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Abstract

A software watermarking scheme can embed some information called a mark into a program

while preserving its functionality. No adversary can remove the mark without damaging the

functionality of the program. Cohen et al. (STOC ’16) gave the first positive results for

watermarking, showing how to watermark certain pseudorandom function (PRF) families using

indistinguishability obfuscation (iO). Their scheme has a secret marking procedure to embed

marks in programs and a public extraction procedure to extract the marks from programs;

security holds even against an attacker that has access to a marking oracle. Kim and Wu

(CRYPTO ’17) later constructed a PRF watermarking scheme under only the LWE assumption.

In their scheme, both the marking and extraction procedures are secret, but security only holds

against an attacker with access to a marking oracle but not an extraction oracle. In fact, it is

possible to completely break the security of the latter scheme using extraction queries, which is

a significant limitation in any foreseeable application.

In this work, we construct a new PRF watermarking scheme with the following properties.

• The marking procedure is public and therefore anyone can embed marks in PRFs from

the family. Previously we had no such construction even using obfuscation.

• The extraction key is secret, but marks remain unremovable even if the attacker has

access to an extraction oracle. Previously we had no such construction under standard

assumptions.

• Our scheme is simple, uses generic components and can be instantiated under many dif-

ferent assumptions such as DDH, Factoring or LWE.

The above benefits come with one caveat compared to prior work: the PRF family that we can

watermark depends on the public parameters of the watermarking scheme and the watermarking

authority has a secret key which can break the security of all of the PRFs in the family. Since the

watermarking authority is usually assumed to be trusted, this caveat appears to be acceptable.
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1 Introduction

Watermarking allows us to embed some special information called a mark into digital objects such

as images, movies, music files, or software. There are two basic requirements: firstly, a marked

object should not be significantly different from the original object, and secondly, it should be

impossible to remove an embedded mark without somehow “destroying” the object.

The works of Barak et al. [BGI+01, BGI+12] and Hopper, Molnar and Wagner [HMW07] initi-

ated the first theoretical study of program watermarking including rigorous definitions. However,

positive results for watermarking remained elusive. A few early works [NSS99, YF11, Nis13] gave

very partial results showing that certain cryptographic functions can be watermarked, but security

only held against restricted adversaries with limited ability to modify the program. For example,

in such schemes it is easy to remove the watermark by obfuscating the program without changing

its functionality. The first positive result for watermarking against arbitrary removal strategies

was given in the work of Cohen et al. [CHN+16] who showed how to watermark certain families

of pseudo-random functions (PRFs). However, this result relies on the heavy hammer of indistin-

guishability obfuscation (iO) [BGI+01, BGI+12, GGH+13]. Later, the work of Kim and Wu [KW17]

constructed a PRF watermarking scheme under only the learning-with-errors (LWE) assumption,

but at the cost of weakening security. We first describe the problem of watermarking PRFs in more

detail, then come back to discuss the above two works and finally present our new contributions.

Watermarking PRFs. A watermarking scheme for a PRF family {Fk} consists of two proce-

dures Mark and Extract. The Mark procedure takes as input a PRF Fk from the family and outputs

a program P which is a marked version of the PRF. We want approximate correctness, meaning

that Fk(x) = P (x) for all but a negligible fraction of inputs x and these should be hard to find. The

Extract procedure takes as input a program P ′ and determines whether it is marked or unmarked.

The main security property that we desire is unremovability : if we choose Fk randomly from the

family and give the marked version P to an adversary, the adversary should be unable to come up

with any program P ′ that even ε-approximates P for some small ε (meaning that P (x) = P ′(x)

for an ε fraction of inputs x) yet the extraction procedure fails to recognize P ′ as marked. Each

of the procedures Mark,Extract may either be “public” meaning that it only relies on the public

parameters of the watermarking scheme, or it may be “secret” meaning that it requires a secret

key of the watermarking scheme. If one (or both) of the procedures is secret then the unremov-

ability security property should hold even if the adversary gets oracle access to that procedure.

We can also consider “message embedding” schemes, where the marking procedure additionally

takes a message and the extraction procedure recovers the message from a marked program – the

unremovability property should then ensure that the adversary cannot remove the mark or modify

the embedded message.1

There are several reason why watermarking PRFs is interesting. Firstly, watermarking in

general is a poorly understood cryptographic concept yet clearly desirable in practice – therefore

any kind of positive result is fascinating since it helps us get a better understanding of this elusive

notion. Secondly, software watermarking only makes sense for unlearnable functions (as formalized

1Some previous watermarking schemes also required an unforgeability property, which roughly says that an ad-

versary should not be able to produce any marked functions on his own – in fact, he should not be able to come

up with a function which is marked but is far from any of the marked functions that were output by the marking

oracle. This property appears to be orthogonal to the main watermarking requirement of unremovability and we do

not consider it here. In particular, it crucially requires a scheme with a secret marking procedure whereas here we

construct watermarking scheme with a public marking procedure.
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in [CHN+16]) so we need to focus on cryptographic programs such as PRFs rather than (e.g.,) tax

preparation software. Lastly, PRFs are a basic building block for more advanced cryptosystems

and therefore watermarking PRFs will also allow us to watermark more advanced primitives that

rely on PRFs, such as symmetric-key encryption or authentication schemes. See [CHN+16] for

further discussion and potential applications of watermarked PRFs.

Prior Work. The work of Cohen et al. [CHN+16] showed how to watermark any family of

puncturable PRFs using indistinguishability obfuscation (iO). They constructed a watermarking

scheme with secret marking and public extraction, where the unremovability property holds even if

the adversary has access to the marking oracle. The use of obfuscation may have appeared inherent

in that result. However, Kim and Wu [KW17] (building on [BLW17]) surprisingly showed how to

remove it and managed to construct a watermarking scheme for a specific PRF family under only

the learning-with-errors (LWE) assumption. In their scheme, both the marking and the extraction

procedures are secret, but the unremovability security property only holds if the adversary has

access to the marking oracle but not the extraction oracle. In particular, an adversary that can

test whether arbitrary programs are marked or unmarked can completely break the security of the

watermarking scheme. Since the entire point of watermarking is to use the extraction procedure

on programs that may potentially have been constructed by an adversary, it is hard to justify that

the adversary does not get access to the extraction oracle. Therefore this should be considered as

a significant limitation of that scheme in any foreseeable application.

Our Results. In this work, we construct a watermarking scheme for a PRF family under standard

assumptions. In particular, we only rely on CCA-secure public-key encryption with pseudorandom

ciphertexts, which can be instantiated under most standard public-key assumptions such as DDH,

LWE or Factoring. Our watermarking scheme has public marking and secret extraction, and the

unremovability security property holds even if the adversary has access to the extraction oracle.

We emphasize that:

• This is the first watermarking scheme with a public marking procedure. Previously such

schemes were not known even under iO.

• This is the first watermarking scheme under standard assumptions where unremovability

holds in the presence of the extraction oracle. Previously we only had such schemes under

iO, in which case it was possible to even get public extraction, but not under any standard

assumptions.

• This is the first watermarking scheme altogether under assumptions other than LWE or iO.

Our basic scheme is not message embedding (whereas the constructions of [CHN+16] and

[KW17] are), but we also show how to get a message embedding scheme by additionally rely-

ing on generic constraint-hiding constrained PRFs, which we currently have under LWE [BKM17,

CC17, BTVW17, PS18].

Additionally, we allow an adversary who tries to remove the mark of some program P to change

a large fraction of its outputs, matching the security guarantee of [CHN+16] based on iO. In

comparison, the work of [KW17] based on standard assumptions restricts an adversary to only

modify a very small fraction of its inputs. More precisely, while [KW17] only allows an adversary

to only change a negligible fraction of the outputs of P, our construction without message embedding

allows him to modify almost all of these outputs, as long as a polynomial fraction remains the same;
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and our construction with message embedding allows an adversary to change almost half of the

outputs which is essentially optimal (as shown in [CHN+16])

Our scheme comes with one caveat that was not present in prior works. The PRF family that

we watermark depends on the public-parameters of the watermarking scheme and it is possible

to break the PRF security of this family given the watermarking secret key. In particular, this

means that the watermarking authority which sets up the scheme can break the PRF security

of all functions in the family, even ones that were never marked. However, we ensure that PRF

security continues to hold even given the public parameters of the watermarking scheme and oracle

access to the extraction procedure. Therefore the PRFs remain secure for everyone else except

the watermarking authority. Technically, this caveat makes our results incomparable with those

in prior works. However, we argue that since the watermarking authority is anyway assumed to

be a trusted party in order for the watermarking guarantees to be meaningful, this caveat doesn’t

significantly detract from the spirit of the problem and our solutions with this caveat are still very

meaningful.

1.1 Our Techniques

Watermarking Unpredictable Functions. To give the intuition behind our scheme, we first

describe a simplified construction which allows us to watermark an unpredictable (but not yet

pseudorandom) function family.2

The public parameters of the watermarking scheme consist of a public-key pk for a CCA secure

public-key encryption scheme and the watermarking secret key is the corresponding decryption key

sk. Let {fs} be an arbitrary puncturable PRF (pPRF) family. We are able to watermark a function

family {Fk} which is defined as follows:

• The key k = (s, z, r) consists of a pPRF key s, a random pPRF input z and encryption

randomness r.

