
Quantum security proofs

using semi-classical oracles

Andris Ambainis
University of Latvia

Mike Hamburg
Rambus Security Division

Dominique Unruh
University of Tartu

December 9, 2021

Abstract. We present an improved version of the One-Way to Hiding
(O2H) Theorem by Unruh, J ACM 2015. Our new O2H Theorem gives
higher flexibility (arbitrary joint distributions of oracles and inputs, multiple
reprogrammed points) as well as tighter bounds (removing square-root factors,
taking parallelism into account). The improved O2H Theorem makes use of
a new variant of quantum oracles, semi-classical oracles, where queries are
partially measured. The new O2H Theorem allows us to get better security
bounds in several public-key encryption schemes.

Flaw in Appendix B: There is a flaw in the security proof of
the Fujisaki-Okamoto transform in Appendix B: On page 37,
in the subcase ”none of the above”, it says “if e∗ 6= ⊥, then
e∗ = Encasypk

(
δ∗;H(δ∗‖c)

)
by definition of e∗.” (∗) However,

e∗ is defined as Encasypk

(
δ∗;H(δ∗‖c′)

)
. (Note the difference: c′

instead of c.) Unfortunately, the remainder of that proof step
relies on the incorrect fact (∗). We do not know whether the
theorem can be fixed.

We thank Varun Maram for pointing out this problem.

Note that this only affects the analysis of Fujisaki-Okamoto in
Appendix B, and not the main results of this paper.

Contents

1 Introduction 2
1.1 Related work . 4
1.2 Impact on existing cryptosystems . 5

2 Preliminaries 8

3 Semi-classical oracles 9
3.1 Regular O2H, revisited . 11

https://orcid.org/0000-0002-1607-9062

4 Examples how to use the O2H Theorems 12
4.1 Hardness of searching in a sparse random function 12
4.2 Hardness of inverting a random oracle with leakage 14

5 Proofs 17
5.1 Auxiliary lemmas . 17
5.2 Proof of Theorem 1 . 18
5.3 Proof of Theorem 2 . 24
5.4 Proof of Theorem 3 . 25

A Optimality of Corollary 1 30

B Improved proof of the Targhi-Unruh transform 30

1 Introduction

Ever since it was first introduced in [BR93] as a proof technique for cryptographic
proofs, the random oracle model has been widely used to analyze cryptographic schemes,
especially when highly efficient, practical solutions are desired. In the post-quantum
setting, however, we need to be careful how the random oracle is modeled. When
the adversary makes a query, the input to the random oracle should not be measured
[BDF+11]. That is, queries should be possible in superposition between different inputs
(we then speak of a “quantum random oracle”). Otherwise, the random oracle model
would be a very unrealistic idealization of the real world since a quantum adversary can
evaluate, say, a hash function in superposition.

Unfortunately, proving the security in the quantum random oracle model is consider-
ably more difficult than in the classical random oracle model. One example of a classical
proof technique that is not easy to mimic is programming of the random oracle. In this
technique, we run the adversary with access to a random oracle but we change the answer
to certain queries during the execution. In a nutshell, as long as we can show that the
probability of changing a value that the adversary has already queried is negligible, the
adversary will not notice the programming, and the proof goes through. In the quantum
setting, this does not make sense. The adversary could query the superposition of all
inputs in its first query. Then any programming would change a value that has already
been queried.

A technique that can solve this problem (at least in certain situations) is the One-Way
to Hiding (O2H) Theorem from [Unr15b]. The O2H Theorem solves the reprogramming
problem by showing, roughly speaking, that we can bound the probability that the
adversary distinguishes between two oracles G and H (the original and the reprogrammed
oracle) in terms of the probability that the adversary can guess the location where the
oracle is reprogrammed (we speak of the “guessing game”). This conceptually simple
theorem has proven powerful in a number of security proofs for post-quantum secure
encryption schemes and other constructions (see our overview in Section 1.2). However,

2

the O2H Theorem has a number of limitations that limit its applicability, or give bad
bounds in concrete security proofs.

In this work, we present a new version of the O2H Theorem that improves on the
state of the art in a number of aspects:

• Non-uniform random oracles. The random oracle that is reprogrammed does
not have to be a uniformly random function. We allow any distribution of oracles,
e.g., invertible permutations, ideal ciphers, etc.

• Multiple reprogrammed points. We can reprogram the oracle in more than
a single point. That is, we can reprogram the random oracle at a set of positions
S and then bound the probability that the adversary detects this reprogramming
with a single application of the O2H Theorem.

• Arbitrary joint distributions. We allow the distribution of reprogrammed loca-
tions and of the adversary’s input to be arbitrarily correlated with the distribution
of the random oracle. This is especially important if the reprogrammed location
depends on the random oracle (e.g., reprogramming H(x) where x := H(r) for
random r).

• Tighter bounds for guessing games. Our O2H Theorem bounds the difference
of the square-roots of the adversary probabilities between two games. In many
cases involving guessing games (i.e., where we intend to show that the probability
of a certain event is negligible) this leads to bounds that are quadratically better.

• Tighter bounds using semi-classical oracles. We introduce a new technique,
called semi-classical oracles. By applying the O2H Theorem to games involving
semi-classical oracles, we can again get better bounds in some cases. (Whether
some advantage is gained depends very much on the specific proof in which the
O2H Theorem is used.)

• Query depth. Our O2H Theorem distinguishes query number q and query depth
d. Thus, for cases in which the adversary has a high parallelism, we get better
bounds (and for sequential adversaries nothing is lost by setting d := q).

One crucial novelty in our O2H Theorem is the use of “semi-classical oracles”. In a
nutshell, a semi-classical oracle is an oracle that only measures whether the adversary
queried a given “forbidden” input, but does not measure anything beyond that. (In
contrast, a quantum oracle does not measure anything, and a classical oracle measures
everything.) So, for example, if the adversary queries a superposition of non-measured
inputs, nothing is measured.

Our O2H Theorem bounds the distinguishing probability between two oracles G and
H again in terms of the success probability in a “guessing game” where the adversary
has to query an oracle on one of the forbidden inputs on which G and H differ. But in
contrast to the original O2H Theorem, the adversary is given a semi-classical oracle in
the guessing game! (In the original O2H Theorem, the adversary is given a quantum

3

oracle.) Using a semi-classical oracle, the guessing game can be expressed more simply
since it is well-defined whether the forbidden input has been queried or not. (In the
original O2H Theorem, we instead have to stop at a random query and measure whether
that particular query queries the forbidden input. This makes the description of the
game more complex, and the random selection of a single query is the reason why the
original O2H Theorem gives worse bounds.)

We stress that the semi-classical oracles are purely a proof technique and occur in
intermediate games in proofs involving the new O2H Theorem. The final security results
still hold in the quantum random oracle model, not in some “semi-classical random oracle
model”.

In this work, we introduce semi-classical oracles, state and prove the new O2H
Theorem (together with a query complexity result about searching in semi-classical
oracles), and demonstrate its usefulness by elementary examples and by exploring the
impact on the security bounds of existing encryption schemes.

Organization. In Section 1.1 we shortly discuss some related work, and in Section 1.2
we discuss the impact of our result on existing cryptographic schemes. Section 2 presents
basic notation. Our notion of semi-classical oracles is introduced in Section 3. We
also state our main theorems in Section 3, the proofs are deferred to Section 5 (after
the examples). We present examples how to use the new technique in Section 4. In
Appendix A, we give a proof of optimality of one of our results. In Appendix B, we
revisit the security proof from [TU16] for the security of a variant of Fujisaki-Okamoto
and show how to rework it with our new technique (with better bounds).

1.1 Related work

Variants of the O2H Theorem. Variants of the O2H Theorem were introduced
in [Unr15b, Unr14, Unr15a, JZC+18, Eat17], see the beginning of Section 1.2 for more
details.

Other proof techniques for the quantum random oracle model. [BBHT98]
showed that Grover search is optimal with respect to worst-case complexity ([Zal99]
when parallelism is considered). [Unr15a, HRS16] generalized this to the average-case
which implies that finding preimages of the random oracle is hard. [BDF+11] introduced
“history-free reductions” which basically amounts to replacing the random oracle by
a different function right from the start. [Zha12b] showed that random oracles can
be simulated using 2q-wise independent functions. Based on this, [Unr15a] introduces
a technique for extracting preimages of the random oracle. [Zha12b] introduces the
“semi-constant distributions” technique that allows us to program the random oracle in
many random locations with a challenge value without the adversary noticing. [Zha12a]
improves on this with the “small-range distribution” technique that allows us to simulate
random oracles using random looking functions with a small range. [Zha15] shows that
random oracles are indistinguishable from random permutations, and as a consequence

4

that random oracles are collision resistant (this is generalized by [TTU16, EU18, BES18]
to the case of non-uniformly distributed functions). Collision-resistance of the random
oracle is generalized to the “collapsing property” which allows us to show that measuring
the output of the random oracle effectively measures the input. More general methods
for problems in quantum query complexity (not limited to random oracles) include the
polynomial method [BBC+01] and the adversary method [Amb02]. [ARU14] shows that
the difficulties of using the quantum random oracle are not just a matter of missing
proof techniques, but that in certain cases classically secure schemes are not secure in
the quantum random oracle model.

Cryptosystems whose security proof is based on O2H Theorems. See Sec-
tion 1.2.

1.2 Impact on existing cryptosystems

Above, we explained why our new O2H Theorem can lead to better bounds. We will
also illustrate that point with a few simple examples in Section 4. However, to better
judge the impact on realistic cryptosystems, we need to ask the question how the bounds
achieved by existing security proofs improve.

We are aware of the following results in the quantum random oracle model that employ
some variant of the original O2H Theorem from [Unr15b]: [Unr15b] introduced the O2H
Theorem to build revocable timed-release encryption schemes, [Unr14] introduced an
“adaptive” version of the O2H Theorem1 to analyze a quantum position verification
protocol, [Unr15a] made the O2H Theorem even more adaptive and used this for the
design of non-interactive zero-knowledge proof systems and signature schemes (and this
in turn is the basis for various follow-up schemes such as [YAJ+17, GPS17, CDG+17,
DRS18, CHR+18, BEF18]). [Unr17] uses the O2H variant from [Unr15a] to prove security
of Fiat-Shamir [FS87], both as a proof system and as a signature scheme. [Eat17] uses a
variant of the O2H Theorem for proving security of Leighton-Micali signatures [LM95]
(their variant generalizes [Unr15b] in some aspects but only works when the position
where the oracle is programmed is information-theoretically hidden). [SY17] uses the
O2H Theorem for constructing PRFs and MACs. [TU16] was the first paper to employ
the O2H Theorem for designing public key encryption schemes: it proved the security
of variants of the Fujisaki-Okamoto transform [FO13] and the OAEP transform [BR95]
(introducing one extra hash value in the ciphertext for “key confirmation”). [HHK17]
modularized and improved the Fujisaki-Okamoto variant from [TU16], also using key
confirmation. [SXY18] proved security of a construction without key confirmation, still
using the O2H Theorem. [JZC+18] introduced a variant of the O2H Theorem that allows
some of the oracles and inputs given to the adversary to be non-uniformly distributed,
subject to the independence and uniformity of certain random variables, and uses it to
prove the security of further public-key encryption schemes. (Since our O2H Theorem
can also handle non-uniform inputs, it might be that it can serve as a drop-in replacement

1Which allows to reprogram the random oracle at a location that is influenced by the adversary.

5

in the proofs in [JZC+18] removing the necessity to check the independence conditions.)
[JZM19] proves security of public-key encryption schemes with explicit rejection; an
earlier version [JZM] of [JZM19] used the O2H Theorem from [JZC+18], the current
version uses our new O2H Theorems. [HKSU18] analyzes public-key encryption and
authenticated key exchange schemes, using the original O2H Theorem from [Unr15b] in
the first revision, but improving the bounds using our new O2H Theorem.

Thus, O2H Theorems might be one of the most widely used proof technique for
cryptosystems involving quantum random oracles. We expect that our improvement
of the O2H Theorem allows us to derive better security bounds for most of the above
schemes. To give some evidence to this hypothesis, we report on the advantages gained
by using our improvement in three of the works above, namely Targhi-Unruh [TU16],
Hövelmanns-Kiltz-Schäge-Unruh [HKSU18], and Jiang-Zhang-Ma [JZM19].

In case of [JZM19], an earlier draft [JZM] used the O2H variant from [JZC+18], while
the current version [JZM19] already uses our new O2H Theorem. Since the O2H variant
from [JZC+18] was introduced to handle the case where not all oracles and adversary
inputs are independent, this demonstrates that our O2H Theorem can handle this case,
too. (Besides giving tighter bounds.) Similarly, the first eprint version of [HKSU18] used
the original O2H Theorem from [Unr15b], while the second version was updated to use
our new O2H Theorem.

The old and new bounds are are summarized in Figure 1. The figure lists the
advantages against IND-CCA security for different settings. Since it is difficult to
compare the various formulas, in the column “queries”, we summarize the relationship
between query number and attack probability: Assuming that the terms involving ε,
the advantage against the underlying public-key encryption scheme, dominate all other
terms, how many queries does one have to make to break the scheme (with constant
probability)? E.g., given an advantage q

√
ε, we need q ≈ ε−1/2 queries for a successful

attack, so we write q2 ≈ 1/ε in that case.
Furthermore, in Appendix B, we reprove the security of the Fujisaki-Okamoto variant

from [TU16] using our O2H Theorem. That result is particularly interesting because of
its heavy use of the O2H Theorem. This allows us to make use of several of the new
features of our O2H Theorem.

