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Abstract

Fairness in classification has become an increasingly relevant and controversial issue as com-
puters replace humans in many of today’s classification tasks. In particular, a subject of much
recent debate is that of finding, and subsequently achieving, suitable definitions of fairness in an
algorithmic context. In this work, following the work of Hardt et al. (NIPS’16), we consider and
formalize the task of sanitizing an unfair classifier C into a classifier C′ satisfying an approximate
notion of “equalized odds” or fair treatment. Our main result shows how to take any (possibly
unfair) classifier C over a finite outcome space, and transform it—by just perturbing the out-
put of C—according to some distribution learned by just having black-box access to samples of
labeled, and previously classified, data, to produce a classifier C′ that satisfies fair treatment;
we additionally show that our derived classifier is near-optimal in terms of accuracy. We also
experimentally evaluate the performance of our method.

1 Introduction

As algorithmic decision-making becomes ever more popular and widely-used in today’s society,
concerns are being raised about whether, and to what extent, algorithms have the potential to
discriminate, either as a result of malicious designers or perhaps from learning biases inherent
in previous decisions on which an algorithm could be trained. In a well-known recent example,
the COMPAS recidivism analysis tool, one of an increasingly popular set of algorithmic criminal
“risk assessments” which are being used nationwide in sentencing and other decisions pertaining
to defendants in the criminal justice system, was shown to exhibit highly disparate treatment
between different races; a study by ProPublica [1,2] showed that African-American defendants who
ultimately did not recidivate were almost twice as likely as white defendants to receive a high risk
score from the algorithm.

As a result of these concerns, there has been extensive research in computer science and other
fields pertaining to how fairness, or non-discrimination, should be defined in the context of a
classification scenario. In this work, we will formalize and study one such definition, fair treatment,
which is an approximate and distribution-based version of the notion of equalized odds [6] or balance
[8].
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a Microsoft Faculty Fellowship, and a Google Faculty Research Award.
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Fair Treatment (a.k.a. approximate equalized odds). The originally proposed notion of
fairness in classification is that of statistical parity [5] (which is essentially identical to the notion
of causal effect [10]), which captures non-discrimination between groups. Given a classifier C which
assigns to individuals σ from some distribution D—each of which has some subset of observable
features O(σ)—an outcome C(O(σ)) (e.g., a risk score), and given a function f(σ) representing an
individual’s actual class (e.g., whether they will recidivate), statistical parity simply requires that
the output of the classifier be independent (or almost independent) of the group of the individual;
that is, for any two groups X and Y , the distributions {C(O(σX))} and {C(O(σY ))} are ε-close
in statistical distance. This is a very strong notion of fairness, and in many contexts it may not
make sense. In particular, if the base rates (e.g., the base percentages of people from each race
who actually recidivate) are different, we should perhaps not expect the output distribution of
the classifier to be the same across groups. Indeed, as the ProPublica article points out, in the
COMPAS example, the overall recidivism probability among African-American defendants was
56%, whereas it was 42% among white defendants. Thus, in such situations, one would reasonably
expect a classifier to on average output a higher risk score for African-American defendants, which
would violate statistical parity. Indeed, the issue raised by ProPublica authors was that, even after
taking this base difference into account (more precisely, even after conditioning on individuals that
did not recidivate), there was a significant difference in how the classifier treated the two races.

The notion of equalized odds due to Hardt et al. [6] formalizes the desiderata articulated by
the authors of the ProPublica study (for the case of recidivism) in a general setting by requiring
the output of the classifier to be independent of the group of the individuals, after conditioning
on the class of the individuals. Very similar notions of fairness appear also in works such as [3, 8]
using different names; for instance, Kleinberg et al. [8] consider a notion of “balance” which is an
approximate version of equalized odds, albeit one which is tailored to scoring-based classifiers over
a binary class space and only requires the conditioned expectation of the outcome (i.e., the score)
to be close between groups. We here consider a more general approximate version of this notion
which applies to all classifiers with a finite outcome space, which we refer to as ε-fair treatment.
This requires that, for any two groups X and Y and any class c, the distributions

• {C(O(σX)) | f(σX) = c}

• {C(O(σY )) | f(σY ) = c}

are ε-close with respect to some appropriate distance metric to be defined shortly. That is, in
the COMPAS example, if we restrict to individuals that actually do not recidivate (respectively,
those that do), the output of the classifier ought to be essentially independent of the group of
the individual (just as intuitively desired by the authors of the ProPublica study, and as explictly
put forward in [6]). Furthermore, if the distributions are identical (i.e., ε = 0), we note that our
definition is equivalent to that of equalized odds in [6]; we refer to this errorless notion as perfect
fair treatment.

We will effectively use the notion of max-divergence to determine the “distance” between dis-
tributions; this notion, often found in areas such as differential privacy (see [4]), represents this
distance as (the logarithm of) the maximum multiplicative gap between the probabilities of some
element in the respective distributions. We argue that using such a multiplicative distance is impor-
tant to ensure fairness between groups that may be under-represented in the data (see Section 3.1).
Furthermore, as we note in the same section, such a notion is closed under “post-processing”: if a
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classifier C satisfies ε-fair treatment with respect to a context P = (D, f, g, O), then for any (pos-
sibly probabilistic) function M, C′(·) = M(C(·)) will also satisfy ε-fair treatment with respect to
P. Closure under post-processing is important as we ultimately want the output of any subsequent
classifier that uses only the output of a prior fair classifier to be fair as well.1

Can we sanitize an “unfair” classifier? As shown in the ProPublica study, the COMPAS
classifier has a considerably large error in balance between races and hence also has a large error in
the stronger notion of fair treatment. A natural question, then, would be whether we can “post-
process” the output of this unfair classifier (or others) to satisfy some notion of balance or fair
treatment. Indeed, there is a considerable amount of research devoted to achieving various defini-
tions of fairness in practice. This is a highly non-trivial problem, in fact; early näıve approaches,
such as just removing protected attributes from the feature set, fail due to redundant encodings
for such features in the data (as discussed in [5]).

This question was more recently addressed in the work of Hardt et al. [6], who examine various
methods by which a potentially unfair classifier can be post-processed into a fair binary classifier.
They formalized the notion of a C-derived classifier : namely a classifier C′ obtained from C by first
running C, and then “perturbing” the output of C. More precisely, such a C derived classifier may
be specified by a “perturbation matrix” P where entry Pi,j indicates with what probability output
i gets perturbed into output j. Hardt et al. showed that for classifiers C over a binary outcome
spaces, we can construct non-trivial C-derived classifiers that satisfy their notion of equalized odds
(in our terminology “perfect” fair treatment). Subsequent work [13] using this method showed
that, for a binary version of the COMPAS classifier (which only attempts to predict recidivism
and not output a risk score), it can produce a perfectly fair classifier with only an overall loss in
accuracy of roughly 1.5%. Their method, however, requires “perfect” knowledge of the distribution
D as well as of the classifier C in order to demonstrate both fairness and optimality; additionally,
as mentioned, it only applies to binary outcomes (and as such, does not directly apply to a risk
assessment setting such as COMPAS).2

Thus, the literature leaves open the questions of (1) whether we can efficiently find a C-derived
classifier (without having perfect knowledge of D and C), and (2) whether sanitization can be done
for non-binary outputs.

Towards addressing this problem, we first formalize the notion of black-box sanitization: how to
efficiently find a C-derived classifier given just black-box access to a “sampling oracle” which sam-
ples random individuals σ ← D and outputs (O(σ), f(σ), C(O(σ)), g(σ)) (that is, the individual’s
observable features, prior classification C, actual class, and group, which is essentially the data used
by the ProPublica authors to investigate the fairness of COMPAS).

Definition 1 (Informally stated.). We call an algorithm B a black-box sanitizer if, given a
distribution D and a sequence of prior classifiers {Cn} such that Cn takes as input n-bit descriptions
On(σ) of individuals’ features3, then, for each n, it:

1Remarking once again on the earlier definition of Kleinberg et al., we note that while it is equivalent to our
definition for the case of binary outcomes, it is weaker for non-binary outcomes (as in the case of the COMPAS
classifier). Furthermore, as with most expectation-based definitions, it is not closed under post-processing.

2Hardt et al [6] also presented a method for sanitizing a classifier outputting a risk-score (just as COMPAS), but
the final, derived, classifier again would only output a single bit.

3Here we consider a sequence of classifiers for the sake of defining “computational efficiency” of a sanitizer; in
particular, we would like the running time of our sanitizer to be polynomial in the feature length n.
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• runs in time polynomial in n, and

• outputs some Cn-derived classifier C′n which, with overwhelming probability 1−ν(n) for some
ν(·) negligible4 in n, satisfies approximate fair treatment (with some small error ε(n)) for
individuals σ ← D,

while only making “black-box” queries to the prior classifier. (That is, B cannot use any information
about D or Cn aside from querying random samples (On(σ′), f(σ′), Cn(On(σ′)), g(σ′)) for σ′ ← D.)

Our key result is the construction of an efficient (i.e., polynomial-time in n) black-box sanitizer
B that works for any distribution D and prior classifier sequence {Cn} over a fixed outcome space,
and produces a classifier which not only satisfies approximate fair treatment but also can be shown
to be near-optimal in terms of prediction accuracy (though the same also holds for a more general
class of linear loss functions, which are formalized in the main statement of the result):

Theorem 1 (Informally stated). For any fixed outcome space Ω, group space G, and inverse
polynomial ε(n), there exists a black-box sanitizer B with fair treatment error ε(n) such that, with
probability at least 1− ν(n) over B’s queries for some inverse-exponential ν(·), the accuracy loss of
the classifier C′ output by B (compared to the optimal C-derived classifier over the same D, f , and
C) is bounded by |Ω|(ε(n) + ε(n)4|G|).

We note that while Hardt et al. demonstrate a classifier satisfying errorless fair treatment, our
derived classifier only satisfies ε-approximate fair treatment for some small ε, but this is unavoidable
as we do not assume knowledge of the distribution D. In contrast, we show how this classifier can
be efficiently found without this knowledge of D; additionally, our method applies to classifiers
over any finite outcome space, as opposed to just binary outcomes.

We also experimentally evaluate the accuracy of our post-processing technique using a data
set from the COMPAS recidivism analysis tool [1]. We investigate the fair treatment rates of
the original data set and subsequently use the above technique to create classifiers satisfying fair
treatment with varying errors while optimizing three different loss functions, amounting to overall
accuracy (when considering a binary version of the classifier where scores 0-5 get mapped to a 0,
and 6-10 get mapped to 1) and two notions of the similarity of the derived classification to the
original classification. We find that our method is able to produce derived classifiers satisfying fair
treatment with a relatively small amount of loss (with respect to this experimental data).