• The function is defined as Fk(x) = (fs(x), ct) where ct = Encpk((fs(z), z) ; r).

Note that this is not yet a PRF family since the ct part of the output is always the same no matter

what x is. However, the first part of the output ensures that the function is unpredictable. We

now describe the marking and extraction procedures.

• To mark a function Fk with k = (s, z, r) we create a key k̃ = (s{z}, ct) where s{z} is a PRF

key which is punctured at the point z and ct = Encpk((fs(z), z) ; r). We define the marked

function as F
k̃
(x) = (fs{z}(x), ct).

• The extraction procedure gets a circuit C and let C(x) = (C1(x), C2(x)) denote the first and

second part of the output respectively. The extraction procedure computes C2(xi) = cti for

many random values xi and attempts to decrypt Decsk(cti) = (yi, zi). If for at least one i the

decryption succeeds and it holds that C1(zi) 6= yi then the procedure outputs marked, else it

outputs unmarked.

There are several properties to check. Firstly, note that marking procedure does not require

any secret keys and that the marked function satisfies Fk(x) = F
k̃
(x) for all x 6= z. In other words,

2A function family is unpredictable if, given arbitrarily many oracle calls to a random function from the family

on various inputs xi, it is hard to predict the output of the function on any fresh input x∗ which was not queried.
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the marking procedure only introduces only a single difference at a random point z.3 Secondly, for

any function Fk in the family which was not marked, the extraction procedure correctly outputs

unmarked and for any function F
k̃
(x) that was marked it correctly outputs marked.4

To argue that marks are unremovable, assume that we choose a random function Fk in the

family, mark it, and give the adversary the marked function F
k̃

with k̃ = (s{z}, ct). The adversary

produces some circuit C which he gives to the extraction procedure and he wins if C agrees with F
k̃

on a sufficiently large fraction of inputs but the extraction procedure deems C to be unmarked. If C

agrees with F
k̃

on a sufficiently large fraction of inputs then with very high probability for at least

one xi queried by the extraction procedure it holds that C2(xi) = ct and ct decrypts to (fs(z), z).

In order for the extraction procedure to output unmarked it would have to hold that C1(z) = fs(z)

meaning that the adversary can predict fs(z). But the adversary only has a punctured pPRF

key s{z} and therefore it should be hard to predict fs(z). This argument is incomplete since the

adversary also has a ciphertext ct which encrypts fs(z) and oracle access to the extraction procedure

which contains a decryption key sk. To complete the argument, we rely on the CCA security of

the encryption scheme to argue that extraction queries do not reveal any information about fs(z)

beyond allowing the adversary to test whether fs(z) = y for various chosen values y and this is

insufficient to predict fs(z).

Watermarking Pseudorandom Functions. To get a watermarking scheme for a pseudoran-

dom function family rather than just an unpredictable one we add an additional “outer” layer

of encryption. We need the outer encryption to be a “pseudorandom tagged CCA encryption”

which ensures that a ciphertext encrypting some message m under a tag x looks random even given

decryption queries with respect to any tags x′ 6= x. The public parameters consist of an outer

public key pk′ for the “pseudorandom tagged CCA encryption” and an inner public key pk for the

standard CCA encryption. The watermarking secret key consists of the decryption keys sk′, sk.

We define the PRF family {Fk} as follows:

• The key k = (s, z, r, s′) consists of a pPRF key s, a random pPRF input z and encryption

randomness r as before. We now also include an additional PRF key s′.

• The function is defined as Fk(x) = (fs(x), ct′) where ct′ = Enc′pk′,x(ct ; fs′(x)) is an encryption

of ct with respect to the tag x using randomness fs′(x) and ct = Encpk(fs(z), z ; r) as before.

Note that the inner ciphertext ct is always the same but the outer ciphertext ct′ is different

for each x.

The watermarking scheme is almost the same as before except that:

• To mark a function Fk with k = (s, z, r, s′) we create a key k̃ = (s{z}, ct, s′) where s{z} is a

pPRF key which is punctured at the point z and ct = Encpk(fs(z), z ; r) as before. We define

the marked function as F
k̃
(x) = (fs{z}(x), ct′) where ct′ = Enc′pk′,x(ct ; fs′(x)).

• The extraction procedure is the same as before except that it also peels off the outer layer of

encryption.

3Moreover, we show the following. Given oracle access to a random unmarked function Fk(·) and its marked

version F k̃(·) as well as the extraction oracle, it is hard to find the point z on which they differ.
4Moreover, we can also ensure that any a-priori chosen circuit C is unmarked with high probability over the keys

of the watermarking scheme. To achieve this we rely on an encryption scheme where legitimate ciphertexts are sparse.
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We now argue that the function family {Fk} is pseudorandom even given the public parameter

(pk, pk′) of the watermarking scheme and access to the extraction oracle. However, note that given

the watermarking secret key sk, sk′, it is easy to completely break PRF security by testing if the

outer ciphertexts decrypts correctly to the same value every time. To argue pseudorandomness,

we rely on the security of the outer encryption. Note that the outer ciphertexts are tagged with

various tags xi corresponding to the adversary’s PRF queries. However, the extraction oracle only

decrypts with respect to tags x′i corresponding to random inputs that it chooses on each extraction

query. Therefore, with exponentially small probability there will be an overlap between the values

x′i and xi, and thus we can switch all of the ciphertexts returned by the PRF queries with uniformly

random values.

Watermarking with Message Embedding. Our watermarking construction that allows to

embed a message msg ∈ {0, 1}` during marking is very similar to the non-message embedding one.

The main difference is that we use a constraint-hiding constrained PRF (CHC-PRF) to embed a

hidden pattern that allows the extraction procedure to recover the message. At a high level, to

mark a key with some message msg, we consider for each message bit msgj a sparse pseudorandom

set Vj ; and we constrain the key on Vj if msgj = 1. We use an additional set V0 on which we

always constrain when marking a key. Each set Vj is defined using a fresh PRF key tj . The public

parameters and the watermarking secret key are the same as before, but now our PRF key k grows

linearly with the message length.

Let {fs} be an arbitrary constraint-hiding constrained PRF (CHC-PRF) family. We define the

PRF family {Fk} as follows:

• The key k = (s, (t0, t1, . . . , t`), r, s
′) consists of a CHC-PRF key s, ` + 1 PRF keys {ti}i≤`,

encryption randomness r, and a PRF key s′.

• The function is defined as Fk(x) = (fs(x), ct′) where ct′ = Enc′pk′,x(ct; fs′(x)) is an encryption

of ct with respect to the tag x using randomness fs′(x) and ct = Encpk(s, (t0, t1, . . . , t`) ; r).

Again, the inner ciphertext ct is always the same but the outer ciphertext ct′ is different for

each x.

The marking and extraction procedures work as follows:

• To mark a function Fk with k = (s, (t0, t1, . . . , t`), r, s
′) and message msg ∈ {0, 1}`, we first

define the following circuit Cmsg. For each key tj , let Cj be the circuit which on input

x = (a, b) accepts if ftj (a) = b. Here we implicitly define the set Vj = {(a, ftj (a))}, and thus

the circuit Cj checks membership in Vj . We define Cmsg as:

Cmsg = C0 ∨

 ∨
j=1,...,`
msgj=1

Cj

 ,

so that Cmsg checks membership in the union of V0 and the Vj ’s for j with msgj = 1.

We create a key k̃ = (s{Cmsg}, ct, s′) where s{Cmsg} is a CHC-PRF key which is constrained

on the circuit Cmsg and ct = Encpk(s, (t0, t1, . . . , t`) ; r). We define the marked function as

F
k̃
(x) = (fs{Cmsg}(x), ct′) where ct′ = Enc′pk′,x(ct ; fs′(x)).
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• The extraction procedure gets a circuit C and let C(x) = (C1(x), C2(x)) denote the first and

second part of the output respectively. The extraction procedure computes C2(xi) = ct′i for

many random values xi, peels off the outer layer to obtain cti, and attempts to decrypt

Decsk(cti) = (s, (t0, t1, . . . , t`)). The extraction procedure selects the decrypted message

(s, (t0, t1, . . . , t`)) which forms the majority of the decrypted messages. If such a majority

doesn’t exist, the extraction stops here and outputs unmarked.

The procedure now samples many random values ai, computes xi = (ai, ft0(ai)) ∈ V0 and

tests if C1(xi) 6= fs(xi). If for the majority of the values xi it holds that C1(xi) 6= fs(xi) then

the procedure considers the circuit as marked and proceeds to extract a message, as described

below; else it stops here and outputs unmarked.

To extract a message msg ∈ {0, 1}` the procedure does the following:

It samples, for j = 1, . . . , `, many random values aj,i, computes the pseudorandom values

xj,i = (aj,i, ftj (aj,i)) ∈ Vj , and checks if C1(xj,i) 6= fs(xj,i). If for the majority of the

values xj,i it holds that C1(xj,i) 6= fs(xj,i) then it sets msgj = 1, otherwise sets msgj = 0.

