈H4〉.

Proof. We will prove Part 1, and the proof for Part 2 will be exactly the same.
Recall that in hybrid H1 we encrypt m = 0 by obfuscating P and that in hybrid H2 we encrypt

m = 0 by obfuscating P1. Let t be the depth of the tree at the time of encryption.
We will define intermediate hybrids P2,i for i ∈ [2t+1], and we will show P ≡ P2,1, P1 ≡ P2,2t+1

and for all i ∈ [2t], Obf[P2,i]
c
≈ Obf[P2,i+1]. These circuit programs are given in Figure 6.

Informally, the program P2,i works as follows: it checks whether its given path is “correct” and
whether, in addition, the last i elements of the path are in accordance with the challenge path pth∗

that was hardwired into the program. For example, if i = 5, then the root of the path and the two
levels below it (five nodes in total) should match the corresponding nodes in the challenge path
pth∗. If both these conditions hold, then P2,i will encrypt the hardwired plaintext bit (m = 0) using
the public key provided in the corresponding leave of the path.

We will now define a Hybrid H2,i below, which uses program P2,i.

• Hybrid H2,i: Encrypt m = 0 using P2,i. The given ciphertext ct is as:

1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).

2. id∗ ← Adv(hk1, . . . , hkκ).

3. ct ← Obf(P2,i[0, id
∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the challnege path in the

system, rt is the root of pth∗, t is the depth of the tree, and r ← {0, 1}∗.

First, by inspection we can see that ct〈H1〉
c
≈ ct〈H2,1〉 and ct〈H2〉

c
≈ ct〈H2,2t+1〉. This is because

the underlying two circuits P and P2,1 are functionally equivalent. Same holds for P1 and P2,2t+1.
Thus, for any fixed w ∈ [2t] we just need to prove

ct〈H2,w〉 = ct〈H2,w+1〉. (8)

Below, we fix w ∈ [2t]. To prove Equation 8, we introduce two hybrids H′2,w,H
′
2,w+1 and show

21

ct〈H2,w〉
c
≈ ct〈H′2,w〉

c
≈ ct〈H′2,w+1〉

c
≈ ct〈H2,w+1〉. (9)

This will establish Equation 8.
Informally, the hybrids H′2,w and H′2,w+1 are defined similarly to H2,w and H2,w+1, except that

one of the many hash keys is now sampled in a different way, in order to make some binding
property happen.

For z ∈ {w,w + 1}, the hybrid H′2,z is defined as follows.

• Hybrid H′2,z for z ∈ {w,w + 1}. The given ciphertext ct is formed as follows.

1. Let q := t− bw2 c − 1 Intuitively, q denotes the level index in the tree for which we want
to use a different hash key. For all i ∈ [κ] \ {q}: sample hk′i ← HGen(1κ, 0). Sample

hk′q ← HGen(1κ, v), where v := (w + 1) mod 2.

2. id∗1 ← Adv(hk′1, . . . , hk
′
κ).

3. ct ← Obf(P2,i[0, id
∗
1, pth

∗
1, rt1, hk

′
1, . . . , hk

′
t, r]), where pth∗1 is the challnege path in the

system, rt1 is the root of pth∗ and r← {0, 1}∗.

Toward proving Equation 9, first note that by the index hiding property of (HGen,Hash) we

have ct〈H2,w〉
c
≈ ct〈H′2,w〉 and ct〈H2,w+1〉

c
≈ ct〈H′2,w+1〉. Thus, it remains to prove

ct〈H′2,w〉
c
≈ ct〈H′2,w+1〉. (10)

To prove Equation 10, we claim that the underlying two programs are equivalent,

P2,w[0, id∗1, pth
∗
1, rt1, hk

′
1, .., hk

′
t, r] = P2,w+1[0, id

∗
1, pth

∗
1, rt1, hk

′
1, .., hk

′
t, r]. (11)

By IO security, Equation 11 implies Equation 10, and thus we just need to prove Equation 11.
To prove equivalence of the two circuits in Equation 11, assume to the contrary that there exists
an input pth for which we have P2,w(pth) 6= P2,w+1(pth). (Here for better readability we dropped
the hardwired values.) By simple inspection we can see that we have P2,w(pth) 6= P2,w+1(pth) iff
all the following conditions hold:

1. Valid(hk′1, . . . , hk
′
t, pth) = >; and

2. Last(pth, w) ⊆ pth∗1; and

3. Last(pth, w + 1) 6⊆ pth∗1.

This, however, is a contradiction because by the somewhere statistical binding property of (KGen,Hash)
and by the way in which we have sampled hk′q, Conditions 1 and 2 contradict Condition 3.