1.1 Proof Outline for Theorem 1

We show our sanitization theorem in three steps. First, we consider an arbitrary C-derived classifier,
and we demonstrate constraints for a linear program that can be used to efficiently find the optimal
such classifier C′ satisfying fair treatment. We note that these constraints are precisely a generalized
version of those which Hardt et al. [6] demonstrate for binary classifiers C (though they also consider
C with larger outcome spaces); we, however, also leverage our approximate definition to create
constraints for approximate fair treatment. We further note that solving this linear program will
require time polynomial in the number of possible outcomes |O|.

Of course, our linear constraints, as well as the loss function we wish to optimize, may in general
depend on features of D and C that we may in this model only approximate with black-box queries.

4That is, asymptotically smaller than any inverse polynomial 1/p(n).
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So, towards approximating this optimal classifier in a black-box setting, we show that it suffices
to use experimental probabilities derived from these queries rather than actual probabilities to
build the linear program, since over sufficiently many queries, and as long as real probabilities are
sufficiently large, it is overwhelmingly likely by a simple Chernoff bound that the experimental
probabilities will be very close to accurate. To deal with the case when real probabilities may be
quite small (and prone to large multiplicative error in estimation due to variance in samples), we
additionally add a very small amount of random noise to the classifier in order to smooth out the
multiplicative distance between real and experimental probabilities, effectively by increasing the
minimum possible probability of events (noting that the noise is optional when the probabilities
we wish to calculate experimentally are reasonably large). By solving this approximate version
of the linear program, we may obtain a near-optimal derived classifier satisfying approximate fair
treatment with respect to a given loss function.

However, the loss function we wish to minimize in the linear program is also potentially de-
pendent on certain probabilities of events over C and D which require non-black-box knowledge
to derive exactly; to overcome this, we show that the constructed sanitizer can in fact estimate
these accurately using black-box queries by the same argument as that for the linear program’s
coefficients, and so, given enough samples, an approximate loss function derived from experimental
probabilities is overwhelmingly likely to be close to the real loss function. Of course, while the
approximation of the loss function is close, it is unclear as to whether the optimum of the approx-
imate loss function is necessarily close to optimal over the real loss function; we show, through
leveraging properties of the loss function and the space over which it is defined, that in fact this is
the case for accuracy (and other loss functions, including natural classes of loss functions that are
linear in the probabilities Pr [σ ← D : f(σ) = i ∧ C(O(σ)) = j]), which completes our argument of
near-optimality.

2 Preliminaries and Definitions

2.1 Notation

Conditional probabilities. Given some random variable X and some event E, we let Pr[p(X) |
E] denote the probability of a predicate p(X) holding when conditioning the probability space on the
event E. If the probability of E is 0, we slightly abuse notation and simply define Pr[p(X) | E] = 0.

Multiplicative distance. The following definition of multiplicative distance will be useful to us.
We let the multiplicative distance µ(x, y) between two real numbers x, y ≥ 0 be defined as

µ(x, y) =


ln
(

max
(
x
y ,

y
x

))
if x > 0, y > 0

0 if x = y = 0

∞ otherwise

2.2 Classification Contexts

We start by defining classification contexts and classifiers.

Definition 2. A classification context P is denoted by a tuple (D, f, g, O) such that:
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• D is a probability distribution with some finite support ΣP (the set of all possible individuals
to classify).

• f : ΣP → ΨP is a surjective function that maps each individual to their class in a set ΨP .

• g : ΣP → GP is a surjective function that maps each individual to their group in a set GP .

• O : ΣP → {0, 1}∗ × GP is a function that maps each individual σ to their observable
features (O′(σ), g(σ)); note that we by default assume that an individual’s group can be
observed.

We note that f and g are deterministic; this is without loss of generality as we can encode
any probabilistic features that f and g may depend on into σ as “unobservable features” of the
individual.

Given such a classification context P, we let ΨP denote the range of f , and GP denote the
range of g. Whenever the classification context P is clear from context, we drop the subscript;
additionally, whenever the distribution D and group function g are clear from context, we use σ to
denote a random variable that is distributed according to D, and σX to denote the random variable
distributed according to D conditioned on g(σ) = X.

2.3 Classifiers

A classifier C for a classification context P = (D, f, g, O) is simply a (possibly randomized) al-
gorithm that acts on the support of O (the observable description of an individual). We let ΩCP
denote the support of the distribution {C(O(σ))}.

We also must formalize what it means for a classifier to be “derived” from another classifier;
hence, we define the following notion of a classifier C′ that “perturbs” the output of some original
classifier C. Given an individual σ, C′ will run C and then “post-process” the output according only
to the output C(O(σ)) and σ’s group.

Definition 3. [6] Given a classifier C, we say that a classifier C′ is a C-derived classifier if, in
any context P = (D, f, g, O), the outcome C′ is only dependent on C(O(σ)) and σ’s group g(σ).
(Equivalently, C′ is a classifier over the context P ′ = (D, f, g, (C(O(·)), g(·))).)

Formally, we can represent this as a |ΩCP | × |ΩCP | × |GP | vector ~PC′ of the probabilities

P gi,j = Pr
[
C′(C(O(σg)), g) = j|C(O(σg)) = i

]
and let C′ be a classifier that, given an individual σ, runs C on that individual, observes its
outcome i = C(O(σ)) and group g(σ), and assigns that individual the distribution of outcomes
{j with pr. P gi,j}.

3 Defining Fair Treatment

Next, we define the notion of fair treatment for a classifier C, which is an approximate version of the
notion of “equalized odds” from Hardt et al. [6] (which in turn was derived from notions implicit
in the ProPublica study [2]).

6



Definition 4. (Fair treatment, a.k.a. approximate equalized odds [6].) We say that a classifier C
satisfies ε-fair treatment with respect to a context P = (D, f, g, O) if, for any groups X,Y ∈ GP ,
any class c ∈ ΨP , and any outcome o ∈ ΩCP , we have that

µ(Pr[C(O(σX)) = o | f(σX) = c],Pr[C(O(σY )) = o | f(σY ) = c]) ≤ ε

For the case of binary classification tasks and binary classifiers (i.e., when ΨP = ΩCP = {0, 1}),
fair treatment is equivalent to requiring “similar” false positive and false negative rates [8].

3.1 On the Use of Multiplicative Distance

As defined here, fair treatment essentially requires that the max-divergence between the conditional
distributions of outcomes is small between groups. Max-divergence is a distance measure often
found in areas such as differential privacy (see [4]); we stress here, through two arguments following
very similar logic to differential privacy, that using such a multiplicative distance is important
to ensure fairness between groups that may be under-represented in the data, and also that fair
treatment defined using multiplicative distance exhibits desirable properties that other distance
metrics may not.

First, to motivate our statement that multiplicative distances are important for parity between
under-represented groups, consider as an example a classifier used to determine whether to search
people for weapons. Assume such a classifier determined to search 1% of minorities at random,
but only the minorities (and no others). Such a classifier would still have a fair treatment error
of 0.01 if we used standard statistical distance, while the max-divergence would in fact be infinite
(and indeed, such a classification would be blatantly discriminatory).

Our use of max-divergence between distributions for our definitions is reflective of the fact that,
in cases where we have such small probabilities, discrimination should be measured multiplicatively,
rather than additively. In addition, when we may have a large number of possible classes, the use
of max-divergence (in particular, the maximum of the log-probability ratios) means that we always
look at the class with the most disparity to determine how discriminatory a classification is, rather
than potentially amortizing this disparity over a large number of classes.

3.2 Closure under Post-Processing

We also remark that our definition of fair treatment is closed under “post-processing”. If a classifier
C satisfies ε-fair treatment with respect to a context P = (D, f, g, O), then any C-derived classifier
which acts independently of an individual’s group (i.e., whose decision is based only on the outcome
of C) will also satisfy ε-fair treatment with respect to P.

Theorem 2. Let C1 be a classifier satisfying ε-fair treatment with respect to a context P =
(D, f, g, O). Let C2 be any classifier whose output for an individual σ is strictly a (possibly proba-
bilistic) function of C1(O(σ)). Then C2 satisfies ε-fair treatment with respect to P.

Proof. Let C1 be a classifier satisfying ε-fair treatment w.r.t. some context P. Consider some
groups X,Y ∈ GP , some class c ∈ ΨP , and some outcome o ∈ ΩC

′
P ; we need to show that

µ(Pr[C2(C1(O(σX))) = o | f(σX) = c],Pr[C2(C1(O(σY ))) = o | f(σY ) = c]) ≤ ε
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Towards doing this, note that

Pr[C2(C1(O(σX))) = o | f(σX) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o | f(σX) = c, C1(O(σX)) = o1]Pr[C1(O(σX)) = o1 | f(σX) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o]Pr[C1(O(σX)) = o1 | f(σX) = c]

where the last step follows from the fact that C2 depends only on C1. By the same argument applied
to Y , we also have that:

Pr[C2(C1(O(σY ))) = o | f(σY ) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o]Pr[C1(O(σY )) = o1 | f(σY ) = c]

These two probabilities are ε-close since, by fair treatment, Pr[C1(O(σX)) = o1 | f(σX) = c] and
Pr[C1(O(σY )) = o1 | f(σY ) = c] are ε-close, and furthermore multiplicative distance is preserved
under linear operations5. This proves the theorem.

We also remark that, in general, earlier “expectation-based” definitions of fair treatment are
not preserved under post-processing.

4 Black-Box Sanitization

Next, we provide a novel definition of the type of sanitizer we shall construct in our main theorem.
For the purposes of defining a “computationally efficient” sanitizer, let us define a notion of an

“ensemble” of classification contexts, wherein we assume a parameter n (similar to the idea of a
security parameter in cryptography) so that each individual’s observable features can be represented
in n bits. In particular, this means that, for some setting of n there may be up to 2n distinct
descriptions of individuals in a distribution D, and so a computationally efficient black-box classifier
which runs in polynomial time with respect to n could not, for instance, query every possible feature
description.

Definition 5. Let a classification context ensemble Π be given by a sequence of classification
contexts {Pn}n∈N = {(D, f, g, On)}n∈N (note that (D, f, g) remains the same as n varies), such
that, whenever 2n ≥ |GPn | (i.e., n is sufficiently large to describe g(σ)), On maps the space ΣPn of
individuals to {0, 1}n, the space of n-bit descriptions.

Notably, the contexts are effectively describing the same distribution of individuals, but using
different feature lengths for each context in the ensemble. Also, because D, f , and g are the same
throughout, this implies that the space of individuals ΣPn and the class and group spaces ΨPn and
GPn are likewise the same for every n.

