
Round-Optimal Fully Black-Box Zero-Knowledge
Arguments from One-Way Permutations

Carmit Hazay1

and Muthuramakrishnan Venkitasubramaniam2

1 Bar-Ilan University
2 University of Rochester

Abstract. In this paper, we revisit the round complexity of designing zero-knowledge
(ZK) arguments via a black-box construction from minimal assumptions. Our
main result implements a 4-round ZK argument for any language in NP, based
on injective one-way functions, that makes black-box use of the underlying func-
tion. As a corollary, we also obtain the first 4-round perfect zero-knowledge ar-
gument for NP based on claw-free permutations via a black-box construction and
4-round input-delayed commit-and-prove zero-knowledge argument based on in-
jective one-way functions.

Keywords: One-way permutations, zero-knowledge arguments, black-box constructions

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that al-
low one player (called the prover) to convince another player (called the verifier) of the
validity of a mathematical statement x ∈ L, while providing zero additional knowledge
to the verifier. This is formalized by requiring that the view of every “efficient” ad-
versary verifier V∗ interacting with the honest prover P be simulated by an “efficient”
machine S (a.k.a. the simulator). The idea behind this definition is that whatever V∗

might have learned from interacting with P , it could have actually learned by itself (by
running the simulator S). As “efficient” adversaries are typically modelled as proba-
bilistic polynomial-time machines (PPT), the traditional definition of ZK models both
the verifier and the simulator as PPT machines.

Several variants of ZK systems have been studied in literature. In this work, we are
interested in computational ZK argument systems with black-box simulation, where the
soundness is required to hold only against non-uniform PPT provers whereas the zero-
knowledge property holds against PPT verifiers which get an auxiliary input. Such
systems are referred to as computational zero-knowledge argument systems. We will
further focus on the case of black-box constructions3 and black-box simulation.4 The
main question we address is the the round-complexity of computational zero-knowledge

3 where the construction is agnostic of the specific implementation and relies only on its in-
put/output behavior.

4 where the simulator is only allowed to make black-box use of the verifier’s code.

argument systems based on minimal assumptions via a fully black-box construction.
First, we survey prior work in this area.

Goldreich, Micali and Wigderson [GMW91] constructed the first zero-knowledge
proof systems for all of NP based on the minimal assumption of one-way functions,
where they required polynomially many rounds to achieve negligible soundness. For
arguments, Feige and Shamir [FS89] provided a 4-round zero-knowledge system based
on algebraic assumptions. In [BJY97], Bellare, Jackobson and Yung showed how to
achieve the same assuming only one-way functions.

On the negative side, Goldreich and Oren [GO94] demonstrated that three rounds
are necessary for designing zero-knowledge for any non-trivial language (i.e. outside
BPP) against non-uniform verifiers. When further restricting to black-box simulation,
Goldreich and Krawcyzk [GK96b] showed that four rounds are necessary for achieving
zero-knowledge of non-trivial languages. For the specific case of proofs (i.e. uncondi-
tional soundness), Katz [Kat12] showed that only languages in MA can have 4-round
zero-knowledge proof systems.

As such, the works of [BJY97] and [GK96b] identify the round-complexity of zero-
knowledge arguments as four when restricting to black-box simulation. However, when
considering constructions that are black-box in the underlying primitives, Pass and Wee
[PW09] provided the first black-box construction of a 6-round zero-knowledge argu-
ment for NP based on one-way permutations5 and seven rounds based on one-way
functions. Ishai, Mahmoody and Sahai provided the first black-box sublinear zero-
knowledge arguments based on collision-resistant hash-functions [IMS12]. Ostrovsky,
Richelson and Scafuro [ORS15] showed how to construct black-box two-party secure
computation protocols in four rounds where only one party receives the output from en-
hanced trapdoor permutations. As zero-knowledge can be seen as an instance of such a
secure computation, their work provides a round-optimal black-box construction based
on enhanced trapdoor permutations.

This sequence of prior works leaves the following fundamental question regarding
black-box constructions of zero-knowledge arguments open:

What is the weakest hardness assumption for a black-box construction of a
4-round zero-knowledge argument system for all of NP?

We remark that when considering non-black-box simulation, a recent work due to
Bitansky et al. [BKP18] demonstrates how to obtain 3-round zero-knowledge argu-
ments for NP based on multi-collision resistance hash functions. On the negative side,
Fleischhacker et al. [FGJ18] proved that 3-round private-coin ZK proofs for NP do not
exist, even with respect to non-black-box simulation assuming the existence of certain
program obfuscation primitives.

Our results. In this work we present the first 4-round ZK argument of knowledge pro-
tocols based on one-way permutations (injective one-way functions) and claw-free per-
mutations. Specifically,

Theorem 1.1 (Informal.) Assuming injective one-way functions, there exists a fully
black-box 4-round black-box computational zero-knowledge argument for all of NP.

5 Where injective one-way functions are sufficient.

As a corollary we obtain the following result regarding perfect zero-knowledge ar-
gument systems.

Corollary 1.2 (Informal.) Assuming claw-free permutations, there exists a fully black-
box 4-round black-box perfect zero-knowledge argument for all of NP.

Commit-and-prove input-delayed ZK proofs. In [LS90], Lapidot and Shamir pro-
vided a three-round witness-indistinguishable (WI) proof for Graph Hamiltonicity with
a special “input-delayed” property: namely, the prover uses the statement to be proved
only in the last round. Recently, in [CPS+15] it was shown how to obtain efficient input-
delayed variants of the related “Sigma protocols” when used in a restricted setting of
an OR-composition. In [HV16], starting from a randomized encoding scheme with an
additional robustness property and security against adaptive inputs, it was shown how
to obtain general constructions of input-delayed zero-knowledge proofs that yield an
efficient version of the protocol of [LS90] for arbitrary NP -relations.

The “commit-and-prove” paradigm considers a prover that first commits to a wit-
ness w and then, in a second phase upon receiving a statement x asserts whether a
particular relation R(x,w) = 1 without revealing the committed value. This paradigm,
which is implicit in the work of [GMW87] and later formalized in [CLOS02], is a pow-
erful mechanism to strengthen semi-honest secure protocols to maliciously secure ones.
The MPC-in-the-head approach of [IKOS09] shows how to obtain a commit-and-prove
protocol based on one-way functions that relies on the underlying primitives in a black-
box way. In [HV16] it was further shown how to extend the above input-delayed ZK
proof to further support the commit-and-prove paradigm which is additionally black-
box in the underlying one-way functions or permutations.

Instantiating the 3-round honest verifier zero-knowledge proof required in Theorem
1.1 with the commit-and-proof and input-delayed protocol from [HV16] implies the
following corollary.

Corollary 1.3 (Informal.) Assuming injective one-way functions, there exists a fully
black-box 4-round black-box commit-and-prove input-delayed zero-knowledge argu-
ment for all of NP.

We prove the main theorem in Section 3 and the corollaries in Section 4.