It then outputs msg = (msg1, . . . ,msg`).

To show pseudorandomness of the function family {Fk} even given the public parameters

(pk, pk′), the same argument as in the non-message embedding family goes through. Moreover,

for any function Fk in the family which was not marked, the extraction procedure correctly out-

puts unmarked (because of the checks on V0). Furthermore, for any message msg any function

F
k̃

where k̃ ← Mark(k,msg), Extract(ek, F
k̃
) correctly outputs the original message msg. This is

because with overwhelming probability, a random point in Vj is constrained if and only if msgj = 1,

by pseudorandomness and sparsity of the Vj . Then, correctness of the CHC-PRF ensures that

Extract computes msgj correctly when msgj = 0 (as the marked key is not constrained on Vj in

that case), while constrained pseudorandomness ensures correctness when msgj = 1 (as the marked

key is then constrained on Vj).

For watermarking security, we let the adversary choose a message msg. We sample a key

k = (s, (t0, t1, . . . , t`), r, s
′) and give him F

k̃
where k̃ ← Mark(k,msg). However, we now only allow

the adversary to modify slightly less than half of the outputs of the marked challenge circuit F
k̃
.

As shown by Cohen et al.([CHN+16]), this restriction is necessary when considering watermarking

schemes that allow message embedding. So now, the adversary is given a marked function F
k̃
,

and produces some circuit C which agrees with F
k̃

on more than half of its input values. We use

similar arguments as in the non message embedding version, but now we additionally rely on the

constraint-hiding property of the CHC-PRF to argue that the sets Vj remain pseudorandom for

the adversary, even given the marked circuit F
k̃
.

Now, the extraction procedure Extract(ek, C) samples sufficiently many random input values.

Because C and F
k̃

agree on more than half of their input values, then with overwhelming probability

the majority of the random input values will agree on their output values in both C and F
k̃

(by a standard Chernoff bound); in which case the extraction procedure recovers (s, (t0, . . . , t`)).

But then, by pseudorandomness of the sets Vj , we have by another Chernoff bound that with

overwhelming probability, the majority of the input values sampled in Vj will agree on their output

values in both C and F
k̃
. By the sparsity and pseudorandomness of the sets Vj , these input

values are constrained in F
k̃

if and only if msgj = 1; and the correctness and pseudorandomness

of the CHC-PRF ensure that the extraction procedure outputs msg on input C with overwhelming
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probability.

2 Preliminaries

2.1 Notations

For any probablistic algorithm alg(inputs), we may explicit the randomness it uses by writing

alg(inputs; coins).

For two circuits C,D, and ε ∈ [0, 1], we write C ∼=ε D if C and D agree on an ε fraction of their

inputs.

We will use the notations
s
≈ and

c
≈ to denote statistical and computational indistinguishability,

respectively.

We will use the following lemma:

Lemma 2.1 (Chernoff bound). Let X1, . . . Xn be independent Bernoulli variables of parameter

p ∈ [0, 1]. Then for all ε > 0, we have:

Pr

[
n∑
i=1

Xi < n · (p− ε)

]
≤ e−2ε2n.

In particular for n = λ/ε2, this probability is exponentially small in λ.

2.2 Constrained PRFs

We recall the definition of two variants of contrained PRFs.

Definition 2.2 (Puncturable PRFs ([GGM86, BW13, BGI14, KPTZ13])). Let `in = `in(λ) and

`out = `out(λ) for a pair of polynomial-time computable functions `in(·) and `out(·). A puncturable

pseudo-random function (pPRF) family is defined by the following algorithms:

• KeyGen(1λ) takes as input the security parameter λ, and outputs a PRF key k.

• Eval(k, x) takes as input a key k and an input x ∈ {0, 1}`in and deterministically outputs a

value y ∈ {0, 1}`out .

• Puncture(k, z) takes as input a key k and an input z ∈ {0, 1}`in , and outputs a punctured key

k{z}.

• PunctureEval(k{z}, x) takes as input a constrained key k{z} and an input x ∈ {0, 1}`in , and

outputs a value y ∈ {0, 1}`out .

We require a puncturable PRF to satisfy the following properties:

Functionality preserving under puncturing. Let z, x ∈ {0, 1}`in such that x 6= z. Then:

Pr

[
Eval(k, x) = PunctureEval(k{z}, x)

∣∣∣∣ k ← KeyGen(1λ)

k{z} ← Puncture(k, z)

]
= 1.
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Pseudorandomness on punctured points. For all z ∈ {0, 1}`in , we have that for all PPT

adversary A:

|Pr [A(k{z},Eval(k, z)) = 1]− Pr [A(k{z},U`out) = 1]| ≤ negl(λ),

where k ← KeyGen(1λ), k{z} ← Puncture(k, z) and U`out denotes the uniform distribution over `out
bits.

We have constructions of puncturable PRFs assuming the existence of one-way functions ([GGM86,

BW13, BGI14, KPTZ13]).

Definition 2.3 ((Selective) Constraint-hiding Constrained PRFs). Let `in = `in(λ) and `out =

`out(λ) for a pair of polynomial-time computable functions `in(·) and `out(·). A constraint-hiding

constrained pseudo-random function (CHC-PRF) family is defined by the following algorithms:

• KeyGen(1λ) takes as input the security parameter λ, and outputs a PRF key k.

• Eval(k, x) takes as input a key k and an input x ∈ {0, 1}`in and deterministically outputs a

value y ∈ {0, 1}`out .

• Constrain(k,C) takes as input a key k and a binary circuit C : {0, 1}`in → {0, 1}, and outputs

a constrained key kC .

• ConstrainEval(kC , x) takes as input a constrained key kC and an input x ∈ {0, 1}`in , and

outputs a value y ∈ {0, 1}`out .

We require the algorithms (KeyGen,Eval,Constrain,ConstrainEval) to satisfy the following prop-

erty, which captures the notions of constraint-hiding, (computational) functionality preserving and

constrained pseudorandomness at the same time ([CC17, PS18]):

Selective Constraint-Hiding. Consider the following experiments between an adversary A and

a simulator Sim = (Simkey,Simch):

expRealCH (1λ) : expIdealCH (1λ) :

1. C ← A 1. C ← A
2. k ← KeyGen(1λ) 2.

3. kC ← Constrain(k,C) 3. kC ← Simkey(1|C|)

4. Output b← AEval(·)(kC) 4. Output b← ASimch(·)(kC)

where Simch(·) is defined as:

Simch(x) =

{
R(x) if C(x) = 1

ConstrainEval(kC , x) if C(x) = 0,

where R : {0, 1}`in → {0, 1}`out is a random function.

We say that F is a constraint-hiding contrained PRF if:∣∣∣Pr
[
expRealCH (1λ) = 1

]
− Pr

[
expIdealCH (1λ) = 1

]∣∣∣ ≤ negl(λ).

There are several constructions of constraint-hiding constrained PRFs under LWE ([BKM17,

CC17, BTVW17, PS18]).
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2.3 Tag-CCA encryption with pseudorandom ciphertexts

Definition 2.4 (Tag-CCA2 encryption with pseudorandom ciphertexts). Let (KeyGen,Enc,Dec)

be an encryption scheme with the following syntax:

• KeyGen(1λ) takes as input the security parameter λ and outputs keys (pk, sk).

• Encpk,t(m) takes as input the public key pk, a message m and a tag t, and outputs a ciphertext

ct.

• Decsk,t(ct) takes as input the secret key sk, a ciphertext ct and a tag t, and outputs a message

m.

We will in the rest of the paper omit the keys as arguments to Enc and Dec when they are clear

from the context.

We will consider for simplicity perfectly correct schemes, so that for all messages m and tag t:

Pr[Decsk,t(Encpk,t(m)) = m] = 1.

over the randomness of KeyGen, Enc and Dec.

Denote by CT = CT pk be the ciphertext space of (KeyGen,Enc,Dec). For security, consider for

b ∈ {0, 1} the following experiments Expbtag−CCA2(1
λ) between a PPT adversary A and a challenger

C:

exp0tag−CCA2(1
λ) : exp1tag−CCA2(1

λ) :

1. (pk, sk)← KeyGen(1λ) 1. (pk, sk)← KeyGen(1λ)

2. (m∗, t∗)← ADecsk,·(·) 2. (m∗, t∗)← ADecsk,·(·)

3. c∗ ← Encpk,t∗(m
) 3. c∗ ← CT

4. Output b← ADecsk,·(·) 4. Output b← ADecsk,·(·)

where Decsk,·(·) takes as input a tag t and a ciphertext c, and outputs Decsk,t(c) We say that

(KeyGen,Enc,Dec) is tag-CCA2 with pseudorandom ciphertexts if for all PPT A who do not make

any query of the form (t∗, ∗) to the decryption oracle in phases 2 and 4:∣∣∣Pr[Exp0(1λ) = 1]− Pr[Exp1(1λ) = 1]
∣∣∣ ≤ negl(λ).