5That is, if µ(a, b) ≤ ε and µ(a′, b′) ≤ ε then µ(αa+ βa′, αb+ βb′) ≤ ε.
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In our proofs, we will also consider deriving our classifier from a sequence of prior classifiers
χ = {Cn}n∈N, where the classifier Ci is used to classify individuals in the context Pi (that is,
individuals having feature length i).

Lastly, we wish to represent the fact that a sanitizer may, given a prior classifier sequence χ over
a distribution ensemble Π, wish to make black-box queries to a distribution of labeled “training
data” representing individuals’ observable features, classes, groups, and prior classifications. We
shall denote this distribution for a specific parameter n by

τχ,Π(1n) , {σ ← D : (On(σ), f(σ), Cn(On(σ)), g(σ))}

Notationally, let Bτχ,Π(1n)6 denote that a sanitizer B may make black-box queries to the distri-
bution τχ,Π(1n) for some parameter n. Finally, we are able to formalize the notion of a “black-box
sanitizer” given the above:

Definition 6. We say that an algorithm B(·) is an ε(·)-black-box sanitizer if it is:

• Efficient: there exists a polynomial p(·, ·) such that, for any m ∈ N, and for any context
ensemble Π = {Pn}n∈N and sequence χ = {Cn}n∈N of classifiers for which |ΨPn | ≤ m,
|GPn | ≤ m, and |ΩCnPn | ≤ m (i.e., the class, group, and output spaces have size bounded by
m), Bτχ,Π(1n) runs in time at most p(m,n) for all n ∈ N.

• Fair: for any context ensemble Π = {Pn}n∈N and any sequence χ = {Cn}n∈N of classifiers,
there exists negligible ν(·)7 such that, for all n ∈ N, with probability at least (1 − ν(n))
over the samples it queries from τχ,Π(1n), Bτχ,Π(1n) outputs a Cn-derived classifier C′8 which
satisfies ε(n)-fair treatment with respect to Pn.

4.1 Loss Functions

Lastly, we need to define “optimality” for derived classifiers in this context. In particular, we
assume some loss function `(·) bounded in [0, 1] which may either be fixed or based on D, f , and
C (in which case we write `D,f,C(·) for clarity). Intuitively, `(C′) represents the “loss” in utility
incurred by classifying an individual σ with outcome C′(O(σ)) when their actual class is f(σ). As
a concrete example, if we consider classifiers which attempt to classify each individual according to
their correct class f(σ) ∈ Ψ, one might consider the overall inaccuracy as a loss function, which is
given by:

`D,f,C(C′) = 1− Pr
[
C′(O(σ)) = f(σ)

]
We can define the error of a derived classifier to be its loss compared to the optimal perfectly

fair derived classifier, as follows:

Definition 7. For some context P = (D, f, g, O) and prior classifier C, given some loss function
`D,f,C that maps any classifier to its loss in [0, 1], letting S be the set of all C-derived classifiers
satisfying perfect (ε = 0) fair treatment, then we define the error of some C-derived classifier C′
with respect to `D,f,C to be

∆`,D,f,C(C′) = maxC∗∈S(`D,f,C(C′)− `D,f,C(C∗))
6The input of 1n, or a string of n ones, is provided simply as a cryptographic convention, so that we can assert that

the running time of B is polynomial in its input length. When implicit or clear from context, we shall for notational
simplicity omit this input.

7That is, ν(n) < 1/p(n) for every polynomial p(·) and sufficiently large n.
8That is, B outputs the probabilities ~PC′ corresponding to the derived classifier C′.
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We note that, because we compare a classifier (which may be only approximately fair) to the
optimal perfectly fair classifier, certain particularly good classifiers may in fact have a negative loss.
We could, when considering ε-approximately fair classifiers, generalize this notion to consider the
loss over all f(ε)-fair classifiers for some f(ε) < ε and derive a similar optimality result to what
we prove here, but for simplicity and consistency over different parameters ε we consider the case
when f(ε) = 0.

Linear loss functions. Furthermore, with respect to derived classifiers, we consider the class of
loss functions `D,f,C which are linear in the probabilities P gi,j constituting the derived classifier—that
is:

Definition 8. We say that a loss function `D,f,C(·) is a linear loss function for a context P =

(D, f, g, O) and prior classifier C if it can be represented as some |ΩCP | × |ΩCP | × |GP | vector ~̀D,f,C
so that the loss of a derived classifier C′ is given as the inner product

〈~̀D,f,C , ~PC′〉 =
∑

i,j∈ΩCP ,g∈GP

(~̀D,f,C)
g
i,jP

g
i,j

of this vector with the probabilities constituting the derived classifier C′.

We can define error slightly more specifically for linear loss functions using the vector form:

∆~̀,D,f,C(C
′) = maxC∗∈S(〈~̀D,f,C , ~PC′〉 − 〈~̀D,f,C , ~PC∗〉)

We will focus on the specific subclass of linear loss functions whose coefficients (the coefficients
of P gi,j) can either be constant or up to dth-degree polynomials in probabilities Pr [g(σ) = γ] and
Pr [f(σg) = i ∧ C(O(σg)) = j], which can be formalized as follows:

Definition 9. We shall define a linear loss function with t-term coefficients of degree d as
one that can be represented as

`D,f,C(C′) =
∑
i,j,g

qgi,j(ρ)P gi,j

or equivalently
(~̀D,f,C)

g
i,j = qgi,j(ρ)

where ρ denotes the set of all variables Pr [g(σ) = γ] and Pr [f(σg) = x ∧ C(O(σg)) = y] (for any
γ, x, y), P gi,j is the vector representation of C′, and each qgi,j(·) is a dth-degree polynomial in the
variables of ρ which contains at most t monomials which themselves are bounded in [0, 1] whenever
the variables in ρ are likewise bounded.

We note that overall inaccuracy as described above is in fact a linear loss function with (|ΩCP |−1)-
term coefficients of degree 2, as we shall shortly demonstrate; furthermore, a wide variety of other
useful loss functions are also linear with degree-2 coefficients. Returning to the example of COMPAS
from the introduction, for instance, we see that the space of outcomes is a “risk score” from 1 to
10, while the space of classes is binary (either recidivating or not), so rather than overall accuracy
(which as noted above requires the spaces to be identical) we will need another notion of loss.
We exhibit three useful loss functions for this scenario in Section 6, all of which will have degree-2
coefficients, which we will use to evaluate the quality of the fair classifiers we derive from COMPAS.
Returning to investigating the notion of overall inaccuracy:
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Claim 1. For a context P and for any classifier with ΩCP = ΨP = O, the overall inaccuracy loss
function

`D,f,C(C′) = 1− Pr
[
C′(O(σ)) = f(σ)

]
is a linear loss function with (|ΩCP | − 1)-term coefficients of degree 2.

Proof. The inaccuracy of a classifier, conditioning on a group g, can be expressed as a linear function
in P gi,j if D, f, C are fixed:

Pr
[
f(σg) 6= C′(O(σg))

]
= 1− Pr

[
f(σg) = C′(O(σg))

]
= 1−

∑
j∈O

Pr
[
f(σg) = j ∧ C′(O(σg)) = j

]
= 1−

∑
i,j∈O

Pr
[
f(σg) = j ∧ C(O(σg)) = i ∧ C′(O(σg)) = j

]
= 1−

∑
i,j∈O

Pr [f(σg) = j ∧ C(O(σg)) = i] Pr
[
C′(O(σg)) = j|f(σg) = j ∧ C(O(σg)) = i

]
Recalling that the output of C′ is based only on an individual’s group and the output of C:

= 1−
∑
i,j∈O

Pr [f(σg) = j ∧ C(O(σg)) = i] Pr
[
C′(O(σg)) = j|C(O(σg)) = i

]
= 1−

∑
i,j∈O

Pr [f(σg) = j ∧ C(O(σg)) = i]P gi,j

This can be expanded into the overall inaccuracy of C′ if we sum over groups, i.e.,

1−
∑

i,j∈O;γ∈GP

Pr [g(σ) = γ] Pr [f(σγ) = j ∧ C(O(σγ)) = i]P γi,j

or, equivalently, ∑
i,j∈O;γ∈GP

Pr [g(σ) = γ]
∑
k 6=j

Pr [f(σγ) = k ∧ C(O(σγ)) = i]P γi,j

This suggests that we can, as previously described, write this loss function as a vector ~̀D,f,C over
the space of probabilities P γi,j , in particular such that

(~̀D,f,C)
γ
i,j = Pr [g(σ) = γ]

∑
k 6=j

Pr [f(σγ) = k ∧ C(O(σγ)) = i]

Notably, each of these coefficients has O−1 = |ΩCP |−1 monomials bounded in [0, 1] which are degree
2 in the probabilities of the form Pr [g(σ) = γ] and Pr [f(σg) = x ∧ C(O(σg)) = y], as desired.
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5 Theorem: Achieving Fair Treatment by Post-Processing

We now show that it is possible to achieve fair treatment, even in non-binary classification scenarios,
by post-processing starting from a prior classification that may be unfair. We note that, though
our theorems only state existence, we provide our concrete construction of the black-box sanitizer
in the body of the proof. Focusing first on the specific example above where we use inaccuracy as
a loss function, we show the following positive result:

Theorem 3. For any fixed outcome space Ω, any polynomial q(n), and any ε(n) ∈ [ 1
q(n) , 1), there

exists an ε(·)-black-box sanitizer B such that, given any context ensemble Π = {Pn}n∈N (such that
|GPn | = m) and any classifier sequence χ such that ΨPn = ΩCnPn = Ω, there exists negligible ν(·)
such that, with probability 1−ν(n) over the samples it queries from τχ,Π(1n), B outputs a classifier
C′′ which both satisfies ε(n)-fair treatment and has error

∆`,D,f,C(C′′) ≤ |Ω|(ε(n) +mε(n)4)

with respect to the overall inaccuracy loss function

`D,f,C(C′′) = 1− Pr
[
C′′(O(σ)) = f(σ)

]

This is in fact implied directly by the following more general result, which we shall prove in its
stead:

Theorem 4. For any fixed outcome space Ω, any constants t, d ∈ N, any linear loss function `
with t-term coefficients of degree d, any polynomial q(n), and any ε(n) ∈ [ 1

q(n) , 1), there exists an

ε(·)-black-box sanitizer B such that, given any context ensemble Π = {Pn}n∈N, and any classifier
sequence χ, there exists negligible ν(·) such that, with probability 1 − ν(n) over the samples it
queries from τχ,Π(1n), B outputs a classifier C′′ which both satisfies ε(n)-fair treatment and has
error

∆`,D,f,C(C′′) ≤ |ΩCnPn |(ε(n) + |GPn |ε(n)4)

In the example above where we consider overall inaccuracy, we have (by Claim 1) d = 2 and
t = |Ω| − 1, directly implying Theorem 3. Next, we outline the proof of Theorem 4:

Achieving fair treatment with distributional knowledge. We begin with the simplifying
assumption that the sanitizer we construct does have perfect knowledge of the context Π and
classifier χ = {Cn}n∈N, and we show (Claim 2) that for each n we can use the probabilities of
events in those distributions to construct a set of linear constraints for fair treatment over the
probabilities P gi,j = Pr [C′(O(σg)) = j|Cn(O(σg)) = i]. Then, given a loss function which is also
linear in P gi,j , we can construct a linear program (Corollary 1) to efficiently minimize loss subject
to the constraints for fair treatment. Since, by construction, any Cn-derived C′(σ) which satisfies
fair treatment will lie within the region determined by our constraints, we have shown that it is
possible to efficiently determine the optimal fair Cn-derived classifier (with respect to any linear
loss function) in a non-black-box setting.