• It uses “nested invocations” of the O2H Theorem. That is, first the O2H Theorem
is applied as usual to a pair of games, leading to a guessing game in which we need
to show that the guessing probability Pguess of the adversary is negligible. But then
the O2H Theorem is applied again to prove this. Since the bound obtained by
the O2H Theorem contains a square root over Pguess, the nested application of the
O2H Theorem introduces nested square roots, i.e., a forth root. This leads to a
particularly bad bound in [TU16].
In contrast, our new O2H Theorem allows us to directly bound the difference of the
square roots of the success probabilities of the adversary in two games. This means
that in a nested invocation, when we analyze Pguess, the O2H Theorem directly tells
us how

√
Pguess changes (instead of how Pguess changes). This avoids the nested

square root.

6

Setting Bound Queries

Targhi-Unruh [TU16]

old O2H, one-way εsym + q9/52−γ/5 + q3/2ε1/4 + q3/22−n1/4 q6 ≈ 1/ε

new O2H, IND-CPA εsym + q9/52−γ/5 + qq
1/2
dec ε

1/2 + q3/2qdec2−n/2 q2qdec ≈ 1/ε

new O2H, one-way εsym + q9/52−γ/5 + q3/2qdecε
1/2 q3q2

dec ≈ 1/ε

Hövelmanns-Kiltz-Schäge-Unruh [HKSU18]

old O2H, IND-CPA qε1/2 + q2−n/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 q ≈ 1/ε

Jiang-Zhang-Ma [JZM19]

old O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 + q2−n
′

q ≈ 1/ε

The “setting” column says whether the proof uses the old/new O2H and whether it is based on one-wayness
or IND-CPA security of the underlying public-key encryption scheme.
The “bound” column gives the bound on the advantage of the adversary against IND-CCA security, up
to constant factor. (In the case of [TU16] a hybrid public-key encryption scheme is constructed, in the
other cases a KEM.) ε is the advantage of the reduced adversary against the one-wayness or IND-CPA
security of the underlying public-key scheme, respectively. (A complete description would contain the
runtime of that adversary. For this overview this is not relevant since in all cases, that runtime did
not change when switching to the new O2H Theorem.) εsym is the advantage against the underlying
symmetric encryption scheme. q is the number of queries (random oracle + decryption queries), qdec
only the decryption queries. γ is the min-entropy of ciphertexts, n the plaintext length of the underlying
public-key scheme, and n′ is the length of the additional hash appended to the ciphertext in [JZM19].
The “queries” column summarizes the effect of queries compared to the security of the underlying
public-key scheme (see the explanation in the text, higher exponent is worse).
For simplicity, we give the bounds for the case where no decryption errors occur.

Figure 1: Security bounds of different Fujisaki-Okamoto variants with new and old O2H
Theorems.

• It uses the adaptive version of the O2H Theorem (from [Unr14]). While our
O2H Theorem is not adaptive (in the sense that the input where the oracle is
reprogrammed has to be fixed at the beginning of the game), it turns out that
in the present case our new O2H Theorem can replace the adaptive one. This is
because our new O2H Theorem allows us to reprogram the oracle at a large number
of inputs (not just a single one). It turns out we do not need to adaptively choose
the one input to reprogram, we just reprogram all potential inputs. At least in the
proof from [TU16], this works without problems.

We restate the proof from [TU16] both under the assumption that the underlying public-
key encryption scheme is one-way and under the assumption that it is IND-CPA secure.
While in the original proof, we get essentially the same bound no matter which of the two
assumptions we use, with the new O2H Theorem, the resulting bounds are much better
when using IND-CPA security (but there is also an improvement in the one-way case).

The resulting bounds are given in Figure 1 as well. We see that the biggest improve-

7

ment is in the case of IND-CPA security, where the dependence on the query number
changed from the sixth power to cubic.

We also noticed a mistake in the proof,2 which we fixed in our proof. (We do not
know if the fix carries over to the original proof.)

But our analysis also shows some potential for future research on the O2H Theorem.
The proof from [TU16] constructs a plaintext extractor Dec∗∗ that is relatively inefficient
because it iterates through a large number of possible candidate keys. Thus the number
of oracle queries performed by Dec∗∗ (namely, O(qqdec)) by far outweighs the number
of oracle queries performed by the adversary (namely, O(q)). This large number of
queries negatively influences the bounds obtained when applying the new O2H Theorem.
However, the O(qqdec) queries performed by Dec∗∗ are all classical, only O(q) quantum
queries are made. Our O2H Theorem treats classical and quantum queries the same. A
variant of the O2H Theorem that gives better bounds when only a small fraction of the
queries are quantum would lead to improvements in the bounds obtained here. We leave
this as a problem for future work.

2 Preliminaries

For basics of quantum computing, we refer to a standard textbook such as [NC00].
Given a function f : X → Y , we model a quantum-accessible oracle O for f as

a unitary transformation Uf operating on two registers Q,R with spaces CX and CY ,
respectively, where Uf : |q, r〉 7→ |q, r ⊕ f(x)〉, where ⊕ is some involutive group operation
(e.g., XOR if Y is a set of bitstrings).

A quantum oracle algorithm is an algorithm that can perform classical and quantum
computations, and that can query classical and/or quantum-accessible oracles. We allow
an oracle algorithm A to perform oracle queries in parallel. We say A is a q-query
algorithm if it performs at most q oracle queries (counting parallel queries as separate
queries), and has query depth d if it invokes the oracle at most d times (counting parallel
queries as one query). For example, if A performs 5 parallel queries followed by 7 parallel
queries, we have q = 12 and d = 2.

The distinction between query number and query depth is important because realistic
brute-force attacks are highly parallel. It’s easy to do 264 hash queries on parallel
machines — the Bitcoin network does this several times a minute — but it would take
millennia to do them sequentially. Query depth is also important because early quantum
computers are likely to lose coherency quickly, limiting them to shallow circuits. Our
model does not capture this limitation because it does not differentiate between a deep
quantum computation and several shallow ones with measurements between. But we
hope that future work can account for coherency using a notion of query depth.

We will make use of the well-known fact that any quantum oracle algorithm AO(z)
can be transformed into a unitary quantum oracle algorithm with constant factor

2In Game 7 in [TU16], a secret δ∗ is encrypted using a one-time secure encryption scheme, and the
final step in the proof concludes that therefore δ∗ cannot be guessed. However, Game 7 contains an
oracle Dec∗∗ that in turn accesses δ∗ directly, invalidating that argument.

8

computational overhead and the same query number and query depth. Such an algorithm
has registers QA (for its state), and Q1, . . . , Qn and R1, . . . , Rn for query inputs and
outputs, respectively. It starts with an initial state |Ψ〉 (that may depend on the input
z). Then, A alternatingly applies a fixed unitary U on all registers (independent of z
and O), and performs parallel queries. Parallel queries apply the oracle O to Qi, Ri for
each i = 1, . . . , n. (I.e., if O is implemented by Uf , we apply Uf ⊗ · · · ⊗ Uf between
U -applications.) Finally, the classical output of AO(z) is the result of a projective
measurement on the final state of A. This implies that in many situations, we can assume
our algorithms to be unitary without loss of generality.

3 Semi-classical oracles

Classical oracles measure both their input and their output, whereas quantum-accessible
oracles measure neither. We define semi-classical oracles, which measure their output but
not their input. Formally, a semi-classical oracle OSC

f for a function f with domain X

and codomain Y is queried with two registers: an input register Q with space CX and
an output register R with space CY .

When queried with a value |x〉 in Q, the oracle performs a measurement of f(x).
Formally, it performs the measurements corresponding to the projectors My : y ∈ Y
where My :=

∑
x∈S:f(x)=y|x〉〈x|. The oracle then initializes the R register to |y〉 for the

measured y.
In this paper, the function f is always the indicator function fS for a set S, where

fS(x) = 1 if x ∈ S and 0 otherwise. For brevity, we overload the notation OSC
S to be the

semiclassical oracle for this index function.
To illustrate this, let us see what happens if the adversary performs the same query

with a quantum oracle, a classical oracle, and a semi-classical oracle implementing the
indicator function for S, respectively: Say the adversary sends the query

∑
x 2−n/2|x〉|0〉,

and say S = {x0}. When querying a quantum oracle, the oracle returns the state∑
x 2−n/2|x〉|fS(x)〉 = 2−n/2|x〉|1〉+

∑
x 6=x0

2−n/2|x〉|0〉. When querying a classical oracle,
the resulting state will be |x〉|fS(x)〉 for a uniformly random x. But when querying a
semi-classical oracle, with probability 1− 2−n, the resulting state is

∑
x6=x0

1√
2n−1
|x〉|0〉,

and with probability 2−n, the resulting state is |x0〉|1〉. In particular, the superposition
between all |x〉 that are not in S is preserved!

In the execution of a quantum algorithm AO
SC
S , let Find be the event that OSC

S ever
returns |1〉. This is a well-defined classical event because OSC

S measures its output. This
event is called Find because if it occurs, the simulator could immediately stop execution
and measure the input register Q to obtain a value x ∈ S. If H is some other quantum-
accessible oracle with domain X and codomain Y , we define H \ S (“H punctured on
S”) as an oracle which, on input x, first queries OSC

S (x) and then H(x). We call this
“puncturing” for the following reason: when Find does not occur, the outcome of AH\S

is independent of H(x) for all x ∈ S. Those values are effectively removed from H’s
domain. The following lemma makes this fact formal.

9

Lemma 1 Let S ⊆ X be random. Let G,H : X → Y be random functions satisfying
∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z may have arbitrary joint
distribution.)

Let A be a quantum oracle algorithm (not necessarily unitary).
Let E be an arbitrary (classical) event.
Then Pr[E ∧ ¬Find : x← AH\S(z)] = Pr[E ∧ ¬Find : x← AG\S(z)].

Semi-classical oracles allow us to split the O2H Theorem into two parts. The first
part bounds how much a quantum adversary’s behavior changes when a random oracle is
punctured on S based on Pr [Find]:

Theorem 1 (Semi-classical O2H) Let S ⊆ X be random. Let G,H : X → Y be
random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z
may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).
Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

(d+ 1) · Pfind

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative defini-
tions of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (2)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (6)

In this theorem, we give A only access to a single oracle (G or H). In many settings,
there may be additional oracles that A has access to. It may not be obvious at the first
glance, but Theorem 1 applies in that case, too. Since there is no assumption on the
runtime of A, or on the size of z, nor on the number of queries made to the additional
oracles, additional oracles can simply be encoded as part of z. That is, if we want
to consider an adversary AH,F (), we can instead write AH(F) where F is a complete
(exponential size) description of F .

The proof of Theorem 1 is given in Section 5.2.
The second part relates Pr [Find] to the guessing probability:

10

Theorem 2 (Search in semi-classical oracle) Let A be any quantum oracle algo-
rithm making some number of queries at depth at most d to a semi-classical oracle with
domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z) until

(just before) the i-th query; then measures all query input registers in the computational
basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (7)

The proof is given in Section 5.3.
In the simple but common case that the input of A is independent of S, we get the

following corollary:

Corollary 1 Suppose that S and z are independent, and that A is a q-query algorithm.
Let Pmax := maxx∈X Pr[x ∈ S]. Then

Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax. (8)

For example, for uniform x ∈ {1, . . . , N}, AO
SC
{x} finds x with probability ≤ 4q/N .

Proof. Since the query depth of A does not occur in the lemma, we can assume that A
does not perform parallel queries. Then the output T of B in Theorem 2 has |T | ≤ 1,
and d = q. Thus Pr[S ∩ T 6= ∅ : T ← B(z)] is simply the probability that B(z) outputs
an element of S. Hence Pr[S ∩ T 6= ∅ : T ← B(z)] ≤ Pmax. Then by Theorem 2,

Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax. �

Note that Corollary 1 is essentially optimal (we cannot improve on the factor 4, see
Appendix A). Thus, searching in a semi-classical oracle is still slightly easier than in a
classical one.

3.1 Regular O2H, revisited

Note that the use of semi-classical oracles in Theorem 1 is entirely optional. If we use
variant (1) and apply Theorem 2 to Pfind, we get a variant of Theorem 1 that does not
involve semi-classical oracles. The result is essentially the following Theorem 3. However,
proving Theorem 3 directly gives a better bound: 2d

√
Pguess instead of 4d

√
Pguess .

Theorem 3 (One-way to hiding, probabilities) Let S ⊆ X be random. Let G,H :

X → Y be random functions satisfying ∀x /∈ S.G(x) = H(x). Let z be a random bitstring.
(S,G,H, z may have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query depth d (not necessarily unitary).

Let BH be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

11

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)]

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess

The same result holds with BG instead of BH in the definition of Pguess.

As we said already, except for a factor of 2 in the bound, this is an immediate corollary
of Theorem 1 and Theorem 2. To get the slightly better bound in Theorem 3, we use a
direct proof. See Section 5.4.

The original O2H [Unr15b, Lemma 6.2] is an immediate consequence of Theorem 3:
Pick H uniformly, pick x, y uniformly, set G(·) := y, I := {x} and z := (x,H(x)). Then
Pleft and Pguess are as in the original O2H. Pright is Pr[b = 1 : b ← AH(x:=y)(x,H(x))],
but this is the same as Pr[b = 1 : b← AH(x, y)].

This also implies that using Theorem 1 and Theorem 2 instead can never give worse
bounds than the original O2H, except by a factor of 2.

4 Examples how to use the O2H Theorems

To illustrate the use of the theorems from the previous section, we give two illustrative
examples: hardness of searching in a sparse random function, and hardness of inverting a
random oracle with leakage (in the sense that an only computationally secret encryption
of the preimage is given to the adversary).