1.1 Our Techniques

We begin with an overview of our 4-round ZK argument that is obtained by compiling
3-round (i.e. sigma) protocols of some special form. Consider a sigma protocol where
the prover simply relies on commitments to generate its first round message and de-
commits to some subset of the commitments depending on the challenge provided by
the verifier. Following [PW09], we require a special soundness guarantee in the proto-
col, where there exists at most one “easy challenge” that allows the prover to cheat for
false instances. Furthermore, this easy challenge can be efficiently reconstructed from
the set of messages committed to by the prover. An example of a sigma protocol with
these properties, is the Blum Hamiltonicity zero-knowledge protocol [Blu]. Here, the

prover commits to the adjacency matrix of a permutation of the underlying graph in the
first round, and either decommits all entries in the matrix along with the permutation
or decommits just the entries that form a Hamiltonian cycle depending on the verifier’s
challenge. Given the prover’s commitments, the easy challenge can be extracted by
observing whether the prover commits to the adjacency matrix of the permutation of
original graph or just the entries of a Hamiltonian cycle.

This 3-round protocol already yields a zero-knowledge argument system, but only
with constant soundness. To amplify soundness, one can have the entire protocol re-
peated in parallel, and have the verifier commit to all the parallel challenges in a first
round of the protocol while decommitting in the third round. This 4-round protocol
will indeed be zero-knowledge. However, one cannot prove that it is negligibly sound.
Specifically, there could be a malleability attack, where, the prover upon receiving the
verifier’s commitment in the first round, can maul it to another commitment that can
be open to a valid accepting response depending on the decommitment provided by
the verifier in the third round. Another way of looking at this is that, one cannot have
a black-box reduction of a cheating prover to the hiding property of the commitment
used by the verifier in the first round to commit to the challenge. A standard way to
circumvent this issue would be to require the verifier to use a perfectly hiding commit-
ment and the prover a statistically binding commitment. However, this will result in a
5-round protocol (as perfectly hiding commitments require two rounds), and stronger
assumptions, such as collision resistant hash functions.

The approach taken by Pass and Wee is to have the prover and verifier commit using
a computationally hiding commitment scheme (that can be based on injective one-way
functions) but additionally require the prover to prove “knowledge” of the messages in
its commitment before the verifier decommits its challenge. This can be done generi-
cally using an extractable commitment scheme (introduced in the same work) which is
a commitment scheme that has a “proof-of-knowledge” property. Before we go into the
details of this construction, we point out that an extractable commitment scheme can be
constructed from injective one-way function in three rounds which results in an overall
zero-knowledge argument system with six rounds.

To collapse this protocol into four rounds we follow a cut-and-choose paradigm.
Namely, our protocol will comprise of n parallel instances of the basic 4-round pro-
tocol. In the third round, the verifier chooses a random S ⊆ [n] of some size t and
decommits to the challenges made in those indices while providing a challenge for the
extractable commitment for repetitions outside S. Then in the fourth round, the prover
will complete the zero-knowledge protocol for the parallel repetitions with indexes in
S and respond to the proof-of-knowledge challenge for the extractable commitment for
the remaining indexes. The high-level idea here is that this allows to regain soundness
in a simple way. Since the prover does not know the subset S revealed by the verifier
in the third round, the prover has to “cheat” in most of the parallel invocations. This
means we can argue by a simple averaging argument that there is an index i ∈ [n] such
that the probability that the prover cheats in the ith repetition, i is not included in S and
the prover convinces the verifier of a false statement is non-negligible. This means that
we can now use the prover to violate the hiding of the commitment made by the veri-

fier for the ith repetition by running the proof-of-knowledge extractor on the prover’s
commitment in the ith repetition and extracting the easy challenge.

However, proving zero-knowledge of this compilation is subtle and non-trivial. Re-
call that the verifier only reveals the challenges for a chosen subset S in the third round.
A simple strategy for the simulator is to obtain the challenge, i.e. “trapdoor” for the
indexes in S rewind and setup the prover messages in such a way that will allow for
it to cheat in all repetitions in S. Now, the simulator can conclude with an accepting
transcript if the verifier opens the same set S. However, the verifier can choose to reveal
different subsets in different “rewindings”. Nevertheless, in any rewinding, either the
simulator has succeeded in cheating in all the indexes of the subset revealed by the ver-
ifier or has learned a new trapdoor. Now it suffices to show that the simulator will only
require to perform a bounded number of rewindings before it has extracted most (if not
all) trapdoors to complete the execution. A minor subtlety arises as a malicious verifier
can abort before revealing the third message and this affects the number of rewindings
that needs to be performed. However, this can be dealt with via a standard probability
analysis. There is, however, a bigger issue in proving indistinguishability of this simula-
tion. As described above, the simulator tries to extract trapdoors and outputs the “first”
accepting transcript when it has managed to cheat in all indexes in the revealed subset.
This simple idea however has a subtle flaw. The issue is that one can come up with a
strategy for a malicious verifier where the distribution of the views output by the simu-
lator is not indistinguishable from the real view. Roughly speaking, the distribution of
the subset S in the transcript output by the simulator will be biased towards indexes
revealed earlier in the rewindings. Our main technical contribution is to determine a
“stopping” condition for the simulator that will result in the right distribution and we
describe this below.

We abstract the simulation strategy to the following game. The game proceeds in
iterations where in the ith iteration the adversary outputs a subset Si ⊂ [n] from some
unknown but pre-determined distribution D. The goal is to determine the iteration j to
stop the game and output Sj such that the following two conditions are met:

– First, Sj ⊆ S1 ∪ · · · ∪ Sj−1, and
– Second, if D′ is the distribution of the subset Sj output, then D′ = D. In other

words, the distribution of the subset output when the game is stopped is identical to
the original distribution D.

Our main technical contribution is to show that the following simple strategy achieves
the required goal.

– In any iteration if Sj ⊆ S1 ∪ · · · ∪ Sj−1, then halt if Sj ̸⊆ S1 ∪ · · · ∪ Sj−2, and
proceed to the next iteration otherwise.

We prove this formally in Section 3.

2 Preliminaries

Basic notations. We denote the security parameter by n. We say that a function µ : N→
N is negligible if for every positive polynomial p(·) and all sufficiently large n it holds

that µ(n) < 1
p(n) . We use the abbreviation PPT to denote probabilistic polynomial-

time. We further denote by a← A the random sampling of a from a distribution A, and
by [n] the set of elements {1, . . . , n}. For an NP relation R, we denote by Rx the set
of witnesses of x and by LR its associated language. That is, Rx = {ω | (x, ω) ∈ R}
and LR = {x | ∃ ω s.t. (x, ω) ∈ R}. We specify next the definition of computationally
indistinguishable.

Definition 2.1 Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be
two distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X

c
≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗, every positive

polynomial p(·) and all sufficiently large n:∣∣Pr [D(X(a, n), 1n, a) = 1]− Pr [D(Y (a, n), 1n, a) = 1]
∣∣ < 1

p(n)
.

