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This is an out of date draft and here reference only. This work was superseded and replaced
with the paper “Constrained PRFs for Bit-fixing from OWFs with Constant Collusion Re-
sistance” [DKNY18], which achieves a bit-fixing PRF with constant collusion-resistance and
key-privacy from OWFs.� �

Abstract

Constrained pseudorandom functions (CPRFs) are a type of PRFs that allows one to derive
a constrained key KC from the master key K. While the master key K allows one to evaluate on
any input as a standard PRF, the constrained key KC only allows one to evaluate on inputs x
such that C(x) = 1. Since the introduction of CPRFs by Boneh andWaters (ASIACRYPT’13),
Kiayias et al. (CCS’13), and Boyle et al. (PKC’14), there have been various constructions
of CPRFs. However, thus far, almost all constructions (from standard assumptions and non-
trivial constraints) are only proven to be secure if at most one constrained key KC is known to
the adversary, excluding the very recent work of Davidson and Nishimaki (EPRINT’18). Con-
sidering the interesting applications of CPRFs such as ID-based non-interactive key exchange,
we desire CPRFs that are collusion resistance with respect to the constrained keys. In this
work, we make progress in this direction and construct a CPRF for the bit-fixing predicates
that are collusion resistance for a constant number of constrained keys. Surprisingly, compared
to the heavy machinery that was used by previous CPRF constructions, our construction only
relies on the existence of one-way functions.

1 Introduction

Constrained pseudorandom functions (CPRFs), introduced simultaneously by Boneh and Waters
[BW13], Kiayias et at. [KPTZ13], and Boyle et al. [BGI14], are a generalization of standard
pseudorandom functions (PRF) [GGM84] which allows one to derive a constrained key that can
be used to evaluate the PRF on a subset of the inputs satisfied by the constraint. So far there
have been numerous constructions of CPRFs from various assumptions [BW13, HKKW14, BV15,
BLW17, CC17, BTVW17, PS18, CVW18, AMN+18, DN18]. However, beside the CPRFs for
trivial constraints such as constraints represented by singleton sets: F = {{x} | x ∈ {0, 1}nin}
or prefix-fixing predicates which are satisfied by the classical Goldreich-Goldwasser-Micali PRF
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[GGM84], much is left to be desired. For instance, the constructions that satisfy full collusion-
resistance of the constrained keys, i.e., pseudorandomness can be argued even when the adver-
sary obtains polynomially many constrained keys that are constrained on the challenge points,
all rely on the random oracle model or assume the existence of indistinguishable obfuscation or
multi-linear maps [BW13, HKKW14, BLW17]. Very recently, [DN18] made great progress in this
direction and showed a CPRF construction for the bit-fixing predicate that achieves constant key
collusion-resistance based on standard lattice-based assumptions in the standard model. Consider-
ing some of the interesting applications of CPRFs such as non-interactive key exchange [BLW17],
it is desirable to have CPRFs that are secure even if the adversary is allowed to obtain multiple
constrained keys. Moreover, other than [HKKW14, DN18], all constructions are only proven to
be selectively-secure, where the adversary must commit to the constraint of the constrained key
it receives from the challenger at the beginning of the game.

In this paper, we provide an adaptive and collusion-resistant CPRF for the bit-fixing pred-
icate, where the scheme can tolerate up to any constant Q-collusions of constrained keys. Our
construction achieves the same security requirement as [DN18]. Compared to previous CPRFs
that required heavy machinery, our construction is very simple and can be proven solely from the
existence of one-way functions.

2 Preliminaries

2.1 Pseudorandom Functions

We first define the standard notion of pseudorandom functions (PRFs).

Syntax. Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the
security parameter κ. A pseudorandom function is defined by a pair of PPT algorithms ΠPRF =
(PRF.Gen,PRF.Eval) where:

PRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and
outputs a key K ∈ {0, 1}κ.

PRF.Eval(K, x) :→ y: The evaluation algorithm takes as input x ∈ {0, 1}nin and outputs y ∈
{0, 1}nout .

Pseudorandomness. We define the notion of (adaptive) pseudorandomness for PRFs ΠPRF =
(PRF.Gen,PRF.Eval). The security notion is defined by the following game between an adversary
A and a challenger:

Setup: At the beginning of the game, the challenger prepares the key K ← PRF.Gen(1κ) and a
set S initially set to be empty.