4.1 Hardness of searching in a sparse random function

Consider the following setting: H : X → {0, 1} is a random function where for each x,
H(x) = 1 with probability ≤ λ (not necessarily independently). What is the probability
to find x with H(x) = 1 in q queries? We will prove an upper bound.

We solve this problem using the semi-classical O2H technique introduced by Theorem 1.
Let A be a q-query algorithm with depth d. We want to bound Pr[H(x) = 1 : x← AH()].
We do this by a series of games.

Game 1 x← AH(). Measure x. Then A wins if H(x) = 1.

We would like to apply Theorem 1 to this game. But it doesn’t work well to apply it
to AH because H is also used outside of A. Therefore, we use a different but obviously
equivalent game:

12

Game 2 Define ÂH() to run x ← AH(); measure x; and return b := H(x). Game 2
runs b← ÂH(). Then A wins if b = 1.

Note that Â is a (q + 1)-query algorithm with depth d+ 1.
We can apply the semi-classical O2H Theorem (Theorem 1), variant (4)3 to this game,

where G := 0 (the constant zero function) and S := {x : H(x) = 1}. This gives us:∣∣∣√Pr[b = 1 : Game 2]︸ ︷︷ ︸
Pleft

−
√

Pr[b = 1 ∧ ¬Find : Game 3]︸ ︷︷ ︸
Pright

∣∣∣
≤
√

(d+ 2) Pr[Find : Game 3]︸ ︷︷ ︸
Pfind

(9)

with

Game 3 Run b← ÂG\S(). Then A wins if b = 1 and not Find.

which is equivalent to

Game 4 x← AG\S(); set b← (G \ S)(x). Then A wins if b = 1 and not Find.

What has happened so far? We have used the O2H Theorem to rewrite a game
with access to an oracle H (Game 1) into the same game with a different oracle G = 0
(Game 4) (“right game”). The new oracle is considerably simpler: in this specific case, it
is all zero. The difference between the two games is bounded by (9) in terms of how hard
it is to find an element in the set S (the “marked elements”), i.e., a position where G
and H differ (the “finding game”). This is the typical way of applying an O2H Theorem:
Replace the oracle H by something simpler, continue the game-based proof from the right
game, and additionally perform a second game-based proof to bound the probability of
finding a marked element in the finding game.

However, there are several crucial differences to the use of prior O2H lemmas (e.g.,
[Unr15b]). First, prior O2H Theorems required G and H to be uniformly random
functions, and to differ only at a single location x. But here H is not assumed to be
uniform, and it differs from G at more than a single input (i.e. at the entire set S). This
allows us to analyze search problems with multiple targets.

Second, (9) has square roots on the left-hand side. This is optional: Theorem 1
also gives a bound without square roots. In our example, since Pright is very small, the
square-root variant gives smaller bounds for Pleft.

Third, the finding game is expressed using semi-classical oracles. This is never a
limitation because we can always replace the semi-classical oracles by quantum-accessible

3Theorem 1 gives us different options how to define the right game. Conceptually simplest is variant
(1) (it does not involve a semi-classical oracle in the right game), but it does not apply in all situations.
The basic idea behind all variants is the same, namely that the adversary gets access to an oracle G that
behaves differently on the set S of marked elements.

In the present proof, we use specifically variant (4) because then Game 4 will be of a form that is
particularly easy to analyze (the adversary has winning probability 0 there).

13

ones using Theorem 2 (which then gives bounds comparable to the O2H from [Unr15b]).
However, as we will see in the next section, in some cases semi-classical oracles give
better bounds.

In our case, we trivially have Pr[G(x) = 1 ∧ ¬Find : Game 4] = 0 since G = 0.
However, analyzing Pr[Find : Game 3] is less trivial. At the first glance, it seems that

having access to the oracle G = 0 yields no information about S, and thus finding an
element of S is down to pure luck, and cannot succeed with probability greater than
(q + 1)λ. But in fact, computing G \ S requires measuring whether each query is in S.
The measurement process can leak information about S. Appendix A shows that at least
in some cases, it is possible to find elements of S with greater probability than (q + 1)λ.
Fortunately, we have a result for this situation, namely Corollary 1, which shows that
Pr[Find : Game 4] ≤ 4(q + 1)λ.

Plugging this into (9), we get

Pr[H(x) = 1 : Game 1] ≤ 4(d+ 2)(q + 1)λ.

Without the square roots on the left-hand side of (9), we would get only the bound√
4(d+ 2)(q + 1)λ.
We summarize what we have proven in the following lemma:

Lemma 2 (Search in unstructured function) Let H be a random function, drawn
from a distribution such that Pr[H(x) = 1] ≤ λ for all x. Let A be a q-query adversary
with query depth d. Then Pr[H(x) = 1 : b← AH()] ≤ 4(d+ 2)(q + 1)λ.

While this is a simple consequence of our O2H technique, we are not aware that this
bound was already presented in the literature. While [Zal99] already showed a trade-off
between parallelism and query number in unstructured quantum search. However, our
result gives an explicit (and tight) success probability and applies even to functions whose
outputs are not i.i.d. For the special case of no-parallelism (d = q) and i.i.d. functions,
the best known bound was [HRS16, Theorem 1] which we improve upon by a factor of 2.
Additionally, our lemma allows the different outputs of H to be correlated while prior
results require them to be independent.

4.2 Hardness of inverting a random oracle with leakage

The previous example considered a pure query-complexity problem, searching in a random
function. It can easily be solved with other techniques (giving slightly different bounds).
Where O2H Theorems shine is the combination of computational hardness and random
oracles. The following example illustrates this.

Let E be a randomized algorithm taking input from a space X, such that it is difficult
to distinguish the distributions

D1 := {(x,E(x)) : x
$← X} and D0 := {(x1, E(x2)) : x1, x2

$← X}

For a quantum algorithm B, define its E-distinguishing advantage as

AdvIND−E(B) :=

∣∣∣∣∣ Pr
[
1← B(x, e) : (x, e)← D1

]
− Pr

[
1← B(x, e) : (x, e)← D0

] ∣∣∣∣∣
14

For example, E could be IND-CPA-secure encryption. Let H : X → Y be a random
oracle which is independent of E. How hard is it to invert H with a leakage of E? That
is, given a quantum oracle algorithm A, we want to bound

AdvOW-LEAK-E(A) := Pr
[
AH(H(x), E(x)) = x : x

$← X
]

We can do this using a series of games. For brevity, we will go into slightly less detail
than in Section 4.1. Let wi be the probability that the adversary wins Game i.

Game 0 (Original) x
$← X;x′ ← AH(H(x), E(x)). The adversary wins if x′ = x.

Now choose a random y
$← Y , and set a different random oracle G := H(x := y) which is

the same as H on every input except S := {x}. We can define a new game where the
adversary has access to G \ S:

Game 1 (Punctured, first try) x
$← X;x′ ← AG\{x}(H(x), E(x)). The adversary

wins if x′ = x and not Find.

Applying Theorem 1 variant (4),4 we find that∣∣∣∣∣∣∣∣
√

Pr[x′ = x : Game 0]︸ ︷︷ ︸
Pleft=w0

−
√

Pr[x′ = x ∧ ¬Find : Game 1]︸ ︷︷ ︸
Pright=w1

∣∣∣∣∣∣∣∣
≤
√

(d+ 1)Pr [Find : Game 1]︸ ︷︷ ︸
Pfind

Unlike in Section 4.1, this time we do not have a trivial bound for w1. We could bound it
in terms of distinguishing advantage against E. But let’s instead try to make this game
more like the ones in Section 4.1: we can cause the adversary to Find instead of winning.
To do this, we just apply an extra hash operation. Let ÂH(y, e) be the algorithm which
runs x′ ← AH(y, e); computes H(x′) and ignores the result; and then returns x′. Then
Â performs q + 1 queries at depth d+ 1. This gives us a new game:

Game 2 (Original with extra hash) x
$← X;x′ ← ÂH(H(x), E(x)). The adversary

wins if x′ = x.

Clearly w2 = w0. The new punctured game is also similar:

Game 3 (Punctured, extra hash) x
$← X;x′ ← ÂG\{x}(H(x), E(x)). The adversary

wins if x′ = x and not Find.

4Choosing a different variant here would slightly change the formula below but lead to the same
problems.

15

Applying Theorem 1 variant (4)5 as before gives

|
√
w3 −

√
w2| ≤

√
(d+ 2)Pr [Find : Game 3] (10)

But the adversary cannot win Game 3: the extra hash query triggers Find if x′ = x,
and the adversary does not win if Find. Therefore w3 = 0. Plugging this into (10) and
squaring both sides gives:

w0 = w2 ≤ (d+ 2)Pr [Find : Game 3] (11)

It remains to bound the right-hand side. We first note that in Game 3, the value H(x) is
only used once, since the adversary does not have access to H(x): it only has access to
G, which is the same as H everywhere except x. So Game 3 is the same as if H(x) is
replaced by a random value:

Game 4 (No H(x)) Set x
$← X; y

$← Y ; ÂG\{x}(y,E(x)). We do not care about the
output of Â, but only whether it Finds.

Clearly Pr [Find : Game 4] = Pr [Find : Game 3]. Finally, we apply the indistinguishability
assumption by comparing to the following game:

Game 5 (IND-E challenge) (x1, x2)
$← X; y

$← Y ; ÂG\{x1}(y,E(x2)).

Let B(x, e) be an algorithm which chooses y
$← Y ; runs ÂG\{x}(y, e); and returns 1 if

Find and 0 otherwise. Then B runs in about the same time as A plus (q+ 1) comparisons.
If (y, e) are drawn from D1, then this experiment is equivalent to Game 4, and it they
are drawn from D0 then it is equivalent to Game 5. Therefore B is a distinguisher for E
with advantage exactly

AdvIND−E(B) = |Pr [Find : Game 5]− Pr [Find : Game 4]| (12)

Furthermore, in Game 5, the oracle G is punctured at x1, which is uniformly random
and independent of everything else in the game. So by Theorem 2,

Pr [Find : Game 5] ≤ 4(q + 1)/card (X)

Combining this with (11) and (12), we have

AdvOW-LEAK-E(A) ≤ (d+ 2)AdvIND−E(B) +
4(d+ 2)(q + 1)

card (X)

This is a much better bound than we would have gotten without using semi-classical
oracles (i.e., using Theorem 3 or the O2H Theorem from [Unr15b]). In front of
AdvIND−E(B), we only have the factor d + 2. In contrast, if we had applied Theo-
rem 2 directly after using Theorem 1, then we would have gotten a factor of O(qd) in
front of AdvIND−E(B). If we had used the O2H from [Unr15b], then we would have gotten
an even greater bound of O(q

√
AdvIND−E(B) + 1/card (X)). However, this bound with

semi-classical oracles assumes indistinguishability, whereas an analysis with Theorem 3
would only require E to be one-way.

5The reason for choosing this particular variant is that same as in footnote 3.

16

5 Proofs

5.1 Auxiliary lemmas

The fidelity F (σ, τ) between two density operators is tr
√√

στ
√
σ, the trace distance

TD(σ, τ) is defined as 1
2 tr|σ − τ |, and the Bures distance B(τ, σ) is

√
2− 2F (τ, σ).

Lemma 3 For states |Ψ〉, |Φ〉 with ‖|Ψ〉‖ = ‖|Φ〉‖ = 1, we have

F (|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≥ 1− 1

2
‖|Ψ〉 − |Φ〉‖2

so that
B(|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≤ ‖|Ψ〉 − |Φ〉‖

Proof. We have

‖|Ψ〉 − |Φ〉‖2 = (〈Ψ| − 〈Φ|)(|Ψ〉 − |Φ〉) = ‖|Ψ〉‖2 + ‖|Φ〉‖2 − 〈Ψ|Φ〉 − 〈Φ|Ψ〉

= 2− 2<(〈Ψ|Φ〉) ≥ 2− 2|〈Ψ|Φ〉| (∗)
= 2− 2F (|Ψ〉〈Ψ|, |Φ〉〈Φ|)

where < denotes the real part, and (∗) is by definition of the fidelity F (for pure states).
Thus F (|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≥ 1− 1

2‖|Ψ〉 − |Φ〉‖
2 as claimed. The second inequality follows

from the definition of Bures distance. �

Lemma 4 (Distance measures vs. measurement probabilities) Let ρ1, ρ2 be
density operators (with tr ρi = 1). Let M be a binary measurement (e.g., represented as
a POVM). Let Pi be the probability that M returns 1 when measuring ρi.

Then √
P1P2 +

√
(1− P1)(1− P2) ≥ F (ρ1, ρ2) (13)

Also, ∣∣∣√P1 −
√
P2

∣∣∣ ≤ B(ρ1, ρ2). (14)

Furthermore,
|P1 − P2| ≤ TD(ρ1, ρ2) ≤ B(ρ1, ρ2). (15)

Proof. In this proof, given a probability P , let P̄ := 1− P . Let E be the superoperator
that maps ρ to the classical bit that contains the result of measuring ρ using M . That is,

for every density operator ρ with tr ρ = 1, E(ρ) =
(
p 0
0 p̄

)
where p is the probability that

M returns 1 when measuring ρ.