Notice that the notion of tag-CCA2 encryption with pseudorandom ciphertexts is weaker than

both CCA2 encryption with pseudorandom ciphertexts, and fully secure Identity-Based Encryption

(IBE) with pseudorandom ciphertexts. To see that CCA2 schemes with pseudorandom ciphertexts

imply their tag-CCA2 counterpart, notice that it suffices to encrypt the tag along with the message.

Then, make the decryption output ⊥ if the decrypted tag part does not match the decryption tag.

IBEs with pseudorandom ciphertexts also directly imply a tag-CCA2 version by simply considering

identities as tags.

In particular, we have construction of tag-CCA2 schemes with pseudorandom ciphertexts under

various assumptions, e.g. DDH, DCR, QR ([CS02]), or LWE ([ABB10]).

We will need an additional property on the encryption scheme, namely that its ciphertexts are

sparse:
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Definition 2.5 (Sparsity of ciphertexts). We say that an encryption scheme is sparse if for all ct

from the ciphertext space, and all tags t:

Pr[Decsk,t(ct) 6= ⊥ | (pk, sk)← KeyGen(1λ)] ≤ negl(λ).

Note that we can build a sparse tag-CCA2 encryption scheme with pseudorandom ciphertexts

generically from any tag-CCA2 encryption scheme with pseudorandom ciphertexts. To do so, it

suffices to add a random identifier α ∈ {0, 1}λ to the public key; to encrypt some message m, encrypt

instead the message (m,α) using the non-sparse encryption scheme. Then, when decrypting, output

⊥ if the identifier α does not match. For any fixed ct, the probability that it decrypts under the

new encryption scheme is negligible over the randomness of α (sampled during KeyGen).

3 Watermarking PRFs

In this section, we construct a watermarking scheme and its associated watermarkable PRF family.

The marking procedure is public, and security holds even when the attacker has access to an

extraction oracle. We can instantiate the primitives we require under different various assumptions,

e.g. DDH, LWE, or Factoring. We do not consider the case of embedding messages in the marked

circuit yet though; the extraction algorithm here simply detects if the key has been marked or not.

We will study the case of message embedding in Section 4.

3.1 Definitions

We first define the notion of watermaking. We tailor our notation and definitions to implicitly

consider the setting where marking is public and extraction is secret.5

Definition 3.1 (Watermarking Scheme). Let λ ∈ N be the security parameter and ε ∈ [0, 1] be a

parameter. A watermarking scheme WatMk for a watermarkable family of pseudorandom functions

F = {Fpp : Xpp → Ypp}pp is defined by the following polynomial-time algorithms:

• Setup(1λ)→ (pp, ek): On input the security parameter 1λ, outputs the public parameters pp

and the extraction key ek.

• KeyGen(1λ, pp)→ k: On input the security parameter 1λ and public parameters pp, outputs

a PRF key k.

• Fk(x)→ y: On input a key k and an input x ∈ Xpp, outputs y ∈ Ypp.

• Mark(k)→ k̃: On input and a PRF key k ∈ F , outputs a marked key k̃.

• Extract(ek, C)→ {marked, unmarked}: On input an extraction key ek and an arbitrary circuit

C, outputs marked or unmarked.

We will simply denote by Fk some circuit that computes Fk(x) on input x (which is efficiently

computable given k).

Definition 3.2 (Watermarking Properties). A watermarking scheme WatMk has to satisfy the

following properties:

Non-triviality. We require two properties of non-triviality.

5We can directly extend the following definitions to the weaker setting of secret marking, by additionally giving

the adversary oracle access to the marking algorithm in the relevant properties.
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1. We require that functions in F are unmarked:

Pr

[
Extract(ek, Fk) = unmarked

∣∣∣∣ (pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

]
= 1.

2. Any fixed circuit C (fixed independently of pp) should be unmarked:

Pr
[
Extract(ek, C) = unmarked | (pp, ek)← Setup(1λ)

]
≥ 1− negl(λ).

Strong Correctness. It should be hard to find points on which Fk and F
k̃

output different

values, given oracle access to both circuits.

For all PPT A we require:

Pr

Fk(x) 6= F
k̃
(x)

∣∣∣∣∣∣∣∣∣
(pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

k̃ ← Mark(k)

x← AFk(·),F k̃
(·),Extract(ek,·)(pp)

 ≤ negl(λ).

In particular, for any fixed x, the probability that Fk(x) 6= F
k̃
(x) is negligible.6

Extended Pseudorandomness. We do not require PRF security to hold if the adversary is

given the extraction key. We still require that the PRFs in the family remain secure even given

oracle access to the extraction algorithm.

We require that for all PPT A:

AFk(·),Extract(ek,·)(pp)
c
≈ AR(·),Extract(ek,·)(pp),

where (pp, ek)← Setup(1λ), k ← KeyGen(1λ, pp), and R is a random function.

ε-Unremovability. Define the following experiment Expremov
A (1λ) between an adversary A and

a challenger:

1. The challenger generates (pp, ek)← Setup(1λ). It also samples a random k ← KeyGen(1λ, pp),

and gives the public parameters pp and a circuit C̃ = F
k̃

to the adversary, where k̃ ← Mark(k).

2. The adversary AExtract(ek,·)(pp, C̃) has access to an extraction oracle, which on input a circuit

C, outputs Extract(ek, C).

3. The adversary AExtract(ek,·)(pp, C̃) outputs a circuit C∗. The output of the experiment is 1 if

Extract(ek, C∗) = unmarked; and the output of the experiment is 0 otherwise.

We say that an adversary A is ε-admissible if its output C∗ in phase 3. satisfies C∗ ∼=ε C̃, i.e. C∗

and C̃ agree on an ε fraction of their inputs.

We say that a watermarking scheme achieves ε-unremovability if for all ε-admissible PPT ad-

versaries A we have:

Pr[Expremov
A (1λ) = 1] ≤ negl(λ).

6In particular, this notion of correctness is stronger than simply requiring that the output of the original PRF

and the marked version differ at most on a negligible fraction of inputs.
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Extraction Correctness. We require that:

Pr

Extract(ek, F k̃) = marked

∣∣∣∣∣∣∣
(pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

k̃ ← Mark(k)

 ≥ 1− negl(λ),

but in this case this follows from ε-Unremovability, as otherwise an Adversary could just directly

output the marked challenge in the ε-Unremovability game.

3.2 Construction

Let λ ∈ N be the security parameter and let ε = 1/ poly(λ) be a parameter. We describe our

construction of a watermarkable family Fpp and its associated ε-unremovable watermarking scheme.

We will use the following primitives in our construction:

• E in = (E in.KeyGen,Encin,Decin), a CCA2 secure public-key encryption scheme

• Eout = (Eout.KeyGen,Encout,Decout), a sparse tag-CCA2 encryption scheme with pseudoran-

dom ciphertexts

• pPRF = (pPRF.KeyGen, pPRF.Eval,Puncture,PunctureEval), a puncturable PRF family

• PRF = (PRF.KeyGen,PRF.Eval), a standard PRF family.

We will use the following notation:

• rin = rin(λ) and rout = rout(λ) are the number of random bits used by Encin and Encout,

respectively;

• (X ,Y(1)) = (Xpp,Y(1)
pp ) are the input and output spaces of pPRF, where we assume that X

and Y(1) are of size super-polynomial in λ;

• We’ll suppose that PRF has input and output spaces (X , {0, 1}rout) = (Xpp, {0, 1}r
out

);

• CT = CT pp is the ciphertext space of Eout.

• We set the input space of our watermarkable PRF to be X , and its output space to be

Y = Y(1) × CT . For y ∈ Y, we will write y = (y1, y2), where y1 ∈ Y(1) and y2 ∈ CT .

We now describe our construction of a watermarking scheme, with its associated watermarkable

PRF family:

• Setup(1λ): On input the security parameter 1λ, sample (pkin, skin) ← E in.KeyGen(1λ) and

(pkout, skout)← Eout.KeyGen(1λ). Output:

pp = (pkin, pkout);

ek = (skin, skout).

• KeyGen(1λ, pp): On input the security parameter 1λ and the public parameters pp, sample

s ← pPRF.KeyGen(1λ), s′ ← PRF.KeyGen(1λ), r ← {0, 1}rin , and z ← X . The key of the

watermarkable PRF is:

k = (s, z, r, s′, pp).

For ease of notation, we will simply write k = (s, z, r, s′) when the public parameters pp are

clear from the context.
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• Fk(x): On input a key k and input x, output

Fk(x) =
(
fs(x), Encoutx (pkout,Enc

in(pkin, (fs(z), z); r) ; f ′s′(x))
)

where fs(·) = pPRF.Eval(s, ·), f ′s′(·) = PRF.Eval(s′, ·), and Encout encrypts Encin(pkin, (fs(z), z) ; r)

using tag x and randomness f ′s′(x).

• Mark(k): On input a key k = (s, z, r, s′), do the following:

– Puncture the key s at point z: s{z} ← pPRF.Puncture(s, z).

– Compute cin = Encin(pkin, (fs(z), z) ; r).