Evaluation Queries: During the game, A can adaptively query an evaluation on any input.
When A submits x ∈ {0, 1}nin to the challenger, the challenger evaluates y ← PRF.Eval(K, x)
and returns y ∈ {0, 1}nout to A. It then updates S ← S ∪ {x}.

Challenge Phase: At some point, A chooses its target input x∗ ∈ {0, 1}nin such that x∗ ̸∈ S

and submits it to the challenger. The challenger chooses a random coin coin
$← {0, 1}.

If coin = 0, it evaluates y∗ ← PRF.Eval(K, x∗). If coin = 1, it samples a random value

y∗
$← {0, 1}nout . Finally, it returns y∗ to A.
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Evaluation Queries: After the challenge phase, Amay continue to make evaluation queries with
the added restriction that it cannot query x∗.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 1. A PRF ΠPRF is said to be (adaptive) pseudorandom if for all PPT adversary A,
the probability of A winning the above game is negligible.

It is a well known fact that PRFs are implied from one-way functions [GGM84, HILL99].

2.2 Constrained Pseudorandom Functions

We now define constrained pseudorandom functions (CPRFs).

Syntax. Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the
security parameter κ. Let C = {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with
domain {0, 1}nin and range {0, 1} whose sizes are polynomially bounded. In the following we drop
the subscript for clarity.

A constrained pseudorandom function for C is defined by the four PPT algorithms ΠCPRF =
(CPRF.Gen, CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEval) where:

CPRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and
outputs a master key K ∈ {0, 1}κ.

CPRF.Eval(K, x) :→ y: The evaluation algorithm takes as input the master key K and input x ∈
{0, 1}nin and outputs y ∈ {0, 1}nout .

CPRF.Constrain(K, C) :→ KC : The constrained key generation algorithm takes as input the master
key K and a circuit C ∈ C specifying the constraint and outputs a constrained key KC .

CPRF.ConstrainEval(KC , x) :→ y: The constrained evaluation algorithm takes as input the con-
strained key KC and an input x ∈ {0, 1}nin and outputs either y ∈ {0, 1}nout or ⊥.

Correctness. We define the notion of correctness for CPRFs. We say a CPRF ΠCPRF is correct
if for all κ ∈ N, nin, nout ∈ poly(κ), K ∈ CPRF.Gen(1κ), C ∈ Cκ, KC ∈ CPRF.Constrain(K, C),
x ∈ {0, 1}nin such that C(x) = 1, we have CPRF.Eval(K, x) = CPRF.ConstrainEval(KC , x).

Pseudorandomness on Constrained Points. We define the notion of (adaptive) pseudoran-
domness on constrained points for CPRFs. Informally, we require it infeasible to evaluate on a
point when only given constrained keys that are constrained on that particular point. For any
C : {0, 1}nin → {0, 1}nout , let ConPoint : C → {0, 1}nin be a function which outputs the set of
all constrained points {x | C(x) = 0}. Here ConPoint is not necessarily required to be efficiently
computable.

Formally, this security notion is defined by the following game between an adversary A and a
challenger:

Setup: At the beginning of the game, the challenger prepares the master key K← CPRF.Gen(1κ)
and two sets Seval, Scon initially set to be empty.

Queries: During the game, A can adaptively make the following two types of queries:
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-Evaluation Queries: Upon a query x ∈ {0, 1}nin , the challenger evaluates y ← CPRF.Eval(K, x)
and returns y ∈ {0, 1}nout to A. It then updates Seval ← Seval ∪ {x}.

-Constrained Key Queries: Upon a query C ∈ C, the challenger runs KC ← CPRF.Constrain(K, C)
and returns KC to A. It then updates Scon ← Scon ∪ {C}.

Challenge Phase: At some point, A chooses its target input x∗ ∈ {0, 1}nin such that x∗ ̸∈ Seval

and x∗ ∈ ConPoint(C) for all C ∈ Scon. The challenger chooses a random coin coin
$← {0, 1}.

If coin = 0, it evaluates y∗ ← PRF.Eval(K, x∗). If coin = 1, it samples a random value

y∗
$← {0, 1}nout . Finally, it returns y∗ to A.

Queries: After the challenge phase, A may continue to make evaluation queries with the added
restriction that it cannot query x∗ as the evaluation query and cannot query any circuit C
such that C(x∗) = 1 as the constrained key query.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 2. A CPRF ΠCPRF is said to be (adaptive) pseudorandom on constrained points if for
all PPT adversary A, |Pr[A wins]− 1/2| = negl(κ) holds.