Then ρ′i := E(ρi) =
(
Pi 0
0 P̄i

)
for i = 1, 2. We then have

F (ρ1, ρ2)
(∗)
≤ F (ρ′1, ρ

′
2)

(∗∗)
=
∥∥∥√ρ′1√ρ′2∥∥∥

tr

= tr

(√
P1P2 0

0
√
P̄1P̄2

)
=
√
P1P2 +

√
P̄1P̄2

17

where (∗) is due to the the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗) is
the definition of fidelity. This shows (13). To prove (14), we compute:(√

P1 −
√
P2

)2
= P1 + P2 − 2

√
P1P2

≤ P1 + P2 − 2
√
P1P2 +

(√
P̄1 −

√
P̄2

)2

= 2− 2
√
P1P2 − 2

√
P̄1P̄2

(13)

≤ 2− 2F (ρ1, ρ2)
(∗)
= B(ρ1, ρ2)2

where (∗) is by definition of the Bures distance. This implies (14).
The first inequality in (15) is well-known (e.g., [NC00, Thm. 9.1]). For the second

part, we calculate

TD(ρ, τ)
(∗)
≤
√

1− F (ρ, τ)2 =

√
1 + F (ρ, τ)

2
·
√

2− 2F (ρ, τ)

=

√
1 + F (ρ, τ)

2
·B(ρ, τ)

(∗∗)
≤ B(ρ, τ)

Here the inequality marked (∗) is shown in [NC00, (9.101)], and (∗∗) is because 0 ≤
F (ρ, τ) ≤ 1. �

5.2 Proof of Theorem 1

In the following, let H : X → Y , S ⊆ X, z ∈ {0, 1}∗.

Lemma 5 (O2H in terms of pure states) Fix H,S, z. Let AH(z) be a unitary quan-
tum oracle algorithm of query depth d. Let QA denote the register containing all of A’s
state.

Let L be a quantum register with space C2d (for the “query log”).
Let BH,S(z) be the unitary algorithm on registers QA, L that operates like AH(z),

except:
• It initializes the register L with |0 . . . 0〉.
• When A performs its i-th set of parallel oracle queries on input/output regis-

ters (Q1, R1), . . . , (Qn, Rn) that are part of QA, B instead first applies US on
(Q1, . . . , Qn, L) and then performs the oracle queries. Here US is defined by:

US |x1, . . . , xn〉|l〉 :=

{
|x1, . . . , xn〉|l〉 (every xj /∈ S),

|x1, . . . , xn〉|flipi(l)〉 (any xj ∈ S)

Let |Ψleft〉 denote the final state of AH(z), and |Ψright〉 the final state of BH,S(z).
Let P̃find be the probability that a measurement of L in the state |Ψright〉 returns 6= 0.

(Formally,
∥∥(I ⊗ (I − |0〉〈0|))|Ψright〉

∥∥2
.)

Then ∥∥|Ψleft〉 ⊗ |0〉 − |Ψright〉
∥∥2 ≤ (d+ 1)P̃find.

18

Proof. We first define a variant Bcount of the algorithm B that, instead of keeping a log
of the successful oracle queries (as B does in L), just counts the number of successful
oracle queries (in a register C). Specifically:

Let C be a quantum register with space C{0,...,d}, i.e., C can store states |0〉, . . . , |d〉.
Let BH,S

count(z) be the unitary algorithm on registers QA, S that operates like AH(z),
except:

• It initializes the register C with |0〉.
• When A performs its i-th set of parallel oracle queries on input/output registers

((Q1, R1), . . .) that are part of QA, B instead first applies U ′S on (Q1, . . . , Qn), C
and then performs the oracle queries. Here U ′S is defined by:

U ′S |x1, . . . , xn〉|c〉 :=

{
|x1, . . . , xn〉|c〉 (every xj /∈ S),

|x1, . . . , xn〉|c+ 1 mod d+ 1〉 (any xj ∈ S)

Note that the mod d+ 1 part of the definition of U ′S has no effect on the behavior of B̃
because US is applies only d times. However, the mod d + 1 is required so that US is
unitary.

Consider the state |Ψcount〉 at the end of the execution BH,S
count(z). This may be written

|Ψcount〉 =

d∑
i=0

|Ψ′i〉|i〉C . (16)

for some (non-normalized) states |Ψ′i〉 on QA.
Consider the linear (but not unitary) map N ′ : |x〉|y〉 7→ |x〉|0〉. Obviously, N ′

commutes with the oracle queries and with the unitary applied by A between queries
(since those unitaries do not operate on C.) Furthermore N ′U ′S = N ′, and the initial
state of Bcount is invariant under N ′. Thus N ′|Ψcount〉 is the same as the state we get if
we execute Bcount without the applications of U ′S . But that state is |Ψleft〉|0〉C because
the only difference between Bcount and A is that Bcount initializes C with |0〉 and applies
U ′S to it.

So we have
d∑
i=0

|Ψ′i〉|0〉C = N ′|Ψcount〉 = |Ψleft〉|0〉C

and hence

|Ψleft〉 =

d∑
i=0

|Ψ′i〉. (17)

The state |Ψright〉 is a state on QA, L and thus can be written as

|Ψright〉 =
∑

l∈{0,1}q
|Ψl〉|l〉L (18)

for some (non-normalized) states |Ψl〉 on QA.

19

Furthermore, both |Ψcount〉 and |Ψright〉, when projected onto |0〉 in register C/L,
respectively, result in the same state, namely the state corresponding to no query to
OSC
S succeeding. By (16) and (18), the result of that projection is |Ψ0〉|0〉L and |Ψ′0〉|0〉C ,

respectively. Hence
|Ψ0〉 = |Ψ′0〉. (19)

Furthermore, the probability that no query succeeds is the square of the norm of that
state. Hence ∥∥|Ψ0〉

∥∥2
= 1− P̃find. (20)

We have

d∑
i=0

∥∥|Ψ′i〉∥∥2
=

d∑
i=0

∥∥|Ψ′i〉|i〉C∥∥2
=
∥∥∥ d∑
i=0

|Ψ′i〉|i〉C
∥∥∥2 (16)

=
∥∥|Ψcount〉

∥∥2
= 1.

∑
l∈{0,1}d

∥∥|Ψl〉
∥∥2

=
∑

l∈{0,1}d

∥∥∥|Ψl〉|l〉L
∥∥∥2

=
∥∥∥∑
l∈{0,1}d

|Ψl〉|l〉L
∥∥∥2 (18)

=
∥∥|Ψright〉

∥∥2
= 1.

Thus

d∑
i=1

∥∥|Ψ′i〉∥∥2
= 1−

∥∥|Ψ′0〉∥∥2 (20)
= P̃find,

∑
l∈{0,1}d
l 6=0

∥∥|Ψl〉
∥∥2

= 1−
∥∥|Ψ0〉

∥∥2 (20)
= P̃find. (21)

Therefore∥∥∥|Ψright〉 − |Ψleft〉|0〉L
∥∥∥2 (18)

=
∥∥∥(|Ψ0〉 − |Ψleft〉

)
|0〉+

∑
l∈{0,1}d
l 6=0

|Ψl〉|l〉
∥∥∥2

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2
+

∑
l∈{0,1}d
l 6=0

∥∥|Ψl〉
∥∥2 (21)

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥2
+ P̃find

(19),(17)
=

∥∥∥ d∑
i=1

|Ψ′i〉
∥∥∥2

+ P̃find

(∗)
≤
(d∑
i=1

∥∥∥|Ψ′i〉∥∥∥)2
+ P̃find

(∗∗)
≤ d ·

d∑
i=1

∥∥∥|Ψ′i〉∥∥∥2
+ P̃find

(21)
= dP̃find + P̃find = (d+ 1)P̃find.

Here (∗) uses the triangle inequality, and (∗∗) the AM-QM (or Jensen’s) inequality. This
is the inequality claimed in the lemma. �

Lemma 6 (O2H in terms of mixed states) Let X,Y be sets, and let H : X →
Y, S ⊂ X, z ∈ {0, 1}∗ be random. (With some joint distribution.)

Let A be an algorithm which queries H at depth d. Let Pfind be as in Theorem 1.
Let ρleft denote the final state of AH(z).
Let ρright denote the final state of AH\S. This is the state of the registers QA and L,

where QA is the state of A itself, and L is a register that contains the log of the responses

20

of OSC
S . If the i-th query to OSC

S returns `i, then L contains |`1 . . . `q〉 at the end of the
execution of B.

Then F (ρleft ⊗ |0〉〈0|, ρright) ≥ 1 − 1
2(d + 1)Pfind and B(ρleft ⊗ |0〉〈0|, ρright) ≤√

(d+ 1)Pfind.

Proof. Without loss of generality, we can assume that A is unitary: If A is not unitary,
we can construct a unitary variant of A that uses an extra auxiliary register Z, and later
trace out that register again from the states ρleft and ρright.

Let
∣∣ΨHSz

left

〉
be the state

∣∣Ψleft

〉
from Lemma 5 for specific values of H,S, z. And

analogously for
∣∣ΨHSz

right

〉
and P̃HSzfind .

Then ρleft = ExpHSz[
∣∣ΨHSz

left

〉〈
ΨHSz

left

∣∣]
Furthermore, if we define ρ′right := ExpHSz[|ΨHSz

right〉〈ΨHSz
right|], then ρright = EL(ρ′right)

where EL is the quantum operation that performs a measurement in the computational
basis on the register L.

And Pfind = ExpHSz[P̃
HSz
find].

Then

F (ρleft ⊗ |0〉〈0|, ρright) = F
(
EL(ρleft ⊗ |0〉〈0|), EL(ρ′right)

)
(∗)
≥ F

(
ρleft ⊗ |0〉〈0|, ρ′right

)
= F

(
Exp
HSz

[∣∣ΨHSz
left

〉〈
ΨHSz

left

∣∣⊗ |0〉〈0|],Exp
HSz

[∣∣ΨHSz
right

〉〈
ΨHSz

right

∣∣])
(∗∗)
≥ Exp

HSz

[
F
(∣∣ΨHSz

left

〉〈
ΨHSz

left

∣∣⊗ |0〉〈0|, ∣∣ΨHSz
right

〉〈
ΨHSz

right

∣∣)]
Lem. 3

≥ 1− 1
2 Exp
HSz

[∥∥|ΨHSz
left 〉 ⊗ |0〉 − |ΨHSz

right〉
∥∥2
]

Lem. 5

≥ 1− 1

2
Exp
HSz

[
(d+ 1)P̃HSzfind

]
= 1− 1

2(d+ 1)Pfind.

Here (∗) follows from the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗) follows
from the joint concavity of the fidelity [NC00, (9.95)]. This shows the first bound from
the lemma.

The Bures distance B is defined as B(ρ, τ)2 = 2(1− F (ρ, τ)). Thus

B(ρleft ⊗ |0〉〈0|, ρright)
2 = 2(1− F (ρleft ⊗ |0〉〈0|, ρright))

≤ 2(1− (1− 1
2(d+ 1)Pfind)) = (d+ 1)Pfind,

hence B(ρleft ⊗ |0〉〈0|, ρright) ≤
√

(d+ 1)Pfind. �

Theorem 1 (Semi-classical O2H – restated) Let S ⊆ X be random. Let G,H :

X → Y be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).

21

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)]
Lem. 1
= Pr[Find : AH\S(z)]

Then

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ 2
√

(d+ 1) · Pfind

The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative defini-
tions of Pright:

Pright := Pr[b = 1 : b← AH\S(z)], (2)

Pright := Pr[b = 1 ∧ ¬Find : b← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b← AG\S(z)]. (6)

Proof. We first prove the theorem using the definition of Pright from (2).
Let M be the measurement that measures, given the the register QA, L, what the

output b of A is. Here QA is the state space of A, and L is the additional register
introduced in Lemma 6. (Since A obtains b by measuring QA, such a measurement M
exists.)

Let PM (ρ) denote the probability that M returns 1 when measuring a state ρ.
Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright) where ρleft and ρright are

defined in Lemma 6.
Then ∣∣∣Pleft − Pright

∣∣∣ =
∣∣∣PM (ρleft ⊗ |0〉〈0|)− PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind∣∣∣√Pleft −
√
Pright

∣∣∣ =
∣∣∣√PM (ρleft ⊗ |0〉〈0|)−

√
PM (Pright)

∣∣∣
Lem. 4

≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6

≤
√

(d+ 1)Pfind.

This shows the theorem with the definition of Pright from (2).

Now we show the theorem using the definition of Pright from (3). Let M instead be
the measurement that measures whether b = 1 and L contains |0〉 (this means Find did

22

not happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright), and the rest of the
proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (5). Let M instead be
the measurement that measures whether b = 1 or L contains |x〉 for x 6= 0 (this means
Find did happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright), and the rest
of the proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (4). This follows
immediately by case (3), and the fact that Pr[b = 1 ∧ ¬Find : b ← AH\S(z)] = Pr[b =
1 ∧ ¬Find : b← AG\S(z)] by Lemma 1.

Now we show the theorem using the definition of Pright from (6). By Lemma 1,

Pr[b = 1 ∧ ¬Find : b← AH\S(z)] = Pr[b = 1 ∧ ¬Find : b← AG\S(z)] (22)

Pr[true ∧ ¬Find : b← AH\S(z)] = Pr[true ∧ ¬Find : b← AG\S(z)]. (23)

From (23), we get (by considering the complementary event):

Pr[Find : b← AH\S(z)] = Pr[Find : b← AG\S(z)]. (24)

Adding (22) and (24), we get

Pr[b = 1 ∨ Find : b← AH\S(z)] = Pr[b = 1 ∨ Find : b← AG\S(z)]. (25)

Then case (6) follows from case (5) and the fact (25).

Now we show the theorem using the definition of Pright from (1). Let

Pmid := Pr[b = 1 ∧ ¬Find : b← AH\S(z)],

P ′mid := Pr[b = 1 ∧ ¬Find : b← AG\S(z)],

P ′find := Pr[Find : AG\S(z)].