– Output the marked key

k̃ = (s{z}, cin, s′),

where the associated evaluation circuit computes:

F
k̃
(x) =

(
PunctureEval(s{z}, x) , Encoutx (pkout, c

in ; f ′s′(x))
)
.

• Extract(ek, C): Let w = λ/ε = poly(λ). On input the extraction key ek and a circuit C do

the following:

– If the input or output length of C do not match X and Y(1) × CT respectively, output

unmarked.

– For all i ∈ [w] sample uniformly at random xi ← X , and do the following:

∗ Parse C(xi) = (C1(xi), C2(xi)) where C1(xi) ∈ Y(1) and C2(xi) ∈ CT .

∗ Compute cini = Decoutskout,xi
(C2(xi)) (using secret key skout and tag xi);

∗ If cini 6= ⊥, compute (yi, zi) = Decin
skin

(cini ). If C1(zi) 6= yi, output marked.

– If the procedure does not output marked after executing the loop above, output unmarked.

Note that when it is clear from the context, we will omit writing pkout, pkin.

3.3 Correctness Properties of the Watermarking Scheme

We first show that our watermarking scheme satisfies the non-triviality properties.

Claim 3.3 (Non-triviality). Assume E in and Eout are perfectly correct, and that Eout is sparse.

Then our watermarking scheme satisfies the non-triviality properties.

Proof. 1. Let (pp, ek) ← Setup(1λ) and k = (s, z, r, s′) ← KeyGen(1λ, pp); then Extract(ek, Fk)

always outputs unmarked. This is because by perfect correctness of E in and Eout, we have that

(yi, zi) = (fs(z), z) for all i ∈ [w], and therefore C1(zi) = yi = fs(z).

2. Fix a circuit C = (C1, C2), and sample (pp, ek) ← Setup(1λ). By sparsity of Eout, we have

that for all xi ∈ X , the probability that cini := Decoutskout,xi
(C2(xi)) 6= ⊥ is negligible (over the

randomness of Setup(1λ) alone). In particular, taking a union bound over the w = poly(λ)

points {xi}i∈[w] sampled by Extract, we have that cini = ⊥ with overwhelming probability, and

therefore

Pr
[
Extract(ek, C) = unmarked | (pp, ek)← Setup(1λ)

]
≥ 1− negl(λ).
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Claim 3.4 (Strong Correctness). Suppose pPRF is a punctured PRF, PRF is secure and Eout is tag-

CCA2 with pseudorandom ciphertexts. Then the watermarking scheme satisfies strong correctness.

Proof. We show that the view of the adversary is essentially independent of z.

First, notice that it suffices to argue strong correctness when the adversary A only has oracle

access to Fk(·) but not the marked version F
k̃
(·). This is because if we have the seemingly weaker

version of correctness where the adversary doesn’t have oracle access to F
k̃
(·), we can simulate

oracle access to F
k̃
(·) by simply forwarding the output of Fk(·) on the same input. Now, an

adversary can only tell the difference if he makes a query on z, which breaks the weaker notion of

correctness (with a polynomial loss equal to his number of PRF queries).

Therefore, we focus on proving

Pr

Fk(x) 6= F
k̃
(x)

∣∣∣∣∣∣∣∣∣
(pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

k̃ ← Mark(k)

x← AFk(·),Extract(ek,·)(pp)

 ≤ negl(λ).

We prove the claim by a sequence of hybrids.

Hybrid 0. In this hybrid, the adversary A has oracle access to Fk(·) and Extract(ek, ·) where

(pp, ek)← Setup(1λ) and k = (s, z, r, s′)← KeyGen(1λ, pp).

Hybrid 1. We modify how PRF queries are answered. Now, instead of using f ′s′(x) as randomness

to encrypt cin = Encin(fs(z), z ; r) using Encout with tag x, we pick a random function R(1) : X →
{0, 1}rout and use R(1)(x) as the encryption randomness to output:

(fs(x),Encoutx (cin ; R(1)(x)),

where the function R(1) is common across all the PRF queries.

Hybrid 2. Now we keep track of the PRF queries x from the adversary, as well as all the xi’s

that are sampled during the calls to the extraction oracle. We abort the experiment if at any point

there is some x that has been both queried by the adversary and sampled during an extraction call.

Hybrid 3. We now pick a random function R(3) : X → CT and answer to PRF oracle queries x

from the adversary with:

(fs(x), R(3)(x)).

Now, by functionality preserving under puncturing of pPRF, z is the only point such that

Fk(z) 6= F
k̃
(z). However the view of the adversary is independent of z, and therefore the probability

that he outputs z is negligible, over the random choice of z (sampled during KeyGen(1λ, pp)).

We prove the indistinguishability of the hybrids in the next section, as our proof of extended

pseudorandomness uses the same hybrids.

3.4 Security Properties of the Watermarking Scheme

3.4.1 Unremovability

We first prove that our construction is ε-unremovable (where ε = 1/ poly(λ) is a parameter of our

scheme).
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Claim 3.5 (ε-unremovability). Suppose E in is CCA2-secure, and f is a puncturable PRF. Then

the watermarking scheme is ε-unremovable.

Proof. We prove the claim by a sequence of hybrids.

Hybrid 0. This is the ε-Unremovability game Expremov
A (1λ).

Hybrid 1. We now change how extraction oracle queries are answered (including the call used

to determine the output of the experiment). Let k = (s, z, r, s′) ← PRFpp.KeyGen(1λ, pp) be the

(unmarked) PRF key sampled to produce the challenge marked circuit, and cin = Encin(s, z ; r) be

the associated ciphertext (which is used to produce the challenge marked circuit C̃). On extraction

query C from the adversary, the extraction procedure samples xi’s for i ∈ [w] as before. Denote by E

the event that Decoutskout,xi
(C2(xi)) = cin, i.e. the second part C2(xi) decrypts to cin when decrypting

using tag xi. If E occurs, then instead of decrypting this inner ciphertext cin in the extraction

procedure, we directly check C1(z) 6= fs(z); in particular cin, z and fs(z) are now hard-coded in

the modified extraction procedure.

Hybrid 2. We change how extraction calls are answered and how the challenge marked circuit is

generated. Let 0X and 0CT be arbitrary fixed values in X and CT respectively. We now set

cin = Encin(0X , 0CT ),

which is used as the ciphertext hard-coded in the extraction oracle (used to handle event E), and

used to produce challenge marked circuit C̃.

Hybrid 3. We change how we answer extraction queries (including the one determining the

output of the experiment). Now pick a uniformly random R ∈ Y(1). Whenever E occurs during

an extraction oracle call, we check C1(z) 6= R instead. In particular, the modified extraction oracle

now has cin = Encin(0X , 0CT ), z, and R hard-coded.

Hybrid 4. Now if there is any extraction oracle call such that E occurs and C1(z) = R, we abort

the experiment.

Now, all the outputs of the extraction oracle queries are independent of R, as R only affects the

output of extraction queries only when E occurs, and the extraction oracle queries now outputs

marked whenever there exists some index i such that E occurs, independently of R. Recall that

the adversary wins the game if he outputs a circuit C∗ such that C∗ ∼=ε C̃ and Extract(ek, C∗) =

unmarked. By construction, we have that during the execution of Extract(ek, C∗) that defines

the output of the experiment, Extract samples at least one xi such that C∗(xi) = C̃(xi) with

overwhelming probability. This is because C∗ and C̃ agree on a fraction ε = 1/ poly(λ) of inputs,

so that the probability that none of the w = λ/ε samples xi’s satisfies C∗(xi) = C̃(xi) is at most

(1 − ε)λ/ε ≤ e−λ = negl(λ). Now by correctness of the outer encryption scheme Eout, we have

Decoutskout,xi
(C∗(xi)) = cin, so that event E occurs, and Extract outputs unmarked only if C∗1 (z) = R.

As the view of the adversary in the experiment is now independent of R, the experiment outputs

marked with overwhelming probability (over the randomness of R alone).

Indistinguishability of the hybrids. We now show that the hybrids above are indistinguish-

able.

Lemma 3.6. Assuming E in is perfectly correct, we have Hybrid 0 ≡ Hybrid 1.
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The view of the adversary is identical in Hybrid 0 and Hybrid 1 by perfect correctness of the

inner encryption E in: in the latter we simply hardcode the result of the decryption whenever we

have to decrypt cin during an extraction oracle call.

Lemma 3.7. Assuming E in is CCA2-secure, we have Hybrid 1
c
≈ Hybrid 2.

We build a reduction that turns any distinguisher between Hybrid 1 and Hybrid 2 to a CCA2

adversary for E in. The reduction essentially does not pick any secret key for Encin but can still

answer extraction oracle queries by interacting with the CCA2 challenger. More precisely, the

reduction does not sample the secret key skin associated to the CCA2 scheme E in, but samples

the other parts of (pp, ek) as in Hybrid 1. It then sends CCA2 challenge messages (fs(z), z), and

(0X , 0CT ), and gets back a challenge ciphertext cin, and sets the challenge circuit as F
k̃

where

k̃ = (s{z}, cin, s′). To answer extraction oracle queries for the distinguisher, it uses the CCA2

challenger to get the decryption of any c 6= cin (which correspond to sampling xi and event E does

not occur); and whenever E occurs (which correspond to having cini = cin), it uses the hard-coded

values (fs(z), z) to produce the output of the extraction oracle, by checking if C1(z) 6= fs(z) directly

without decrypting cin. Now if cin is an encryption of (fs(z), z), the view of the distinguisher is as

in Hybrid 1; and if cin is an encryption of (0X , 0CT ) then its view is as in Hybrid 2.