2.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender Sen, to commit
itself to a value while keeping it secret from the receiver Rec (this property is called
hiding). Furthermore, in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase
(this property is called binding). In this work, we consider commitment schemes that
are statistically binding, namely while the hiding property only holds against compu-
tationally bounded (non-uniform) adversaries, the binding property is required to hold
against unbounded adversaries. Formally,

Definition 2.2 (Commitment schemes) A PPT machine Com = ⟨S,R⟩ is said to be a
non-interactive commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine Rec∗, it holds that the fol-
lowing ensembles are computationally indistinguishable.

– {ViewRec∗

Com (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

– {ViewRec∗

Com (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR
∗

Com(m, z) denotes the random variable describing the output of Rec∗

after receiving a commitment to m using Com.
Statistical binding: For any (computationally unbounded) malicious sender Sen∗ and

auxiliary input z, it holds that the probability that there exist valid decommitments
to two different values for a view v, generated with an honest receiver while inter-
acting with Sen∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive per-
fectly binding commitment schemes can be constructed based on one-way permutation,
whereas two-round statistically binding commitment schemes can be constructed based
on one-way functions [Nao91]. To set up some notations, we let comm ← Com(m; rm)
denote a commitment to a messagem, where the sender uses uniform random coins rm.
The decommitment phase consists of the sender sending the decommitment informa-
tion decomm = (m, rm) which contains the message m together with the randomness

rm. This enables the receiver to verify whether decomm is consistent with the tran-
script comm. If so, it outputs m; otherwise it outputs⊥. For simplicity of exposition, in
the sequel, we will assume that random coins are an implicit input to the commitment
functions, unless specified explicitly.

2.2 Extractable Commitment Schemes

A core building block of our protocol is an extractable commitment scheme ExtCom
introduced by Pass and Wee in [PW09].

Definition 2.3 (Extractable commitment schemes) Let ExtCom = (Sen,Rec) be a
statistically binding commitment scheme. We say that ExtCom is an extractable com-
mitment scheme if there exists an expected PPT oracle machine (the extractor) E that
given oracle access to any PPT cheating sender Sen∗ outputs a pair (τ,m∗) such that:

Simulation: τ is identically distributed to the view of Sen∗ at the end of interacting
with an honest receiver Rec in commit phase.

Extraction: The probability that τ is accepting and m∗ = ⊥ is negligible. We remark
here that, we only need a weak extraction property where the extraction succeeds
if the commitment is well formed. In other words, we allow for “over extraction”
where the commitment could be invalid, yet, the extraction returns a value.

Binding: If m∗ ̸= ⊥, then it is statistically impossible to open τ to any value other
than m∗.

In Figure 1 we describe their 3-round extractable commitment scheme ExtCom that
is based on one-way permutations. In order to commit to a bitm the sender splitsm into
two shares which are committed using a statistically binding commitment scheme Com.
Next, the receiver sends a challenge bit e where the sender must open one of the two
commitments that lie in the eth position. Later, in the decommit phase the sender opens
the remaining commitments enabling the receiver to verify that all opening are valid and
that all pairs correspond to the same bit m. Loosely speaking, hiding follows from hid-
ing of the underlying commitment scheme Com. Whereas extractability follows from
repetitively rewinding the sender obtaining two shares of a particular instance.

2.3 Zero-Knowledge Arguments

We denote by ⟨A(ω), B(z)⟩(x) the random variable representing the (local) output of
machine B when interacting with machine A on common input x, when the random-
input to each machine is uniformly and independently chosen, and A (resp., B) has
auxiliary input ω (resp., z).

Definition 2.4 (Interactive argument system) A pair of PPT interactive machines (P,V)
is called an interactive proof system for a languageL if there exists a negligible function
negl such that the following two conditions hold:

1. COMPLETENESS: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[⟨P(ω),V(z)⟩(x) = 1] ≥ 1− negl(|x|).

Extractable Commitment Scheme ExtCom [PW09]

The commitment scheme ExtCom uses a statistically binding commitment scheme Com
and runs between sender Sen and receiver Rec.

Input: Sen holds a message m ∈ {0, 1}.
Commit Phase:

Sen→ Rec: Sen proceeds as follows:
1. Sen chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], Sen commits to the following matrix:(

comηi comm⊕ηi

)
=

(
Com(ηi) Com(m⊕ ηi)

)
.

Rec→ Sen: Rec sends a challenge e = e1, . . . , eκ ← {0, 1}κ to Sen.
For all i ∈ [κ], Sen sends the decommitment information decom(ei·m)⊕ηi for

which the receiver checks the validity of openings.
Decommit Phase:

1. The sender sends m and opens the commitments to all κ pairs of strings.
2. The receiver checks that all the openings are valid, and also that all pairwise

decommitments correspond to m.

Fig. 1. Extractable commitment scheme

2. SOUNDNESS: For every x /∈ L, every interactive PPT machine P∗, and every
ω, z ∈ {0, 1}∗

Pr[⟨P∗(ω),V(z)⟩(x) = 1] ≤ negl(|x|).

Definition 2.5 (Zero-knowledge) Let (P,V) be an interactive proof system for some
language L. We say that (P,V) is computational zero-knowledge with respect to an
auxiliary input if for every PPT interactive machine V∗ there exists a PPT algorithm
S, running in time polynomial in the length of its first input, such that

{⟨P(ω),V∗(z)⟩(x)}x∈L,ω∈Rx,z∈{0,1}∗
c
≈ {⟨S⟩(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the left
term denote the output of V∗ after it interacts with P on common input x whereas, the
right term denote the output of S on x.

If further the distributions are identically distributed, we refer to the proof system
as perfect zero-knowledge.

Definition 2.6 (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a 3-
round public-coin protocol and the following requirements hold:

– COMPLETENESS: If P and V follow the protocol on input x and private input ω to
P where ω ∈ Rx, then V always accepts.

– SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any
x and any pair of accepting transcripts (a, e, t), (a, e′, t′) on input x, where e ̸= e′,
outputs ω such that ω ∈ Rx.

– SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm S
such that

{⟨P(ω),V(e)⟩(x)}x∈L
c
≈ {S(x, e)}x∈L

where S(x, e) denotes the output of S upon input x and e, and ⟨P(ω),V(e)(x)⟩
denotes the output transcript of an execution between P and V , where P has input
(x, ω), V has input x, and V’s random tape (determining its query) equals e.

2.4 Claw-Free Permutations

Definition 2.7 (Claw-free permutations) A triple of algorithms, (I,D, F), is called a
claw-free collection if the following conditions hold.

– Both I andD are probabilistic polynomial-time, whereasF is deterministic polynomial-
time. We denote by fσi (x) the output of F on input (σ, i, x), and by Dσ

i the support
of the random variable D(σ, i).

– For every i in the range of algorithm I , the random variables f0i (D(0, i)) and
f1i (D(1, i)) are identically distributed.

