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Abstract. We reconsider the security guarantee that can be achieved by
general protocols for secure multiparty computation in the most basic of
settings: information-theoretic security against a semi-honest adversary.
Since the 1980s, we have elegant solutions to this problem that offer full
security, as long as the adversary controls a minority of the parties, but
fail completely when that threshold is crossed. In this work, we revisit this
problem, questioning the optimality of the standard notion of security.
We put forward a new notion of information-theoretic security which is
strictly stronger than the standard one, and which we argue to be “best
possible.” This notion still requires full security against dishonest minority
in the usual sense, and adds a meaningful notion of information-theoretic
security even against dishonest majority.
We present protocols for useful classes of functions that satisfy this new
notion of security. Our protocols have the unique feature of combining the
efficiency benefits of protocols for an honest majority and (most of) the
security benefits of protocols for dishonest majority. We further extend
some of the solutions to the malicious setting.
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1 Introduction

In this work we revisit a question that seemed to be well understood since the
1980s: What is the best security guarantee that can be achieved by general
protocols for secure multiparty computation in the simplest of all models? We put
forward and study a new notion of information-theoretic security that provides
a strictly stronger security guarantee than the standard notion. This security
guarantee is in a sense the best possible. Before defining and motivating our new
notion, we give some relevant background.

Protocols for secure multiparty computation (MPC) can be divided into two
broad categories: information-theoretic MPC protocols, which offer unconditional
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security against computationally unbounded adversaries, and computational MPC
protocols, which offer security against computationally bounded adversaries under
standard cryptographic assumptions.

Information-theoretic MPC protocols not only provide unconditional secu-
rity guarantees, but they are also typically simpler and have better concrete
communication and computation costs than their computational counterparts.
The efficiency gap can even grow with the number of parties by using efficient
“packed secret-sharing” techniques [3, 18, 21], which divide the communication
and computation costs between the parties (at the expense of slightly lowering
the number of corruptions that can be tolerated).

A significant drawback of most information-theoretic MPC protocols, however,
is that their security guarantees completely break down in the presence of a
dishonest majority. Standard protocols, such as the so-called “BGW protocol”
and its variants [6,11,35], allow a dishonest majority to learn the secret inputs of
all parties. This is in contrast to computational protocols that can offer security
even when all but one of the parties are dishonest. The above state of affairs
gives rise to the following natural question:

Can we achieve the standard notion of information-theoretic security
in the presence of an honest majority, while hiding the inputs of honest
parties from a computationally unbounded dishonest majority?

Classical negative results rule out information-theoretic protocols with the
standard notion of security in the presence of a dishonest majority, even for a
function as simple as the OR of n input bits [6, 13]. Unfortunately, these results
further suggest that the answer to the question above may be negative. However,
we observe that this does not imply that all inputs of the minority parties must
be compromised, as is the case for existing protocols. This raises the possibility
of finding a middle ground where only partial information about the inputs of
honest parties is exposed.

Consider the following simple protocol for the OR function. Let G be a
finite Abelian group, and let each party Pi locally map its input bit xi to the
group element yi = 0 if xi = 0 and to a uniformly random element yi ∈ G if
xi = 1. Now the parties run a secure addition protocol that computes the sum
Y =

∑n
i=1 yi without revealing additional information to any subset of parties

(even to a dishonest majority). Such addition protocol is easy to implement in the
information-theoretic setting using the homomorphic property of additive secret
sharing [7]. If Y = 0, then the parties output 0 and otherwise they output 1.

It is easy to see that the above protocol produces the correct output (i.e.,
the disjunction of the n inputs) except with 1/|G| error probability, which can
be made arbitrarily small by choosing a large enough G. A key feature of this
protocol is that even an adversary who corrupts a majority of the parties only
learns limited information about the inputs of the uncorrupted parties, namely
the OR of their input bits. This can provide in many cases a reasonable security
guarantee. For instance, if the OR function is used to make a veto decision, then
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the adversary can only learn whether at least one of the uncorrupted parties
decided to veto, without learning additional information about the number or
identity of parties who vetoed. This provides deniability even in the case where
all but two of the parties are corrupted.

However, the above protocol fails to meet the standard security requirement
for information-theoretic MPC in the presence of a dishonest minority, i.e. that a
minority adversary learns nothing about the inputs of the uncorrupted parties
as long as at least one of the adversary’s inputs is xi = 1. In this case, the
(semi-honest) adversary can both learn the OR of the honest parties’ inputs and
force the output to be 1. Thus, there is room to do better.

1.1 Our Contribution

In this work we initiate a systematic study of the “best-possible information-
theoretic security” for MPC protocols, when the adversary can corrupt an
arbitrary number of parties. For the case of passive (semi-honest) adversary, we
characterize the information that must be leaked to a dishonest majority. Then,
restricting the adversary to learn only that amount of information would yield the
best possible security that can be obtained in this setting. For some interesting
functions, we also design information theoretic protocols that achieve this notion,
namely provide standard security for honest majority, and leak only the necessary
information to a dishonest majority.3 We now give a more detailed account of
our results.

New notion of security. We formally define our new notion of Best-possible
Information-Theoretic MPC (BIT-MPC) as one that offers the standard notion of
security against a corruption of a minority of parties and, additionally, offers the
following kind of residual security against an adversary who corrupts a majority of
the parties: the adversary cannot learn anything more than the residual function
of the honest parties’ inputs. By this, we mean that the adversary is allowed to
learn only the value of the function on the inputs of the honest parties combined
with every choice of inputs for the corrupted parties. In the case of OR from the
above example (and similarly for the dual case of AND), this means that the
adversary can only learn the OR of uncorrupted inputs, because the output for
any choice of corrupted inputs can be derived from this information. As another
example, consider the maximum function; in this case a dishonest majority can
only learn the maximum of the honest parties’ inputs.

Positive results. For some special functions of interest, we design protocols
that realize the notion of BIT-MPC. This includes protocols for AND/OR, for
deciding whether the inputs xi satisfy a linear system of equations Ax = b over
3 Our notion of best-possible security, as well as both positive and negative results,
apply not only in the threshold case but also to general adversary structures, replacing
“honest majority” by any Q2 structure [29].
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a finite field, and for computing functions like the maximum/minimum of the
inputs, where the inputs come from a finite domain. While these functions are
simple, they are useful for natural application scenarios. For instance, securely
computing many parallel instances of AND can be useful for realizing multi-
party instances of secure set intersection where sets come from a universe of
bounded size. This in turn can be helpful for many real-world scenarios (consider
a secure Doodle poll as a concrete example). Our protocols for these functions,
especially when combined with other optimizations such as share-packing [18,21]
and pseudo-random secret sharing [14], lead to protocols that retain the efficiency
advantages of honest-majority MPC and additionally offer a very meaningful
protection against corrupted majorities. We expect such protocols to be attractive
for implementations. See Section 6 for discussion of applications and concrete
efficiency. Finally, most (but not all) of our results are easy to extend to the
setting of security against malicious adversaries. This extension is discussed in
Section 7.

Our BIT-MPC protocols build on protocols for non-interactive MPC (NIMPC)
in the model of [4]. We rely on a restricted type of NIMPC protocols in which the
correlated randomness is sampled uniformly from a linear vector space. We design
such protocols for the above functions and show how to generally transform any
such restricted NIMPC protocol into a BIT-MPC protocol.

Our results on NIMPC are independently motivated by the goal of making
correlated randomness in NIMPC reusable or replacing it by a PKI setup under
standard assumptions. It was previously known that both goals can be achieved
for general functions by using indistinguishability obfuscation (see [26] and [25]
respectively). Our work gives the first nontrivial examples for functions that
admit NIMPC protocols with these useful features under weaker assumptions:
one-way functions for reusability, and non-interactive key exchange (NIKE) for
PKI setup.