Lemma 3.8. Assuming pPRF satisfies constrained pseudorandomness, we have Hybrid 2
c
≈ Hy-

brid 3.

This is done by a simple reduction to the constrained pseudorandomness property of pPRF:

the reduction samples some random z and gets a constrained key s{z} from the constrained pseu-

dorandomness game. Then, it gets a value y∗, which is used whenever event E occurs, to check

C1(z) 6= y∗. If y∗ = fs(z), the view of the adversary is as in Hybrid 2; if y∗ is random, then his

view is as in Hybrid 3.

Lemma 3.9. We have Hybrid 3
s
≈ Hybrid 4.

For any C queried by the adversary as an extraction oracle query, the probability that E occurs

and C1(z) = R is negligible over the randomness of R alone (where we use that Y(1) has super-

polynomial size). Therefore, with overwhelming probability, all extraction oracle queries where E

occurs output marked, independently of R. In particular, an union bound over the polynomial

number of extraction queries made by the adversary gives that the probability that the experiment

aborts is negligible.

3.4.2 Extended Pseudorandomness

Next, we show that our construction satisfies the extended pseudorandomness property.

Claim 3.10 (Extended pseudorandomness). Suppose pPRF and PRF are secure and Eout is tag-

CCA2 with pseudorandom ciphertexts. Then the watermarking scheme satisfies extended pseudo-

randomness.

Proof. We prove the claim by a sequence of hybrids.

Hybrid 0. In this hybrid, the adversary A has oracle access to Fk(·) and Extract(ek, ·) where

(pp, ek)← Setup(1λ) and k = (s, z, r, s′)← KeyGen(1λ, pp).
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Hybrid 1. We modify how PRF queries are answered. Now, instead of using f ′s′(x) as randomness

to encrypt cin = Encin(fs(z), z; r) with tag x, we pick a random function R(1) : X → {0, 1}rout and

use R(1)(x) as randomness, and output:

(fs(x),Encoutx (cin;R(1)(x)),

where the function R(1) is common throughout the experiment.

Hybrid 2. Now we keep track of the PRF queries x from the adversary, as well as all the xi’s

that are sampled during the calls to the extraction oracle. We abort the experiment if at any point

there is some x that has been both queried by the adversary and sampled during an extraction call.

Hybrid 3. We now pick a random function R(3) : X → CT and answer to PRF oracle queries x

from the adversary with:

(fs(x), R(3)(x)).

Hybrid 4. We now additionally pick a random function R(4) : X → Y(1), and answer to PRF

oracle queries x from the adversary with:

(R(4)(x), R(3)(x)).

Hybrid 5. Now we do not abort the experiment even if some x is both queried by the adversary

and sampled during an extraction call.

Now the adversary has oracle access to R(·) = (R(4)(·), R(3)(·)) and Extract(ek, ·).

Indistinguishability of the hybrids. We now show that the hybrids above are indistinguish-

able.

Lemma 3.11. Assuming the security of PRF, we have Hybrid 0
c
≈ Hybrid 1.

We build a reduction from any distinguisher to an attacker for the PRF security game for PRF.

On PRF query x from the distinguisher, the reduction queries x in the PRF game, and uses the

answer as encryption randomness for the outer scheme Eout. If the value is f ′s′(x), the view of the

distinguisher is as in Hybrid 0; if it is random R(1)(x) then its view is as in Hybrid 1.

Lemma 3.12. We have Hybrid 1
s
≈ Hybrid 2.

We argue that the probability that the experiment aborts is negligible.

Suppose that some x has been both queried by the adversary as a PRF query, and sampled

during an extraction oracle call.

If it has been sampled by the extraction procedure after the adversary queried it, this means

that the extraction procedure sampled an xi that the adversary queried previously, which happens

with probability at most QPRF /|X |, where QPRF is the number of PRF queries the adversary

makes. An union bound on the polynomial number of samples used in every extraction call and

the polynomial number of extraction calls imply that the probability that this event happens is

negligible (where we use that X has super-polynomial size).

Otherwise, it means that the adversary queries an xi that has previously been sampled by the

extraction procedure. However, each output of the extraction oracle leaks at most 1 bit of entropy

on the fresh xi’s it sampled during its execution. Therefore the adversary can only succeed in

outputting such an xi with negligible probability.
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Lemma 3.13. Assuming Eout is a tag-CCA2 encryption scheme with pseudorandom ciphertexts,

then Hybrid 2
c
≈ Hybrid 3.

We replace the right part Encoutx (cin;R(1)(x)) of the outputs to every PRF queries with R(3)(x)

for some random R(3), one by one, using a hybrid argument.

To change the output to some query x∗, we reduce any distinguisher using our assumption on

Eout. The reduction answers extraction queries using the decryption oracle provided by the tag-

CCA2 game, and sends as a challenge message cin = Encin(fs(z), z ; r) and challenge tag x∗, and

uses the challenge ciphertext from the tag-CCA2 game as a right part of the output to the PRF

query on x∗. As we make our experiment abort if an extraction call uses some tag that is queried

at any point by the distinguisher, we never have to decrypt any ciphertext with tag x∗, so that we

can faithfully answer all the extraction queries by using the decryption oracle from the tag-CCA2

game. Note that we have to change the output of all the PRF queries on x∗ in this hybrid.

If the challenge ciphertext from the tag-CCA2 game is a proper encryption of cin under tag

x∗, then the view of the distinguisher is as in Hybrid 2; and if it is random, then its view is as in

Hybrid 3.

Lemma 3.14. Assuming the security of pPRF, we have Hybrid 3
c
≈ Hybrid 4.

We reduce any distinguisher to an attacker for the PRF security game. Our reduction, on PRF

query x from the distinguisher, forwards it as a query in the PRF game. If it receives PRF values

fs(x), the view of the distinguisher is as in Hybrid 3; if it receives a random R(4)(x), the view of

the distinguisher is as in Hybrid 4.

Lemma 3.15. We have Hybrid 4
s
≈ Hybrid 5.

The same argument as to prove Hybrid 1
s
≈ Hybrid 2 applies here.

4 Watermarking PRFs with Message-Embedding

In this section we describe our construction of a watermaking scheme that supports message embed-

ding. Our construction is very similar to the non message embedding version: the main difference

is that we now use a constraint-hiding constrained PRF as a base PRF.

4.1 Definitions

Let λ ∈ N be the security parameter, ε ∈ [0, 1] and ` = `(λ) be parameters. We make a few

syntactical changes to the notions introduced in Section 3.1 when considering message-embedding

watermarking schemes:

• Mark(k,msg)→ k̃: On input a key k and a message msg ∈ {0, 1}`, outputs a marked k̃;

• Extract(ek, C) → msg: On input an extraction key ek and an arbitrary circuit C, outputs a

message msg ∈ {0, 1}` ∪ {unmarked}.

• Strong correctness: The adversary can now adaptively choose which message to mark.
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For all PPT A we require:

Pr

Fk(x) 6= F
k̃
(x)

∣∣∣∣∣∣∣∣∣∣∣

(pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

msg∗ ← AFk(·),Extract(ek,·)(pp)

k̃ ← Mark(k,msg∗)

x← AFk(·),F k̃
(·),Extract(ek,·)(pp)

 ≤ negl(λ).

• ε-unremovability: the adversary now additionally chooses some message msg∗ given oracle

access to the extraction procedure, and wins if he produces a circuit C∗ that is ε-close to

the marked challenge circuit such that Extract(ek, C∗) 6= msg∗, as described by the following

experiment Expremov−msg(1λ):

1. The challenger generates (pp, ek)← Setup(1λ). It also samples a random k ← KeyGen(1λ, pp),

and gives the public parameters pp to the adversary.

2. The adversary computes a challenge message msg∗ ∈ {0, 1}` ← AExtract(ek,·)(pp), given

access to an extraction oracle, which on input a circuit C, outputs Extract(ek, C).

3. The challenger computes C̃ ← Mark(k,msg∗) and sends it to the adversary.

4. The adversary AExtract(ek,·)(pp, C̃) can make further extraction oracle queries.

5. The adversary AExtract(ek,·)(pp, C̃) outputs a circuit C∗. The output of the experiment is

1 if Extract(ek, C∗) 6= msg∗; and the output of the experiment is 0 otherwise.

We now say that an adversary A is ε-admissible if its output C∗ in phase 5. satisfies C∗ ∼=ε C̃.

We say that a watermarking scheme achieves ε-unremovability if for all ε-admissible PPT

adversaries A we have:

Pr[Expremov−msg
A (1λ) = 1] ≤ negl(λ).