By the current lemma, case (3) (which we already proved), we have

|Pleft − Pmid| ≤
√

(d+ 1)Pfind, |Pleft − Pmid| ≤
√

(d+ 1)Pfind,

and by case (4), we also get

|Pright − P ′mid| ≤
√

(d+ 1)P ′find, |Pright − P ′mid| ≤
√

(d+ 1)P ′find,

Note that in the second case, we invoke the current lemma with G and H exchanged,
and our Pright is their Pleft.

By Lemma 1, Pmid = P ′mid and by (24), Pfind = P ′find. With this and the triangle
inequality, we get

|Pleft − Pright| ≤ 2
√

(d+ 1)Pfind, |Pleft − Pright| ≤ 2
√

(d+ 1)Pfind.

as required. �

23

5.3 Proof of Theorem 2

In the following, let S ⊆ X, z ∈ {0, 1}∗.

Lemma 7 Fix S, z (S, z are not randomized in this lemma.) Let AH(z) be a unitary
oracle algorithm with query depth d.

Let B be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

runs AO
SC
∅ (z) until (just before) the i-th query, measure all query input registers in the

computational basis, output the set T of measurement outcomes.
Then

Pr[Find : AO
SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)].

Proof. Let |Ψi〉 be the (non-normalized) state of AO
SC
S (z) right after the i-th query in

the case that the first i queries return 0. That is, ‖|Ψi〉‖2 is the probability that the first
i queries return 0, and |Ψi〉/‖|Ψi〉‖ is the state conditioned on that outcome. Let |Ψ′i〉 be

the corresponding state of AO
SC
∅ (z), that is, |Ψ′i〉 is the state just after the ith query (or

before, since queries to OSC
∅ do not affect the state). Note that |Ψ0〉 = |Ψ′0〉 is the initial

state of A(z) (independent of the oracle).
From the state |Ψi〉, the algorithm A first applies a fixed unitary U that depends

only on A. Then it queries the semi-classical oracle OSC
S .

Let PS be the orthogonal projector projecting the query input registers Q1, . . . , Qn
onto states |T 〉 with S ∩ T 6= ∅, formally PS :=

∑
T s.t.S∩T 6=∅|T 〉〈T |. Thus ‖PSU |Ψi〉‖2

is the probability of measuring T with S ∩ T 6= ∅ in registers Q1, . . . , Qn given the state
U |Ψi〉.

Then the i-th query to OSC
S applies I−PS to |Ψi〉. Therefore |Ψi+1〉 = (I−PS)U |Ψi〉.

Let pi = 1− ‖|Ψi〉‖2 be the probability that one of the first i queries returns 1, and
let

ri := pi + 2‖|Ψi〉 − |Ψ′i〉‖2 = 1− ‖|Ψi〉‖2 + 2‖|Ψi〉‖2 − 4<〈Ψ′i|Ψi〉+ 2 ‖|Ψ′i〉‖2︸ ︷︷ ︸
=1

= 3− 4<〈Ψ′i|Ψi〉+ ‖|Ψi〉‖2. (26)

Notice that r0 = 0 since |Ψ0〉 = |Ψ′0〉 and ‖|Ψ0〉‖ = 1. During the (i+ 1)-st query, U |Ψi〉
is changed to U |Ψi〉 − PSU |Ψi〉, and U |Ψ′i〉 stays the same, so that

|Ψi+1〉 = U |Ψi〉 − PSU |Ψi〉
|Ψ′i+1〉 = U |Ψ′i〉

Therefore,

‖|Ψi+1〉‖2 = ‖U |Ψi〉‖2 −
〈
Ψi

∣∣U †PSU ∣∣Ψi

〉
−
〈
Ψi

∣∣U †P †SU ∣∣Ψi

〉
+
〈
Ψi

∣∣U †P †SPSU ∣∣Ψi

〉
= ‖|Ψi〉‖2 −

〈
Ψi

∣∣U †PSU ∣∣Ψi

〉
(27)

24

because PS is a projector and thus P †SPS = P †S = PS . Likewise,

〈Ψ′i+1|Ψi+1〉 =
〈
Ψ′i
∣∣U †U ∣∣Ψi

〉
−
〈
Ψ′i
∣∣U †PSU ∣∣Ψi

〉
= 〈Ψ′i|Ψi〉 −

〈
Ψ′i
∣∣U †PSU ∣∣Ψi

〉
(28)

Let
gi := 〈Ψ′i−1|U †PSU |Ψ′i−1〉 =

∥∥PSU |Ψ′i−1〉
∥∥2
.

Then gi is the probability that the algorithm B returns T with S∩T 6= ∅ when measured
at the i-th query.

We calculate

ri+1 − ri
(26)
= −4<〈Ψ′i+1|Ψi+1〉+ ‖|Ψi+1〉‖2 + 4<〈Ψ′i|Ψi〉 − ‖|Ψi〉‖2

(27),(28)
= 4<〈Ψ′i|U †PSU |Ψi〉 − 〈Ψi|U †PSU |Ψi〉
= 4〈Ψ′i|U †PSU |Ψ′i〉 − 〈2Ψ′i −Ψ|U †PSU |2Ψ′i −Ψi〉︸ ︷︷ ︸

≥0

≤ 4〈Ψ′i|U †PSU |Ψ′i〉 = 4gi+1

Since r0 = 0, by induction we have

Pr[Find : AO
SC
S (z)] = pd ≤ rd ≤ 4

d∑
i=1

gi = 4d · Pr
[
S ∩ T 6= ∅ : T ← B(z)

]
as claimed. �

Theorem 2 (Search in semi-classical oracle – restated) Let A be any quantum
oracle algorithm making some number of queries at depth at most d to a semi-classical
oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary joint
distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AO

SC
∅ (z) until

(just before) the i-th query; then measures all query input registers in the computational
basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] (7)

Proof. Immediate from Lemma 7 by using the fact that A can always be transformed
into a unitary oracle algorithm, and by averaging. �

5.4 Proof of Theorem 3

In the following, let G,H : X → Y , S ⊆ X, z ∈ {0, 1}∗.

25

Lemma 8 (One-way to hiding, pure states) Fix G,H, S, z satisfying ∀x /∈
S. G(x) = H(x). (G,H, S, z are not randomized in this lemma.) Let AH(z) be a unitary
quantum oracle algorithm with query depth d. Let QA denote the register containing all
of A’s state.

Let B be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

Let |Ψleft〉 be the final state of A after running AH(z). And let |Ψright〉 be the final
state of A after running AG(z).

Let

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then
∥∥|Ψleft〉 − |Ψright〉

∥∥ ≤ 2d
√
Pguess.

Proof. The state of A is composed of three quantum systems A,Q,R where Q,R are the
query and the response register for oracle queries. (That is, Q consists of a number of
registers Q1, . . . , Qn where r is the maximum number of queries performed in parallel,
and R consists of corresponding registers R1, . . . , Rn.) Then an execution of AH(z) leads
to the final state (UOH)q|Ψ0〉 where |Ψ0〉 is an initial state that depends on z (but not on
G, H, or S), OH : |a, q1, . . . , qn, r1, . . . , rn〉 7→ |a, q1, . . . , qn, r1 ⊕H(q1), . . . , rn ⊕H(qn)〉
is an oracle query, and U is A’s state transition operation. (And analogously for AG.) We
define |Ψi

H〉 := (UOH)i|Ψ0〉 and similarly |Ψi
G〉. Then |Ψleft〉 = |Ψd

H〉 and |Ψright〉 = |Ψd
G〉.

And in our notation, we can describe B as follows: BH(x) picks i
$← {1, . . . , d} and

y
$← Y , measures the quantum system Q of the state |Ψi−1

H 〉 (this gives a list T of inputs),
and outputs the result T . Thus

Pguess = 1
q

∥∥PS |Ψi−1
H 〉

∥∥2
=

q∑
i=1

1
qBi with Bi :=

∥∥PS |Ψi−1
H 〉

∥∥2
. (29)

Here PS is the orthogonal projector projecting Q onto states |T 〉 with S∩T 6= ∅, formally
PS :=

∑
T s.t.S∩T 6=∅|T 〉〈T |. (I.e., ‖PS |Ψi−1

H 〉‖2 is the probability of measuring T with

S ∩ T 6= ∅ in register Q given the state |Ψi−1
H 〉.)

Let Di :=
∥∥|Ψi

H〉 − |Ψi
G〉
∥∥2

. We have D0 =
∥∥|Ψ0〉 − |Ψ0〉

∥∥2
= 0, and for i ≥ 1 we

26

have:

Di =
∥∥UOH |Ψi−1

H 〉 − UOG|Ψ
i−1
G 〉

∥∥2

(∗)
=
∥∥(OH |Ψi−1

H 〉 −OG|Ψ
i−1
H 〉) + (OG|Ψi−1

H 〉 −OG|Ψ
i−1
G 〉)

∥∥2

(∗∗)
≤
∥∥(OH −OG)|Ψi−1

H 〉
∥∥2

+
∥∥OG(|Ψi−1

H 〉 − |Ψ
i−1
G 〉)

∥∥2

+ 2
∥∥(OH −OG)|Ψi−1

H 〉
∥∥ · ∥∥OG(|Ψi−1

H 〉 − |Ψ
i−1
G 〉)

∥∥
(∗∗∗)
=
∥∥(OH −OG)PS |Ψi−1

H 〉
∥∥2

+
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥2

+ 2
∥∥(OH −OG)PS |Ψi−1

H 〉
∥∥ · ∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥
(∗∗∗∗)

≤ 4
∥∥PS |Ψi−1

H 〉
∥∥2︸ ︷︷ ︸

=Bi

+
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥2︸ ︷︷ ︸
=Di−1

+ 4
∥∥PS |Ψi−1

H 〉
∥∥︸ ︷︷ ︸

=
√
Bi

·
∥∥|Ψi−1

H 〉 − |Ψ
i−1
G 〉

∥∥︸ ︷︷ ︸
=
√
Di

= 4Bi +Di−1 + 4
√
BiDi−1 = (

√
Di−1 + 2

√
Bi)

2. (30)

Here (∗) uses that U is unitary. And (∗∗) uses the inequality ‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 +
2‖a‖ · ‖b‖. And (∗∗∗) uses that (OH − OG)PS = OH − Og since G = H outside of S
(this can be verified by checking on all basis states |a, q1, . . . , r1, . . .〉), and that OG is
unitary. And (∗∗∗∗) follows since OH −OG has operator norm ≤ 2. From (30), we get√
Di ≤

√
Di−1 + 2

√
Bi. This implies (with D0 = 0) that

√
Dd ≤ 2

d∑
i=1

√
Bi = 2d

d∑
i=1

1
d

√
Bi

(∗)
≤ 2d

√√√√ d∑
i=1

1
dBi

(29)
= 2d

√
Pguess

where (∗) follows from Jensen’s inequality. By definition of Dq, this shows the lemma. �

Lemma 9 (One-way to hiding, mixed states) Let G,H, S, z be random satisfying
∀x /∈ S. G(x) = H(x). (With some joint distribution.)

Let A be a quantum oracle algorithm with query depth q (not necessarily unitary).
Let B and Pguess be as in Theorem 3.

Let ρleft be the final state of AH(z) and let ρright be the final state of AG(z)
Then F (ρleft, ρright) ≥ 1− 2d2Pguess and B(ρleft, ρright) ≤ 2d

√
Pguess.

Proof. Without loss of generality, we can assume that A is unitary during the execution,
and applies a quantum operation E to its state in the last step. (Note that transforming an
adversary A into a unitary adversary A′ may change the internal state during the execution
because additional auxiliary qubits are used to simulate measurements. However, this
does not affect the probability Pguess because B does not measure those auxiliary qubits
of A′.)

For fixed G,H, S, z, let |ΨHSz
left 〉, |ΨGSz

right〉, PHSzguess refer to the values |Ψleft〉, |Ψright〉, Pguess

from Lemma 8 for those fixed G,H, S, z.

27

Let ρ̂left and ρ̂right refer to the state of A before applying E in the games defining ρ̂left

and ρ̂right, respectively.
Then

ρ̂left = Exp
GHSz

[
|ΨHSz

left 〉〈ΨHSz
left |

]
and

ρ̂right = Exp
GHSz

[
|ΨGSz

right〉〈ΨGSz
right|

]
.

Thus we have

F (ρleft, ρright) = F (E(ρ̂left), E(ρ̂right))
(∗)
≥ F (ρ̂left, ρ̂right)

= F
(

Exp
HGSz

[|ΨHSz
left 〉〈ΨHSz

left |], Exp
HGSz

[|ΨGSz
right〉〈ΨGSz

right|]
)

(∗∗)
≥ Exp

HGSz
[F
(
|ΨHSz

left 〉〈ΨHSz
left |, |ΨGSz

right〉〈ΨGSz
right|

)
]

Lemma 3

≥ Exp
HGSz

[
1− 1

2

∥∥|ΨHSz
left 〉 − |ΨGSz

right〉
∥∥2]

Lemma 8

≥ Exp
HGSz

[
1− 1

2(4dPHSzguess)
] (∗∗∗)

= 1− 2d2Pguess.

Here (∗) follows from the monotonicity of the fidelity [NC00, Thm. 9.6], and (∗∗)
follows from the joint concavity of the fidelity [NC00, (9.95)]. And (∗∗∗) follows since
Pguess = ExpHGSz

[
PHSzguess

]
.