Description of Circuit P2,i.

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r

Input: pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt

′]

22

1. If id 6= id∗ or rt 6= rt′ or Valid(hk1, . . . , hkt, pth) 6= >, then output ⊥ and end.

2. If Last(pth, i) ⊆ pth∗, then output E(pk,m; r) and end.

3. Otherwise, output ⊥ and end.

Figure 6: Circuit P2,i for i ∈ [`]

Lemma 4.7. ct〈H2〉
c
≈ ct〈H3〉.

Proof. The proof is similar to the proof of Lemma 4.4.

5 Basing Weakly-Efficient RBE on Standard Assumptions

In this section, we describe our construction of RBE based on hash garbling and is inspired by our
IO based construction from previous section. This notion and its construction has been implicit
in prior works [CDG+17, DG17], and it was shown [DG17, DGHM18, BLSV18] that hash garbling
can be realized based on CDH, Factoring or LWE assumptions. Specifically, implicit in these prior
works are constructions of hash garbling based on hash encryption and garbled circuits. Below,
we abstract out this notion and use it in our work directly. This abstract primitive significantly
simplifies exposition.

Definition 5.1 (Hash garbling). A hash garbling scheme consists of four PPT algorithms HGen,
Hash, HG, and HInp, defined as follows.

• HGen(1κ, 1`) → hk. This algorithm takes the security parameter κ and an output length
parameter 1` for ` ≤ poly(κ), and outputs a hash key hk. (HGen runs in poly(κ) time.)

• Hash(hk, x) = y. This takes hk and x ∈ {0, 1}` and outputs y ∈ {0, 1}κ.

• HG(hk,C, stt) → C̃. This algorithm takes a hash key hk, a circuit C, and a secret state
stt ∈ {0, 1}κ as input and outputs a circuit C̃.

• HInp(hk, y, stt) → ỹ. This algorithm takes a hash key hk, a value y ∈ {0, 1}κ, and a secret
state stt as input and outputs ỹ.

We require the following properties for a hash garbling scheme:

• Correctness. For all κ, `, hk ← HGen(1κ, 1`), circuit C, input x ∈ {0, 1}`, stt ∈ {0, 1}κ,
C̃← HG(hk,C, stt) and ỹ ← HInp(hk,Hash(hk, x), stt), then C̃(ỹ, x) = C(x).

• Security. There exists a PPT simulator Sim such that for all κ, ` (recall that ` is polynomial
in κ) and PPT (in κ) A we have that

(hk, x, C̃, ỹ)
c
≈ (hk, x,Sim(hk, x, 1|C|,C(x))),

where hk ← HGen(1κ, 1`), (C, x) ← A(hk), stt ← {0, 1}κ, C̃ ← HG(hk,C, stt) and ỹ ←
HInp(hk,Hash(hk, x), stt).

23

Notation on binary trees. Just like the IO construction, in our construction below, Tree is a
full binary tree where the label of each node in Tree is calculated as the hash of its left and right
children and, now additionally, with an an extra identity. Looking ahead, this identity will be the
largest identity among the users registered in the left child. (Such information is useful if one wants
to a binary search of an identity over this tree.) Just as in the IO-based construction, we define
the size of a tree Tree as the number of its leaves, denoted by size(Tree), and we denote the root of
Tree as rt(Tree), and use d(Tree) to refer to the depth of Tree. Again, when Tree is clear from the
context, we use rt and d to denote the root and the depth of Tree.

Before describing the construction, recall that without loss of generality, we can assume that
public keys, secret keys, and identities, are all of length security parameter κ.

Comparison with Construction 4.1 using signs (=) and (??). To help the reader familiar
with Construction 4.1, we have denoted the steps that are identical to Construction 4.1 by (=) and
the steps that are significantly different by (??). Other steps are close but not identical.

Construction 5.2 (Construction of RBE from hash garbling). We will use a hash garbling scheme
(HGen,Hash,HG,HInp) and a public key encryption scheme (G,E,D). Using them we show how
to implement the subroutines of RBE according to Definition 3.1.