Remark 1 (Selective Security). In case all the constrained key queries made by the adversary
must be provided before the Setup phase, we say it is selective pseudorandom on constrained
points.

Remark 2 (Collusion Resistance). We can adjust the strength of the above notion by imposing a
restriction on the number of constrained keys an adversary can query. In case the adversary can
query at most one constrained key, it is called single-key secure. In case we can tolerate up to Q
constrained key queries, we say it is Q-collusion resistance.

3 Constructing CPRFs from Standard PRFs

In this section, we provide a construction of an adaptive pseudorandom on constrained points,
Q-collusion resistant CPRFs for the bit-fixing predicate from any PRF, where Q can be set to
be any constant independent of the security parameter. In particular, the result implies the
existence of such CPRFs from one-way functions. CPRFs with the same property were very
recently constructed by Davidson and Nishimaki [DN18], however, their results require the LWE
assumption. Other than ours and [DN18], no other CPRFs are known to be adaptive and/or to
achieve Q-collusion resistance for any Q > 1 in the standard model, excluding the CPRFs where
the constraints are the trivial singleton sets: F = {{x} | x ∈ {0, 1}nin} or prefix-fixing predicates
[GGM84, BW13, BLW17].

3.1 Preparation: Bit-Fixing Predicates

Here, we provide the constraint class we will be considering: bit-fixing predicates. Formally, for
a vector v ∈ {0, 1, ∗}ℓ, define the circuit CBF

v : {0, 1}ℓ → {0, 1} associated with v as

CBF
v (x) = 1 ⇐⇒

ℓ∧
i=1

((
vi

?
= xi

)∨(
vi

?
= ∗

))
= 1,

4



where vi and xi denotes the i-th bit of the string v and x, respectively. Then, the bit-fixing
predicate (for length ℓ inputs) is defined as

CBFℓ := {CBF
v | v ∈ {0, 1, ∗}ℓ}.

Since we can consider a canonical representation of the circuit CBF
v given the string v ∈ {0, 1, ∗}ℓ,

with an abuse of notation, we may occasionally write v ∈ CBFℓ and view v as CBF
v when the

meaning is clear.
Moreover, for any v ∈ {0, 1, ∗}ℓ and T = (t1, · · · , tQ) ∈ [ℓ]Q such that Q ≤ ℓ, let us define

vT ∈ {0, 1, ∗}Q as the string vt1vt2 · · · vtQ , where vi is the i-th symbol of v. In addition, let Gaut

be a function defined as

Gaut(vT ) = {w ∈ {0, 1}Q | CBF
vT

(w) = 1}.

Namely, it is the set of all points with the same length as vT that equals to vT on the non-wild
cared entries. For example, if ℓ = 8, Q = 5, v = 011∗01∗1, and T = (4, 1, 2, 6, 1), then vT = ∗0110
and the authorized set of points would be Gaut(vT ) = {00110, 10110}. Here, with an abuse of
notation, we define the function Gaut for all input lengths.

3.2 Construction

Let nin = nin(κ), and nout = nout(κ) be integer-valued positive polynomials of the security param-
eter κ andQ be any constant positive integer smaller than nin. Let CBF := {Cκ}κ∈N := {CBFnin(κ)

}κ∈N
be a family of circuits representing the class of constraints. Let ΠPRF = (PRF.Gen,PRF.Eval) be
any PRF with input length nin and output length nout.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class CBF is provided as follows:

CPRF.Gen(1κ)→ K: On input the security parameter 1κ, it runs K̄T,w ← PRF.Gen(1κ) for all
T ∈ [nin]

Q and w ∈ {0, 1}Q. Then it outputs the master key as

K =
(
K̄T,w

)
T∈[nin]Q,w∈{0,1}Q

.

CPRF.Eval(K, x) :→ y: On input the master key K and input x ∈ {0, 1}nin , it first parses
(
K̄T,w

)
T∈[nin]Q,w∈{0,1}Q ←

K. It then computes

y =
⊕

T∈[nin]Q

PRF.Eval(K̄T,xT
, x),

where recall xT ∈ {0, 1}Q is defined as the string xt1xt2 · · ·xtQ and T = (t1, · · · , tQ). Finally,
it outputs y ∈ {0, 1}nout .