12



Black-box approximation. Next, we work towards discarding the assumption of non-black-
box knowledge of Π and χ. In particular, we use a Chernoff-type bound to show (Lemma 3) that,
given a sufficiently large (yet still polynomial in n) number of labeled and classified samples from
τχ,Π(1n), with very high probability (i.e., probability 1− ν(n)) all of the experimental probabilities
relevant to our linear program will be close enough to their actual counterparts so that any solution
to the linear program formulated from the experimental probabilities will also satisfy approximate
fair treatment with respect to the actual probabilities. However, we note that the Chernoff bound
will only apply when the real probabilities of the events in question are sufficiently large; if we
are not guaranteed that this is the case, we additionally add a very small amount of noise to the
classifier C′ to deal with the possibility that events with very small real probability are measured to
have a wildly different experimental probability due to sampling variance. This random noise will
ensure that these events are accounted for when approximating the linear program while adding
only a minimal error to the approximation. So, combined with the previous step, this suggests the
approach that we will use to construct the final sanitizer B; specifically, we can do as follows:

• Use a sufficiently large (yet polynomial in n) number of samples from τχ,Π(1n) to estimate
the parameters of the linear constraints from the previous step, in particular using a fairness
error significantly smaller than ε(n) in order to account for variance in samples and random
noise that will be added, yet one large enough to not rule out optimal classifiers that may not
be perfectly fair. Also use the samples to estimate any distributionally dependent parameters
of the loss function.

• Use standard linear programming techniques to optimize the derived loss function over the
derived constraint region in polynomial time, and take the optimal solution as the “transfor-
mation parameters” of a derived classifier C′ (i.e., the probabilities P gi,j).

• Output the (slightly noisy) classifier C′′ which, except with a small probability, applies the
transformation given by the above solution to the output of the prior classifier; the rest of
the time, it returns a random outcome.

If parameterized correctly, this classifier will still satisfy ε-approximate fairness whenever all of
the above Chernoff bounds hold; furthermore, as we subsequently show, the output will also not
incur much loss due to estimating parameters and adding noise when these bounds hold.

Showing near-optimality. In particular, we must account both for the noise added to the
solution C′ to the linear program and for the fact that the loss function over which B optimizes may
be imprecise, as we have remarked that loss functions such as accuracy are in general dependent on
features of the context or the classifier (which our sanitizer must estimate using samples). However,
once again, we show (Claim 5) that this can be overcome by using another Chernoff-type bound
(Lemma 4) to show that, with high probability, the experimentally derived coefficients of the loss
function are very close to the corresponding coefficients of the actual loss function. Then we
demonstrate that a slightly noisy variant of the optimal Cn-derived classifier is always derivable by
B when the bounds hold, and furthermore use linearity to show that, in that case, the actual loss of
the output C′′ must not differ by much from that of the optimal Cn-derived classifier (in particular,
the possible degree of difference depends on the degree and number of terms of the loss function’s
coefficients and the number of variables, i.e., the number of groups and outcomes possible), even
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when the intermediate classifier C′ itself might differ from this classifier due to the optimum over
the approximate loss function being different from the optimum over the actual loss function.

Notation. For brevity and notational simplicity, in the body of the proof we will abbreviate the
probability Pr [E(σg)] (i.e., the probability of some event E holding for σ drawn from group g) as
Prg [E(σ)], and the probability Pr [g(σ) = γ] as Pr [γ].

Furthermore, we abbreviate the event f(σ) = i as fi, and similarly for any classifier C abbreviate
C(O(σ)) = i as Ci.

5.1 Step 1: Achieving Fair Treatment

For our first step, we prove the following result, showing that an optimal derived classifier can
always be found efficiently given “perfect” knowledge of a context and a prior classifier:

Claim 2. Let C be an arbitrary classifier over context P = (D, f, g, O). Then there exists a
set of polynomially many (in |ΨP |, |GP |, and |ΩCP |) satisfiable linear constraints in the variables
P gi,j = Prg [C′(σ) = j|C(σ) = i] that define the set of C-derived classifiers C′ which satisfy ε-fair
treatment with respect to P.

Corollary 1. Let C be an arbitrary classifier over context P = (D, f, g, O), and let `D,f,C be a loss
function which is linear over the probabilities P gi,j as defined above. Then the C-derived C′ which
minimizes `D,f,C(·) while satisfying ε-fair treatment with respect to P can be found efficiently (i.e.,
in time polynomial in |ΨP |, |GP |, and |ΩCP |).9

The corollary will follow immediately from Claim 2 by the efficiency of solving linear programs
(that is, the well-known fact that a linear program with a polynomial number of variables and
constraints may be solved in polynomial time). We now prove Claim 2:

Proof. Assume we have a discrete classifier C that classifies individuals from a context P =
(D, f, g, O), and we wish to produce C′ that satisfies ε-fair treatment with respect to P. Con-
sider the C-derived classifier defined by the set of |GP ||ΩCP |2 variables

P gi,j = Prg
[
C′j |Ci

]
for i, j ∈ ΩCP and g ∈ GP .

Next, we directly translate the definition of fair treatment into a set of constraints, which
represents the space of all possible derived classifiers satisfying ε-fair treatment:

∀i, j ∈ ΩCP ,∀g ∈ GP : P gi,j ∈ [0, 1]

∀i ∈ ΩCP , ∀g ∈ GP :
∑
j∈ΩCP

P gi,j = 1

∀j ∈ ΩCP ,∀k ∈ ΨP , ∀X,Y ∈ GP : PrX
[
C′j |fk

]
≤ eεPrY

[
C′j |fk

]
9If `D,f,C(·) is not linear, it is of course findable, but not necessarily efficiently, as we no longer have a linear

program.
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Notice, however, that:

Prg
[
C′j |fk

]
=

1

Prg [fk]

(
Prg

[
fk ∧ C′j

])
=

1

Prg [fk]

∑
i∈ΩCP

Prg
[
fk ∧ C′j ∧ Ci

]
As observed earlier (see the proof of Claim 1), because we assign outcomes in C′ based only on C
and g(σ), it must be the case that Prg

[
C′j |Ci

]
= Prg

[
C′j |Ci ∧ fk

]
, or, expanding using conditional

probability,

Prg

[
C′j ∧ Ci

]
Prg [Ci]

=
Prg

[
fk ∧ C′j ∧ Ci

]
Prg [fk ∧ Ci]

which implies

Prg
[
fk ∧ C′j ∧ Ci

]
=

Prg [fk ∧ Ci] Prg

[
C′j ∧ Ci

]
Prg [Ci]

= Prg [fk ∧ Ci] Prg
[
C′j |Ci

]
= Prg [fk ∧ Ci]P gi,j

So our conditions of the form PrX

[
C′j |fk

]
≤ eεPrY

[
C′j |fk

]
can be rewritten (after substituting and

multiplying through) as

PrY [fk]

∑
i∈ΩCP

PrX [fk ∧ Ci]PXi,j

 ≤ eεPrX [fk]

∑
i∈ΩCP

PrY [fk ∧ Ci]P Yi,j


We can also reformat the second set of conditions into inequality constraints by selecting j∗ ∈

ΩCP , replacing each P gi,j∗ with 1 −
∑

j∈ΩCP\j∗
P gi,j , and requiring

∑
j∈ΩCP\j∗

P gi,j ≤ 1. Then our final

set of constraints becomes:

∀i ∈ ΩCP , ∀j ∈ ΩCP \ j∗,∀g ∈ GP : P gi,j ≥ 0, P gi,j ≤ 1

∀i ∈ ΩCP , ∀g ∈ GP :
∑

j∈ΩCP\j
∗

P gi,j ≤ 1

∀j ∈ ΩCP \ j∗, ∀k ∈ ΨP , ∀X,Y ∈ GP :

PrY [fk]

 ∑
i∈ΩCP

PrX [fk ∧ Ci]PXi,j

 ≤ eεPrX [fk]

 ∑
i∈ΩCP

PrY [fk ∧ Ci]PYi,j


∀k ∈ ΨP , ∀X,Y ∈ GP :

PrY [fk]

 ∑
i∈ΩCP

PrX [fk ∧ Ci]

1−
∑

j∈ΩCP\j
∗

PXi,j

 ≤ eεPrX [fk]

 ∑
i∈ΩCP

PrY [fk ∧ Ci]

1−
∑

j∈ΩCP\j
∗

PYi,j


which is a system of 2|GP ||ΩCP |2 + |GP |2|ΩCP ||ΨP | equations in |GP ||ΩCP |(|ΩCP | − 1) variables.

Furthermore, we know that this system necessarily has a solution on its domain, since taking
P gi,j = 1/|ΩCP | for each i, j, and g corresponds to a classifier C′ where all individuals are offered a
uniform distribution over outcomes; this classifier trivially satisfies fair treatment (and indeed, one
can easily verify that it satisfies the above conditions for any C and P).

Thus, finding assignments for Pi,j in order to construct a classifier C′ satisfying fair treatment
with respect to C becomes a linear optimization problem—that is, to find an assignment that
satisfies the sets of conditions above while minimizing some linear loss function.
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5.2 Step 2: Approximate Fairness From Experimental Probabilities

Of course, we have only established so far that C′ constructed in such a manner satisfies fair
treatment if we already know the exact probabilities Prg [fk] and Prg [fk ∧ Ci] for each group g.
This of course requires non-black-box knowledge of P and C; however, we will now show by a
Chernoff bound that, assuming B is given experimental probabilities Prg [fk] and Prg [fk ∧ Ci] from
a sufficiently large “training set” of individuals randomly drawn from the distribution τχ,Π(1n),
C′ constructed according to the above linear program, and with a small amount of random noise
added to prevent interference due to experimental variance in observing extremely rare events,
will still satisfy ε-approximate fair treatment with overwhelming probability. Specifically, it can be
proven that the probability of C′ not satisfying approximate fair treatment is extremely small given
a sufficiently large number of random samples (i.e., a number inversely polynomial in the desired
fair treatment error ε).