The Bures distance B is defined as B(ρ, τ)2 = 2(1− F (ρ, τ)). Thus

B(ρleft, ρright)
2 = 2(1− F (ρleft, ρright)) ≤ 2(1− (1− 2d2Pguess)) = 4d2Pguess,

hence B(ρleft, ρright) ≤ 2d
√
Pguess, as claimed. �

Theorem 3 (One-way to hiding, probabilities – restated) Let S ⊆ X be random.
Let G,H : X → Y be random functions satisfying ∀x /∈ S.G(x) = H(x). Let z be a
random bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be quantum oracle algorithm with query depth d (not necessarily unitary).

Let BH be an oracle algorithm that on input z does the following: pick i
$← {1, . . . , d},

run AH(z) until (just before) the i-th query, measure all query input registers in the
computational basis, output the set T of measurement outcomes.

Let

Pleft := Pr[b = 1 : b← AH(z)]

Pright := Pr[b = 1 : b← AG(z)]

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)]

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess

The same result holds with BG instead of BH in the definition of Pguess.

28

Proof. The output bit b of A is the result of a measurement M applied to its final state.
Thus, with ρA,1, ρA,2 as in Lemma 9, Pleft, Pright is the probability that the measurement
M returns 1 when measuring ρleft, ρright, respectively. By Lemma 4,∣∣Pleft − Pright

∣∣ ≤ B(ρleft, ρright) and
∣∣∣√Pleft −

√
Pright

∣∣∣ ≤ B(ρleft, ρright)

By Lemma 9, B(ρleft, ρright) ≤ 2d
√
PB. The corollary follows. �

Acknowledgements. Thanks to Daniel Kane, Eike Kiltz, and Kathrin Hövelmanns for
valuable discussions. Ambainis was supported by the ERDF project 1.1.1.5/18/A/020.
Unruh was supported by institutional research funding IUT2-1 of the Estonian Ministry
of Education and Research, the United States Air Force Office of Scientific Research
(AFOSR) via AOARD Grant ”Verification of Quantum Cryptography” (FA2386-17-1-
4022), the Mobilitas Plus grant MOBERC12 of the Estonian Research Council, and the
Estonian Centre of Exellence in IT (EXCITE) funded by ERDF.

29

A Optimality of Corollary 1

Lemma 10 If S = {x} where x
$← {1, . . . , N}, then there is a q-query algorithm AO

SC
S

such that

Pr[Find : AO
SC
S ()] ≥ 4q − 3

N
− 8q(q − 1)

N2

Proof. The algorithm is as follows:

• Make the first query with amplitude 1/
√
N in all positions.

• Between queries, transform the state by the unitary U := 2E/N − I where E
is the matrix containing 1 everywhere. That U is unitary follows since U †U =
4E2/N2 − 4E/N + I = I using E2 = NE.

One may calculate by induction that the final non-normalized state has amplitude(
1− 2

N

)q−1

· 1√
N

in all positions except for the xth one (where the amplitude is 0), so its squared norm is

1− Pr[Find] =

(
1− 2

N

)2q−2

· 1

N
· (N − 1) =

(
1− 2

N

)2q−2

·
(

1− 1

N

)
As a function of 1/N , this expression’s derivatives alternate on [0, 1/2], so it is below its
second-order Taylor expansion:

1− Pr[Find] ≤ 1− 4q − 3

N
+

8q(q − 1)

N2

This completes the proof. �

B Improved proof of the Targhi-Unruh transform

In this section we show how to adapt the security proof from [TU16] (of their variant of
the Fujisaki-Okamoto transform) to the our new O2H Theorem. To make it easier to
compare the original and the new proof, we stick as closely as possible to the original
proof and its notation, reproducing text verbatim where the proof does not change. (In
particular, the advantage of the adversary against the underlying schemes are written
negl(n)sy and negl(n)asy, not εsym and ε as in the comparison table in Figure 1. And
the term ω(log(n)) corresponds to γ in Figure 1, see footnote 6.)

We have extended the proof to compute security bounds both for the case that the
underlying public-key encryption scheme is one-way, and the case that it is IND-CPA.
(Since with the new O2H Theorem, we get different bounds in both cases.)

30

Construction. We combine an asymmetric encryption scheme with a symmetric
encryption scheme by using three hash functions in order to gain an IND-CCA secure pub-
lic encryption scheme Πhy = (Genhy, Enchy, Dechy) in the quantum random oracle model.

Let Πasy = (Genasy, Encasy, Decasy) be an asymmetric encryption scheme with the
message space MSPasy = {0, 1}n1 and the coin space COINasy = {0, 1}n2 . Let Πsy =
(Encsy, Decsy) be a symmetric encryption scheme where MSPsy and KSPsy = {0, 1}m are
its message space and key space, respectively. The parameters n1, n2 and m depend on
the security parameter n. We define three hash functions:

G : MSPasy → KSPsy, H : {0, 1}∗ → COINasy and H ′ : MSPasy → MSPasy.

These hash functions will be modeled as random oracles in the following.
The hybrid scheme Πhy = (Genhy, Enchy, Dechy) is constructed as follows, with MSPhy

as its message space:

1. Genhy, the key generation algorithm, on input 1n runs Genasy to obtain a pair of
keys (pk, sk).

2. Enchy, the encryption algorithm, on input pk and message m ∈ MSPhy := MSPsy

does the following:

• Select δ
$←− MSPasy.

• Compute c← Encsya (m), where a := G(δ).

• Compute e := Encasypk (δ;h), where h := H(δ‖c).

• Finally, output (e, c, d) as Enchypk(m; δ), where d := H ′(δ).

3. Dechy, the decryption algorithm, on input sk and ciphertext (e, c, d) does the
following:

• Compute δ̂ := Decasysk (e).

• If δ̂ =⊥: abort and output ⊥.

• Otherwise set ĥ := H(δ̂‖c).
• If e 6= Encasypk (δ̂; ĥ): abort and output ⊥.

• Else if d = H ′(δ̂):

– Compute â := G(δ̂) and output Decsyâ (c).

• Else output ⊥.

Note that our construction is the same as the Fujisaki-Okamoto construction, except
that we use an extra random oracle H ′. Consequently, the ciphertext has one more
component, the encryption algorithm has an additional instruction to compute H ′(δ)
and the decryption algorithm has an additional check corresponding to H ′.

31

Theorem 4 The hybrid scheme Πhy constructed above is IND-CCA secure in the quantum
random oracle model if Πsy is an one-time secure symmetric encryption scheme and Πasy

is a well-spread6 one-way/IND-CPA secure asymmetric encryption scheme.

Proof. Let Ahy be a quantum polynomial time adversary that attacks Πhy in the sense
of IND-CCA in the quantum random oracle model. Let q denote an upper bound on
the queries to H, G, H ′, and the decryption queries performed by Ahy . Let qdec be a
bound on the decryption queries alone. (Since decryption queries are typically more
“expensive”, we will sometimes use qdec to highlight that a certain term depends only on
decryption queries.) Let ΩH , ΩG, ΩH′ be the set of all function H : {0, 1}∗ → {0, 1}n2 ,
G : {0, 1}n1 → {0, 1}m and H ′ : {0, 1}n1 → {0, 1}n1 , respectively. The following game
shows the chosen ciphertext attack by the adversary Ahy in the quantum setting where
the adversary Ahy has quantum access to the random oracles H, G and H ′ and classical
access to the decryption algorithm Dechy.

Game 0:

let H
$←− ΩH , G

$←− ΩG, H ′
$←− ΩH′ , δ

∗ $←− MSPasy, (pk, sk)← Genasy(1n)

let m0,m1 ← AH,G,H
′,Dechy

hy (pk)

let b
$←− {0, 1}, c∗ ← EncsyG(δ∗)(mb), e

∗ ← Encasypk (δ∗;H(δ∗‖c∗)), d∗ := H ′(δ∗)

let b′ ← AH,G,H
′,Dechy

hy (e∗, c∗, d∗)
return [b = b′]

In order to show that the success probability of Game 0 is close to 1/2, we shall
introduce a sequence of games and compute the difference between their success
probabilities. For simplicity, we omit the definitions of random variables that appear
with the same distribution and without any changes in all of the following games. These

random variables are: H
$←− ΩH , G

$←− ΩG, δ∗
$←− MSPasy, (pk, sk) ← Genasy(1n), and

b
$←− {0, 1}.

In the next game, we replace the decryption algorithm Dechy with Dec∗ where Dec∗

on (e, c, d) does the following:

1. If e∗ is defined and e = e∗: return ⊥.

2. Else do:

• Compute δ̂ := Decasysk (e).

• If δ̂ =⊥: return ⊥.

• Otherwise set ĥ := H(δ̂‖c).
• If e 6= Encasypk (δ̂; ĥ): return ⊥.

• Else if d = H ′(δ̂): compute â := G(δ̂) and return Decsyâ (c).

6Meaning that a ciphertext has min-entropy at least ω(log(n)).

32

• Else: return ⊥.

We have slightly changed the definition of Dec∗ in comparison with [TU16]. Namely,
in [TU16], Dec∗ contained some queries to H ′ whose output were ignored (they were
needed to keep the oracle queries in sync between different games). We removed those
because they turn out not to be needed here.

Therefore, Game 1 is as follows:

Game 1:

let H ′
$←− ΩH′

let m0,m1 ← A
H,G,H′,Dec∗

hy (pk)

let c∗ ← EncsyG(δ∗)(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗

hy (e∗, c∗, H ′(δ∗))
return [b = b′]

We prove that the probabilities of success in Game 0 and Game 1 have negligible
difference. We can conclude the result by the fact that the asymmetric encryption scheme
is well-spread. The following lemma is shown in [TU16]. (Games 0 and 1 here are
identical to Games 0 and 1 in [TU16] except that we removed some oracle queries that
have no effect.)

Lemma 11 ([TU16]) If the asymmetric encryption scheme Πasy is well-spread, then∣∣∣Pr[1← Game 0]− Pr[1← Game 1]
∣∣∣ ≤ O(O(q9/5)

2ω(log(n))/5

)
=: `(n). (31)

Game 1b:

let H ′
$←− ΩH′ , a

∗ $←− KSPsy, d∗
$←− MSPasy

let m0,m1 ← A
H,G(δ∗:=d∗),H′(δ∗:=a∗),D̃ec

∗

hy (pk)

let c∗ ← Encsy
a∗

(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G(δ∗:=d∗),H′(δ∗:=a∗),D̃ec

∗

hy (e∗, c∗, d∗)
return [b = b′]

Here G(δ∗ := d∗) refers to the function G, except that G(δ∗ := d∗) returns d∗ on input

δ∗. Analogously H ′(δ∗ := a∗). And D̃ec
∗

is Dec∗, except that all occurrences of G and
H ′ are replaced by G(δ∗ := d∗) and H ′(δ∗ := a∗).

Since G and H ′ are uniformly random, replacing them everywhere by G(δ∗ := d∗)
and H ′(δ∗ := a∗) (for fresh uniformly random a∗, d∗) does not change their distribution.
And replacing invocations G(δ∗) and H ′(δ∗) by a∗ and d∗ does not change the game
either because G(δ∗) and H ′(δ∗) give those outputs anyway. Thus

Pr[1← Game 1] = Pr[1← Game 1b]. (32)

33

Game 2:

let H ′
$←− ΩH′ , a

∗ $←− KSPsy, d∗
$←− MSPasy

let m0,m1 ← A
H,G,H′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G,H′,Dec∗

hy (e∗, c∗, d∗)
return [b = b′]

In [TU16], it is shown that

Pr[1← Game 2] = 1/2± negl(n)sy. (33)

Since that proof does not change in the present setting, we omit it here.

We use the O2H Theorem 1 to obtain an upper bound for
∣∣∣Pr[1 ← Game 1b] −

Pr[1 ← Game 2]
∣∣∣. (In [TU16], the original O2H Theorem from [Unr15b] was used

instead.)
The only difference between Game 1b and Game 2 is that Game 2 uses G(δ∗ := d∗)

and H ′(δ∗ := a∗) instead of G and H ′. We can therefore apply Theorem 1 to replace
G(δ∗ := d∗) and H ′(δ∗ := a∗) by G and H ′. Specifically, in Theorem 1, let G be (G,H ′)
(the function that on input δ returns (G(δ), H ′(δ))), let H be (G(δ∗ := d∗), H ′(δ∗ := a∗)),
let S := {δ}, let z := δ∗, and let A(G,H′)(δ∗) be the algorithm that simulates Game
2 (picking H itself). Then Pright = Pr[1 ← A(G,H′)(δ∗)] = Pr[1 ← Game 2] and
Pleft = Pr[1 ← A(G(δ∗:=d∗),H′(δ∗:=a∗))(δ∗)] = Pr[1 ← Game 1b]. And by Theorem 1,
|Pleft − Pright| ≤

√
O(q)Pfind where Pfind = Pr[FindGH′ : A(G,H′)\{δ∗}(δ∗)] = Pr[FindGH′ :

Game 3]. (We write FindGH′ instead of Find here to distinguish it from the event FindH
introduced below. FindGH′ refers to a Find-event raised due to a δ∗ query to G or H ′.)
Here Game 3 is as defined below, the result from replacing G and H ′ by punctured
oracles G \ {δ∗} and H ′ \ {δ∗} in Game 2. Thus

|Pr[1← Game 2]− Pr[1← Game 1b]| ≤
√
O(q) Pr[FindGH′ : Game 3]. (34)

Game 3:

let H ′
$←− ΩH′ , a

∗ $←− KSPsy, d∗
$←− MSPasy

let m0,m1 ← A
H,G\{δ∗},H′\{δ∗},Dec∗\{δ∗}
hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G\{δ∗},H′\{δ∗},Dec∗\{δ∗}
hy (e∗, c∗, d∗)

Here Dec∗ \ {δ∗} denotes Dec∗ with all invocations of G and H ′ replaced by G \ {δ∗}
and H ′ \ {δ∗}.