CPRF.Constrain(K, CBF
v ) :→ KC : On input the master key K and a circuit CBF

v ∈ CBFnin
, it first

parses
(
K̄T,w

)
T∈[nin]Q,w∈{0,1}Q ← K and sets v ∈ {0, 1, ∗}nin as the representation of CBF

v .

Then it outputs the constrained key

Kv =
((

K̄T,w

)
w∈Gaut(vT )

)
T∈[nin]Q

,

where recall Gaut(vT ) = {w ∈ {0, 1}Q | CBF
vT

(w) = 1}.
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CPRF.ConstrainEval(Kv, x) :→ y: On input the constrained key Kv and an input x ∈ {0, 1}nin ,
it first parses ((K̄T,w)w∈Gaut(vT ))T∈[nin]Q ← Kv. It then uses the PRF keys included in the
constrained key and computes

y =
⊕

T∈[nin]Q

PRF.Eval(K̄T,xT
, x).

Finally, it outputs y ∈ {0, 1}nout .

3.3 Correctness

We check correctness of our CPRF. Let CBF
v be any bit-fixing predicate in CBFnin

. Put differently,
let us fix an arbitrary v ∈ {0, 1, ∗}nin . Then, by construction we have

Kv =
((

K̄T,w

)
w∈Gaut(vT )

)
T∈[nin]Q

← CPRF.Constrain(K, CBF
v ).

Now, for any x ∈ {0, 1}nin such that CBF
v (x) = 1, by definition of the bit-fixing predicate, we have

nin∧
i=1

((
vi

?
= xi

)∨(
vi

?
= ∗

))
= 1.

Then, by definition of function Gaut, we have xT ∈ Gaut(vT ) for any T ∈ [nin]
Q since we have

CBF
vT

(xT ) = 1 if CBF
v (x) = 1. In particular, we have

K̄T,xT
∈ Kv for all T ∈ [nin]

Q.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way using
the same PRF keys, correctness holds.

3.4 Pseudorandomness on Constrained Points

We show the following lemma.

Theorem 1. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF

for the bit-fixing predicate CBF is adaptively pseudorandom on constrained points and Q-collusion
resistant.

Proof. We show the theorem by considering the following sequence of games between an adversary
A against the pseudorandomness on constrained points security game and the challenger. In the
following, for simplicity, we say an adversary A against the CPRF pseudorandomness game.
Below, let Ei denote the probability that ĉoin = coin holds in Gamei. Recall that A makes at most
Q-constrained key queries, where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the
challenger. In particular, at the beginning of the game the challenger prepares the empty
sets Seval, Scon. In this game, the challenger responds to the queries made by A as follows:

• When A submits x ∈ {0, 1}nin as the evaluation query, the challenger returns y ←
CPRF.Eval(K, x) to A and updates Seval ← Seval ∪ {x}.

6



• When A submits CBF
v(j)
∈ CBFnin

as the j-th (j ∈ [Q]) constrained key query, the challenger

returns Kv(j) ← CPRF.Constrain(K, CBF
v(j)

) to A and updates Scon ← Scon ∪ {CBF
v(j)
}.

Furthermore, recall that when A submits the target input x∗ ∈ {0, 1}nin as the challenge
query, we have the restriction x∗ /∈ Seval and x∗ ∈ ConPoint(CBF

v(j)
) for all CBF

v(j)
∈ Scon. Here,

the latter condition is equivalent to

nin∧
i=1

((
v
(j)
i

?
= x∗i

)∨(
v
(j)
i

?
= ∗

))
= 0 for all CBF

v(j)
∈ Scon. (1)

By definition, we have |Pr[E0]− 1/2| = ϵ.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end
of the game, the challenger samples a random set T ∗ $← [nin]

Q. Let us set T ∗ = (t1, · · · , tQ).
The challenger further samples b∗tj

$← {0, 1} for all j ∈ [Q]. Let b∗T ∗ := bt1bt2 · · · btQ ∈
{0, 1}Q. Then, the challenger checks whether the following equation holds with respect to
the constrained key queries and the challenge query made by the adversary A at the end of
the game:

• The challenger aborts if there exists j ∈ [Q] such that

(v
(j)
tj

?
= b∗tj )

∨
(v

(j)
tj

?
= ∗) = 0. (2)

does not hold.