Negative results. We complement our positive results by several negative results.
First, by strengthening known results about characterizations of two-party secure
computation (e.g., [5, 6, 12, 33]) and applying partition arguments (e.g., [12]), we
show that our notion of BIT-MPC, indeed provides the best possible security.
Namely, we prove that, for every (non-trivial) function f and for any coalition T ,
if standard security holds against the set of parties T , then the parties in T must
learn the corresponding residual function and, therefore, residual security is the
best one can hope for.

Contrary to the general feasibility results for the standard notion of security,
e.g. [6, 11], for our notion we rule out the possibility of efficient BIT-MPC
protocols for all efficiently computable functions. More precisely, we show that
such a positive result would imply that the polynomial hierarchy collapses. The
proof of this fact is similar to the analogous negative result for best-possible
indistinguishability obfuscation [24] (and implicitly in the context of instance
hiding [1]). Our results do not rule out the possibility that every function f
admits a BIT-MPC protocol if one does not take computational complexity into
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account. This is the main question left open by our work. We do provide a first
step towards resolving this question, by showing that such protocols exist for all
4-input functions (see Section 4.4).

Finally, we show a negative result that applies to a restricted class of protocols
that captures most of our positives results. When considering Boolean functions
f (outputting a single bit), protocols that have a certain “bilinear” structure
over a finite field F are limited to only functions f(x) that can be expressed as a
linear test “Ax = b?” over F. This relies on analogous results on the power of
degree-2 randomized encodings of functions [31].

1.2 Related Work

Several prior works, including the works of Chaum [10], Ishai et al. [32], and
Hirt et al. [28], provide a hybrid security guarantee of information-theoretic
security for honest majority but need to switch to computational security against
dishonest majority. This is contrasted with our work, where in both cases secu-
rity is information-theoretic. Beyond the fact that we manage to preserve the
information-theoretic setting, our results enjoy the efficiency benefits of this
setting while the protocols in the hybrid model do not and, in fact, are even less
efficient than their purely computational counterparts.

The problem of MPC with “residual security,” extending the NIMPC model
from [4] to the interactive setting, was recently considered in an independent
work of Agrawal, Anand, and Prabhakaran [2]. Like our work, they show that
residual security is the best possible in the presence of a corrupted majority.
Furthermore, they give a combinatorial characterization for the class of functions
for which residual security is equivalent to standard security. Similarly to our
work, they also suggest a compiler from NIMPC to MPC, but their compiler
is more restrictive than ours in that it does not allow interaction for emulating
the NIMPC evaluator. Unlike our work, they do not consider the question of
combining standard security for dishonest minority with residual security for
dishonest majority, nor do they consider the class of functions to which our
positive results apply.

2 Definitions

Notation. For a vector v = (v1, ...vn) and T = {i1, . . . , in′} ⊆ [n] a subset of size
n′ we define vT to be (vi1 , ...vin′ ).

Our notion of Best-possible Information-Theoretically-secure MPC protocols
(BIT-MPC) begins with the standard notion of secure protocols that only provides
security against some sets of corrupted parties, but not other (e.g., only against
a corrupted minority).4 We augment the standard notion by requiring that even
4 We note that in the pure information-theoretic setting we consider, the standard
definitions below are equivalent to the definitions using a (computationally unbounded)
simulator.



6 Shai Halevi, Yuval Ishal, Eyal Kushilevitz, and Tal Rabin

corrupted sets for which it is impossible to guarantee standard security, do not
learn anything more than the residual function of the honest parties’ inputs
(which we later show is necessary). We start by recalling the definition of the
residual function.

Definition 2.1 (Residual Function [27]). Consider a fixed n-input function
f : ({0, 1}∗)n → {0, 1}∗, let x = (x1, . . . , xn) be an input to f , and let T =
{i1, . . . , in′} ⊆ [n] be a subset of size n′. The residual function for T and x is an
n′-input function fT,x : ({0, 1}∗)n′ → {0, 1}∗, obtained from f by restricting the
input variables indexed by [n] \T to their values in x. That is, fT,x(y1, . . . , yn′) =
f(z1, . . . , zn), where for ` /∈ T we have z` = x`, while for ` = ij ∈ T we have
z` = yj.

Definition 2.2 (Standard and Residual Security). Let f be an n-input
function, let Π[κ] be an n-party protocol, for parties P1, . . . , Pn, that depends on
a parameter κ, and fix some subset of parties T ⊆ [n]. Define ViewPi(x) as the
local view of party Pi (including its randomness and the messages it received)
during the execution of Π(x).

Standard security. Π provides standard security against T if for any two in-
puts x, x′ such that xT = x′T and f(x) = f(x′), the two views ViewT (x) =
{{ViewPi

(x)}i∈T , f(x)} and ViewT (x′) = {{ViewPi
(x′)}i∈T , f(x′)} are sta-

tistically close, upto a distance of at most 2−κ.
Residual security. Π provides residual security against T if for any two inputs

x, x′ such that xT = x′T and the residual function, fT,x ≡ fT,x′ , the two views
ViewT (x) = {{ViewPi

(x)}i∈T , fT,x} and ViewT (x′) = {{ViewPi
(x′)}i∈T , fT,x′}

are statistically close, upto a distance of at most 2−κ.

Definition 2.3 (BIT-MPC). Let f be an n-input function, let Π[κ] be an
n-party protocol that depends on parameter κ, and consider some threshold t ≤ n.
We say that Π is a t-private, best-possible, information-theoretic protocol for f
(t-BIT-MPC) if the following conditions hold:

– Correctness: For all x ∈ ({0, 1}∗)n it holds that Π[κ](x) = f(x) with all but
probability 2−κ (taken over the randomness of Π).

– For any set T ⊆ [n], |T | ≤ t, Π provides standard security against T .
– For any set T ⊆ [n], |T | > t, Π provides residual security against T .

We note that the definitions above were written in terms of an n-input/1-
output function, but they extend naturally also to n-input/n-output functions
(and later in this paper we sometimes need that extension). The only difference
is that when considering a set T ⊆ [n] we only look at the outputs of parties
in the set T (i.e. f(x)T ). Hence, the residual function for T and x will be an
n′-input/n′-output function, and the standard security notion will refer to every
x, x′ such that f(x)T = f(x′)T (even if f(x) 6= f(x′) when considering also the
outputs outside T ).



Best Possible Information-Theoretic MPC 7

We also note that there is nothing special about threshold, and Definition 2.3
extends to any adversary structure (so, rather than considering t-BIT-MPC, we
can talk about T -BIT-MPC for an arbitrary adversary structure T ).

3 NIMPC with Restricted Correlated Randomness

The main technical tool that we use for our positive results on BIT-MPC are
non-interactive MPC (NIMPC) protocols [4, 20], where parties cannot interact
with each other. To provide security in this setting, the parties are provided
with some correlated randomness, which is chosen ahead of time, independently
of the secret inputs. With this setup in hand, each party simply announces a
single message to all parties and the output of the function is computed locally
(possibly by all parties) on these messages.

Definition 3.1 (Non-Interactive MPC (NIMPC)). A non-interactive MPC
protocol Π[κ] for n parties, P1, . . . , Pn, holding inputs x = (x1, . . . , xn) resp. (and
parameter κ) is comprised of three parts:

(1) randomness generation, (r1, . . . , rn) ← Gen(κ), generating n random but
correlated variables;

(2) local message functions, Msg = (Msg1, . . . ,Msgn), with Msgi taking random-
ness ri and local input xi and outputting a message mi ← Msgi(xi, ri);

(3) evaluation function, y ← Eval(m1, . . . ,mn), taking n messages {mi}i and
computing the output y.