To formalize what we mean by adding “a small amount of random noise”, given some derived
classifier C′ (which we recall can be expressed as an |ΩCP | × |ΩCP | perturbation matrix), and letting
(1)m×n be an m× n matrix of all ones, we shall let

Qr(C′) ,
r

|ΩCP |
(1)|ΩCP |×|Ω

C
P |

+ (1− r)C′

be the derived classifier that with probability r outputs a random outcome and otherwise outputs
an outcome according to the classifier C′. (Hence, Qr(C′)(σ) is identical to C′(σ) with probability
1− r.)

We will herein make use of the following well-known bound (for ease of notation, we denote
exp(x) = ex):

Lemma 1. (Hoeffding Bound.) Let X1, . . . , XN be independent binary random variables (i.e.,
Xi ∈ {0, 1}). Let m be the expected value of their average and X∗ their actual average. Then, for
any δ ∈ (0, 1):

Pr [|X∗ −m| ≥ δ] ≤ 2 exp
(
−2δ2N

)
In particular, when δ and m are fixed, this probability is inversely exponential (i.e., negligible)

in the number of random variables N . To take advantage of this, consider our scenario where we
have some classifier C trained using some number of individuals drawn (independently) from the
distribution from the distribution τχ,Π(1n), and we wish to measure the probability of some event
E1 occurring conditioned on a subgroup g. Notationally, we will henceforth denote by Ex[E] the
experimental probability of an event E over a set of random samples—i.e., letting S be the set of
samples and 1E(s) the indicator variable which is 1 if E is true for a sample s and 0 if not:

1

|S|
∑
s∈S

1E(s)

We will denote by Exg[E] the experimental probability of E conditioned on a group g, or Ex[E ∧
g]/Ex[g]. Then we prove the following lemma:

Lemma 2. Given a distribution D, event E, and group g, then, letting Ex denote the experimental
probability as derived from N independent samples from the distribution τχ,Π(1n), for any δ ∈ (0, 1),
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with probability at least 1−4 exp

(
−2
(
δPr[g]

3

)2
N

)
over the samples, the following two conditions

hold:

1. |Exg[E]− Prg [E] | < δ

2. |Ex[g]− Pr [g] | < δ

Specifically, this states that the probability of the experimental and real probabilities diverging
for some fixed event E is inverse-exponential in the size of C’s training set.

Proof. First we prove the following claim:

Claim 3. Given positive real numbers a, b, c, d, ε such that |a− b| < ε and |c− d| < ε, then∣∣∣∣ac − b

d

∣∣∣∣ < (a+ c)ε

c(c− ε)

Proof. The following three facts suffice:∣∣∣∣ac − b

d

∣∣∣∣ =
1

cd
|ad− bc|

1

cd
<

1

c(c− ε)
|ad− bc| < |a(c+ ε)− (a− ε)c| = ε(a+ c)

So, as long as |Ex[g]− Pr [g] | < δ and |Ex[E ∧ g]− Pr [E ∧ g] | < δ, then

|Exg[E]− Prg [E] | =
∣∣∣∣Pr [E ∧ g]

Pr [g]
− Ex[E ∧ g]

Ex[g]

∣∣∣∣ < (Pr [E ∧ g] + Pr [g])δ

Pr [g] (Pr [g]− δ)

which means that, by Lemma 1,

Pr

[
|Exg[E]− Prg [E] | ≥ (Pr [E ∧ g] + Pr [g])δ

Pr [g] (Pr [g]− δ)

]
≤ Pr [|Ex[g]− Pr [g] | ≥ δ] + Pr [|Ex[E ∧ g]− Pr [E ∧ g] | ≥ δ] ≤ 4 exp

(
−2δ2N

)
This follows because, for each of the (unconditioned) probabilities in question, we can use a Cher-
noff bound with N variables X1, . . . , Xn equal to 1 if the respective event occurs for a sampled
individual and 0 otherwise; then X∗ is equal to the experimental probability of the event and m
(its expectation) is by definition equal to the actual probability.

Finally, let

δ′ =
(Pr [E ∧ g] + Pr [g])δ

Pr [g] (Pr [g]− δ)
=

(Prg [E] + 1)δ

Pr [g]− δ
Then

δ′(Pr [g]− δ) = (Prg [E] + 1)δ
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δ′Pr [g] = (Prg [E] + 1 + δ′)δ

δ′Pr [g]

Prg [E] + 1 + δ′
= δ

And so

Pr
[
|Exg[E]− Prg [E] | ≥ δ′

]
≤ 4 exp

(
−2δ2N

)
= 4 exp

(
−2

(
δ′Pr [g]

Prg [E] + 1 + δ′

)2

N

)

≤ 4 exp

(
−2

(
δ′Pr [g]

3

)2

N

)
since δ′ < 1 by assumption and Prg [E] ≤ 1 trivially. Furthermore, when we show that |Exg[E] −
Prg [E] | < δ′, we do so by showing that

|Pr [g]− Ex[g]| ≤ [δ =]
δ′Pr [g]

Prg [E] + 1 + δ′
≤ δ′

which completes the other part of the argument.

Now we can prove our key lemmas using this consequence.

Lemma 3. Given context P = (D, f, g, O) and ε ∈ (0, 1), let C′ be a C-derived classifier satisfying
a modification of the linear constraints in Corollary 1 for (ε2/4)-fair treatment where the coeffi-
cients are determined by the experimental (rather than actual) probabilities of the respective events
given N random samples (O(σ), f(σ), C(σ), g(σ)) from the distribution τχ,Π(1n). Then the classi-
fier Q2ε|ΩCP |/3

(C′) satisfies ε-approximate fair treatment with respect to P except with probability

negligible in N over the selection of samples—in particular, with probability 1 − O(e(−cε4N)) for
some constant c dependent only on D.

Proof. Let c = 2
1442 mingPr [g]2. Notice that c is not dependent on n or, for that matter, on anything

besides the (fixed) distribution D.
First let us consider the classifier C′ before noise is added. Because C′ is derived from C according

to Corollary 1, we have, by the respective constraints for fair treatment for each j ∈ ΩCP , X,Y ∈ GP ,
and k ∈ ΨP :

µ

ExY [fk]

∑
i∈ΩCP

ExX [fk ∧ Ci]PXi,j

 ,ExX [fk]

∑
i∈ΩCP

ExY [fk ∧ Ci]P Yi,j

 ≤ ε2

4

which, since both sides are at most 1 and thus can differ additively by at most 1− e−ε2/4 ≤ ε2/4,
implies: ∣∣∣∣∣∣ExY [fk]

∑
i∈ΩCP

ExX [fk ∧ Ci]PXi,j

− ExX [fk]

∑
i∈ΩCP

ExY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ ≤ ε2

4
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where PXi,j and P Yi,j are derived from solving the constraints. Applying Lemma 2 (1) once for each

k ∈ ΨP to the event fk and group Y (with δ = ε2/48) then gives us that∣∣∣∣∣∣PrY [fk]

∑
i∈ΩCP

ExX [fk ∧ Ci]PXi,j

− ExX [fk]

∑
i∈ΩCP

ExY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ ≤ ε2

4
+
ε2

48

except with probability no greater than

4 exp

(
−2

(
(ε2/48)Pr [Y ]

3

)2

N

)
≤ 4 exp

(
−2

(
ε2(ming Pr [g])

144

)2

N

)

= 4 exp

(
−
(

2ε4(ming Pr [g])2

1442

)
N

)
= 4(exp(−cε4N))

for each choice of k, or, over all of the |ΨP | choices of k, no greater than 4|ΨP |(exp(−cε4N)) by
the union bound. Symmetrically for each event fk and group X:∣∣∣∣∣∣PrY [fk]

∑
i∈ΩCP

ExX [fk ∧ Ci]PXi,j

− PrX [fk]

∑
i∈ΩCP

ExY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ ≤ ε2

4
+
ε2

24

except with the same failure probability. We then do the same for the events fk ∧ Ci (for each of
the |ΨP | choices of k) conditioned on X and Y to obtain that∣∣∣∣∣∣PrY [fk]

∑
i∈ΩCP

PrX [fk ∧ Ci]PXi,j

− PrX [fk]

∑
i∈ΩCP

PrY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ ≤ ε2

4
+
ε2

12
=
ε2

3

except with probability 16(exp(−cε4N)) for each choice of k (or 16|ΨP |(exp(−cε4N)) overall).
By the union bound over all classes k ∈ ΨP and over all (fewer than |GP |2) pairs of groups X
and Y , the total failure probability from applying these bounds to all of the constraints is at
most 16|GP |2|ΨP |(exp(−cε4N)) = O(exp(−cε4N)), which is of course negligible in the number of
samples N . So, with probability at least 1 − O(exp(−cε4N)) over the drawn samples, all of the
above constraints will hold.

This is not quite identical to the statement

µ
(
PrX

[
C′j |fk

]
,PrY

[
C′j |fk

])
≤ ε

(i.e., fair treatment for C′); particularly, if the probability of some outcome is very small, then
a bound on the additive distance between real and experimental probabilities has no impact on
whether the multiplicative distance is bounded. To overcome this issue, we will consider the classifier
Q2|ΩCP |ε/3

(C′) that, as defined above, runs C′ and outputs the result except with probability 2|ΩCP |ε/3,
in which case it will pick an output uniformly at random. This guarantees that the probability of any
outcome occurring (even conditioned on any group) must be at least 2ε/3; hence, except with the
aforementioned failure probability, the multiplicative distance between the real and experimental
probabilities for any such conditional outcome can be at most either

ln

(
2ε/3 + ε2/3

2ε/3

)
= ln (1 + ε/2) ≤ ε
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or

ln

(
2ε/3

2ε/3− ε2/3

)
= ln

(
1

1− ε/2

)
≤ ε

for all ε < 1.

Remark. While it may seem counterintuitive for the classifier output by our sanitizer to output
a uniformly random class with small probability, in fact this “random noise” is only necessary
due to the possibility of arbitrarily small probabilities Prg [fk ∧ Ci] occurring in the distribution D;
specifically, if some such event occurs with small enough probability, it would likely be measured
to have probability 0, potentially causing an unbounded multiplicative fairness error in the derived
classifier. If there instead exists a constant lower bound for these probabilities (or even, once
parameterized, an asymptotic lower bound of ε(n)), then we can directly obtain the result above
without having to add noise to the outcome of the derived classifier, as we do in our experimental
results (Section 6).