– For every probabilistic polynomial-time algorithm, A′, every polynomial p(·), and
all sufficiently large n’s

Pr[f0In(Xn) = f1In(Yn)] ≤ 1/p(n)

where In is a random variable describing the output distribution of algorithm I on
input 1n, and (Xn, Yn) is a random variable describing the output of algorithm A′

on input (random variable) In.

A construction for perfectly hiding commitment scheme based on claw-free permu-
tations can be found in [GK96a].

3 The Feasibility of 4-Round BB ZK Arguments from OWPs

In this section we will prove our main theorem, demonstrating the feasibility of black-
box 4-round zero-knowledge argument of knowledge. More formally, we prove the
following theorem.

Theorem 3.1 Assuming one-way permutations, Protocol 1 is a 4-round fully black-box
zero-knowledge argument for any NP language.

Building blocks. Our protocol will employ the following cryptographic primitives.

Non-interactive perfectly binding commitment scheme: Such commitment schemes can
be based on one-way permutations. We denote this scheme by Com and employ it
for the verifier in the first message of our protocol.

Extractable commitment scheme: We recall that an extractable commitment scheme
is a commitment scheme that has in addition an extraction algorithm, such that
given an adversarial sender Sen∗, can extract the committed message or output⊥ if
the commitment is invalid. A 3-round extractable commitment scheme can be con-
structed based on any non-interactive commitment scheme [PW09]. We denote this
scheme by ExtCom; see Section 2.2 for more details. We employ that commitment
scheme for the prover.

3-round public-coin honest-verifier zero-knowledge proof: A 3-round zero-knowledge
proof with constant soundness for any language in NP, denoted by πZK = (a, e, t),
that can be constructed starting from a non-interactive commitment scheme Com
and where the witness is only used to in computing the third message t. For in-
stance, the Blum’s Hamiltonicity protocol [Blu] or [IKOS07,HV16]. For concrete-
ness, let us consider the former protocol, where given a public input graph G, pro-
ceeds as follows. In the first message, the prover commits to the elements of the
adjacency matrix {comaij}i,j∈[m] of a random permutation of the input graph G.
The verifier responds with a challenge bit e. If e = 0, then the prover decommits
all entries of the matrix and gives the permutation, and the verifier accepts if the
permutation maps the input graph to the revealed graph. If e = 1, then the prover
only decommits to elements in the adjacency matrix that form a Hamiltonian cycle.
The verifier accepts if the revealed entries form an Hamiltonian cycle.

Protocol’s description: Our protocol executes the honest verifier zero-knowledge proof
πZK in parallel n times, where a t subset of these executions (that is picked by the
verifier) are completed till end while the rest are used for completing the extractable
commitment algorithm.

Protocol 1 (Black-box 4-round zero-knowledge argument)

– Inputs: A public statement x ∈ L for both and a witness ω ∈ Rx for the prover P .
– The protocol:

1. V → P : The verifier picks n challenges for the parallel invocations of protocol
πZK, say e1, . . . , en, and commits to them using algorithm Com. Denote this set
of commitments by (come1 , . . . , comen).

2. P → V : The prover generates n first-messages (a1, . . . , an) according to
πZK. Here each ai contains commitments to entries of an adjacency matrix
{extcomai[r,c]}r,c∈[m] of an independently and randomly chosen permutation
of the input graph G where the commitment is computed using ExtCom where
m is the number of nodes in the graph.

3. V → P: The verifier chooses a random t subset T ⊂ {1, . . . , n} and sends
{decomei}i∈T where decomei is the decommitment of comei . It also sends a
challenge ch ∈ ([n]− T) for all the extractable commitments.

4. P → V: Condition on valid decommitments sent by the verifier, for every ZK it-
eration i ∈ T , the prover completes protocol πZK, answering challenge ei with
the message ti and sends {ti, decomai}i∈T . For the remaining ZK iterations,
the prover simply responds to the challenge ch according to the extractable
commitment protocol ExtCom.

The verifier accepts if all decommitments are valid, if (ai, ei, ti) is a valid
transcript for πZK for all i ∈ T and if the extractbale commitments protocol
has been concluded correctly for all remaining iterations i /∈ T .

Proof (Theorem 3.1). Completeness follows directly from the completeness of the un-
derlying honest verifier zero knowledge protocol πZK. Below we prove soundness and
zero-knowledge of our protocol.

Soundness. On a high-level, the special soundness of the underlying zero-knowledge
protocol implies that, on a false statement, and a set of commitments provided by the
prover in its first message, there is only one “easy challenge” for which the prover can
complete the protocol and convince the verifier. Pass and Wee in [PW09] formalized the
notion of “easy challenge” by requiring that the zero-knowledge protocol satisfies the
property that there is an efficient procedure that given the input statement x and values
in the commitments made by the prover in the second message v1, . . . , vk, outputs a
string e such that if an easy challenge exists then it must equal e, and if this challenge is
revealed by the verifier the (malicious) prover can convince the verifier even on a false
statement. For example, the Blum Hamiltonicity zero-knowledge protocol satisfies this
requirement and the easy challenge can be extracted as follows. If the value committed
to by the prover is a permutation π and the adjacency matrix A such that A represents
the graph π(G), then set the easy challenge to be 0 and otherwise 1. We argue soundness
based on the following two steps.

1. We show that for a false statement an adversarial prover has to guess the challenge
from the commitments made by the verifier before it is revealed in the third message
for most of the n parallel instances. More precisely, the “easy challenge” extracted
from the messages committed by the prover in most of the n iterations must match
exactly the challenge committed to by the verifier.

2. There is an extraction procedure to extract the messages committed by the prover
in one of these iterations without having to reveal the challenge committed to in the
first message.

Combining these two ideas, we can reduce the soundness of the zero-knowledge to the
hiding property of the commitments made by the verifier. We remark that our protocol
and proof are different from those presented in [PW09] in that the verifier only reveals
a subset of the challenges, where essentially the prover is only required to convince
the verifier in the executions corresponding to this subset. In contrast, in the protocol
presented in [PW09] the verifier opens all challenges. Specifically, as their protocol
includes additional rounds between the prover’s second message and when the verifier
reveals the challenge in order to extract the prover’s committed message, their analysis
becomes easier. In our protocol, on the other hand, we will be able to extract the values
in the commitments made by the prover only in the repetitions for which the challenge
was not revealed by the verifier. We now proceed to the formal proof.

Assume for contradiction that there exists a PPT prover P∗ and polynomial p(·)
such that for infinitely many n’s, there exists xn ̸∈ L ∩ {0, 1}n such that the prover
successfully convinces the verifier on the statement xn with probability 1

p(n) . Fix an

arbitrary n for which this happens. We will construct an adversary B that uses P∗

to break the hiding property of the non-interactive commitment scheme Com. More
formally, B will internally incorporate the code of the prover P∗ on input (1n, xn) and
feed it with messages according to the honest verifier. That is, on input (1n, xn) and a
commitment c from the external challenger, B proceeds as follows.

1. It will begin an internal emulation with P∗. To simulate the first message from the
verifier, it will choose a random index i to feed the challenge commitment c and
the rest of them it will generate honestly internally.