• The challenger aborts if x∗ does not satisfy

(b∗T ∗
?
= x∗T ∗) =

∧
j∈[Q]

(b∗tj
?
= x∗tj ) = 1. (3)

• The challenger aborts if (T ∗, b∗T ∗) chosen by the challenger does not equal to the first
pair (with respect to some pre-defined order over [nin]

Q × {0, 1}Q such as the lexico-
graphic order) that satisfies Equation (2) for all j ∈ [Q] and Equation (3). Note that
it is possible to efficiently find such a pair by enumerating over [nin]

Q × {0, 1}Q since
Q = O(1).1

When the challenger aborts, it substitutes the guess ĉoin outputted by A with a random bit.
We call this event abort.

As we will show in Lemma 1, there exists at least single pair (T ∗, b∗T ∗) ∈ [nin]
Q×{0, 1}Q that

satisfies Equation (2) for all j ∈ [Q] and Equation (3). Therefore, the event abort occurs
with probability 1− 1/(2n)Q. Furthermore, it can be seen that abort occurs independently
from the view of A. Therefore, we have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(2n)Q) + (1/2) · (1− 1/(2n)Q)− 1/2|
= ϵ/(2n)Q,

1One may wonder why the final condition for the abort is necessary, because the reduction in the proof of
Lemma 2 works even without it. This additional abort step is introduced to make the probability of abort to
occur independently of the choice of the constrained key queries and the challenge query made by the adversary.
Without this step, we cannot lower bound |Pr[E1]− 1/2|. Similar problem was identified by Waters [Wat05], who
introduced “the artificial abort step” to resolve it. Our analysis here is much simpler because we can compute the
abort probability exactly in our case.
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where we used the fact that ĉoin is randomly chosen and thus equals to coin with probability
1/2 when abort occurs.

Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the
abort condition is satisfied. In this game, we change the game so that the challenger chooses
T ∗ and b∗T ∗ at the beginning of the game and aborts as soon as either A makes a constrained
key query CBF

v(j)
∈ CBFnin

that does not satisfy Equation (2) or a challenge query for x∗ that
does not satisfy Equation (3). Furthermore, it aborts if (T ∗, b∗T ∗) is not the first pair that
satisfies Equation (2) for all j ∈ [Q] and Equation (3). Since it is only a conceptual change,
we have

Pr[E2] = Pr[E1].

Game3: In this game, we change how the challenger responds to the challenge query when coin = 0.
For all the evaluation query and constrained key query, the challenger acts exactly the same
way as in the previous game. In the previous game Game2, when the adversary submits the
target input x∗ ∈ {0, 1}nin as the challenge query, the challenger first checks whether the

condition in Equation (3) holds. If not it aborts. Otherwise, it samples coin
$← {0, 1}. In

case coin = 0, it computes CPRF.Eval(K, x∗) as

y∗ =
⊕

T∈[nin]Q

PRF.Eval(K̄T,x∗
T
, x∗) (4)

using the master key K =
(
K̄T,w

)
T∈[nin]Q,w∈{0,1}Q

it constructed at the beginning of the

game, where K̄T,w ← PRF.Gen(1κ) for all T ∈ [nin]
Q and w ∈ {0, 1}Q. Due to the condition

in Equation (3), i.e., b∗T ∗ = x∗T ∗ ∈ {0, 1}Q, we can rewrite Equation (4) as

y∗ = PRF.Eval(K̄T ∗,b∗
T∗ , x

∗)⊕
( ⊕

T∈[nin]Q\T ∗

PRF.Eval(K̄T,x∗
T
, x∗)

)
. (5)

In this game Game3, when coin = 0, the challenger instead samples a random ȳ∗
$← {0, 1}nout

and returns the following to A instead of returning y∗ to A as in Equation (5):

y∗ = ȳ∗ ⊕
( ⊕

T∈[nin]Q\T ∗

PRF.Eval(K̄T,x∗
T
, x∗)

)
. (6)

We show in Lemma 2 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the dis-
tribution of y∗ for coin = 0 and coin = 1 are exactly the same since A has not made an
evaluation query on x∗ and K̄T ∗,b∗

T∗ is not given through any of the constrained key query.
Concretely, ȳ∗ is distributed uniform random regardless of whether coin = 0 or coin = 1 and
thus the value of coin is information theoretically hidden to A. Therefore, we have

Pr[E3] = 1/2.
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Combining everything together with Lemma 1 and Lemma 2, we have

ϵ = |Pr[E0]− 1/2| ≤ (2nin)
Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that nin = poly(κ) and Q a constant.