We define the view of a subset T ⊆ [n] in the execution of Π[κ](x) as consisting
of their own input and randomness, as well as everyone’s messages,

ViewT (x) = {(xi, ri)|i ∈ T} ∪ {m1, . . . ,mn}.

We say that Π is a private non-interactive MPC protocol for an n-input function
f(x1, . . . , xn) if the following conditions hold.

Correctness. For any x ∈ ({0, 1}∗)n it holds that Π[κ](x) = f(x) with all but
probability 2−κ (taken over the randomness of Π).

Privacy. Π provides residual security against any subset. That is, for any set
T ⊂ [n] and any two inputs x, x′ such that xT = x′T and fT,x ≡ fT,x′ , the
two views ViewT (x) and ViewT (x′) are statistically close, upto distance of at
most 2−κ.

When using an NIMPC protocol Π as a tool in our interactive setting, we
must address the issues of how to generate the randomness, how messages are
announced, and how to compute the output. It will be helpful to consider the
following hierarchy of correlated randomness setups. Each level in the hierarchy
has features that are useful independently of our main goal of constructing
interactive BIT-MPC protocols.
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1. Unrestricted correlation: Here the joint distribution of (r1, . . . , rn) output
by Gen is arbitrary. This setting enables the strongest known results for
NIMPC. In particular, every finite function f has a perfectly secure NIMPC
protocol (as per Definition 3.1) in which the length of the messages is
comparable to the truth-table size of f , and symmetric functions over {0, 1}n
have protocols in which the message length is quasi-polynomial in n [8].

2. Linear correlation: This is the type of setup most relevant to our work. A
linear correlation is one that is uniform over some vector space V ⊂ Fm (for
some m ≥ n). More concretely, Gen is defined by a k ×m matrix G over F
and a partition of the m column indices of G into n sets Si. The algorithm
Gen proceeds by computing r = sG for a random vector s ∈ Fk and letting
ri be r restricted to its Si-entries. We will often let m = n so that each ri is
a single field element.

3. Replicated correlation: This is a special case of linear correlation obtained
by picking N random and independent field elements si and distributing each
si to a fixed subset Si of parties. An advantage of replicated correlations
is that many copies of them can be generated by using a pseudo-random
function. Thus, NIMPC with correlated randomness can be made reusable by
using only a one-way function, or fast symmetric cryptography in practice.
Using the share conversion technique from [14, 22], any n-party NIMPC
protocol that uses a linear correlation setup can be compiled into one that
uses the weaker replicated correlation setup, at the cost of increasing the size
of the correlated randomness by at most a factor of 2n.

4. Pairwise-replicated correlation: This is a special case of replicated corre-
lation where each Si is of size 2. Namely, each pair of parties share some secret
randomness, independent of the randomness of other pairs. An advantage
of this setup is that it can be implemented with a public-key infrastructure
(PKI), using any 2-party non-interactive key agreement (NIKE) (which can
be based on standard assumptions such as DDH). In contrast, replacing more
general types of correlated or even replicated randomness by PKI is only
known under stronger primitives such as multilinear maps or indistinguisha-
bility obfuscation [25].

Our BIT-MPC protocols will employ NIMPC protocols with linear correlations,
which can be reduced to replicated correlations. Some useful special cases can be
even based on NIMPC with pairwise correlations. Such special NIMPC protocols
are independently motivated by the features discussed above.

4 Protocols

4.1 Compiler from NIMPC to BIT-MPC

Our main positive result is a compiler, that starts with an NIMPC protocol for
a function f , and constructs a BIT-MPC protocol for f . In more detail, the
ingredients for our compiler are protocols for parties P1, ..., Pn:
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– An n-party NIMPC protocol Π = {Gen,Msg,Eval} for an n-input function f ;
– An n-party interactive MPC protocol ΨGen for the randomized Gen function

of Π.
– An n-party interactive MPC protocol ΨEval for the Eval function of Π.

Given these protocols, the resulting interactive protocol Φ = Compile(Π,ΨGen, ΨEval)
is as follows. On inputs x1, . . . , xn held by P1, . . . , Pn resp.:

1. The parties run ΨGen to evaluate Gen; ri is the output of party Pi;
2. Each party Pi computes locally mi = Msgi(xi, ri);
3. The parties run ΨEval each using mi as its input to the protocol, to get
y = Eval(m1, . . . ,mn).

Lemma 4.1. Let f be an n-input function, Π a private NIMPC protocol for f ,
and let ΨGen, ΨEval, and the resulting Φ = Compile(Π,ΨGen, ΨEval) be as above.

Correctness. If ΨGen and ΨEval, are correct then Φ is a correct protocol for f .

Security. For any subset T ⊆ [n], the following holds:
Residual security. If ΨGen is correct and provides standard security against T , then

Φ provides (at least) residual security against T .
Standard security. If ΨGen is correct and ΨEval is correct and provides standard se-

curity against T then the resulting Φ also provides standard security against T .

Proof. Correctness can be verified by inspection. It remains to show security.

Residual security. The argument here is that, due to the security of ΨGen, we
are essentially in the world of NIMPC where members of T see only their own
randomness and everyone’s messages, hence we get (at least) residual security.

In more detail, since ΨGen provides standard security against T , and as Gen
has no secret inputs, then the transcript of ΨGen does not reveal to the parties
in T anything beyond their collective outputs, namely the (correlated) random
values, {ri : i ∈ T}.

Moreover, the transcript of ΨEval is a randomized function of the inputs of
that protocol, namely the mi’s, so at worst it reveals these mi’s to the parties
in T . Hence, at worst, the view of the parties in T in the protocol Φ(x) consists
of their own xi, ri’s, and all the mi’s, which is exactly ViewT (x) in Π, as defined
in Definition 3.1. Similarly their view in Φ(x′) is, at worst, ViewT (x′) in Π.

By the NIMPC security of Π, the views ViewT (x) and ViewT (x′) are statisti-
cally close for any two x, x′ with xT = x′T and the same residual function relative
to T , fT,x ≡ fT,x′ .

Standard security. Here the argument is that (a) Gen is independent of the inputs,
and (b) the transcript of ΨEval does not leak to T anything about the inputs other
than the function value.

Fix x, x′ such that xT = x′T and f(x) = f(x′), and denote the messages that
the parties compute on these inputs bym = (m1, . . . ,mn) andm′ = (m′1, . . . ,m′n),
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respectively (i.e., mi = Msgi(xi, ri) and m′i = Msgi(x′i, ri)). By correctness, we
have that Eval(m) = Eval(m′) except with exponentially small probability. Since,
by the locality of the messages in NIMPC protocols, we have mT = m′T , and as
Eval(m) = Eval(m′), then the standard security against T of ΨEval implies that
the views of T in the executions ΨEval(m) and ΨEval(m′) are statistically close.

Together with the fact that the protocol ΨGen is independent of the inputs
x, x′, we conclude that the views of T in the executions ΨEval(x) and ΨEval(x′) are
also statistically close.

ut

Using Lemma 4.1, we can deliver Best-possible Information-Theoretic MPC
protocols in many interesting cases. Consider attempting a t-BIT-MPC for some
function f , with a threshold t < n/2. By the lemma, all we need is some NIMPC
protocol Π for f , together with:

– A protocol ΨEval providing standard security against dishonest minority; and
– A protocol ΨGen that provides complete privacy, even against dishonest

majority, but only for the input-less function Gen.5

If we find an NIMPC protocol Π with a simple enough randomness generation
function Gen, then we could hope to find a protocol ΨGen with complete privacy.
Adding a standard protocol for Eval (e.g., using the BGW construction), we
would have standard security against dishonest minority, and residual security
against dishonest majority, as needed. If we are willing to settle for a smaller
threshold (say t < 2n/5), then we can use even more efficient protocols for
ΨEval (see, e.g., [18,21]). This could give truly practical protocols, that provide
meaningful (residual) security, no matter how many parties are corrupted.