2. Next, it will continue the execution to completion where it picks a random subset
S1 ⊆ [n] conditioned on i ̸∈ S1. Let ch1 be the challenge it feeds for the extractable
commitment. If the prover aborts in the internal emulation then B aborts.

3. Otherwise, it will record the response to challenge ei for the extractable commit-
ment in repetition i. Next, it will rewind the prover to the third message, giving
another set S2 ⊆ [n] subject to i ̸∈ S2 and an independent challenge ch2 for the
extractable commitment. If the prover aborts, B aborts as well. Otherwise, it will
use the extractor for the underlying extractable commitment scheme on the com-
mitment made for iteration i and the responses given for two challenges. We remark
here that our extractor could “over extract”. Namely, extract in case of an invalid
commitment. To deal with this, we stipulate that if the extractor extracts a valid
graph, the bit b is set to 1 and otherwise 0. If the extractor successfully extracts the
committed messages, then B extracts the easy challenge b, outputs b and halts.

We next prove in the claim that B breaks the hiding property of the challenge com-
mitment c with non-negligible probability.

Claim 3.1 There exists polynomial q(·) such that,

Pr[b← {0, 1}n : c← Com(1n, b) : B(1n, x, c) = b] ≥ 1

q(n)
.

Proof: Define the random variable Γ to be the set that contains the indexes where
the prover commits to the adjacency matrix according to the easy challenge. We will
further restrict Γ to be those indices where if b = 1 (meaning the prover commits
to the graph), the index will be included only if the commitment is valid. This means
that the prover can successfully convince the verifier only if T ⊆ Γ . Note that this set
(even if not efficiently computable) is well-defined as we rely on statistically binding
commitments. Our analysis relies on the following two cases:

Case |Γ | ≤ 3n
4 : Here the probability that T ⊆ Γ can be bounded by (3n/4t)

(nt)
which

is negligible. We remark here that if b = 1 and the commitment is invalid, then
the Prover can not convince the verifier in that index because all the commitments
are decommitted in the fourth message. Based on the observation that T must be
contained in γ, the prover successfully completes the protocol only with negligible
probability.

Case |Γ | > 3n
4 : We begin by showing that there exists an index i ∈ Γ such that P∗

convinces V with non-negligible probability conditioned on i ̸∈ T . Define pi to be

the probability that P∗ successfully convinces the verifier conditioned on i ̸∈ T
where recall that T is the set of challenges revealed by the verifier. By a union
bound, we have that

∑
i∈Γ pi ≥

1
p(n) . Therefore, there exists i such that pi ≥

1
|Γ |p(n) ≥

4
3np(n) .

Now, we have that if B picks this index i and the prover completes the proof in both
the executions performed by B, then with overwhelming probability the extractor
reveals the messages committed to by the prover. This in turn reveals the easy chal-
lenge for all indexes outside S1 ∪S2. In particular, it will obtain the easy challenge
bi which B outputs as its guess for the challenge commitment c. By definition of Γ
we have that bi is correct.
B succeeds if it picks this index i to feed the external challenge, convinces V∗ in the
two executions, the extractor succeeds. The right index is chosen with probability
1
2n . for the specific extractable commitment used in the construction (namely, the
construction from [PW09]), the extractor succeeds except with negligible probabil-
ity if the ch1 ̸= ch2 which happens with probability at most 1− 2−n. Furthermore,
even if the extractor “over-extracts”, if the extracted value is the valid graph, it can-
not be the case that the prover can convince with b = 0 and we know that if i ∈ Γ
and b = 1 then the commitment is valid. Therefore the probability that B succeeds
is at least 1

np
2
i − 1

2n − ν(n) ≥
1

2n3(p(n))2 .

�
This concludes the proof of soundness.

Zero-knowledge. We describe our black-box simulator and prove correctness of simu-
lation.

Description of simulator S: More formally, let V∗ be a malicious verifier. We define
simulator S as follows:

1. S receives the first message V∗(x, z) from the malicious verifier.
2. S continues the execution by generating the second message according to the hon-

est prover’s algorithm. If the verifier aborts, the simulator outputs the transcript and
halts.

3. Otherwise, S records the challenges that the verifier reveals; denote this t subset by
T1. Set T0 = ∅.

4. Next, S repeatedly rewinds the verifier to the second message to extract some trap-
door information, namely, decommitments of the challenges committed by the ver-
ifier. It proceeds in iterations. In iteration ℓ, we assume that the S holds the sets
T1, . . . , Tℓ and at the end of the iteration either the simulator learns a new trapdoor
(and adds a new set Tℓ+1) or halts outputting a transcript. More precisely, for ℓ = 1
through n− t+ 1,6 the simulator proceeds as follows:
(a) It generates the second prover’s message (a1, . . . , an) as follows:

– For i ̸∈ T1∪ · · ·∪Tℓ, run the honest prover strategy to generate the second
message ai. In the particular Blum’s Hamiltonian proof that we use, this
amounts to simply generating commitments to the adjacency matrix of a
random permutation of the original graph G.

6 Note that this is the maximum number of iterations as at least one new element is added in
each iteration and |T1| = t.

– For i ∈ T1 ∪ · · · ∪Tℓ, let ei be the challenge revealed for index i. The sim-
ulator runs SZK(x, ei) of the underlying honest-verifier zero-knowledge
proof in order to generate the second and fourth messages (pi2, p

i
4) using

the knowledge of the challenge ei. It then sets ai = pi2.
Let T ′ be the challenge set revealed by the verifier. The simulator repeats until
one of the following cases occur:
Case 1. T ′ ̸⊆ T1 ∪ · · · ∪ Tℓ: This case implies that the verifier reveals a chal-

lenge of a new ZK repetition that the simulator did not record before. In
this case, the simulator sets Tℓ+1 = T ′ and proceeds to the next iteration
under ℓ (i.e. go to Step 4).

Case 2. T ′ ⊆ T1 ∪ · · · ∪ Tℓ: This case implies two subcases.
Case 2.1. T ′ ⊆ T1 ∪ · · · ∪ Tℓ−1: The simulator ignores this case and con-
tinues to rewind, i.e. go to step 4(a). We remark here that in this case, the
simulator could complete the execution as it has simulated all the second
messages according to the challenges corresponding to the set T ′. Never-
theless, we deliberately make the simulator ignore this case so as to not
skew the probability distributions of the simulator’s output.
Case 2.2. T ′ ̸⊆ T1∪· · ·∪Tℓ−1 and T ′ ⊆ T1∪· · ·∪Tℓ: This case considers
the event where the revealed subset T ′ is not contained in the first ℓ − 1
collected sets, but is contained in first ℓ sets. In this case, the simulator
continues the simulation and generates the fourth message (r1, . . . , rn) for
every i ∈ [n] as follows:

– If i ̸∈ T ′, the simulator needs to respond to the challenge given for
the extractable commitment scheme. In this case, the simulator simply
responds to the challenge honestly.