34

Note that in comparison with [TU16], Game 3 here is a bit different: Our Game 3
simply is Game 2 with punctured oracles. In [TU16], Game 3 is an execution of Game 2
which stops at a randomly chosen query, measures that query, and then compares the
outcome of that measurement with δ∗.

In the next game, we replace the random oracle H ′ with a 2q-wise independent
function. Random polynomials of degree 2q − 1 over the finite field GF (2n1) are 2q-wise
independent. Let Ωwise be the set of all such polynomials.

Game 4:

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy

let m0,m1 ← A
H,G\{δ∗},H′\{δ∗},Dec∗\{δ∗}
hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G\{δ∗},H′\{δ∗},Dec∗\{δ∗}
hy (e∗, c∗, d∗)

Due to a result by Zhandry [Zha12b], a 2q-wise independent function H ′ is perfectly
indistinguishable from a random function when the adversary makes at most q queries to
H ′. Therefore,

Pr[1← Game 3] = Pr[1← Game 4]. (35)

We replace the decryption algorithm Dec∗ \ {δ∗} with a new decryption algorithm
Dec∗∗ in Game 5. Dec∗∗ has access to the description (as a polynomial) of H ′. Dec∗∗ on
input (e, c, d) works as follows:

1. If e∗ is defined and e = e∗: output ⊥.

2. Else do:

• Calculate all roots of the polynomial H ′ − d. Let S be the set of those roots.

• If there exists a δ̂ ∈ S such that e = Encasypk

(
δ̂;H(δ̂‖c)

)
:

– compute â := (G \ {δ∗})(δ̂) and return Decsyâ (c).

• Else: output ⊥.

We emphasise that finding roots of polynomial H ′ − d is possible in polynomial time
[Ben81] and it does not involve queries to H ′ or H ′ \ {δ∗}.

This definition of Dec∗∗ is different from [TU16] not because of the use of a different
O2H Theorem, but in order to fix a mistake in the proof from [TU16]. Namely, in [TU16],
Dec∗∗ directly accesses δ∗, but later when using the one-wayness of the asymmetric
encryption scheme, they erroneously use that the final game (that contains Dec∗∗) does
not access δ∗ directly.

Game 5:

35

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy

let m0,m1 ← A
H,G\{δ∗},H′\{δ∗},Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗‖c∗))

let b′ ← A
H,G\{δ∗},H′\{δ∗},Dec∗∗

hy (e∗, c∗, d∗)

We would like to show that Pr[FindGH′ : Game 4] ≤ Pr[FindGH′ : Game 5], but
that is not actually true. There is one situation in which the adversary might cause
Dec∗ \ {δ∗} to query (H ′ \ {δ∗})(δ∗) with no corresponding query being made by Dec∗∗.
This can happen in the following event BlindGuess: Let BlindGuess denote the event that
Dec∗ \ {δ∗} or Dec∗∗ is queried with input (e, c, d) while e∗ = ⊥ (no challenge query has
been performed yet) and Decasysk (e) = δ∗.

We show that Pr[BlindGuess : Game 4] ≤ O(q)2−n1 : If we define Game 4’ to run
Game 4 but stop right after the first invocation of Ahy (i.e., before e∗ is defined), then
Pr[BlindGuess : Game 4] = Pr[BlindGuess : Game 4′]. And Game 4’ never accesses δ∗,
except that H ′ and G are punctured at δ∗. And Game 4’ makes at most O(q) queries to
G and H ′ combined. Thus Pr[BlindGuess : Game 4′] ≤ O(q)2−n1 by Corollary 1.

We now show that

Pr[FindGH′ ∧ ¬BlindGuess : Game 4] ≤ Pr[FindGH′ : Game 5]. (36)

For this it is sufficient to show that when Dec∗ \{δ∗} and Dec∗∗ are queried with the same
input (c, d, e), they return the same value, and that if in Dec∗ \ {δ∗}, FindGH′ happens
but not BlindGuess, then in Dec∗∗, FindGH′ happens. We distinguish the following cases
(where δtrue := Decasysk (e)):

• Case e = e∗e = e∗e = e∗: Dec∗\{δ∗} and Dec∗∗ both return ⊥. Dec∗\{δ∗} performs no queries
to G \ {δ∗}, H ′ \ {δ∗}, so FindGH′ does not occur.

• Case δtrue = ⊥δtrue = ⊥δtrue = ⊥ (and not e = e∗e = e∗e = e∗): Dec∗ \ {δ∗} returns ⊥. Since we assume perfect
correctness of Encasy , if e = Encasypk

(
δ̂;H(δ̂‖c)

)
for some δ̂, then Decasysk (e) = δ̂ and

hence ⊥ = δtrue = Decasysk (e) = δ̂ 6= ⊥. Thus there is no such δ̂, and Dec∗∗ returns
⊥.

Dec∗ \ {δ∗} performs no queries to G \ {δ∗}, H ′ \ {δ∗}, so FindGH′ does not occur
in Dec∗ \ {δ∗}.

• Case e 6= Encasypk

(
δtrue ;H(δtrue‖c)

)
e 6= Encasypk

(
δtrue ;H(δtrue‖c)

)
e 6= Encasypk

(
δtrue ;H(δtrue‖c)

)
(and neither of the above): Dec∗ \ {δ∗}

returns ⊥. And since we assume perfect correctness, we also have e 6=
Encasypk

(
δ̂;H(δ̂‖c)

)
for any δ̂ 6= Decasysk (e) = δtrue . Thus Dec∗∗ returns ⊥.

And Dec∗ \ {δ∗} does not query G \ {δ∗}, H ′ \ {δ∗}, so FindGH′ does not occur in
Dec∗ \ {δ∗}.

• Case d = H ′(δtrue)d = H ′(δtrue)d = H ′(δtrue) (and none of the above): Dec∗ \ {δ∗} returns DecsyG(δtrue)(c).

And in Dec∗∗, since d = H ′(δtrue), we have δtrue ∈ S. And since e =

36

Encasypk

(
δtrue ;H(δtrue‖c)

)
and we have perfect correctness, there cannot be another

δ̂ with e = Encasypk

(
δ̂;H(δ̂‖c)

)
. Thus Dec∗∗ returns DecG(δtrue)(c) as well.

Dec∗ \ {δ∗} queries (H ′ \ {δ∗})(δtrue) and (G \ {δ∗})(δtrue), so FindGH′ occurs here
iff δtrue = δ∗. And Dec∗∗ queries (G \ {δ∗})(δtrue), so FindGH′ occurs iff δtrue = δ∗

here as well. So FindGH′ occurs in Dec∗ \ {δ∗} iff it occurs in Dec∗∗.

• Case δtrue 6= δ∗δtrue 6= δ∗δtrue 6= δ∗ (and none of the above): Dec∗ \ {δ∗} returns ⊥ since d 6=
H ′(δtrue). Since e = Encasypk

(
δtrue ;H(δtrue‖c)

)
, and using perfect correctness, we

know that there can be no δ̂ 6= δtrue satisfying e = Encasypk

(
δ̂;H(δ̂‖c)

)
. And since

d 6= H ′(δtrue), δtrue /∈ S. Thus Dec∗∗ returns ⊥.

Dec∗ \ {δ∗} only queries H(δtrue‖c) and (H ′ \ {δ∗})(δtrue). Thus, since δtrue 6= δ∗,
FindGH′ does not occur in Dec∗ \ {δ∗}.

• None of the above: As in the previous case, we have that Dec∗ \ {δ∗} and Dec∗∗

both return ⊥.

If e∗ 6= ⊥, then e∗ = Encasypk

(
δ∗;H(δ∗‖c)

)
by definition of e∗. And e =

Encasypk

(
δtrue ;H(δtrue‖c)

)
(otherwise we would be in a prior case). Furthermore,

δtrue = δ∗ (otherwise we would be in the previous case). Thus e = e∗. But then we
would be in the first case. So we conclude that e∗ = ⊥.

Since e∗ = ⊥ and Decasysk (e) = δtrue = δ∗, the event BlindGuess occurs in Dec∗ \{δ∗}.

Thus we have shown in all cases that Dec∗ \ {δ∗} and Dec∗∗ return the same value,
and that if in Dec∗ \ {δ∗}, FindGH′ happens but not BlindGuess, then in Dec∗∗, FindGH′

happens. (36) follows. Thus

Pr[FindGH′ : Game 4] ≤ Pr[FindGH′∧¬BlindGuess : Game 4]+Pr[BlindGuess : Game 4]
(36)

≤ Pr[FindGH′ : Game 5] + Pr[BlindGuess : Game 4]

≤ Pr[FindGH′ : Game 5] +O(q)2−n1 . (37)

Note that this analysis of the differences between Dec∗ and Dec∗∗ differs from the
proof from [TU16]. We stress that this particular change is unrelated to the introduction
of the new O2H Theorem but is a consequence of the fact that we changed the definition
of Dec∗∗ above to avoid a mistake in [TU16]. However, this change is made easier by
the new O2H Theorem because we only need to show that FindGH′ in one game implies
FindGH′ in another game, instead of having to show that all oracle calls are in sync.
Nevertheless, we conjecture that a similar change could be made to repair the proof in
[TU16].

Note that Dec∗∗ does not use the secret key of the asymmetric encryption scheme to
decrypt the ciphertext. This will allow us below to make use of the one-way / IND-CPA
security of Πasy. (This is only possible if the secret key is never used.)

The next step is to replace the random coins H(δ∗‖c∗) of the asymmetric encryption
scheme by truly random coins from COINasy. It will facilitate the use of the O2H Theorem

37

below if we do not just change H(δ∗‖c∗) but all outputs of the form H(δ∗‖ ·). This is
easier because c∗ is not known at the beginning of the game. If we were to change only
H(δ∗‖c∗), we would need an adaptive version of the O2H Theorem [Unr14] that is more
complicated and has a somewhat worse bound. Changing all of H(δ∗‖ ·) is possible in
our setting since our O2H Theorem allows us to change the oracle not just at a single
location (in Theorem 1, S can be an arbitrary large set).

Game 5b:

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy, R

$←− ΩR,

let m0,m1 ← A
H(δ∗:=R),G\{δ∗},H′\{δ∗},D̃ec

∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;R(c∗))

let b′ ← A
H(δ∗:=R),G\{δ∗},H′\{δ∗},D̃ec

∗∗

hy (e∗, c∗, d∗)

Here ΩR is the set of all functions {0, 1}∗ → COINasy. And H(δ∗ := R) refers to the

function H, except that H(δ∗ := R) returns R(c) on input δ∗‖c for all c. And D̃ec
∗∗

is
Dec∗∗, except that all occurrences of H are replaced by H(δ∗ := R).

Since H is uniformly random, replacing it everywhere by H(δ∗ := R) (for fresh
uniformly random R) does not change its distribution. And replacing invocations
H(δ∗‖c∗) by R(c∗) does not change the game either because H(δ∗‖c∗) gives that output
anyway. Thus

Pr[1← Game 5] = Pr[1← Game 5b]. (38)

Game 6:

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy, R

$←− ΩR,

let m0,m1 ← A
H,G\{δ∗},H′\{δ∗},Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;R(c∗))

let b′ ← A
H,G\{δ∗},H′\{δ∗},Dec∗∗

hy (e∗, c∗, d∗)

We use the O2H Theorem 1 to obtain an upper bound for
|
√

Pr[FindGH′ : Game 5b]−
√

Pr[FindGH′ : Game 6]|. (In [TU16], the adaptive
O2H Theorem from [Unr14] was used instead. We removed the need for an adaptive
O2H Theorem by simply changing H at multitude of inputs instead of only at δ‖c∗.)

The only difference between Game 5b and Game 6 is that Game 6 uses H(δ∗ := R)
instead of H. We can therefore apply Theorem 1 to replace H(δ∗ := R) by H. Specifically,
in Theorem 1, let G be H, let H be H(δ∗ := R), let S := {δ∗‖ ·} (the set of all bitstrings
starting with δ∗), let z := δ∗, and let AH(δ∗) be the algorithm that simulates Game
6 and outputs 1 iff FindGH′ happens. Then Pright = Pr[1 ← AH(δ∗)] = Pr[FindGH′ :

Game 6] and Pleft = Pr[1 ← AH(δ∗:=R)(δ∗)] = Pr[FindGH′ : Game 5b]. A makes up
to O(qqdec)-queries to H (including the ones made indirectly via the simulated Dec∗∗).

38

Thus by Theorem 1, |
√
Pleft −

√
Pright| ≤

√
O(qqDec)Pfind where Pfind = Pr[FindH :

AH\{δ
∗‖·}(δ∗)] = Pr[FindH : Game 7].7 (We write FindH instead of Find here to distinguish

it from the event FindGH′ introduced above.) Here Game 7 is as defined below, the result
from replacing H by the punctured oracle H \ {δ∗‖ ·} in Game 6. Thus∣∣∣√Pr[FindGH′ : Game 6]−

√
Pr[FindGH′ : Game 5b]

∣∣∣ ≤√O(qqdec) Pr[FindH : Game 7].