Theorem 4.1. Let f(·) be an n-input function. If there exists a private NIMPC
protocol for f , Π = {Gen,Msg,Eval}, and a protocol ΨGen that computes Gen with
standard security for all T ⊂ [n] then, for any threshold t < n/2, there exists a
t-private BIT-MPC protocol for f . ut

We remark again that there is nothing special about threshold, and an
analogous theorem holds for any realizable adversary structure.

The main condition in Theorem 4.1 is that we have a protocol ΨGen for
the randomness-generation function with complete privacy. As discussed in
Section 3, there is a hierarchy of correlated-randomness types that can enable
the computation of different functions of increasing complexity. In the following,
we examine various correlations that can be generated with complete privacy.
The ideas behind some of the schemes that follow have been previously suggested
but are presented here for self-containment and, even more so, because they are
good examples for the application of our BIT-MPC theorem.
5 We sometimes use the term complete privacy to refer to protocols that provide
standard security against every subset T ⊆ [n].
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4.2 BIT-MPC From NIMPC with Pairwise Shared Randomness

One class of correlated randomness that can be generated with complete privacy
(i.e., standard security against any set T ⊂ [n]), is pairwise shared randomness.
The protocol ΨGen is obvious: For i < j, party Pi sends to party Pj a random value
ri,j ∈ Zp, and the randomness of each Pi is set as {rk,i : k < i} ∪ {ri,k : i < k}.
It can easily be verified that this

(
n
2
)
-message protocol offers the desired security

guarantees: Every party Pi sees only the values ri,j that it sent and rj,i that it
received, and any value shared between two honest parties is not known to the
attacker. Below, we examine some functions that can be computed using such
pairwise shared randomness.

Shares of zero. Pairwise shared randomness can be easily converted into a
correlated sharing of 0, just using local computation [9,15]: Each party Pi sets
its share to ri =

∑
k<i rk,i −

∑
i<k ri,k. It can be easily verified that, for any set

of parties T , the only information revealed about the shares of the parties in T
is their sum (and otherwise the shares of T are random).

Sum of inputs. Shares of zero are used in the following simple private NIMPC
protocol for computing the sum [9,15] in a finite Abelian group.

Parties: P1, . . . , Pn

Input: xi ∈ G held by Pi

Output:
∑n

i=1 xi ∈ G
Protocol:

Gen: Correlated sharing of 0; Pi has randomness ri.
Msgi(xi, ri): Output mi = xi + ri ∈ G.
Eval(m1, . . . ,mn): Output

∑n

i=1 mi ∈ G.

Fig. 1: Sum of Parties’ Inputs in a finite Abelian group G

We remark that applying our BIT-MPC compiler to the NIMPC protocol in
Fig. 1 is pointless, since the output of the SUM function by itself always exposes
the residual function (i.e. the sum of the inputs of the honest parties), even to
a dishonest minority. However, this NIMPC protocol will be a useful tool in
compiling other functions into BIT-MPC.

Bitwise OR. Beimel et al. [4] present a private NIMPC for computing the OR
function, assuming a (correlated randomness) sharing of 0. Each party chooses a
new random value if its bit is 1 and uses the randomness from the zero-sharing if
its input bit is 0. Then, the parties run the sum protocol on these values. If all the
original bits are 0 then each party entered the randomness from the zero-sharing
and thus the sum will be zero, and otherwise the sum will be nonzero with high
probability. The parties output 0 if the sum is zero, and 1 otherwise. See Fig. 2.
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Parties: P1, . . . , Pn

Input: xi ∈ {0, 1} held by Pi

Output: ORn
i=1xi

Protocol:
Gen: Correlated sharing of 0, providing Pi with ri.

Msgi(xi, ri): Output: mi =
{
ri if xi = 0
Ri ∈R Zp otherwise

Eval(m1, . . . ,mn): Output =
{

0 if
∑n

i=1 mi = 0 mod p
1 otherwise

Fig. 2: NIMPC protocol for the OR of Parties’ Inputs

The above protocol exemplifies nicely how applying our BIT-MPC compiler
and Theorem 4.1 adds privacy to the inputs of the parties. Observe that this
protocol by itself reveals the OR of the honest parties’ bits to the adversary,
regardless of the number of corrupted parties and their inputs. (For example,
a single corrupted Pj can check the equality rj

?= −
∑
i 6=jmi.) Applying our

compiler, we improve security by ensuring that the sum of mi’s is never exposed
to any minority group. In particular a single adversarial Pi with input value 1
learns nothing about the inputs of the other parties.

Computing the Maximum. To compute MAX(x1, . . . , xn) (with the xi’s taken
from [p] for some p ∈ Z), each party i with input xi locally computes the p bits
χi,` := (xi ≥ `), for all ` ∈ [p]. Then, the parties run p copies of the OR protocol,
computing ψ` := ORi∈[n]χi,`, for all `. The maximum value is the largest index
` for which ψ` = 1. See Fig. 3.

Lemma 4.2. The protocol from Fig. 3 is a private NIMPC protocol for computing
the maximum value of the inputs of the parties. ut

We remark that since we are dealing with semi-honest parties, then we do not
have issues of consistency between the inputs in the different OR instances. The
protocol from Fig. 3, though constant round, is inefficient for large p as it requires
p invocations of the OR protocol and thus pn messages over all. This means that
also the BIT-MPC protocol that we get by compiling it will be inefficient.

Although we do not know of a more efficient non-interactive MPC protocol
from pairwise shared randomness, we are able to get a more efficient interactive
BIT-MPC protocol for MAX. In the interactive setting, we can run the multiple
copies of the OR protocol sequentially, rather than all at once, hence using binary
search to get only log p invocations of the underlying OR protocol. See Fig. 4.
Note that the bits ψj that are exposed by the protocol from Fig. 4 are actually
implied by the output value maxi xi. We get:
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Parties: P1, . . . , Pn

Input: xi ∈ Zp held by Pi

Output: x∗ = maxi xi

Protocol:
Gen : generate p independent sharings of 0. The randomness of Pi is all its

shares ri =
(
ri[`]

)
`∈[p]

.

Msgi(xi, ri): 1. For each ` ∈ [p] compute the bit χi,` =
{

1 if xi ≥ `
0 otherwise

2. Run p instances of the Msg function of the OR protocol, setting
∀` ∈ [p], mi[`] = MsgOR

(
χi,`, ri[`]

)
.

3. Concatenate mi =
(
mi[`]

)
`∈[p]

.
Eval(m1, . . . ,mn): for each ` ∈ [p] set ψ` = EvalOR

(
m1[`], . . . ,mn[`]

)
.

Output the largest ` such that ψ` = 1.

Fig. 3: NIMPC protocol for MAX, Maximum of Parties’ Inputs

Parties: P1, . . . , Pn

Input: xi ∈ Zp held by Pi

Output: x∗ = maxi xi

Protocol:
The parties first run in parallel dlog pe executions of a random sharing of zero.
The randomness of Pi is all its shares ri =

(
ri[`]

)
`∈[log p]

. Then, each party Pi

does the following:
1. Set min := 0,max := p− 1.
2. For j = 1, . . . , dlog pe do the following:
3. Set mid := d(min+max)/2e and χi,j := (xi ≥? mid).
4. Run Msgi of the OR protocol, broadcasting mi,j := MsgOR

i

(
χi,j ; ri[j]).