– If i ∈ T ′, then recall that the second message ai was set to pi2, where
(pi2, p

i
4) were generated using the honest verifier zero-knowledge sim-

ulator based on the challenge ei (which is implied by the fact that
T ′ ⊆ T1 ∪ · · · ∪ Tℓ). Therefore, if the revealed challenge for this rep-
etition i is ei, then the simulator sets the fourth message ri = pi4. On
the other hand, if the verifier reveals a different challenge for repe-
tition i, then the simulator aborts. Note that the simulator will never
abort because the challenges are committed using a perfectly binding
commitment scheme Com.

The simulator then feeds this last message and outputs the view of the
verifier.

Proof of indistinguishability. Denote by ViewV∗(P(x, ω),V∗(x, z)) the view of the
verifier V∗(z) when interacting with the honest prover on input ω and common input x.
We prove the indistinguishability of real and simulated proofs by defining the following
intermediate hybrid experiments.

Hybrid Hyb0: In this experiment, we consider the view of the verifier when it interacts
with the honest prover with witness ω.

Hybrid Hyb1: In this experiment, we define a simulator S1 that proceeds with the
rewinding strategy as simulator S does, with the exception that the prover’s messages

are generated according to the honest prover’s strategy. Define S1(x, ω, z) to be the
output of the simulator S1 in this hybrid. We next prove indistinguishability and analyze
the running time of S1 in the following claims.

Claim 3.2 The following distributions are identical.

– D0 = {ViewV∗(P(x, ω),V∗(x, z))}x∈L,ω∈Rx,z∈{0,1}∗

– D1 = {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof: Fix a random tape r for V∗. Let ψ = (V1, P
ψ
1 , V2, P

ψ
2) be the transcript of a

random execution between V∗(x, z; r) and an honest prover P(x, ω). We will show that
the probability with which this transcript is returned is identical in both distributions.
Let pψ be the probability with which this transcript appears in D0 conditioned on V∗’s
random tape being fixed to r. Clearly, the resulting first message will always be V1, if
S1 emulates the interaction with V∗ on a random tape r. Then we prove that transcript
(V1, P

ψ
1 , V2, P

ψ
2) is generated by S1(x, ω, z) with the same probability pψ conditioned

on the random tape of V∗ being r.
Note first, that by the definition of S1, the probability with which an aborting tran-

script appears in both distributions is identical. We therefore focus on non-aborting
transcripts. Therefore, it suffices to compute the probability that S1(x, ω, z) outputs the
(non-aborting) transcript of messages (V1, P

ψ
1 , V2, P

ψ
2) conditioned on V∗’s random

tape being fixed as r. We continue with some more conventions and notations:

– We denote by S the set that occurs in the target transcript ψ, namely, the set con-
tained in message V2.

– We denote by pT the probability the subset T occurrs in the real execution. We let
p⊥ denote the probability that the verifer aborts before sending its second message
in the real execution. In this notation pT =

∑
pψ where the summation is over all

transcripts ψ that contains the subset T .
– We denote a tuple of sets by T = (T1, . . . , Tℓ) to denote the sets collected by the

simulator before it enters the ℓth iteration. Typically, given a tuple T, we use T̃
to denote the tuple (T1, . . . , Tℓ−1) and use :: for appending a set. In this notation,
T = T̃ :: Tℓ.

– For 1 ≤ ℓ ≤ n − t + 1, let Validℓ denote the set of all ℓ-tuples (T1, . . . , Tℓ) that
satisfy the following two conditions.
1. All sets Ti are of size t.
2. For every 1 ≤ i ≤ ℓ, it holds that Ti ̸⊆ T1, . . . , Ti−1. (Recall that the simulator

moves to the next iteration only if it finds a new trapdoor).
Intuitively, valid sequences captures all sequences that can be obtained by the sim-
ulator when entering the ℓth iteration.7

– For any ℓ-tuple T = (T1, . . . , Tℓ), we define qT the probability conditioned on not
aborting that in a random execution between V∗(x, z; r) and the honest prover, the
set opened by the verifier is covered by the elements T1, . . . , Tℓ, i.e. T ⊆ ∪ℓi=1Ti.

7 By possibly we mean that it might be the case that the verifier never opens some particular
t subset T in any execution, in which case any tuple that involves T will never occur in a
simulation.

We set q{∅} = 0. We next observe that, for any tuple T = (T1, . . . , Tℓ), it holds
that qT = (

∑
pT)/(1 − p⊥) where the summation is over all T such that |T | = t

and T ⊆ ∪ℓi=1Ti.
– For a tuple T = (T1, . . . , Tℓ), let PψT(ℓ) denote the probability that, starting with

sets T and iteration ℓ, the simulator S1 outputs the transcript ψ.

Without loss of generality we assume p⊥ < 1, since, if the verifier aborts w.p. 1, the
simulator outputs the transcript from the first execution and will be distributed identi-
cally to the real execution. We begin with the following claim which will be sufficient
to prove Claim 3.2.

Subclaim 3.3 For 1 ≤ ℓ ≤ n− t+ 1 and every tuple T = (T1, . . . , Tℓ) ∈ Validℓ,

PψT(ℓ) =

{
pψ

(1−p⊥)(1−qT̃) if T̃ does not cover S, and
0 otherwise.

where T̃ = (T1, . . . , Tℓ−1).

Before we prove this claim, we conclude Claim 3.2 using the preceding subclaim.
As argued above, the probability that the simulator outputs aborting transcripts is iden-
tical to the real execution. Observing that q∅ = 0, conditioned on not aborting, the
probability that the simulator outputs non-aborting ψ is given by PψT(0) which from
the preceeding claim is pψ/(1− p⊥). Since the probability that the simulator continues
after the first execution is (1− p⊥), Claim 3.2 follows.

Now we proceed to prove Subclaim 3.3.

Proof: Given T = (T1, . . . , Tℓ), suppose T̃ = (T1, . . . , Tℓ−1) covers S, then from the
description of our simulation it follows that it is not allowed to output ψ in iterations ℓ
or higher. In other words, when T̃ covers S, PψT(ℓ) = 0 as in the claim.

Therefore, it suffices to prove the subclaim when T̃ does not cover S. We prove this
case using a reverse induction on ℓ from n− t+ 1 to 1.

Base Case: ℓ = n − t + 1. Let T = (T1, . . . , Tn−t+1) be an arbitrary valid tuple and
let T̃ = (T1, . . . , Tn−t). Recall that, for a general iteration ℓ, the simulator rewinds
until it obtains T ̸⊆ ∪ℓ−1

i=1Ti. Then, if T ⊆ ∪ℓi=1Ti it outputs the transcript. Otherwise,
it has obtained a new trapdoor, sets T to be the new set Ti+1 and proceeds to the next
iteration. However, if ℓ = n− t+ 1, we have that ∪n−t+1

i=1 Ti must be [n] as at least one
new element is added in each iteration and |T1| = t. Therefore, in this base case, we
have that S ̸⊆ ∪n−ti=1 Ti and S ⊆ ∪n−t+1

i=1 Ti. This means that if the simulator encounters
the transcript ψ in iteration n− t+1, it will output it. The probability can be computed
as follows:

Pr[ψ occurs in the iteration | no t-subset of ∪ℓ−1
i=1 Ti occurs]

=
Pr[ψ occurs in the iteration]

Pr[no t-subset of ∪ℓ−1
i=1 Ti occurs]

=
pψ

(1− p⊥)
× 1

(1− qT̃)

This completes our base case.