• Stp(1κ)→ (pp0), where pp0 = hk is sampled from HGen(1κ, 13κ).

• Reg
[aux]

(ppn, id, pk)→ ppn+1. This algorithm works as follows:

1. (=) Parse auxn := ({Tree1, . . . ,Treeη}), (id1, . . . , idn)) where the trees have corresponding
depths d1 > d2 · · · > dη, and (id1, . . . , idn) is the order the identities registered.8

2. Parse ppn as a sequence (hk, (rt1, d1), . . . , (rtη, dη)) where rti ∈ {0, 1}κ represents the root
of tree Treei and di represents the depth of Treei.

3. Create a new tree Treeη+1 with leaves id, pk and set its root as rtη+1 ← Hash(hk, id||pk||0κ)
and thus its depth would be dη+1 = 1.

4. (=) Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in step below.)

5. While there are two different trees TreeL,TreeR ∈ T of the same depth d and size s = 2d

(recall that our trees are always full binary trees).

(a) Obtain new Tree of depth d+1 by merging the two trees TreeL and TreeR as follows.

(b) (??) Let id1 . . . idn′ and pk1 . . . pkn′ be the identities and public keys of n′ users in
both trees TreeL and TreeR combined in sorted order according to identities.

(c) For each i ∈ [n′], let h0,i := Hash(hk, idi||pki||0κ).

(d) (??) Next for each j ∈ {1, . . . log n′} and k ∈ {0, . . . , (n′/2j)− 1}, let

hj,k = Hash(hk, hj−1,2k||hj−1,2k+1||id[j, k])

where id[j, k] is the largest identity in the left child (which is the node with label
hj−1,2k); namely id[j, k] = id(2k+1)·2j−1 . This completes the description of Tree.

(e) (=) Remove both of TreeL,TreeR from T and add Tree to T instead.

8Keeping this list is not necessary, but simplifies the presentation of the updates.

24

6. Let T = {Tree1, . . . ,Treeζ} where d′1 > · · · > d′ζ is their corresponding depth and
rt′1, . . . , rt

′
ζ is their corresponding roots. Set ppn+1, auxn+1 as

auxn+1 = (T , (id1, . . . , idn, idn+1 = id)), ppn+1 = (hk, (rt′1, d
′
1), . . . , (rt

′
ζ , d
′
ζ)).

• Enc(pp, id,m)→ ct:

1. Parse pp := (hk, (rt1, d1), . . . , (rtη, dη)).

2. For each i ∈ {1, . . . η} and j ∈ {1, . . . , di}, sample stti,j ← {0, 1}κ and generate P̃i,j ←
HG(hk,Pi,j , stti,j), where Pi,j is explained below.

3. For each i ∈ [η] obtain ỹi,1 ← HInp(hk, rti, stti,1).

4. Output the ciphertext ct = (pp, {P̃i,j}i,j , {ỹi,1}i).

The program Pi,j works as follows:

Hardwired values: rti, di, hk,m, id, r, stti,j+1 (where stti,di+1 = ⊥)

Input: a||b||id∗

1. If id∗ = 0κ9 and a = id then output E(b,m; r).

2. If id∗ = 0κ and a 6= id then output ⊥.

3. If id > id∗ then output HInp(hk, b, stti,j+1), else output HInp(hk, a, stti,j+1).

• Updaux(pp, id)→ u: If id is a leaf in a tree of aux, say Tree, return the whole Merkle opening
pth of leaf id and its sibling pk to the root rt(Tree). Otherwise, return ⊥.

• Dec(sk, u, ct)→ m: Parse ct = (pp, {P̃i,j}i,j , {ỹi,1}i) and u := (z1 . . . zdi∗). Let i∗ be the index
of the tree that holds the corresponding identity.10 Decryption proceeds as follows:

1. For j = {1 . . . di∗ − 1} do

– ỹi∗,j+1 = P̃i∗,j(ỹi∗,j , zj).

2. Let ct := P̃i∗,di∗ (ỹi∗,di∗ , zdi∗).

3. Output D(sk, ct).

Theorem 5.3. The RBE of Construction 5.2 satisfies the compactness, completeness (Defini-
tion 3.3), and security (Definition 3.7) properties.