Importantly, we can also apply Lemma 3 in reverse, transforming from the exact conditions to
the modified conditions with experimental probabilities, under precisely the same conditions. This
will be useful to demonstrate optimality (i.e., that the optimal fair classifier is derivable by B as it
is overwhelmingly likely to satisfy approximate versions of the constraints) in the following section.

Lemma 4. Given context P = (D, f, g, O), let C′ be a C-derived classifier satisfying the conditions
in Corollary 1 for perfect fair treatment with respect to P. Then, for any ε ∈ (0, 1), the classifier
Qε2|ΩCP |/4

(C′), with probability 1−O(e(−cε8N)) (for some constant c dependent only on D) over N

random samples (O(σ), f(σ), C(σ), g(σ)) from the distribution τχ,Π(1n), satisfies the modification of
the linear constraints in Corollary 1 for (ε2/4)-fair treatment where the coefficients are determined
by the experimental (rather than actual) probabilities of the respective events given the random
samples.

Proof. We proceed very similarly to Lemma 3, except changing the error parameter ε and reversing
Ex[. . .] with Pr [. . .]. Since we know that C′ satisfies perfect fair treatment, we have, this time with
respect to the real probabilities:∣∣∣∣∣∣PrY [fk]

∑
i∈ΩCP

PrX [fk ∧ Ci]PXi,j

− PrX [fk]

∑
i∈ΩCP

PrY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ = 0

Next we apply Lemma 2 (1) with δ = ε4/128 to all events fk and fk ∧ Ci for groups X and Y just
as in Lemma 3, obtaining that∣∣∣∣∣∣ExY [fk]

∑
i∈ΩCP

ExX [fk ∧ Ci]PXi,j

− ExX [fk]

∑
i∈ΩCP

ExY [fk ∧ Ci]P Yi,j

∣∣∣∣∣∣ ≤ 4

(
ε4

128

)
=
ε4

32

except with probability O(e(−cε8N)) over the N samples taken (for some small constant C dependent
only on D). To convert this into multiplicative distance, we use the classifier Qε2|ΩCP |/4

(C′) so that

the probability of any outcome is at least ε2/4. Then, as long as the conditions of Lemma 2 are true,
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the multiplicative distance between the real and experimental probabilities for any such conditional
outcome can be at most either

ln

(
ε2/4 + ε4/32

ε2/4

)
= ln

(
1 + ε2/8

)
≤ ε2/4

or

ln

(
ε2/4

ε2/4− ε4/32

)
= ln

(
1

1− ε2/8

)
≤ ε2/4

for all ε < 1.

5.3 Step 3: Optimality over Derived Classifiers

Now we can construct an ε(·)-black box sanitizer for any inverse polynomial ε(n) using Corollary 1
and Lemma 3. In particular, given some context ensemble Π = {(D, f, g, On)}n∈N and a sequence
of classifiers χ = {Cn}n∈N, if, for any n, we use Corollary 1 on experimental probabilities (given
enough samples from τχ,Π(1n)) to produce a Cn-derived classifier which is fair with respect to those
probabilities, Lemma 3 allows us to assert that a slightly noisy version of the resulting classifier is
still approximately fair, even though we only have black-box access to the training data set τχ,Π(1n)
(whereas notably our original formulation in Corollary 1 requires non-black-box access to determine
the exact probabilities Prg [fk] and Prg [fk ∧ Ci] for the optimization constraints). We propose the
following construction and subsequently prove its correctness as a black-box sanitizer, amounting
to the first part (existence) of the proof of Theorem 4:

Constructing the Black-Box Sanitizer. Consider the following algorithm for Bτχ,Π on input

1n, where we assume some fairness parameter ε(n) ≥ 1
q(n) for polynomial q(·) and some loss function

`D,f,C(·) which is linear in the probabilities P gi,j but may depend on probabilities observed in D, f ,
and C:

• (Estimating constraints by sampling.) Use queries to τχ,Π(1n) to produce (for some ε′ > 0
and polynomial p(n) = Ω(q(n)8+ε′)) N = p(n) samples (On(σ′), f(σ′), Cn(On(σ′)), g(σ′)) for
σ′ ← D, so that the failure probabilities described in both Lemmas 3 and 4 are negligible in

n. (In particular, this failure probability will be at most O(e−cp(n)/q(n)8
) = O(e−cn

ε′
), which

is negligible since c depends only on the fixed distribution D.)10

• (Estimating the loss function.) Furthermore, use the experimental probabilities of the sam-
ples to estimate any distributionally-dependent parameters of the loss function `. Call the
approximate loss function `′(·).

• (Solving the derived constraints.) Use Corollary 1 to produce probabilities P gi,j for a Cn-derived

classifier which minimizes `′(·) with respect to the constraints for (ε(n)2/4)-fair treatment
generated from the experimental probabilities Exg[fk] and Exg[fk ∧ Ci] over the N samples.

• (Adding noise and producing the derived classifier.) Output the Cn-derived classifier C′′ =
Q

2ε(n)|ΩCnPn |/3
(C′) (which with probability 2ε(n)|ΩCnPn |/3 outputs a uniformly random element

10We use ω(q(n)8) samples so that we can later assert that Lemma 4 holds with all-but-negligible probability in
the optimality step. For the current step, only ω(q(n)4) samples are necessary.
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of ΩCnPn , and which otherwise uses the probabilities P gi,j found from the optimization to
classify σ according to Cn(On(σ)) and σ’s group g(σ)—i.e., draws from the distribution
{j with pr. P gCn(σ),j}).

Claim 4. For any ε(n) ≥ 1
q(n) for polynomial q(·), the above construction of B(·) is an ε(·)-black-box

sanitizer.

Proof. By Lemma 3, the classifier C′′ = Q
2ε(n)|ΩCnPn |/3

(C′) output by B satisfies ε(n)-fair treatment

with probability at least 1− ν(n) (where ν(·) is negligible) for any given n.
Furthermore, we note that the algorithm for B is efficient; for any context ensemble Π and

classifier sequence χ such that |GPn | ≤ m, |ΨPn | ≤ m, and |ΩCnPn | ≤ m, it runs in time polynomial
in m and polynomial in n. The former bound comes from the running time of the linear program
in Corollary 1, and the latter bound comes from Lemma 3 and the fact that we make N = p(n)
oracle queries to gather “training data”. Hence B(·) must be an ε(·)-black-box sanitizer.

Notably, the running time of this algorithm is proportional to 1
ε(n)8 , which is natural in that,

to derive a more accurate approximation of the real probabilities with training data, more samples
are required. (In fact, as we shall show, decreasing ε and/or respectively increasing the number of
samples will reduce both the fairness and optimality errors.)

Finally, we remark on the loss function `D,f,C(·) and the optimality of our construction. Of

course, the entries of ~̀D,f,C—that is, the probabilities Pr [g] and Prg [f(σ) = k ∧ C(σ) = i]—are in
general unknown to the black-box sanitizer B, and this is why our construction uses its training
samples to also calculate the experimental probabilities needed to approximate the loss function.
Now we will show that using the experimentally derived loss function (naturally) increases the
error bound of C′′, but only slightly (albeit dependent on the degree and number of terms of the
coefficients of P gi,j in `). The following claim essentially states that, as the optimum of a linear loss
function changes at most minimally if the coefficients change minimally, the loss of the classifier
output by B over the predicted loss function will not be much worse than the loss over the correct
loss function. This fact, combined with the fact that (a slightly noisy version of) the optimal
perfectly fair classifier can always be derived by B if it knows the correct loss function, suffices to
show that the classifier actually derived by B will not be much worse than the optimal fair classifier,
hence proving the final part of Theorem 4.

Claim 5. With probability at least 1 − ν(n) (for negligible ν(·)) over B’s queries, the C′′ output
by Bτχ,Π(1n) constructed above has error

∆`,D,f,C(C′′) ≤ |ΩCnPn |(ε(n) + |GPn |ε(n)4)

with respect to any linear loss function with t-term coefficients of degree d given by `D,f,C(C′′).

Proof. Herein we shall for consistency refer to the loss function optimized by B by deriving from
the experimental probabilities as `′(·), and the “true” loss function as `(·).

Let C∗ be the optimal perfectly fair Cn-derived classifier, let C∗∗ , Q
ε(n)2|ΩCnPn |/4

(C∗) be a noisy

version of C∗, and, as in the construction of B, let C′ be the classifier that optimizes `′ over the
experimentally derived constraints and C′′ = Q

2ε(n)|ΩCnPn |/3
(C′) the noisy version of C′. Towards

bounding the quantity `(C′′) − `(C∗) and thus the error, we bound the difference in loss between
successive pairs of classifiers:
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• Beginning with C′′, the actual output, we notice that the difference in loss between C′ and C′′
must be small because C′′ is by definition identical to C′ except with small probability.

• Next, we can bound the difference in loss between C∗∗ and C′ by noticing that Lemma 4
provides that C∗∗ with high probability satisfies (ε2/4)-fair treatment with respect to the
experimentally derived constraints and can thus be derived by B. So this means that B must
find a classifier which is as good as C∗∗ or better with respect to `′; by analyzing the similarity
between ` and `′ we can also conclude that C∗∗ is not much better than C′ in terms of the
true loss function `.

• Finally, the difference in loss between C∗ and C∗∗ is once again bounded by the fact that C∗∗
is nearly identical to C∗.

Formally, we present the following subclaims:

Subclaim 1. `(C′′)− `(C′) ≤ 2ε(n)|ΩCnPn |/3 with probability 1.

Proof. C′′ is identical to C′ except with probability 2ε(n)|ΩCnPn |/3 (i.e., no probability Pi,j can differ
between the two by more than that amount). As such, since the loss function ` is bounded in [0, 1]
by assumption and linear in the probabilities P gi,j , the subclaim follows by linearity. Formally:

`(Qr(C′)) = `

(
r

|ΩCP |
(1)|ΩCP |×|Ω

C
P |

+ (1− r)C′
)

= r`

(
1

|ΩCP |
(1)|ΩCP |×|Ω

C
P |

)
+ (1− r)`(C′)

and so:

`(Qr(C′))− `(C′) = r`

(
1

|ΩCP |
(1)|ΩCP |×|Ω

C
P |

)
− r`(C′) ≤ r(1− 0) = r

Subclaim 2. `(C′) − `(C∗∗) ≤ |ΩCnPn ||GPn |ε(n)4 with probability at least 1 − ν(n) (for negligible
ν(·)) over B’s queries.