• Extraction correctness: we could now require that for all message msg ∈ {0, 1}`:

Pr

[
Extract(ek,Mark(k,msg)) = msg

∣∣∣∣ (pp, ek)← Setup(1λ)

k ← KeyGen(1λ, pp)

]
≥ 1− negl(λ),

but again, this property follows from ε-Unremovability.

4.2 Construction

Let λ ∈ N be the security parameter, let ρ = 1/poly(λ), and ` = poly(λ) be parameters. Let

ε = 1/2 + ρ. We describe our construction of a watermarkable family Fpp and its associated

ε-unremovable watermarking scheme supporting the embedding of messages of length `.

We’ll use the following primitives in our construction:

• E in = (E in.KeyGen,Encin,Decin), a CCA2 secure public-key encryption scheme

• Eout = (Eout.KeyGen,Encout,Decout), a sparse tag-CCA2 encryption scheme with pseudoran-

dom ciphertexts

• chcPRF = (chcPRF.KeyGen, chcPRF.Eval,Constrain,ConstrainEval), a constraint-hiding con-

strained PRF
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• PRF = (PRF.KeyGen,PRF.Eval), a PRF family

• PRF′ = (PRF′.KeyGen,PRF′.Eval), another PRF family.

We will use the following notations:

• rin = rin(λ) and rout = rout(λ) are the number of random bits used by Encin and Encout,

respectively;

• (X ,Y(1)) = (Xpp,Y(1)
pp ) are the input and output spaces of chcPRF; where we assume that X

and Y(1) are of size super-polynomial in λ;

• We’ll suppose that PRF has input and output spaces (X , {0, 1}rout) = (Xpp, {0, 1}r
out

);

• CT = CT pp is the ciphertext space of Eout.

• We set the input space of our watermarkable PRF to be X , and its output space to be

Y = Y(1) × CT . For y ∈ Y, we will write y = (y1, y2), where y1 ∈ Y(1) and y2 ∈ CT .

• We’ll suppose that PRF′ as input space X (1) and output space X (2) such that X = X (1)×X (2),

where we will suppose that both X (1) and X (2) have super-polynomial size. In particular, for

x ∈ X (1), and t← PRF′.KeyGen, we have (x,PRF′.Eval(t, x)) ∈ X .

• For t a key for PRF′, define Vt := {(x,PRF′.Eval(t, x)) |x ∈ X (1)}. Let Ct the circuit, which,

on input x ∈ X , parses x as (x1, x2) ∈ X (1) ×X (2), and outputs 1 if x2 = PRF′.Eval(x1), and

outputs 0 otherwise; in other words, Cj tests membership in Vj . If the key tj is indexed by

some j, we will write Vj and Cj instead of the more cumbersome Vtj and Ctj .

We now describe our construction of a watermarking scheme, with its associated watermarkable

PRF family:

• Setup(1λ): On input the security parameter 1λ, sample (pkin, skin) ← E in.KeyGen(1λ) and

(pkout, skout)← Eout.KeyGen(1λ). Output:

pp = (pkin, pkout);

ek = (skin, skout).

• KeyGen(1λ, pp): On input the security parameter 1λ, and the public parameters pp, sample

s← chcPRF.KeyGen(1λ), s′ ← PRF.KeyGen(1λ) and r ← {0, 1}rin . Sample for j ∈ {0, . . . , `}:
tj ← PRF′.KeyGen(1λ). The key of the watermarkable PRF is:

k = (s, (t0, t1 . . . , t`), r, s
′, pp).

For ease of notation, we will simply write k = (s, (t0, t1 . . . , t`), r, s
′) when the public param-

eters pp are clear from the context.

• Fk(x): On input a key k and input x, output

Fk(x) =
(
fs(x), Encoutx (pkout,Enc

in(pkin, (s, t0, . . . , t`) ; r) ; f ′s′(x))
)

where fs(·) = pPRF.Eval(s, ·), f ′s′(·) = PRF.Eval(s′, ·) and Encout encrypts Encin(pkin, (s, t1, . . . , t`) ; r)

using tag x and randomness f ′s′(x).
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• Mark(k,msg): On input a key k = (s, (t0, t1 . . . , t`), r, s
′), and a message msg ∈ {0, 1}`, do the

following:

– Compute the circuit

Cmsg = C0 ∨
∨̀
j=1

msgj=1

Cj ,

which on input x ∈ X outputs 1 if and only if x ∈ V0 or if there exists some j ∈ [`] such

that msgj = 1 and x ∈ Vj , and 0 otherwise, where Vj = {(x1,PRF′.Eval(tj , x1))}x1∈X (1) .

– Constrain the key s with respect to Cmsg: smsg ← chcPRF.Constrain(s, Cmsg).

– Compute cin = Encin(pkin, (s, t0, . . . , t`) ; r).

– Output the marked key:

k̃ = (smsg, c
in, s′),

where the associated circuit computes:

F
k̃
(x) =

(
ConstrainEval(smsg, x) , Encoutx (pkout, c

in ; f ′s′(x))
)
.

• Extract(ek, C): Let w = λ/ρ2 = poly(λ). On input the extraction key ek and a circuit C do

the following:

– If the input or output length of C do not match X and Y(1) × CT respectively, output

unmarked.

– For all i ∈ [w] sample uniformly at random xi ← X , and do the following:

∗ Parse C(xi) = (C1(xi), C2(xi)) where C1(xi) ∈ Y(1) and C2(xi) ∈ CT .

∗ Compute cini = Decoutskout, xi
(C2(xi)) (using secret key skout and tag xi);

∗ If cini 6= ⊥, compute (si, t0,i, . . . , t`,i) = Decin
skin

(cini ).

– Let (s, t0, . . . , t`) the majority of the w values (si, t0,i, . . . , t`,i), where i ∈ [w] (that is if

Decinskin outputs some (s, t0, . . . , t`) more than w/2 times in the loop above). If such a

majority does not exist, stop here and output unmarked.

– For i ∈ [w], do the following:

∗ Sample z0,i ← V0 where V0 = {(x,PRF′.Eval(t0, x)) |x ∈ X (1)}. This is done by

picking a random z1 ← X (1) and setting z = (z1,PRF
′.Eval(t0, z1)).

∗ Test C1(z0,i) 6= fs(z0,i).

∗ If a majority are equal, stop here and output unmarked.

– For j ∈ [`], do the following:

∗ For i ∈ [w] sample zj,i ← Vj where Vj = {(x,PRF′.Eval(tj , x)) |x ∈ X (1)}.
∗ Test for i ∈ [w]: C1(zj,i) 6= fs(zj,i).

∗ If a majority are different (for i ∈ [w]), set msgj = 1, otherwise set msgj = 0.

– Output msg = (msg1, . . . ,msg`).

Note that when it is clear from the context, we will omit writing pkout, pkin.
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4.3 Correctness Properties of the Watermarking Scheme

Claim 4.1. Assuming E in and Eout are perfectly correct and E in is sparse, the scheme above satisfies

the non-triviality properties.

Proof. 1. For (pp, ek)← Setup(1λ) and k = (s, (t0, t1 . . . , t`), r, s
′)← KeyGen(1λ, pp), we have that

Extract, on input Fk, gets (s, t0, . . . , t`) as the majority, by perfect correctness of E in and Eout.
Therefore, the first check (corresponding to j = 0) makes Extract(ek, Fk) output unmarked (as

(Fk)1(z) = fs(z) for all z ∈ X ).

2. Let C be a fixed circuit, and let (pp, ek) ← Setup(1λ). By sparsity of Eout, the probability

that any of the w values C1(xi) decrypts, for i ∈ [w], is negligible. Therefore, Extract(ek, C) outputs

unmarked.

Claim 4.2. Assuming PRF and PRF′ are secure, chcPRF preserves functionality on unconstrained

inputs, and Eout is tag-CCA2 with pseudorandom ciphertexts, then the scheme above satisfies strong

correctness.

Proof. We use the exact same hybrids as in the non-message embedding case, after which the

view of the adversary is independent of (t0, . . . , t`). We then conclude in two steps. First, the

probability that the adversary outputs a constrained point is negligible. This is by PRF security of

PRF′. Actually, the adversary cannot even find a point in any Vj , j ∈ {0, . . . , `} (where the set of

constrained points the union of a subset of the Vj ’s defined by msg∗), as it would be indistinguishable

from predicting one of `+ 1 random values (in X (2), the output space of PRF′).

Second, the probability that the adversary finds an unconstrained point on which Fk and F
k̃

differ is also negligible; this is by functionality preserving of chcPRF on unconstrained inputs (which

is implied by our definition of constraint-hiding).

4.4 Security Properties of the Watermarking Scheme

4.4.1 Extended Pseudorandomness

We show here that our scheme satisfies Extended Pseudorandomness.

Claim 4.3 (Extended Pseudorandomness). Suppose chcPRF and PRF are secure, and that Eout
is tag-CCA2 with pseudorandom ciphertexts. Then the watermarking scheme satisfies extended

pseudorandomness.