In the rest of this section, we prove Theorem 5.3. The completeness and compactness properties
are proved similar to those of Construction 4.1. We can again verify that over the course of the
system’s execution, the tree that holds a user id, will not be merged with other trees more than
log n times. (Each merge increases the depth of the tree by one, and the depth cannot bypass
log n.) We may use this fact to conclude all the efficiency features for the RBE scheme.

In the rest of this section, we focus on proving security.

9Without loss of generality we assume that no user is assigned the identity 0κ.
10Alternatively, we may perform this with respect to all i∗, which is up to the number of trees in the system.

25

5.1 Proof of Security

Similar to our presentation of the proof of Construction 4.1, here also we first start by giving the
proof for the case in which only one user has registered. We will then present the general proof.

Hardwired: rt, hk, m ∈ {0, 1}, id′, r and stt

Input: (id, pk, id∗)

1. If id∗ 6= 0κ or id 6= id′, then output ⊥ and end.

2. Output E(pk,m; r) and end.

Figure 7: Circuit P used for encryption of m to identity id′

Theorem 5.4 (Security). For any identity id′ we have

(HG(hk,P0, stt),HInp(hk, rt, stt))
c
≈ (HG(hk,P1, stt),HInp(hk, rt, stt)) (12)

where hk ← HGen(1κ, 13κ), stt ← {0, 1}κ, (pk, sk) ← G(1κ), rt := Hash(hk, (id′, pk, 0κ)) and for
m ∈ {0, 1} the circuit program Pm is defined as

Pm := P[rt, hk,m, id′, r, stt]. (13)

Proof. For m ∈ {0, 1} let ctm denote the challenge ciphertext, namely

ctm := (HG(hk,P0, stt),HInp(hk, rt, stt)) , (14)

where all the variables are sampled as in the theorem. We need to show ct0
c
≈ ct1. By simulation

security of the hash garbling scheme, for both m ∈ {0, 1} we have

ctm
c
≈ Sim(hk, (id′, pk, 0κ), 1|Pm |,E(pk,m; r)). (15)

By semantic security of the underlying public-key encryption scheme we have

Sim(hk, (id′, pk, 0κ), 1|P0 |,E(pk, 0; r))
c
≈ Sim(hk, (id′, pk, 0κ), 1|P1 |,E(pk, 1; r)), (16)

and so we obtain ct0
c
≈ ct1.

Proof for the general case. As in the proof in Section 4.2.2 we may assume that at the time
of encryption we have only one tree. The proof for the case of multiple trees is the same.

Proof. Suppose at the time of encryption the underlying tree with root rt has depth d. In the sequel
we shall write Pj for j ∈ [d] to refer to the circuit program P1,j described in our RBE construction.
That is,

P1 ≡ P1,1[rt, d, hk,m, id, r, stt1,2], (17)

and for j > 1
Pj ≡ P1,j [rt, d, hk,m, id, r, stt1,j+1], (18)

26

where all the variables above are as in the encryption of the construction.
For j ∈ [d] we define rtj to be the node in the jth level of the tree (where we consider the root

as level one), whose sub-tree contains the leaf with label id.11 For example, if the path leading to
id is

[(id, pk, 0κ), (a1, b1, id1, left), . . . , (ad−1, bd−1, idd−1, right), rt],

then rt3 = bd−1. For j > 1 we define

ỹj := HInp(hk, rtj , stt1,j). (19)

We also define Xj for j ∈ [t+ 1] to be the concatenate result of the node values in level j of the
path leading to id. For instance, in the example above we have X1 = (ad−1, bd−1, idd−1).

Let stti := stt1,i. Recall that Pi has stti+1 hardwired, which is the state used to hash-garble
Pi+1. Via a sequence of hybrids, we show how to replace garbled versions of Pi’s, starting with
i = 1, so that in the ith hybrid the values of stt1, . . . , stti are never used.

• Hybrid 0 (true encryption): The ciphertext is ct0 := (P̃1, P̃2, . . . , P̃d, ỹ1), where all of the
values are sampled as in the construction.