Lemma 1. In Game1, we have{
(T ∗, b∗T ∗) ∈ [nin]

Q × {0, 1}Q | (T ∗, b∗T ∗) satisfies Equation (2) for all j ∈ [Q] and Equation (3)
}
̸= ∅.

Proof. By the restriction posed on A in the game, for all j ∈ [Q], there exists t(j) ∈ [nin] such that

v
(j)

t(j)
= 1− x∗

t(j)
.

Let us denote T̄ := (t(1), · · · , t(Q)) ∈ [nin]
Q and b̄T̄ := x∗

T̄
∈ {0, 1}Q. It is easy to check that

Equation (2) for all j ∈ [Q] and Equation (3) hold if T ∗ = T̄ and b∗T ∗ = b̄T̄ .

Lemma 2. We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies
adaptive pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2
and Game3 non-negligible probability ϵ′. We then construct an adversary B that breaks the
pseudorandomness of ΠPRF with the same probability. The adversary B proceeds as follows.

At the beginning of the game B samples a random tuple T ∗ = (t1, · · · , tQ) $← [nin]
Q and

b∗tj
$← {0, 1} for all j ∈ [Q] as in the Game2-challenger. Let b∗T ∗ := bt1bt2 · · · btQ ∈ {0, 1}Q. Then,

it further samples K̄T,w ← PRF.Gen(1κ) for all T ∈ [nin]
Q and w ∈ {0, 1}Q except for (T ∗, b∗T ∗). It

then sets the (simulated) master key K∗ as

K∗ =
(
K̄T,w

)
(T,w)∈[nin]Q×{0,1}Q\(T ∗,b∗

T∗ )
.

Here, B implicitly sets K̄T ∗,b∗
T∗ as the PRF key used by its PRF challenger. Finally, B prepares

two empty sets Seval, Scon. B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}nin as the evaluation query, B checks whether xT ∗ = b∗T ∗ . If not,
then it can use the simulated master key K∗ to compute

y =
⊕

T∈[nin]Q

PRF.Eval(K̄T,xT
, x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it
receives back ȳ from the PRF challenger, B computes the output as

y = ȳ ⊕
( ⊕
T∈[nin]Q\T ∗

PRF.Eval(K̄T,xT
, x)

)
.

Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of
the PRF challenger, we have ȳ = PRF.Eval(K̄T ∗,b∗

T∗ , x).
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• When A submits CBF
v(j)
∈ CBFnin

as the j-th (j ∈ [Q]) constrained key query, B checks whether
the condition in Equation (2) holds. If not it aborts and outputs a random bit. Otherwise,
it returns the following constrained key Kv(j) to A:

Kvj =
((

K̄T,w

)
w∈Gaut(v

(j)
T )

)
T∈[nin]Q

,

where recall Gaut(v
(j)
T ) = {w ∈ {0, 1}Q | CBF

v
(j)
T

(w) = 1}. Here, B can prepare all the PRF keys

since condition in Equation (2) guarantees us that we have b∗T ∗ ̸∈ Gaut(v
(j)
T ∗ ), or equivalently,

CBF

v
(j)
T∗
(b∗T ∗) = 0. Namely, K̄T ∗,b∗

T∗ is not included in Kv(j) .

• When A submits the target input x∗ ∈ {0, 1}nin as the challenge query, B checks whether
the condition in Equation (3) holds. If not it aborts and outputs a random bit. Otherwise,
B queries its PRF challenger on x∗ as its challenge query and receives back ȳ∗. It then
computes y∗ as in Equation (6) and returns y∗ to A. Here, since Equation (3) holds, K̄T ∗,b∗

T∗

must be required to compute on input x∗.

Finally, A outputs its guess ĉoin. B then checks whether (T ∗, b∗T ∗) is the first pair that satisfies
Equation (2) for all j ∈ [Q] and Equation (3). If it does not hold, B outputs a random bit.

Otherwise, B outputs ĉoin as its guess.
This completes the description of B. It is easy to check that in case coin = 0, B receives

ȳ∗ ← PRF.Eval(K̄T ∗,b∗
T∗ , x

∗), hence B simulates Game2 perfectly. Otherwise in case coin = 1,

B receives ȳ∗
$← {0, 1}nout , hence B simulates Game3 perfectly. Therefore, we conclude that

B wins the PRF pseudorandomness game with probability exactly ϵ′. Assuming that ΠPRF is
pseudorandom, this is a contradiction, hence, ϵ′ must be negligible.

This completes the proof.
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