Proof. We show this through three lemmas.
First, it is important to observe how far the experimental loss function `′ might be from the

real function `. Denote by `gi,j the entry of ~̀ corresponding to the coefficient of P gi,j (resp. for ~̀′).
Then:

Lemma 5. With probability 1−ν ′(n) (for negligible ν ′(·)), if ` is a linear loss function with t-term

coefficients of degree d, then for any i, j, g it is true that
∣∣∣`′gi,j − `gi,j∣∣∣ ≤ ε(n)4/2.

Proof. By Lemma 2 for each event fk∧Ci and each group g with δ = ε(n)4/(2dt), we have |Exg[fk∧
Ci] − Prg [fk ∧ Ci] | < ε(n)4/(2dt) and |Pr [g] − Ex[g]| < ε(n)4/(2dt) for any i, k, g except with

probability ν ′(n) = O(e(−cε(n)8p(n))) (which is negligible in n as B takes p(n) = ω(ε(n)−8) samples
and as d and t are parameters of the loss function ` which are independent of n).
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As we consider loss functions whose coefficients are polynomial in the above probabilities, we
can note the following identity to bound the error between the coefficients in ` and `′: if we have
x1, . . . , xn, x

′
1, . . . , x

′
n ∈ [0, 1] and |xi − x′i| ≤ εi for each i, then11:∣∣∣∣∣∏

i

xi −
∏
i

x′i

∣∣∣∣∣ ≤∑
i

εi

So, given some coefficient `gi,j in the loss function which is a polynomial in the respective
probabilities, the respective additive error between the real and experimental value of any degree-d
monomial in that coefficient (which is bounded in [0, 1], i.e., does not contain a constant term
greater than 1) will be at most ε(n)4/(2t); this can be seen by taking n = d in the above identity,
letting xi represent a real probability, x′i the corresponding experimental probability, and noting
that as shown above εi ≤ ε(n)4/(2dt) for each i. In turn, the coefficient itself, or the sum of t of these
monomials, cannot have error greater than ε(n)4/2 (adding the error bounds from each individual
monomial). So, for any variable P gi,j , except with the aforementioned negligible probability:∣∣∣`′gi,j − `gi,j∣∣∣ ≤ ε(n)4/2

as desired.

Next, we compare the value of the experimental loss function `′ between C∗∗ and C′, which is
easily done since B optimizes C′ with respect to `′ over a region that we can show includes C∗∗:

Lemma 6. `′(C′) ≤ `′(C∗∗) with probability at least 1−ν ′′(n) (for negligible ν ′′(·)) over B’s queries.

Proof. By Lemma 4, except with some negligible probability ν ′′(n) (again negligible since B takes
p(n) = ω(ε(n)−8) samples), C∗∗ = Q

ε(n)2|ΩCnPn |/4
(C∗) satisfies ε(n)2/4-fair treatment with respect to

the experimental probabilities derived by B, since C∗ satisfies perfect (errorless) fair treatment with
respect to the actual probabilities. However, recall that the C′ recovered by B can by construction
(Corollary 1) lie anywhere within the set of derived classifiers satisfying ε(n)2/4-fair treatment with
respect to the same derived experimental probabilities. Since B optimizes `′ over that region, we
know that, with all but the above negligible probability:

`′(C′) ≤ `′(C∗∗)

as desired, because, since C∗∗ is always findable by B, B can always find either C∗∗ itself or something
with a smaller value of `′.

11Proof: If x1x2 > x′1x
′
2, then:

|x1x2 − x′1x′2| = x1x2 − x′1x′2 < x1(x′2 + ε2)− (x1 − ε1)x′2 = ε2x1 + ε1x
′
2 ≤ ε1 + ε2

and otherwise:

|x1x2 − x′1x′2| = x′1x
′
2 − x1x2 < (x1 + ε1)x′2 − x1(x′2 − ε2) = ε1x

′
2 + ε2x1 ≤ ε1 + ε2

Applying the same to x1x2 and x3 gives |(x1x2)x3 − (x′1x
′
2)x′3| ≤ (ε1 + ε2) + ε3, and iteratively repeating to include

all i ultimately gives the conclusion.
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Finally, let k , |ΩCnPn | and recall the L1-norm ||~a − ~b||1 =
∑

i(ai − bi) between two vectors.

Henceforth let (PC′)
g
i,j denote the entry of the vector form ~PC′ corresponding to P gi,j for C′, and

respectively for C∗∗. Towards relating `′(C′) − `′(C∗∗) to `(C′) − `(C∗∗) (the quantity we wish to
bound), we show the following:

Lemma 7. ||C′ − C∗∗||1 ≤ 2k|GPn |.

Proof. Consider the |GPn |k(k − 1)-dimensional space defined by the variables P gi,j , in which we

have assumed the loss functions ` and `′ to be linear.12 Consider moving between the points in this
space which represent C∗∗ and C′. Each of the k sets of coordinates (P gi,1, . . . , P

g
i,k−1) must sum to

at most 1, because each set represents a probability distribution; hence, considering that moving
from C∗∗ and C′ may decrease some number of coordinates in each such set by up to a total of 1
and correspondingly add up to a total of 1, the L1-norm between these two points is bounded by:

||C′ − C∗∗||1 =
∑
i,j,g

|(PC′)gi,j − (PC∗∗)
g
i,j | ≤

∑
i,g

|1 + 1| = 2k|GPn |

This completes the argument.

Since ` and `′ are linear, we know that

`′(C′)− `′(C∗∗) = 〈~̀′, ~PC′〉 − 〈~̀′, ~PC∗∗〉 = 〈~̀′, ~PC′ − ~PC∗∗〉 =
∑
i,j,g

`′gi,j((PC′)
g
i,j − (PC∗∗)

g
i,j)

Also, using Lemma 5’s bound on the difference between entries of ` and `′:

`(C′)− `(C∗∗) =
∑
i,j,g

`gi,j((PC′)
g
i,j − (PC∗∗)

g
i,j) ≤

∑
i,j,g

(
`′gi,j +

ε(n)4

2

)
((PC′)

g
i,j − (PC∗∗)

g
i,j)

= `′(C′)− `′(C∗∗) +
ε(n)4

2

∑
i,j,g

((PC′)
g
i,j − (PC∗∗)

g
i,j) ≤ 0 +

ε(n)4

2
||C′ − C∗∗||1

where the final step follows because, by Lemma 6, (except with negligible probability) `′(C′) ≤
`′(C∗∗), or `′(C′)− `′(C∗∗) ≤ 0. So, using Lemma 7’s bound of 2k|GPn | on the L1-norm, we obtain
that

`(C′)− `(C∗∗) ≤ 2k|GPn |(ε(n)4/2) = k|GPn |ε(n)4 = |ΩCnPn ||GPn |ε(n)4

as desired, with all but negligible probability ν(n) , ν ′(n) + ν ′′(n).

Subclaim 3. `(C∗∗)− `(C∗) ≤ ε(n)2|ΩCnPn |/4 with probability 1.

Proof. C∗∗ = Q
ε(n)2|ΩCnPn |/4

(C∗), so this follows by linearity, similarly to Subclaim 1.

So, adding the differences from the above subclaims (and recalling ε(n) ≤ 1), the error of C′′ is
at most:

`(C′′)− `(C∗) = (`(C′′)− `(C′)) + (`(C′)− `(C∗∗)) + (`(C∗∗)− `(C∗))
≤ 2ε(n)|ΩCnPn |/3 + |ΩCnPn ||GPn |ε(n)4 + ε(n)2|ΩCnPn |/4 ≤ |Ω

Cn
Pn |(ε(n) + |GPn |ε(n)4)

with probability at least 1− ν(n) (as given in Subclaim 2) over B’s queries, as desired.

Claims 4 and 5 taken together suffice to prove Theorem 4.

12While there are 2k2 variables in total, notice that P gi,k is fully determined by P gi,1 through P gi,k−1.
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6 Experimental Results

Finally, we investigated the accuracy of our methods for producing derived classifiers using data
collected from the COMPAS recidivism prediction tool [1]. This data was compiled by ProPublica
and used in their analysis of the fairness of the COMPAS algorithm [2]; it contains information
about criminals in Broward County, Florida who were screened using this tool in 2013 and 2014.
Specifically, we use the same subset of this data as the analysis in [2] (and subsequent analysis
in [13]), taking the records of 5,278 individuals filtered according to the following criteria:

• Individuals whose race is either Caucasian or African-American (i.e., the two groups we wish
to compare with respect to fairness).

• Individuals who have clear information as to the risk score assigned and whether they recidi-
vated or not in the following two years.

• Individuals for whom their screening and arrest were separated by at most 30 days (otherwise,
this indicates that they may be unrelated).

• Individuals screened for offenses resulting in jail time (e.g., not traffic violations).

For the COMPAS assessment, an individual’s outcome is denoted by the risk score (1-10)
assigned to them by the algorithm, and their actual class is denoted by whether or not they
recidivated within two years of being assessed. Notably, the fact that the classifier is non-binary
(even if the space of actual classes is binary) lends itself well to the techniques we present here.

6.1 Existing Biases

First, we examined the fairness errors present in the COMPAS analysis data according to our
definitions. Our findings are consistent with those of prior investigations of COMPAS [2,3,11,12],
which suggest that the risk scores are far more consistent with an alternate (yet purportedly
incorrect [6,7]) notion of fairness known as predictive parity—which requires that the distributions
of classes be close between groups conditioned on an outcome—than with fair treatment, which
we recall requires the distributions of outcomes between groups to be close conditioned on any
particular class. (Note that several results [3, 8, 9] exist indicating that predictive parity and fair
treatment are incompatible, and so it is unsurprising that the COMPAS data displays a large error
in fair treatment.) We present here the conditional treatment (Figure 1) and predictivity (Figure 2)
rates for the COMPAS data set, along with our derivations of the errors for the respective fairness
conditions.