• Hybrid 1: The ciphertext is ct1 := (P̃1,sim, P̃2, . . . , P̃d, ỹ1,sim), where P̃2, . . . , P̃d are sampled

as in the construction, and where P̃1,sim and ỹ1,sim are sampled as follows:

(P̃1,sim, ỹ1,sim)← Sim(hk, X1, 1
|P1 |, ỹ2). (20)

• Hybird i ∈ [d− 1]:
cti := (P̃1,sim, . . . , P̃i,sim, P̃i+1, . . . , P̃d, ỹ1,sim),

where for j ∈ [i]:
(P̃j,sim, ỹj,sim)← Sim(hk, Xj+1, 1

|Pj |, ỹj+1) (21)

• Hybrid d:
ctd := (P̃1,sim, . . . , P̃d,sim, ỹ1,sim)),

where for j ∈ [d− 1]:

(P̃j,sim, ỹj,sim)← Sim(hk, Xj+1, 1
|Pj |, ỹj+1), (22)

and
(P̃d,sim, ỹd,sim)← Sim(hk, (id, pk, 0κ), 1|Pd |,E(pk,m; r)). (23)

Now exactly as in the proof of Theorem 5.4, using the simulation security of the underlying
HO scheme, we can show the indistinguishability of each two adjacent hybrids. Moreover, in the
last hybrid, again using simulation security and as in the proof of Theorem 5.4, we may switch the
underlying bit value of m. The proof is now complete.

11Recall that by Definition 3.7 the challenge identity id must have been registered before, and exactly once.

27

References

[ARP03] Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key cryptogra-
phy. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 452–473. Springer, 2003.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part I, volume 10820 of Lecture Notes in Computer Science, pages 535–564, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[CCV04] Zhaohui Cheng, Richard Comley, and Luminita Vasiu. Remove key escrow from the
identity-based encryption system. In Exploring New Frontiers of Theoretical Informat-
ics, pages 37–50. Springer, 2004.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume
10402 of Lecture Notes in Computer Science, pages 33–65, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany.

[Cho09] Sherman SM Chow. Removing escrow from identity-based encryption. In International
Workshop on Public Key Cryptography, pages 256–276. Springer, 2009.

[CHSS02] Liqun Chen, Keith Harrison, David Soldera, and Nigel P Smart. Applications of mul-
tiple trust authorities in pairing based cryptosystems. In Infrastructure security, pages
260–275. Springer, 2002.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, 8th IMA International Conference on Cryptography and
Coding, volume 2260 of Lecture Notes in Computer Science, pages 360–363, Cirencester,
UK, December 17–19, 2001. Springer, Heidelberg, Germany.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 537–
569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

28

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International Conference
on Theory and Practice of Public Key Cryptography, Part I, volume 10769 of Lecture
Notes in Computer Science, pages 3–31, Rio de Janeiro, Brazil, March 25–29, 2018.
Springer, Heidelberg, Germany.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–49,
Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[GLSW08] Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box accountable authority
identity-based encryption. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 427–436. ACM, 2008.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM
Press.

[Goy07] Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In Alfred
Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 430–447, Santa Barbara, CA, USA, August 19–23,
2007. Springer, Heidelberg, Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Confer-
ence on Innovations in Theoretical Computer Science, pages 163–172, Rehovot, Israel,
January 11–13, 2015. Association for Computing Machinery.

[KG10] Aniket Kate and Ian Goldberg. Distributed private-key generators for identity-based
cryptography. In International Conference on Security and Cryptography for Networks,
pages 436–453. Springer, 2010.

[PS08] Kenneth G Paterson and Sriramkrishnan Srinivasan. Security and anonymity of
identity-based encryption with multiple trusted authorities. In International Confer-
ence on Pairing-Based Cryptography, pages 354–375. Springer, 2008.

[Rog15] Phillip Rogaway. The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162, 2015. http://eprint.iacr.org/2015/1162.

29

http://eprint.iacr.org/2015/1162

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA, August 19–23,
1984. Springer, Heidelberg, Germany.

[WQT18] Quanyun Wei, Fang Qi, and Zhe Tang. Remove key escrow from the BF and Gen-
try identity-based encryption with non-interactive key generation. Telecommunication
Systems, pages 1–10, 2018.

30

	Introduction
	Technical Overview

	Preliminaries
	Formal Definition of Registration-Based Encryption
	IO-Based Construction of RBE
	Proofs of Completeness, Compactness and Efficiency
	Proof of Security
	Simple Case of One User
	General Case of Multiple Users

	Basing Weakly-Efficient RBE on Standard Assumptions
	Proof of Security