Induction Step: 1 ≤ ℓ ≤ n − t. Let T = (T1, . . . , Tℓ) be an arbitrary tuple in Validi.
Set T̃ = (T1, . . . , Tℓ−1). Recall that we only need to show the subclaim when T̃ does
not cover S. There are two cases w.r.t T:

Case 1: T covers S: In this case, the simulator can output ψ only in this iteration and
not higher. Recall that the simulator in this iteration will rewind until it obtains a
set T ̸⊆ T̃. Therefore, the probability that the simulator outputs ψ is same as in the
base case and given by pψ/((1− p⊥)(1− qT̃)).

Case 2: T does not cover S: This means that the simulator can output ψ only in iter-
ations ℓ+ 1 or higher. Then for any subset T not covered by T the probability that
the simulator outputs ψ in iteration ℓ+ 1 or higher is given by

Pr[T occurs in the current iteration | no t-subset of ∪ℓ−1
i=1 Ti occurs]

× Pr[ψ occurs in iteration ≥ ℓ+ 1 with T :: T occuring in the first ℓ iterations]

= Pr[T occurs in the current iteration | no t-subset of ∪ℓ−1
i=1 Ti occurs]

× PψT::T (ℓ+ 1)

=
pψ

(1− p⊥)(1− qT̃)
× PψT::T (ℓ+ 1)

This means that the overall probability can be obtained by summing the proceeding
expression over all sets T not covered by T, namely, T ̸⊆ T1, . . . , Tℓ.

PψT(ℓ) =
∑

T ̸⊆T1∪···∪Tℓ−1

pT
(1− p⊥)(1− qT̃)

× PψT::T (ℓ+ 1)

=
∑

T ̸⊆T1∪···∪Tℓ−1

pT
(1− p⊥)(1− qT̃)

× pψ
(1− p⊥)(1− qT)

=
pψ

(1− p⊥)(1− qT)
× 1− qT

1− qT̃
=

pψ
(1− p⊥)(1− qT̃)

.

where in the second step we invoke our induction hypothesis that PψT::T (ℓ + 1) =
pψ/((1− p⊥)(1− qT)).

This completes our inductive step and concludes the proof of our subclaim. � �
Claim 3.4 The expected running time of S1 is polynomial.

Proof: We argue by induction on the iterations that the expected running time of the
simulator S1 defined in this hybrid is polynomial. Define RunTimeT(ℓ) to be the ex-
pected total running time of the simulator in iterations ℓ and above conditioned on
T = (T1, . . . , Tℓ) being the sets obtained by the simulator in the first ℓ− 1 iterations.

Subclaim 3.5 There exists a constant c such that, for any valid tuple (T1, . . . , Tℓ),
RunTimeT(ℓ) ≤ nc(n−ℓ)

(1−p⊥)(1−qT̃) where 1 ≤ ℓ ≤ n− t+ 1 and T̃ = (T1, . . . , Tℓ−1).

Proof: As in the previous proof we do reverse induction on iteration ℓ.

Base case ℓ = n−t+1. Let T = (T1, . . . , Tn−t+1). Recall that in iteration ℓ = n−t+1
we have ∪n−t+1

i=1 Ti = [n]. Therefore, there are no more iterations and the simulator
stops whenever it finds any T such that T ̸⊆ ∪n−ti=1 Ti. The probability of observing
such an execution using our notation defined above is given by (1 − p⊥)(1 − qT̃).
Therefore, the expected number of rewindings that the simulator needs to perform in the
(n−t+1)st iteration is 1/((1−p⊥)(1−qT̃)). This in turn means the expected time spent
by the simulator conditioned on entering iteration n− t+1 with sets (T1, . . . , Tn−t+1),
i.e.

RunTimeT(n− t+ 1) =
nc

(1− p⊥)(1− qT̃)

where nc is an upper bound on the time spent by the simulator in a single rewinding
with the verifier.

Induction step: 1 ≤ ℓ ≤ n − t. We will compute the expected time spent in this
iteration. Suppose that the simulator collected the sets (T1, . . . , Tℓ) in the first ℓ − 1
iterations. Recall that the simulator rewinds until it obtains T ̸⊆ ∪ℓ−1

i=1Ti and either
outputs the transcript (if T ⊆ ∪ℓi=1Ti) or moves on to the next iteration otherwise. The
number of rewindings in this iteration is therefore 1

1−qT̃
in expectation. Now, the total

expected running time in iterations ℓ and above can be computed as

E[#rewindings in iteration ℓ until it obtains T ̸⊆ ∪ℓ−1
i=1Ti]× n

c

+ E[time spent in iterations > ℓ with T]

=
nc

(1− p⊥)(1− qT̃)
+

∑
T ′ ̸⊆∪ℓi=1Ti

Pr[T = T ′|T ̸⊆ ∪ℓ−1
i=1Ti]× RunTimeT::T (ℓ+ 1)

≤ nc

(1− p⊥)(1− qT̃)
+

nc(n− ℓ− 1)

(1− p⊥)(1− qT)
×

∑
T ′ ̸⊆∪ℓi=1Ti

Pr[T = T ′|T ̸⊆ ∪ℓ−1
i=1Ti]

=
nc

(1− p⊥)(1− qT̃)
+

nc(n− ℓ− 1)

(1− p⊥)(1− qT)
×

∑
T ′ ̸⊆∪ℓi=1Ti

Pr[T = T ′]

1− qT̃

=
nc

(1− p⊥)(1− qT̃)
+

nc(n− ℓ− 1)

(1− p⊥)(1− qT)
× 1− qT

1− qT̃

=
nc(n− ℓ)

(1− p⊥)(1− qT̃)

where the third step follows from the induction hypothesis. �
The expected total running time of the simulation is given by

p⊥ × nc + (1− p⊥)× RunTime∅(1) = nc + nc(n− 1)

and this concludes the proof of the claim. �

Hybrid Hyb2: In this experiment we consider the actual simulation as defined by
S(x, z). The output of the experiment will then be S(x, z).

Claim 3.6 The following distributions are identical.