We first note that, indeed, there is considerable disparity in the base rates of recidivism between
the two groups; in particular, among those classified, the base rate for Caucasians is 874/2103 ≈
41.56%, while the base rate for African-Americans is 1773/3175 ≈ 55.84%. In particular, this
means, by impossibility results such as that of [9], that predictive parity and fair treatment cannot
be simultaneously achieved, even in approximation.13

13The best known (and likely a tight) theoretical lower bound for the error of either fair treatment or predictive
parity in this particular case—specifically, where every class/outcome combination occurs with non-zero probability—
is half the max-divergence between base rates, or roughly 0.1478. This bound is quite easily proven and was discovered
in a preliminary version of [9].
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Black White

Score R NR R NR

1 93 272 139 466

2 121 225 110 211

3 140 158 88 150

4 171 166 107 136

5 171 152 94 106

6 200 118 96 64

7 222 121 73 40

8 225 76 75 21

9 237 80 56 21

10 193 34 36 14

Total 1773 1402 874 1229

Black White

Score R NR R NR

1 5.25% 19.40% 15.90% 37.92%

2 6.82% 16.05% 12.59% 17.17%

3 7.90% 11.27% 10.07% 12.21%

4 9.64% 11.84% 12.24% 11.07%

5 9.64% 10.84% 10.76% 8.62%

6 11.28% 8.42% 10.98% 5.21%

7 12.52% 8.63% 8.35% 3.25%

8 12.69% 5.42% 8.58% 1.71%

9 13.37% 5.71% 6.41% 1.71%

10 10.89% 2.43% 4.12% 1.14%

Total 100% 100% 100% 100%

Figure 1: Conditional treatment rates for the COMPAS data. These tables represent the distri-
butions of the scores (1-10) of individuals in each race conditioned on their actual class (recidivated
or not), in (left) absolute numbers and (right) probabilities. In this case, the most treatment dis-
parity occurs among non-recidivators given a score of 9, and so the fair treatment error is equal to
ln
(

80
1402/

21
1229

)
≈ 1.2058.

Score 1 2 3 4 5 6 7 8 9 10

B
la

ck

R 25.48% 34.97% 46.98% 50.74% 52.94% 62.89% 64.72% 74.75% 74.76% 85.02%
NR 74.52% 65.03% 53.02% 49.26% 47.06% 37.11% 35.28% 25.25% 25.24% 14.98%

Total 365 346 298 337 323 318 343 301 317 227

W
h

it
e R 22.98% 34.27% 36.97% 44.03% 47.00% 60.00% 64.60% 78.13% 72.73% 72.00%

NR 77.02% 65.73% 63.03% 55.97% 53.00% 40.00% 35.40% 21.88% 27.27% 28.00%
Total 605 321 238 243 200 160 113 96 77 50

Figure 2: Conditional predictivity rates for the COMPAS data. These tables represent the
distributions of the actual classes of individuals conditioned on their risk scores; the numbers
of individuals are identical to those in Figure 1. In this case, the most predictive disparity oc-
curs among non-recidivators given a score of 10, and so the predictive parity error is equal to
ln
(

14
50/

34
227

)
≈ 0.6256. We note, however, that the second-worst predictive disparity occurs for

recidivators with score 3, and has a log-ratio of 0.2395.
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Observing Figure 1, we can see that, as observed by Chouldechova [3] and the ProPublica
analysis [2], there is a considerable amount of disparate treatment between the two races; indeed, the
distributions of individuals’ scores conditioned on recidivism are heavily skewed towards lower scores
for Caucasians than for African-Americans, and the distributions conditioned on non-recidivism are
skewed likewise. The max-divergence between the distributions, or our error for fair treatment, is
indeed quite large (approximately 1.2058), as might be expected given the observation that the
COMPAS algorithm is designed to preserve predictive parity.

However, in that light, the results shown for predictive parity in Figure 2 may at first glance
seem surprising—the error we derive is still relatively large (a max-divergence of roughly 0.6256).
This, however, is mostly an unfortunate consequence of the small size of this data set; as observed
in Section 5.2, the accuracy of experimental probabilities is highly dependent on the probability
of certain classifications occurring for a particular group. In this case, a score of 10 is very rarely
assigned to Caucasians, and so the disparity we see here (between non-recidivators assigned a score
of 10) is likely due to general inaccuracy in the experimental probabilities of the data set resulting
from the rarity of this event. This is substantiated by the fact that most conditional predictivity
rates are far closer between groups—indeed, we remark that the second worst log-ratio is only
0.2395. Hence, while the small data set here exhibits relatively poor predictive parity, it seems
likely that COMPAS, if run on a considerably larger set of individuals, will in general exhibit
reasonably strong predictive parity. (Of course, this alone does not imply that the algorithm is in
any way intuitively fair!)

6.2 Constructing Fair Derived Classifiers

Next, we evaluated the optimum of the linear program we present in Section 5.1 using the experi-
mental probabilities from the COMPAS data set as ‘training data”. In particular, we combined the
constraints for approximate fair treatment from Claim 2 with three different utility functions— one
representing overall accuracy and the other two representing closeness to the original classifier—and
measured the optimal utility among fair derived classifiers as we vary the allowed fair treatment
error ε. We used an ordinary linear program solver to evaluate the optima, and efficiency-wise we
found that computation took a negligible amount of time on a standard laptop computer. The
results are shown in Figure 3.14

In particular, the three utility functions that we optimize for are as follows:

• First, we examine the overall accuracy of the classifier. We compute this in the same manner
as in Section 5.3 (with the exception that we consider the equivalent problem of maximizing
utility 1− ` rather than minimizing `):∑

i,j∈O;g

Pr [g] Prg [f(σ) = j ∧ C(σ) = i]P gi,j

This varies between 0 and 1 (although we note that it is trivial to achieve 50% accuracy
by simply assigning a random classification). Of course, measuring this is complicated by
the fact that we have ten outcomes and two classes; hence, we instead assign the outcomes
representing “low” risk scores (1-4) to the non-recidivatory class and those representing “high”

14Notably, because the probabilities of events have a constant lower bound, we follow the remark in Section 5.2
and do not add random noise to our derived classifiers.
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ε ∞ 1.2058 1.0 0.5 0.4 0.3 0.2 0.1

Accuracy 65.915% 65.915% 65.762% 65.420% 65.289% 65.182% 65.064% 64.900%

Similarity 100.00% 100.00% 99.598% 96.648% 95.395% 94.030% 92.290% 89.949%

Closeness 0 0 -0.0153 -0.1820 -0.2521 -0.3323 -0.4160 -0.4992

ε 0.05 0.02 0.01 0

Accuracy 64.805% 64.744% 64.573% 64.357%

Similarity 88.500% 87.607% 87.282% 86.951%

Closeness -0.5427 -0.5689 -0.5782 -0.5881

Figure 3: Optimal utilities measured for the three distinct utility functions (described in Section
6.2) when we vary the error for fair treatment allowed by the constraints of our linear-program
formulation.

risk scores (7-10) to the recidivatory class. (For 5 and 6, we weighted membership in each
class equally, at 0.5.)

• We also measured the similarity of the derived classifier to the original classification—that
is, the fraction of individuals expected to be assigned the same score in the derived classifier
as in the original. We compute this as:

Pr
[
C′(σ) = C(σ)

]
=
∑
g;i∈O

Pr [g] Prg [C(σ) = i]P gi,i

This will also lie between 0 and 1, and corresponds exactly to the expected fraction of times
an individual will receive the same score as their COMPAS score.

• Finally, we measure the closeness, which measures the negative of the expected difference
between an individual’s score between the derived and original classifiers.15 In particular, we
compute this as:

−
∑

g;i,j∈O
Pr [g] Prg [C(σ) = i]P gi,j |i− j|

Notably, this is effectively a loss function; it is bounded above by 0, and a larger negative
score means that individuals’ scores differ more from the COMPAS scores in expectation. It
is bounded in [−10, 0] rather than [0, 1], but to prove near-optimality we can simply scale the
result from Claim 5 accordingly (albeit losing the respective constant factor).

From Figure 3, we observe that it is possible to create a perfectly fair derived classifier with
relatively small accuracy loss compared to the original COMPAS data. However, using the notion
of accuracy as our utility function had an interesting yet predictable effect on the derived classifiers
produced by the optimum to the linear program; we found that these classifiers acted as simple
threshold classifiers over the prior risk score. For instance, observing the accuracy-based optimal

15This represents the intuition that, in the prior scenario (where we wish to come up with a derived classifier as
close to the original as possible), individuals’ scores in the derived classifier should be relatively close to their scores
in the prior classifier, even if they do not match. In the prior, the closeness is not considered, only whether the two
scores match.
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derived classifier with ε = 0.2, there were clear thresholds in this derived classifier such that everyone
in certain prior score ranges (1-5 for African-Americans, 1-3 for Caucasians) would receive a low
risk score, everyone in certain other ranges (6-10 and 5-10, respectively) would receive a high risk
score, and one “mixed” threshold (where, of Caucasians with prior score 4, 69% received a low
score and 31% a high score). This is of course reflective of the fact that there are only two classes;
perhaps expectedly, for this measure of utility, our results produce classifiers very similar to the
binary post-processing of Hardt et al. [6], which indeed has been found to exhibit a remarkably
similar (≈ 64.5%) accuracy with respect to the same data [13].

Hence, we consider other measures of utility not based on a binary class space. Indeed, we
note that when considering intuitive fairness it is a desideratum that individuals’ scores in the
derived classifier should be very close to their scores from the original assessment, and equal as
often as possible. (For instance, giving 10% of individuals originally scored as 1 a score of 10 in the
derived classifier would be rather questionable.) This is the basis for our second and third notions
of the utility of a classifier; how close can we make the derived classifier to the prior classifier while
requiring fair treatment?

As Figure 3 shows, we can derive a classifier that will give individuals the same score as COMPAS
roughly 87% of the time while still satisfying perfect fair treatment with respect to our data; it
is also possible to derive a classifier satisfying perfect fair treatment that gives individuals a score
which is in expectation only about 0.588 points different from their COMPAS score; as this latter
classifier exhibits some interesting properties, we reproduce it in Figure 4. In particular, we notice
that this classifier almost always gives African-Americans the same score as their COMPAS score,
while tending to give Caucasians a score 1-3 points higher to account for the treatment bias in the
original data.

All of the derived classifiers exhibited here, as well as our utility functions, are of course derived
using the experimental probabilities of the data set, which are only rough estimates of the actual
probabilities (indeed, we suspect that this leads to some variance-related quirks, as observed with
the predictive parity rates and the classifier in Figure 4). The actual probabilities over individuals
classified by COMPAS are unknown, but we note that, as observed in Section 5, derived classifiers
which satisfy fair treatment according to these experimental probabilities are very likely to satisfy
approximate fair treatment with respect to the actual probabilities. In addition, noting that bounds
analogous to those presented in Claim 5 apply to all three of the utility functions presented here,
the utility of our derived classifiers will likely not vary by much between our experimentally derived
versions of the utility functions and the utility functions over the real probabilities. Hence, we
stress that the experimental results here are accurate not only with respect to our data set, but
also with respect to COMPAS classification in general over the distribution of individuals from
which this data was collected.

As a final note, we once again remark on the relatively small size of the experimental data set
we employed here. We plan to repeat this analysis on larger suitable data sets in the future when
we are able to find them, and we expect to obtain similar but higher-quality results compared to
what we observed here when we do so.
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