Proof. The proof is similar to the one for Claim 3.10. The only difference is that we now also keep

track of the points zj,i sampled from the sets Vj during the calls to the extraction oracle, and we

abort in Hybrids 2 to 4 if any of the points zj,i is queried to the PRF oracle. This event only occurs

with negligible probability as the sets Vj are of super-polynomial size.

4.4.2 Unremovability

We prove that our construction is ε-unremovable (where ε = 1/2 + ρ where ρ = 1/ poly(λ) is a

parameter of our scheme).

Claim 4.4. Suppose that E in is CCA2-secure, chcPRF is a constraint-hiding constrained PRF, and

PRF′ is a PRF. Then the watermarking scheme is ε-unremovable.

Proof. We prove the claim via a sequence of hybrids.
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Hybrid 0. This is the ε-Unremovability game Expremov−msg
A (1λ).

Hybrid 1. We now change how extraction calls are answered (including the one used to determine

the output of the experiment). Let k = (s, (t0, . . . , t`), r, s
′) ← PRFpp.KeyGen(1λ, pp) be the (un-

marked) PRF key sampled to produce the challenge marked circuit, and cin = Encin(s, t0, . . . , t` ; r)

be the associated ciphertext (which is used to produce the challenge marked circuit C̃). On ex-

traction query C from the adversary, the extraction procedure samples xi’s for i ∈ [w] as before.

Let denote by E the event that Decoutskout, xi
(C2(xi)) = cin, i.e. the second part C2(xi) decrypts to

cin when decrypting using tag xi. If E occurs, then instead of decrypting this inner ciphertext

cin in the extraction procedure, we directly consider it as outputting (s, t0, . . . , t`) (used to pick

the majority of decryption outputs); in particular cin, s and (t0, . . . , t`) are now hard-coded in the

modified extraction procedure.

Hybrid 2. We change how extraction calls are answered and how the challenge marked circuit is

generated. Let 0K and 0K′ be arbitrary fixed keys for chcPRF and PRF′ respectively. We now use:

cin = Encin(0K, 0
`+1
K′ ),

which is used as the ciphertext hard-coded in the extraction oracle (used to handle event E), and

used to produce the challenge marked circuit C̃. Furthermore, we abort the experiment if the

adversary makes any extraction query before submitting his challenge message such that C2(xi)

gets decrypted to cin for any i ∈ [w] (where cin is defined before giving the adversary oracle access

to the extraction oracle).

Hybrid 3. We change how we produce the challenge marked circuit C̃ and how we answer

extraction queries (including the one determining the output of the experiment). First, to generate

the challenge marked circuit, we use the simulator from the constraint-hiding experiment to generate

a simulated key ŝmsg∗ ← Simkey(1|Cmsg∗ |).

On extraction query C, we now abort if it considers any cini 6= cin such that Decin
skin

(cini ) =

(s, ∗, . . . , ∗). Furthermore, if we have Decoutskout, xi
(C2(xi)) = cin for more than w/2 samples i ∈ [w] in

the same execution of the extraction procedure, we use the constraint-hiding simulator and check

C1(zj,i) 6= Simch(zj,i, Cmsg∗(zj,i)) where zj,i ← Vj for i ∈ [w] and j ∈ {0, . . . , `} (instead of checking

C1(zj,i) 6= fs(zj,i)).

If cin appears in less than w/2 samples, we ignore it in the majority election.

Hybrid 4. We modify how we answer extraction queries (including the one determining the

output of the experiment). We now pick `+1 random functions Rj : X (1) → X (2) for j ∈ {0, . . . , `}.
Define Wj := {(x,Rj(x)) |x ∈ X (1)}. If cin appears in more than w/2 samples i ∈ [w], we now

sample zj,i ← Wj , and check C1(zj,i) 6= Simch(zj,i, dmsg∗(zj,i)) instead, where dmsg∗(z) = 1 if

z2 = R0(z1) or if there exists some j such that msg∗j = 1 and z2 = Rj(z1), where z = (z1, z2).

Hybrid 5. Now if cin appears in more than w/2 indices i ∈ [w], for j ∈ {0, . . . , `} we sample

zj,i ←Wj , and check:

• C1(z0,i) 6= Simch(z0,i, 1) for j = 0;

• C1(zj,i) 6= Simch(zj,i,msg∗j ) for j ∈ [`].

We now argue that in Hybrid 5, the experiment outputs 0 with overwhelming probability.

Consider the execution of the extraction algorithm that determines the output of the experiment.

We have C∗ ∼=(1/2+ρ) C̃ by admissibility of the adversary. Hence, a Chernoff bound on the w = λ/ρ2

23



random samples xi picked by the extraction call gives that with probability at least (1− e−2λ), the

majority of the xi satisfy C∗(xi) = C̃(xi). In particular, by perfect correctness of Eout, we have

cini = cin for a majority of indices i ∈ [w].

Therefore, for all j ∈ {0, . . . , `}, the extraction algorithm now samples zj,i ← Wj for i ∈ [w],

and tests C1(z0,i) 6= Simch(z0,i, 1) for j = 0, and C1(zj,i) 6= Simch(zj,i,msg∗j ) for j ∈ [`]. But then,

by randomness of Rj , the probability that a random zj,i ←Wj satisfies C∗(zj,i) = C̃(zj,i) is at least

1/2 + ρ (up to some negligible statistical loss upper bounded by wQ/|X(1)| due to the previous

Q = poly(λ) extraction queries). Therefore, another Chernoff bound states that with overwhelming

probability, the majority of those zj,i’s (over i ∈ [w]) satisfy C∗(zj,i) = C̃(zj,i).

Now, if msg∗j = 0, we have C̃1(zj,i) = Simch(zj,i,msg∗j ) with overwhelming probability by (com-

putational) correctness of chcPRF.

If msg∗j = 1 we have Simch(zj,i,msg∗j ) = R(zj,i) for a random function R : X → Y(1) (picked

independently of C̃), so the probability that some index i satisfies C̃(zj,i) = R(zj,i) is negligible over

the randomness of R (again, even conditioned on the polynomial number (`+ 1)wQ of evaluations

to R during the extraction queries, as Y(1) has super-polynomial size). Overall, an union bound

gives that the extraction procedure, on input C∗, does not output unmarked with overwhelming

probability (corresponding to j = 0), and then outputs msg∗ with overwhelming probability.

Indistinguishability of the hybrids. We now show that the hybrids above are indistinguish-

able.

Lemma 4.5. Assuming E in is perfectly correct, we have Hybrid 0 ≡ Hybrid 1.

The view of the adversary is identical in Hybrid 0 and Hybrid 1 by perfect correctness of the

inner encryption E in: in the latter we simply hardcode the result of the decryption whenever we

have to decrypt cin during an extraction oracle call.

Lemma 4.6. Assuming E in is CCA2-secure, we have Hybrid 1
c
≈ Hybrid 2.

The same argument as for Lemma 3.7 holds, by additionally noting that any adversary who

queries, before receiving the marked circuit, some C such that the extraction call on C gets cin with

substantial probability can be directly used to break CCA securiy of E in.

Lemma 4.7. Assuming chcPRF is a constraint-hiding constrained PRF, we have Hybrid 2
c
≈

Hybrid 3.

First, any adversary who queries some C such that the extraction call on C gets some cini such

that Decin
skin

(cini ) = (s, ∗, . . . , ∗) can be directly used to break constraint-hiding (as the challenger

has skin, he can extract the PRF key s using such an adversary). Then, the reduction is very

similar to the proof of Lemma 3.8, by receiving both the constrained key k̃ and values y∗i from the

constraint-hiding experiment to answer the extraction queries where cin form the majority. This is

because cin is now the only possible ciphertext that makes the extraction procedure use evaluations

to the constrained PRF fs(·).

Lemma 4.8. Assuming the security of PRF′, we have Hybrid 3
c
≈ Hybrid 4.

As the challenge marked circuit does not depend on (t0, . . . , t`) anymore, all the steps involving

PRF′ in Hybrid 3 can be simulated given only oracle access to PRF′.Eval (on different keys t0, . . . , t`).

More precisely, we have to sample random points in Vj and compute Cmsg∗(zj,i) (given as input to
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Simch if cin form the majority). This gives a simple reduction to the PRF security of PRF′, using a

standard hybrid argument over the `+ 1 PRF keys t0, . . . , t1.

Lemma 4.9. We have Hybrid 4
s
≈ Hybrid 5.

Hybrids 4 and 5 differ exactly when there is some point zj,i ←Wj such that dmsg∗(zj,i) 6= msg∗j ,

which happens exactly when msg∗j = 0 but dmsg∗j
(zj,i) = 1, that is, when msg∗j = 0 but zj,i ∈ Wj′

for some j′ 6= j such that msg∗j′ = 1. By definition, this implies having Rj(z1) = Rj′(z1) for some

j′ 6= j for some independently chosen random functions Rj and Rj′ ; and the probability that this

happens, even conditioned on the ` = poly(λ) functions R′j and the Q · w = poly(λ) samples zj,i
picked accross all the extraction queries made by the adversary (where Q denotes the number of

extraction queries he makes), is negligible, as X (2) has super-polynomial size.
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