5. Execute ΨOR
Eval (mi,j) to get ψj := EvalOR

(
m1,j , . . . ,mn,j

)
.

6. If ψj = 1 then min := mid, otherwise max := mid− 1.
7. End-for
8. Output min.

Fig. 4: A more efficient interactive BIT-MPC protocol for MAX
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Lemma 4.3. For any threshold t ≤ n/2, if ΨOREval(mi,j) from Fig. 4 provides
standard security against sets of size up to t, then the protocol from Fig. 4 is an
interactive t-BIT-MPC for computing the MAX function. ut

4.3 BIT-MPC Based on Linearly-Correlated Randomness

As stated earlier, linear correlation is a powerful class of correlated random-
ness that can handle many interesting functions. The simplest format of linear
correlation has each party Pi holds a piece of randomness ri, where the vector
r = (r1, . . . , rn) was chosen at random in some known linear subspace in Fn.
Namely r = s ·A, where A is a fixed, public k × n matrix that defines the linear
space, and s is a uniformly random vector in Fk.

This class generalizes the secret-sharing of zero that we used above, and
we can compute the randomness generation for it with complete privacy, using
similar techniques as for zero-sharing [7,17]. Specifically, each party Pi chooses
a random vector si and computes ti = si × A, then sends the entry ti[j] to
Pj (for every j). The correlated-randomness element of each Pj is then set as
rj =

∑
i ti[j] = ((

∑
i si)×A)[j].

To show complete privacy, fix a set T ⊂ [n] of corrupted parties and note
that the values {ti[T ] : i /∈ T} seen by the parties in T determine the si’s only
upto the solution of the system (sT ×A)[T ] = tT [T ] (with sT [T ] =

∑
i/∈T si[T ],

tT [T ] =
∑
i/∈T ti[T ]), which are exactly all the inputs with the same output at T .

We also note that using the share conversion technique from [14,22], we can
localy convert “replicated correlated randomness” to linearly correlated random-
ness. In a little more detail, by giving every subset T ⊂ [n] a different random
seed for a PRG/PRF, the parties can locally generate unbounded number of
pseudo-random vectors in the range of fA(s) = s·A, without any interaction. This
means that every party must keep 2n−1 seeds, but for small values of n this still
yields a very practical way of generating linearly-correlated (pseudo)randomness,
which can then be used in the protocols that we describe below.

Testing for membership in an affine space. We next show that linear correlations
allow us to compute, for any matrix A, the function that determines whether an
input vector belongs to the kernel of the rows of A. Namely

AffineA,0(x) =
{

1 if Ax = 0
0 otherwise

.

Since the parties have the vector r = sA which is uniform in the columns space of
A, it is sufficient to check if the inner product of x and r is zero. Hence each party
computes yi = xiri, and the parties then run the SUM protocol from Figure 1.

This protocol can be modified to compute the function AffineA,b(x), i.e., to
check whether Ax = b for a matrix A, as before, and a known vector b (rather
than equality to zero). This is done by fixing a known vector w such that Aw = b
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and having each party set yi = (xi − wi)ri and run the SUM protocol. The
resulting protocol is described in Figure 5.

Parties: P1, . . . , Pn

Parameter: Publicly known A ∈ Fk×n, b ∈ Fk, and w ∈ Fn s.t. Aw = b.
Input: x = (x1, . . . , xn), xi ∈ F held by Pi

Output: check whether Ax = b
Protocol:

Gen:
1. Linearly correlated randomness, r = sA for a uniform s ∈ Fk; Pi has ri

2. Correlated sharing of 0, providing Pi with ρi. Let Ri = (ri, ρi).
Msgi(xi, Ri): Output mi = (xi − wi)ri + ρi

Eval(m1, . . . ,mn): Set y = Σn
i=1mi, Output =

{
1 if y = 0
0 otherwise

Fig. 5: NIMPC protocol for affine space membership, testing whether Ax = b for
public A, b,

Lemma 4.4. The protocol from Fig. 5 is a private NIMPC protocol for affine
space membership. Moreover, there exists a completely private protocol ΠGen for
computing the randomness generation function, with standard privacy against
any set T ⊂ [n].

Proof. For correctness, note that y = 〈r, x− w〉 = sA(x − w) = 〈s,Ax− b〉.
Hence y = 0 with probability one when Ax = b, and y 6= 0 whp when Ax 6= b.

For privacy of the NIMPC protocol, we show that for any set T ⊂ [n] and
any two inputs x, x′ such that xT = x′T and fT,x ≡ fT,x′ , the views of T on x
and x′ are distributed identically. It is convenient to first consider the case b = 0
(and thus w.l.o.g. w = 0). These views consist of (the public A and)

rT = {ri : i ∈ T}, ρT = {ρi : i ∈ T}, xT = {xi : i ∈ T} or x′T = {x′i : i ∈ T}, and
mT = {mi = xiri + ρi : i /∈ T} or m′ = {m′i = x′iri + ρi : i /∈ T}, respectively.

Since the ρi’s are a random n-out-of-n sharing of zero, then the mi’s (or m′i are
uniformly random subject to their sum, regardless of rT , ρT , xT . It is thus enough
to show that for any fixed r, we have

∑
i/∈T mi =

∑
i/∈T m

′
i iff fT,x ≡ fT,x′ .

To see this, notice that fT,x ≡ fT,x′ iff ATxT = ATx
′
T
, where ATxT is

the sum of the columns of A corresponding to i /∈ T , each multiplied by the
corresponding xi’s (and similarly for ATx

′
T
). Namely ATxT =:

∑
i/∈T xiAi and

AT =:
∑
i/∈T xiAi. This is true since, for any x∗T , we have fT,x(x∗T ) = ATxT +

ATx
∗
T and fT,x′(x∗T ) = ATx

′
T

+ATx
∗
T .
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Consider therefore x, x′ such that ATxT = ATx
′
T
, and fix r and ρ. Then∑

i/∈T

mi −
∑
i/∈T

ρi = 〈rT , xT 〉 = (sA)TxT = sATxT

= sATx
′
T

= (sA)Tx
′
T

= 〈rT , x
′
T
〉 =

∑
i/∈T

m′i −
∑
i/∈T

ρi,

and therefore
∑
i/∈T mi =

∑
i/∈T m

′
i. This completes the proof of privacy for the

NIMPC protocol from Fig. 5 for the case of b = 0. The case of arbitrary b is
similar (except that in the last equality we have another term ATwT which is
independent of x, x′).

Finally, we note that the shared randomness in this protocol consists of r = sA
and a sharing of zero ρ, both of which can be computed with perfect privacy as
we explained earlier. ut

Corollary 4.1 (Affine Membership Over A Field). For any fixed A ∈ Fk×n
and b ∈ Fk, there is a n/2-BIT-MPC protocols for checking Ax = b over F. ut

Some applications of the affine membership protocol. Computing affine member-
ship is more useful than it may seem. In particular, it captures most functions
considered in the previous section as special cases, as well as additional useful
functions. For example, the AND function can be realized utilizing the identity
matrix A = I and checking Ax = b for b = (1, . . . , 1). The OR function is identical
to AND up to relabeling of inputs and outputs, but can be realized directly using
any invertible matrix A and b = 0, since Ax = 0 holds if and only if all the
xi’s are 0. Affine membership can also be used to check equality of all inputs,
namely the function AllEq(x1, . . . , xn) which outputs 1 if x1 = x2 = . . . = xn
and 0 otherwise. Here we use a matrix A ∈ F(n−1)×n that reflects the equations
x1 − x2 = 0, x2 − x3 = 0, . . ., xn−1 − xn = 0, namely, the rows of A are all of
the form (0, . . . , 0, 1,−1, 0, . . . , 0). For this matrix A, the function AffineA,0(x) is
exactly AllEq(x).