– {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

– {S(x, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof. Assume for contradiction that there exists a malicious verifier V∗, a distin-
guisher D and a polynomial p(n) such that for infinitely many n’s, D distinguishes
S1(x, ω, z) = ⟨S1(ω),V∗(z)⟩(x) and S(x, z) = SV∗

(x, z) with probability 1
p(n) . Fix

any n for which this event occurs.
First, we consider truncated experiments Hyb1(n, x, z) (resp. Hyb2(n, x, z)) which

proceeds exactly as Hyb1(n, x, z) (resp. Hyb2(n, x, z)) with the exception that the sim-
ulation is aborted if it runs more than np(n)t(n) steps where t(n) is the polynomial
bounding the expected running time of S1. If the experiment is aborted then Hyb1
(resp. Hyb2) is set to a special symbol ⊥. By an averaging argument we can conclude
that the truncated experiments Hyb1(n, x, z) and Hyb2(n, x, z) can be distinguished
with probability at least 1

2p(n) by the distinguisher D.

Next, we consider a sequence of intermediate hybrids Hyb01, . . . ,Hybn−t+1
1 , where

in Hybrid Hybℓ1, we define a simulator Sℓ1 that will follow the real simulator’s strategy
S in the first ℓ iterations of the for loop and the remaining according to the honest prover
using the real witness. If Sℓ1 runs over np(n)t(n) steps then we stop the simulation and
output ⊥. Let Hyb

ℓ

1(n, x, z) be the output of the Sℓ1 in Hybℓ1. It follows from definition
that Hyb

0

1 = Hyb1 and Hyb
n−t+1

1 = Hyb2. Therefore, if D distinguishes Hyb
0

1 from
Hyb

n−t+1

1 then there exists an index i such that D distinguishes Hyb
i

1 from Hyb
i+1

1

with probability 1
2np(n) . Since the experiments are truncated after np(n)t(n) steps the

maximum number of rewindings that can occur in iteration iwhere the two experiments
differ is np(n)t(n). We show that using V∗ and D we can contradict the honest verifier
zero-knowledge property (for many parallel repetitions).

Consider an adversary A that begins an emulation of Hyb
i

1(n, x, z) until it reaches
iteration i. If it halts before, A simply outputs the output of the experiment. Otherwise,
let T1, . . . , Ti be the set of indexes that were obtained by the simulator in the internal
emulation. Let T = T1 ∪ · · · ∪Ti and let {et}t∈T be the challenges in the indexes in T .
A forwards these challenges to an external challenger C. The challenger then produces
np(n)t(n) transcripts of the honest-verifier zero-knowledge protocol for each challenge
et for t ∈ T . A uses the prover’s messages in these transcripts to generate the prover
messages in the internal emulation in iteration i. Then it completes the experiment,
where from iteration i + 1 the adversary plays the honest prover strategy and uses the
real witness, and outputs the output of the experiment. By our construction, if the exter-
nal challenger C produces transcripts according to the honest prover, then the internal
emulation by A is identical to Hyb

i

1. On the other hand if the transcripts received from
C is according to the honest verifier simulator, then the internal emulation is identical
to Hyb

i+1

1 . Therefore, D andA violates the honest verifier zero-knowledge property of
πZK.

Claim 3.7 The expected running time of S is polynomial.

Proof: Assume for contradiction, the expected running time of S is not polynomial.
Recall that the expected running time of S1 is some polynomial t(n). Then we can con-
struct a distinguisher that distinguishes the truncated experiments Hyb1(n, x, z) and
Hyb2(n, x, z) defined above and this is a contradiction to the previous claim. We con-
sider truncated experiments Hyb1(n, x, z) and Hyb2(n, x, z) where the experiments
are truncated after 2t(n) steps. Next, consider a distinguisher D that outputs 1 if the
experiment’s output is ⊥ and 0 otherwise. D on input view from Hyb1(n, x, z) outputs
1 with probability at least 1

2 . However, D on input a view from Hyb2(n, x, z) outputs
1 is negligible. Therefore, D distinguishes Hyb1(n, x, z) and Hyb2(n, x, z) with non-
negligible probability and this is a contradiction. �

4 Corollaries

In this section, we provide corollaries to our main techniques. We obtain the first round
optimal fully black-box constructions of perfect zero-knowledge arguments and input-
delayed commit-and-prove zero-knowledge argument.

4-round Perfect Zero-Knowledge Argument from Claw-free Permutations. As a
corollary of Theorem 3.1, we prove that there exists a 4-round perfect zero-knowledge
argument based on claw-free permutations. This is achieved by replacing the prover’s
commitments in Protocol 1 with perfectly hiding commitments which can be based on
claw-free permutations. More formally,

Corollary 4.1 Assuming claw-free permutations, there exists a 4-round fully black-box
perfect zero-knowledge argument for any NP language.

The protocol for the perfect zero-knowledge case is identical to the protocol described
in Section 3 with the only exception that the commitments made by the prover is re-
placed with perfectly hiding commitments that can be based on claw-free permutations
[GK96a]. The proof follows is analogous to the proof of Theorem 3.1. The soundness
argument essentially remains unchanged; we only need to handle the case when the
prover violates the binding property of the underlying commitment scheme. The zero-
knowledge property follows essentially as before. We observe that the distributions in
Hyb0 and Hyb1 are already proved to be identical. To conclude we observe that the
distributions in Hyb1 and Hyb2 are also identical because the underlying commitment
scheme is perfectly hiding.

4-round Input-Delayed Commit-and-Prove ZK Argument. As a second corollary,
we prove that there exists a 4-round input delayed commit-and-prove zero-knowledge
argument. This is achieved by replacing the three-round honest-verifier zero-knowledge
argument based on Blum-Hamiltonicity with the three-round commit-and-prove input-
delayed protocol of Hazay and Venkitasubramaniam [HV16] in Section 6.2. More for-
mally,

Corollary 4.2 Assuming injective one-way functions, there exists a fully black-box 4-
round input-delayed commit-and-prove zero-knowledge argument for any NP language.

5 Acknowledgments

We thank the anonymous TCC reviewers for their detailed comments and Rafael Pass
for helpful suggestions. The first author was supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office. The second author was supported by
Google Faculty Research Grant and NSF Award CNS-1526377. This work was partly
carried out by the second author during a visit to DIMACS supported by the National
Science Foundation under grant number CNS-1523467.

References

BJY97. Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge
arguments based on any one-way function. In EUROCRYPT, pages 280–305, 1997.

BKP18. Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: A
paradigm for keyless hash functions. In STOC, 2018.

Blu. Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, USA, page 1444–1451.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

CPS+15. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved OR composition of sigma-protocols. IACR Cryptology ePrint
Archive, 2015:810, 2015.

FGJ18. Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. On the existence of three round
zero-knowledge proofs. In EUROCRYPT, pages 3–33, 2018.

FS89. Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In
CRYPTO, pages 526–544, 1989.

GK96a. Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

GK96b. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of secure
two-party computation. In CRYPTO, pages 397–429, 2016.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In STOC, pages 21–30, 2007.

IKOS09. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

IMS12. Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
pcps. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC
2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 151–168, 2012.

Kat12. Jonathan Katz. Which languages have 4-round zero-knowledge proofs? J. Cryptology,
25(1):41–56, 2012.

LS90. Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In CRYPTO, pages 353–365, 1990.

Nao91. Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In CRYPTO, pages 339–358, 2015.

PW09. Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In TCC, pages 403–418, 2009.