4.4 Four-Input Functions

A somewhat surprising corollary of the per-subset nature of Lemma 4.1 is that any
4-input function can be computed with BIT-security against dishonest minority.
Namely, we get standard security for a single corrupted party, and (at least)
residual security for two or more corrupted parties.

Theorem 4.2. For every 4-input function f , there is a 1-BIT-MPC interactive
protocol for computing f .

Proof. (Sketch) Let Π = (Gen,Msg,Eval) be an NIMPC protocol for f with gen-
eral correlated randomness (e.g., from [4]), and we describe interactive protocols
for Gen,Eval as needed.



Best Possible Information-Theoretic MPC 17

– For ΨGen, we use a 1-of-3 BGW protocol, run by P2, P3, P4, to generate the
needed correlated randomness.

– For ΨEval, we use a 2-of-5 BGW protocol for evaluation, where P2, P3, P4 each
play a single party, and P1 plays the role of two parties.

The reason that this construction works is that if there are three corruptions
then the corrupted parties are allowed to learn the input of the honest party, so
there is no security requirement. If there is only one corruption then the BGW
protocols ensure standard security (even if the corrupted party is P1 who plays a
double role in the second BGW invocation).

It remains to show that we get (at least) residual security when two parties
are corrupted. If the corrupted parties do not include P1 then the 2-of-5 BGW
protocol actually gives standard security. If P1 is corrupted then two of P2, P3, P4
are honest, hence we get standard security for the randomness generation step
and therefore residual security for the combined protocol. ut

5 Negative Results

5.1 When “Best-Possible” is the Best Possible

The first negative result justifies the term “best-possible” security, showing that
in the information-theoretical regime, the security requirement against majority
sets typically cannot be further strengthened. We start by considering two-
party protocols and strengthen standard impossibility results for this setting
(e.g., [5, 6, 12, 33]). Specifically, we show that in a two-party protocol between
Alice and Bob to compute a function f(x, y), standard information-theoretic
security against Bob (i.e. if Bob learns the output and nothing else), implies that
Alice necessarily learns Bob’s input y. More concretely:

Lemma 5.1. Let f(x, y) be a boolean function and assume that each y is distinct;
namely, for all y 6= y′ there exists an x such that f(x, y) 6= f(x, y′) (this is without
loss of generality as otherwise Bob can pick one y from each “equivalence class”).
Let P be any protocol where Bob learns f(x, y) (with prob. 1) but no other
information about x, then Alice can always identify y.

Proof. Assume not. Then, for some pair of Bob inputs y, y′ there is an Alice
input x on which she cannot distinguish y from y′. Namely Alice’s view (which
consists of the transcript, as well as her input and randomness) on (x, y), (x, y′)
is identically distributed and, in particular, it follows that f(x, y) = f(x, y′) = v,
for some v ∈ {0, 1}. Since y, y′ are “distinct” then, for some other Alice input x′,
we have f(x′, y) 6= f(x′, y′). Since f is boolean then, without loss of generality,
f(x′, y) = v. Since Bob is assumed to learn nothing beyond the output, his
distribution of views on (x, y) and on (x′, y) (in particular, the distribution of
transcripts) is the same. By a standard “corners lemma“ (see, e.g., [12, 33]),
it follows that the transcript on (x′, y′) is also distributed in the same way,
contradicting the correctness of the protocol P. ut
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Extensions. As stated, Lemma 5.1 assumes perfect correctness and perfect privacy.
This however need not be the case and indeed some of the above papers (e.g., [12])
show that the same holds even when allowing ε-error and δ-privacy (i.e., where
the statistical distance between the corresponding distributions is bounded by δ).
The same modification applies in our case.

Another important extension is to deal with non-boolean functions f . Here,
rather than asking for distinctness of the y’s, we need a slightly more demanding
(but still quite simple) richness requirement. Specifically, we ask that for any
pair of Bob inputs y, y′ that are not trivially distinguishable by Alice (i.e., where
for some Alice input x we have f(x, y) = f(x, y′) = v), there must also exists
another Alice input x′ for which f(x′, y) 6= f(x′, y′) and that one of these two
values is equal to v. To illustrate this condition, consider the function min(x, y)
(over some interval), where for all y < y′ the above condition holds with x = y
and x′ = y′. This condition is a generalization of the distinctness property
for boolean functions, used above; if this property holds then we will refer to
the function f as being non-trivial. One can readily verify that the proof of
Lemma 5.1 still holds for all non-trivial functions f (boolean or non-boolean).

Next, we deal with the case of n-input functions f , by applying a standard
partition argument. It shows that, for any subset of parties T , if a protocol P
satisfies standard security against a corrupted T then it can do no better than
offering residual security against a corrupted T . (We usually think of T as a
majority set, where it is always possible to ensure standard security against a
corrupted T , but the statement holds for any set T and this is important for
generalizing the negative result to non-threshold access structures.) Formally,

Theorem 5.1. Let f be an n-input function. Let T ⊂ [n] be a subset of parties.
Define the corresponding induced 2-argument function fT ({xi}i∈T , {xi}i/∈T ) =:
f(x1, . . . , xn) and assume that fT is non-trivial. Let P be any protocol where
the parties in T learn f(x1, . . . , xn) but no other information about the input
(information theoretically). Then, the parties in T learn the residual function
fT,x.

Proof. Consider the two-party protocol PT derived from P by Alice simulating
the parties in T , Bob simulating the parties in T and together they compute
the value fT ({xi}i∈T , {xi}i/∈T ). By the assumption on P , Bob learns the output
of fT but nothing else. Hence, by Lemma 5.1 (and the following discussion),
Alice learns Bob’s input. In the terminology of the n-party protocol P, this
means that the view of the parties in T necessarily identifies the residual function
fT,x (note that if two n-argument inputs x, x′ induce the same residual function,
i.e. fT,x = fT,x′ , then they are mapped to equivalent inputs for the two-input
function fT ). ut
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5.2 Efficient BIT-MPC Protocols are Rare

Our next goal is to show that computationally efficient BIT-MPC protocols are
unlikely to exist even for simple families of functions. (Specifically, their existence
would imply the collapse of the polynomial hierarchy.) We mimic similar results
in the context of obfuscation [24] showing that if, for example, the family of
3-CNF formulas has efficient statistical-indistinguishability obfuscation, then the
Polynomial Hierarchy collapses to its second level. This, in particular, relies on
the following claim (implicit in [24]; see also [1] for a similar proof in the context
of instance-hiding schemes):

Lemma 5.2. Let C be a family of circuits where checking equivalence is co-NP
complete (e.g., a simple family such as the family of all 3CNF formulae satisfies
this). Assume that there exists a probabilistic polynomial time machine S that is
given a circuit C ∈ C as its input and that its output is a probability distribution
satisfying the following properties:

– If C1 ≡ C2 then S(C1) ≈ S(C2) (i.e., the statistical distance between
S(C1),S(C2) is bounded by some constant, say 1/3).

– If C1 6≡ C2 then S(C1) and S(C2) are far (i.e., the statistical distance between
S(C1),S(C2) is bounded from below by some constant, say 2/3).

Then, the polynomial hierarchy collapses.

Consider the 3-input universal function UC(C, x,⊥), where C is a boolean
circuit from a family of circuits C, as above, x is an input for the circuit C (and
⊥ indicates that the third party has no input). We argue that there is no efficient
BIT-MPC protocol for this function.

Theorem 5.2. If there is a computationally efficient 3-party BIT-MPC protocol
P for UC, then the polynomial hierarchy collapses.

Proof. We use the protocol P to construct a machine S, as required by Lemma 5.2.
Doing so, the theorem follows.

We first turn P into a two-party protocol P ′ for computing the two-argument
function f(x,C) = UC(C, x,⊥), with Bob simulating the party in P holding the
circuit C (i.e., a minority among the 3 parties) and Alice simulating the two
others (i.e., the majority). By the best possible security of P, Alice learns the
function fC and only this function (note that now the inputs of Bob are not
distinct, as there may be several circuits that compute the same function fC ; an
argument similar to that of Lemma 5.1 shows that Alice indeed learns fC with
any input x she may have).

We now construct S(C) as follows. Run P ′ on inputs (x0, C), where x0 is an
arbitrary (fixed) input for Alice, and output her view in the protocol. On one
hand, if C1 ≡ C2 then fC1 ≡ fC2 and so Alice’s view in both cases is identically
distributed. On the other hand, if C1 6≡ C2, then Alice’s view in the two cases is
far apart. ut
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5.3 Simple BIT-MPC Protocols Have Limited Reach

Our last negative result shows that a natural class of “bilinear” NIMPC protocols,
which captures most of our positive results, is limited in power. A bilinear NIMPC
protocol over a finite field F is one in which the randomness r1, . . . , rn is linearly
correlated, i.e., generated by applying a linear transformation A to a vector of
random elements (ρ1, . . . , ρm), and where each message mi can be computed
using a bilinear function Msgi(x, r). That is, Msgi is linear in both x (the inputs)
and r (the randomness). Our goal is to show that “bilinear” protocols and, more
generally, protocols where messages are computed as degree-2 polynomials in x
and r, are limited in power. This negative result relies on a negative result for
degree-2 randomizing polynomials from [31]. Concretely, [31] proved the following:

Lemma 5.3. Suppose f : {0, 1}n → {0, 1} admits a degree-2 randomized encod-
ing over a finite field F. Then, either of the following holds:

– f or its negation test a linear condition over F; namely, are of the form
fA,b(x) = 1 iff Ax = b, for some A ∈ F`×n, b ∈ F`; or

– f is a (deterministic) degree-2 polynomial.

We observe that a bilinear protocol for a function f gives rise to a randomized
degree-2 representation of f (of the first type). The degree is bounded by 2
because each message mi is computed via a bilinear function Msgi(x, r) and
because r itself is a linear function of the underlying vector (ρ1, . . . , ρm). The
correctness and full robustness of the protocol imply that m1, . . . ,mn encode
f(x) but give no other information about x. Thus, using Lemma 5.3, we get:

Theorem 5.3. Let f : {0, 1}n → {0, 1} be a boolean function that has a bilinear
NIMPC protocol over a finite field F. Then, f or its negation test a linear
condition over F (as defined above).

6 Concrete Efficiency

In this section we make the case that our protocols, while restricted in the class of
functionalities they apply to, can be useful for improving the concrete efficiency
of natural secure computation tasks. We start by recalling some functions for
which we present BIT-MPC protocols and discuss their relevance to natural
secure computation tasks that can be motivated by real-world applications.

– AND/OR: Bitwise AND of long vectors of inputs can be used to realize
multi-party Private Set Intersection (PSI) of sets over a universe of size [N ],
where the input of each party is the length-N characteristic vector of its
set. PSI has many real-world applications. One example is a secure Doodle
poll, where the universe includes possible date and time slots, and each
party’s input is the subset of these slots in which he or she are available. See,
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e.g., [34] and references therein for pointers on existing PSI protocols and
their applications. Many of these applications are relevant even with feasible
domain size, and even in the multiparty case.

– MIN/MAX: This is generally useful for auctions. Note that the variant in
which the identity of the winner is revealed is reducible to the plain variant
by encoding the identity of the owner of each input in the least significant
bits of the input.

– Multiparty equality: Deciding whether all inputs are equal can be useful for
checking whether there is agreement on the same candidate, whether different
copies of the same information are identical, etc. In some of these cases, it
is important to hide the identity of the outliers. See [19] for applications of
secure two-party equality computation, some of which are relevant also in
the multi-party case.

In all of the above cases, the residual security guarantee that we get in the
presence of a dishonest majority is meaningful. In particular, it only reveals a
very small amount of joint information about the inputs of honest parties, and
moreover this information can typically be obtained in the ideal model via an
adversarial choice of the input.

We now discuss the asymptotic and concrete efficiency features of optimized
variants of our BIT-MPC protocols that make them more attractive than standard
protocols for MPC with no honest majority. For concreteness we focus on the
AND function, but similar optimizations apply to the other functions as well. We
exclude from the discussion protocols based on fully homomorphic encryption
(let alone general-purpose obfuscation) that do not seem to offer a competitive
alternative for such simple computational tasks.

Existing “GMW-style” protocols for n-party AND that remain secure in the
presence of an arbitrary number of (semi-honest) corrupted parties require O(n3)
instances of oblivious transfer. This makes the total communication complexity
O(kn3), where k is a computational security parameter. While some optimizations
are possible using pseudo-random secret sharing (PRSS) [14], we are not aware
of an OT-based protocol whose communication complexity is below O(kn2). In
particular, even for a small number of parties such as n = 10, each party should
communicate thousands of bits for a single AND computation. The main barrier
is the use of oblivious transfers: the protocol consumes many of them, and efficient
OT extension techniques [30] still require a significant amount of communication
per OT instance.

Our BIT-MPC protocols replace OT with linear secret sharing, whose ef-
ficiency can be amortized via PRSS and/or share packing [21]. We note that
the PRSS technique, when applied to threshold secret sharing schemes, incurs a
computational cost (e.g., number of PRG invocations) that grows exponentially
with the number of parties. Thus, this optimization can only be applied in practice
when the number of parties is not too big.

Concretely, given a PRSS setup of replicated PRG seeds, our BIT-MPC
protocol for AND of n input bits with 2−s error probability needs only two
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rounds of interaction, where each party broadcasts s+ 1 bits in each round (or
sends a total of (n−1)(s+1) bits over point-to-point channels). The computational
complexity is dominated by roughly

(
n
n/2
)
PRG calls (that can be implemented

in practice via AES) per party. We do not know how to get MPC protocols
that achieve a similar level of efficiency in the setting of standard MPC with
no honest majority. Note that these efficiency advantages become very relevant
when computing a large number N of instances. This case is motivated by some
of the applications discussed above.

When the number of parties n is big, the PRSS technique no longer applies,
but can be replaced by the use of packed secret sharing. This gives an amortized
communication cost of O(s) bits of point-to-point communication per AND
computation per party, at the price of a slightly reduced (full) security threshold.
Here one does not need any setup nor a direct implementation of broadcast to
get this level of efficiency.

7 BIT-MPC with Security Against Malicious Parties

Our main focus in this paper is on BIT-MPC in the presence of a semi-honest
(i.e., passive) adversary, who does not modify the messages sent by corrupted
parties. In this section, we briefly discuss an extension of our notion of BIT-MPC
and some of our results to the setting of a malicious (i.e., active) adversary.

We start by discussing the modified security definition for this case. In the case
of security against a malicious adversary, we need to replace the direct definitions
of standard and residual security, from Definition 2.2, by a simulation-based
definition that compares the real-world execution of the protocol in the presence
of a malicious adversary to an ideal-world execution in the presence of a simulator.
Moreover, whereas in the case of an honest majority one can achieve full security
(either when t < n/3 over secure point-to-point channels [6, 11] or with t < n/2
if broadcast is additionally available [35]), for the case of a dishonest majority
we generally need to settle for “security with abort.”

7.1 Defining BIT-MPC with a Malicious Adversary

At a high level, we modify the standard security definition of MPC (see [23])
by changing the ideal model experiment so that the adversary gets an explicit
description of the residual function.6

For a set T of parties, we can consider four “types” of security that a protocol
can offer against a corrupted T : ensuring either standard or residual security,
and either guaranteed output delivery or security with abort. For simplicity,
6 Clearly, this definition can only be satisfied with efficient simulation for functions
whose residual function has a small description, such as functions on a small input
domain or symmetric functions. Our negative results suggest that this restriction is
inevitable.
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the definition below only deals with two types of sets, “minority sets” against
which we have full security with guaranteed output delivery, and “majority sets”
against which we can only ensure residual security with abort. (Dealing with four
different “types” is of course possible, but cumbersome.) Also for simplicity we
only deal with the threashold variants of the definition (rather than arbitrary
access structures). Hence, below we have a single threshold t upto which we
ensure full security with guaranteed output delivery, whereas for more than t
corrupted parties we settle for residual security with abort. The typical threshold
t is t < n/3, for protocols over secure point-to-point channels, or t < n/2 with
broadcast.

Definition 7.1. Let f be an n-input function. let Π[κ] be an n-party protocol
that depends on parameter κ, and consider some threshold t ≤ n. We say that Π
is a t-secure, best-possible, information-theoretic protocol for f in the presence of
malicious adversaries (or malicious t-BIT-MPC) if for every (malicious, static,
computationally unbounded) adversary A attacking Π[κ] there exists a simulator
S, with 2−κ simulation error, that corrupts the same set of parties in the following
ideal model:

– Standard security for up to t corruptions: If A corrupts at most t
parties, the ideal model is as in the original definition from [23] for MPC
with full security: each party sends its input to the trusted party (where
the simulator S can change inputs of corrupted parties), the trusted party
computes f and delivers the outputs to all parties.

– Residual security with abort beyond t corruptions: If A corrupts
more than t parties, the ideal model is defined as follows: (1) each party sends
its input to the trusted party; (2) the trusted party sends a description of the
residual function of f (defined by the inputs of uncorrupted parties) to S; (3)
S decides whether to abort or to have the trusted party deliver the outputs of
uncorrupted parties.

7.2 BIT-MPC Protocols with Malicious Adversaries

In this section, we discuss the possibility of applying variants of the protocols
from Section 4 in the presence of malicious adversaries. For this, we need to
examine the effect of malicious behavior in all three components: the generation
of the correlated randomness, the local computation of the NIMPC messages,
and the distributed NIMPC evaluation. We discuss each of these components
separately.

Correlated randomness generation. In the semi-honest case, we could gener-
ate any linear correlation n-securely using a simple information-theoretic protocol
based on additive secret sharing. This protocol fails to be secure against mali-
cious parties. In fact, the impossibility of information-theoretic coin-tossing with
dishonest majority means that this insecurity is inherent. To get around this
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impossibility, we consider the following “semi-malicious” relaxation of NIMPC
with replicated correlation: when considering security against a collusion of the
evaluator and a set of parties T , all of the random inputs involving T can be
chosen adversarially (independently of the random inputs that are owned only by
uncorrupted parties) but they are restricted to satisfy the prescribed replication
pattern. It is easy to check that all of the previous protocols in this model remain
secure even in this slightly more adversarial setting. Intuitively, this follows from
the fact that even in the semi-honest model, the security of the uncorrupted
parties is only protected by the random inputs that are unknown to the adversary.
Finally, we observe that in the special case of pairwise-replicated correlation, we
can generate the randomness in the straightforward way by making one of each
pair of parties Pi, Pj pick the common randomness ri,j and send it to the other.
Here the effect of a malicious adversary is equivalent to that of a semi-malicious
adversary who can pick the random inputs adversarially but otherwise behaves
honestly. Note that this is not the case for general replicated randomness, where
the adversary can make replicated randomness owned by different honest parties
inconsistent. From here on, we focus on BIT-MPC protocols that are obtained via
NIMPC with pairwise-replicated randomness. This captures most of the examples
from the previous section, including AND/OR and AllEq.

Local computation of NIMPC messages. Here we need to ensure that any
malicious strategy of picking NIMPC messages by the adversary (independently
of the honest parties’ NIMPC messages) can be simulated by an honest strategy.
Consider for example the direct protocol for the OR function. Here each party first
maps a 0 input to 0 or a 1 input to a random nonzero group element, and then
adds the correlated randomness (obtained via pairwise-replicated randomness).
Note that for any fixed choice of the correlated randomness, every group element
is a valid message, and moreover it is easy for the simulator to extract the input
from the correlated randomness and the message (namely, the input is 0 if the
two values are equal and 1 otherwise). One can check that the same is true for
the more general NIMPC protocol for affine space membership. Here each party
multiplies its (shifted) input by the correlated randomness ri. Unless ri = 0,
which occurs with negligible probability, the simulator can extract an effective
input from ri and the NIMPC message.

Distributed NIMPC evaluation. This is the easiest part to handle, since
we can simply apply off-the-shelf information-theoretic protocols that provide
security against malicious adversaries. Depending on the setting, we can either use
protocols such as [6, 11] for perfect t-security over secure point-to-point channels
when t < n/3, or alternatively protocols such as [35] for statistical security over
secure point-to-point channels and broadcast when t < n/2.

Beyond affine space membership. Using the above methodology, we can
get BIT-MPC protocols for affine space membership whenever the correlated
randomness can be obtained via pairwise-replicated correlation. This captures
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the most useful examples of AND/OR and AllEq, but does not directly capture
applications that build on top of them, such as the protocols for the MAX
function. Recall that the MAX function computes the maximum of n integers
in Zp. We presented two BIT-MPC protocols for MAX in Fig. 3 and Fig. 4.
The first has constant round complexity but high communication complexity
(linear in p), while the second uses binary search and multiple rounds to make
the communication complexity grow only logarithmically with p. Both of these
protocols use a BIT-MPC protocol for OR as a subroutine. However, they are
both insecure against a malicious adversary even if the underlying OR protocol
is fully secure against a malicious adversary. The attack is the same in both
cases: even a single malicious party chooses its inputs for the OR protocol non-
monotonically it can both simultaneously “win” (i.e., determine the output) and
learn the maximum of the honest parties’ inputs. This contradicts the full security
requirement for the case of dishonest minority.

We propose two solutions to overcome the above attack and obtain a BIT-
MPC protocol for MAX with security against malicious adversaries. The first
solution is a sequential version of the protocol from Fig. 3, where in round ` the
input for the OR function of party Pi is a bit χi,` which equals 1 if its input
is at least p − ` and 0 otherwise. The protocol terminates with output p − `0
after the first round `0 in which the OR-output is 1. In the protocol, the only
degree of freedom the adversary has is to choose the first round in which one of
its inputs is 1 (assuming that the protocol did not terminate before this round),
and this choice can be simulated by an honest strategy. Finally, we note that it
is also possible to get a constant-round protocol for MAX via a non-interactive
reduction to secure modular addition that uses the nested subgroup technique
from [16]. The idea is that MAX of inputs in [m] can be reduced to addition
in the group Zqm (where q is a prime of size > 2κ) in the following way. Each
input xi is locally encoded as a random multiple of qm−xi in Zqm , and then the
n encoded inputs x′i are added via a BIT-MPC protocol for addition in Zqm . Due
to the nested subgroup structure, the maximal multiple of q which divides the
output will reveal the MAX value except with 1/q probability. Moreover, in this
protocol a malicious adversary has no cheating space, as every possible choice
of the encoded input x′i in Zqm corresponds to an honest input. We leave open
the question of obtaining a BIT-MPC protocol for MAX, with security against a
malicious adversary, where the communication complexity grows logarithmically
with m.
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