(39)

Game 7:

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy, R

$←− ΩR,

let m0,m1 ← A
H\{δ∗‖·},G\{δ∗},H′\{δ∗},Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;R(c∗))

let b′ ← A
H\{δ∗‖·},G\{δ∗},H′\{δ∗},Dec∗∗\{δ∗‖·}
hy (e∗, c∗, d∗)

Here Dec∗∗ \ {δ∗‖·} denotes Dec∗∗ with all invocations of H replaced by H \ {δ∗‖·}.
In this game, we see the advantage of the new formalization of the O2H Theorem in

terms of a Find-event. In [TU16], this game is much more complicated: In [TU16], the
Game 3 introduces a wrapper around the game that stops the game at a random oracle
query to G or H ′. And then in Game 7, there is a wrapper around that wrapper that
stops at a random query to H. While this does not introduce any actual problems in
the proof, we believe that it strongly simplifies the presentation not to have to deal with
nested wrappers.

Summarizing the inequalities we have derived so far, we get:

|Pr[1← Game 0]− 1
2 |

(31,32,33,34)

≤ `(n) + negl(n)sy +
√
O(q) Pr[FindGH′ : Game 3]

(35,37)

≤ `(n) + negl(n)sy +
√
O(q)

(
Pr[FindGH′ : Game 5] +O(q)2−n1

)
≤ `(n) + negl(n)sy +

√
O(q)

√
Pr[FindGH′ : Game 5] +O(q)2−n1/2

(38,39)

≤ `(n) + negl(n)sy +
√
O(q)

(√
Pr[FindGH′ : Game 6] +

√
O(qqdec) Pr[FindH : Game 7]

)
+O(q)2−n1/2

= `(n) + negl(n)sy +
√
O(q)

√
Pr[FindGH′ : Game 6] +O(qq

1/2
dec)

√
Pr[FindH : Game 7] +O(q)2−n1/2

(40)

Note: in the inequality
(38,39)

≤, we see the advantage of using the form of Theorem 1 that
bounds the difference of square-roots of probabilities (between

√
Pr[FindGH′ : Game 6]

7Here, we get the factor O(qqdec) which plays a dominant role in the final bound. This factor is
mostly due to the classical queries performed by Dec∗∗ \ {δ∗}, the number of quantum queries is O(q),
i.e., much smaller. It is an interesting question whether there is a strengthening of the O2H Theorem
that distinguishes between classical and quantum queries and thus leads to a better bound here.

39

and
√

Pr[FindGH′ : Game 5b]). If we had used the original form bounding the differ-
ence between probabilities (between Pr[FindGH′ : Game 6] and Pr[FindGH′ : Game 5b]),
O(q) Pr[FindH : Game 7] would be under a fourth root instead of a square root after

(38,39)

≤. We expect that a similar benefit occurs whenever the O2H Theorem is nested (i.e.,
the O2H Theorem is used to analyze the guessing game Pfind resulting from another
application of the O2H Theorem).

We are left to bound the success probability in Games 6 and 7 (i.e., the probability
of FindGH′ and FindH , respectively). Since in both games R(c∗) is uniformly random,
and only used as the randomness for Encasypk (δ∗;R(c∗)), we can use the one-wayness of

Encasypk to show that δ∗ is hidden. If δ∗ would not occur anywhere else in Games 6 and 7
(as was assumed in the proof from [TU16]), it would then be simple to prove that the
probabily of guessing δ∗ is small.

In our setting, however, we have an additional complication: δ∗ is used in Games 6
and 7 also as part of the puncturing of the oracles. For example, to simulate G \ δ∗, we
need to know δ∗. So, hypothetically, it might be possible that access to G \ δ∗ might leak
some information about δ∗.

We give here two different proofs that this is not the case, one simpler one assuming
IND-CPA security of Encasy , and one slightly more complicated one assuming only
one-time security of Encasy . The proof is almost identical for Games 6 and 7, so we only
give the proof for Game 7.

Proof using IND-CPA. Since R(c∗) is uniformly random, and only used
once as the randomness for Encasypk (δ∗;R(c∗)), IND-CPA security of Encasy im-

plies that Encasypk (δ∗;R(c∗)) is indistinguishable from Encasypk (0). More precisely,
|Pr[FindH : Game 7]− Pr[FindH : Game 8]| ≤ negl(n)asy where Game 8 results from
Game 7 by replacing Encasypk (δ∗;R(c∗)) by Encasypk (0):

Game 8:

let H ′
$←− Ωwise, a

∗ $←− KSPsy, d∗
$←− MSPasy,

let m0,m1 ← A
H\{δ∗‖·},G\{δ∗},H′\{δ∗},Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (0)

let b′ ← A
H\{δ∗‖·},G\{δ∗},H′\{δ∗},Dec∗∗\{δ∗‖·}
hy (e∗, c∗, d∗)

Note that an oracle query to G \ {δ∗} is equivalent to querying G and OSC
{δ∗} con-

secutively. Analogously for H \ {δ∗‖·} and G \ {δ∗}. (In the case of H \ {δ∗‖·}, OSC
{δ∗}

is applied only to the first part of the query input.) Thus, we can define an adversary

B
OSC
{δ∗}() that picks the functions H,G,H ′ itself, and then executes Game 8 using OSC

{δ∗}
to simulate G \ {δ∗}, H \ {δ∗‖·}, and G \ {δ∗}.

(Note that in Game 8, δ∗ is never used directly, only in the definition of the punctured
oracles. Otherwise, it would not be possible to construct B in this way (without additional
input δ∗). In particular, we need that Dec∗∗ does not access δ∗ directly. This is why we
had to change the definition of Dec∗∗ from the definition used in [TU16].)

40

Then we have

Pr[Find : B
OSC
{δ∗}()] = Pr[FindGH′ ∨ FindH : Game 8] ≥ Pr[FindH : Game 8]. (41)

And B makes O(qqdec) queries to OSC
{δ∗}. (Note that Dec∗∗ makes one oracle query for

every δ̂ ∈ S, and there are at most O(q) values in S since H ′ − d is a polynomial of
degree O(q).)

By Corollary 1, we then have Pr[Find : B
OSC
{δ∗}()] ∈ O(qqdec)2−n1 and thus Pr[FindH :

Game 7]
(41)

≤ negl(n)asy +O(qqdec)2−n1 .
Analogously, we get Pr[FindGH′ : Game 6] ≤ negl(n)asy +O(qqdec)2−n1 .
Plugging this into (40), we get

|Pr[1← Game 0]− 1
2 | ≤ `(n) + negl(n)sy +

√
O(q)

√
negl(n)asy +O(qqdec)2−n1

+O(qq
1/2
dec)

√
negl(n)asy +O(qqdec)2−n1 +O(q)2−n1/2

≤ `(n) + negl(n)sy +O(qq
1/2
dec)

√
negl(n)asy +O(q3/2qdec)2−n1/2.

Proof using one-wayness. Note that an oracle query to G \ {δ∗} is equivalent to
querying G and OSC

{δ∗} consecutively. Analogously for H \ {δ∗‖·} and G \ {δ∗}. (In the

case of H \ {δ∗‖·}, OSC
{δ∗} is applied only to the first part of the query input.)

Thus we can define an adversary Â
OSC
{δ∗}(e∗) that simulates Game 7, using OSC

{δ∗} to sim-

ulate the queries to the punctured oracles, and using e∗ as the ciphertext Encasypk (δ∗;R(c∗)).
Then

Pr[Find : Â
OSC
{δ∗}(e∗)] = Pr[FindGH′ ∨ FindH : Game 7] ≥ Pr[FindH : Game 7] (42)

where e∗ := Encasypk (δ∗;R(c∗)) and δ∗ uniform. And Â makes O(qqdec) queries. (Note

that Dec∗∗ makes one oracle query for every δ̂ ∈ S, and there are at most O(q) values in
S since H ′ − d is a polynomial of degree O(q).)

And by Theorem 2,

Pr[Find : Â
OSC
{δ∗}(e∗)] ≤ O(qqdec) Pr[δ∗ = B(e∗)] (43)

where B is the adversary that stops Â at a random query (see Theorem 2). Note that
the runtime of B is approximately the same as that of Â.

Then from the one-wayness of the asymmetric encryption scheme, we have Pr[δ∗ =

B(e∗)]
(42,43)

≤ negl(n)asy. Hence Pr[FindH : Game 7] ≤ O(qqdec) negl(n)asy.
Analogously, Pr[FindGH′ : Game 6] ≤ O(qqdec) negl(n)asy.
Plugging this into (40), we get

|Pr[1← Game 0]− 1
2 | ≤ `(n) + negl(n)sy +

√
O(q)

√
O(qqdec) negl(n)asy

+O(qq
1/2
dec)

√
O(qqdec) negl(n)asy +O(q)2−n1/2

≤ `(n) + negl(n)sy +O(q3/2qdec)
√
negl(n)asy.

(In the last inequality, to drop the last summand, we used that negl(n)asy ≥ 2−n1 since
the plaintext is n1 bit long and thus can be guessed with probability at least 2−n1 .) �

41

References

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. J. Comput.
Syst. Sci., 64(4):750–767, June 2002. URL: http://dx.doi.org/10.1006/
jcss.2002.1826, doi:10.1006/jcss.2002.1826.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems: The hardness of quantum rewinding. In 55th
FOCS, pages 474–483. IEEE Computer Society Press, October 2014. doi:

10.1109/FOCS.2014.57.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778–797,
July 2001. URL: http://doi.acm.org/10.1145/502090.502097, doi:10.
1145/502090.502097.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on
quantum searching. Fortschritte der Physik, 46(4-5):493–505, 1998. doi:10.
1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, vol-
ume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
doi:10.1007/978-3-642-25385-0_3.

[BEF18] Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum EPID group
signatures from symmetric primitives. Cryptology ePrint Archive, Report
2018/261, 2018. https://eprint.iacr.org/2018/261.

[Ben81] Michael Ben-Or. Probabilistic algorithms in finite fields. In 22nd FOCS,
pages 394–398. IEEE Computer Society Press, October 1981. doi:10.1109/
SFCS.1981.37.

[BES18] Marko Balogh, Edward Eaton, and Fang Song. Quantum collision-finding
in non-uniform random functions. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 467–486. Springer, Heidelberg, 2018. doi:

10.1007/978-3-319-79063-3_22.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages
62–73. ACM Press, November 1993. doi:10.1145/168588.168596.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages
92–111. Springer, Heidelberg, May 1995. doi:10.1007/BFb0053428.

42

http://dx.doi.org/10.1006/jcss.2002.1826
http://dx.doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
http://doi.acm.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1007/978-3-642-25385-0_3
https://eprint.iacr.org/2018/261
https://doi.org/10.1109/SFCS.1981.37
https://doi.org/10.1109/SFCS.1981.37
https://doi.org/10.1007/978-3-319-79063-3_22
https://doi.org/10.1007/978-3-319-79063-3_22
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/BFb0053428

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 1825–1842. ACM Press, October / November
2017. doi:10.1145/3133956.3133997.

[CHR+18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. SOFIA: MQ-based signatures in the QROM. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770
of LNCS, pages 3–33. Springer, Heidelberg, March 2018. doi:10.1007/

978-3-319-76581-5_1.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring signa-
tures from symmetric-key primitives. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 419–440. Springer, Heidelberg, 2018. doi:

10.1007/978-3-319-79063-3_20.

[Eat17] Edward Eaton. Leighton-Micali hash-based signatures in the quantum random-
oracle model. In Carlisle Adams and Jan Camenisch, editors, SAC 2017,
volume 10719 of LNCS, pages 263–280. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-72565-9_13.

[EU18] E. Ehsan Ebrahimi and Dominique Unruh. Quantum collision-resistance
of non-uniformly distributed functions: upper and lower bounds. Quantum
Information & Computation, 18(15&16):1332–1349, 2018. URL: http://www.
rintonpress.com/xxqic18/qic-18-1516/1332-1349.pdf.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. Journal of Cryptology, 26(1):80–101,
January 2013. doi:10.1007/s00145-011-9114-1.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

[GPS17] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification pro-
tocols and signature schemes based on supersingular isogeny problems. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 3–33. Springer, Heidelberg, December 2017.
doi:10.1007/978-3-319-70694-8_1.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,

43

https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-72565-9_13
http://www.rintonpress.com/xxqic18/qic-18-1516/1332-1349.pdf
http://www.rintonpress.com/xxqic18/qic-18-1516/1332-1349.pdf
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70694-8_1

editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017. doi:10.1007/978-3-319-70500-2_12.

[HKSU18] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic
authenticated key exchange in the quantum random oracle model. Cryptology
ePrint Archive, Report 2018/928, 2018. https://eprint.iacr.org/2018/

928.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 387–416. Springer, Heidelberg, March 2016. doi:

10.1007/978-3-662-49384-7_15.

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-
CCA-secure key encapsulation mechanism in the quantum random oracle
model, revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_4.

[JZM] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism
with explicit rejection in the quantum random oracle model. unpublished
manuscript, first revision of [JZM19], personal communication.

[JZM19] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism
with explicit rejection in the quantum random oracle model. Cryptology ePrint
Archive, Report 2019/052, 2019. https://eprint.iacr.org/2019/052.

[LM95] Frank T. Leighton and Silvio Micali. Large provably fast and secure digital
signature schemes based on secure hash functions. US Patent 5,432,852, 1995.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, first edition, 2000.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 520–551. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78372-7_17.

[SY17] Fang Song and Aaram Yun. Quantum security of NMAC and related
constructions - PRF domain extension against quantum attacks. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, vol-
ume 10402 of LNCS, pages 283–309. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-63715-0_10.

44

https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2018/928
https://eprint.iacr.org/2018/928
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-319-96878-0_4
https://eprint.iacr.org/2019/052
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-63715-0_10

[TTU16] Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and Dominique Unruh. Quan-
tum collision-resistance of non-uniformly distributed functions. In Tsuyoshi
Takagi, editor, Post-Quantum Cryptography - 7th International Workshop,
PQCrypto 2016, pages 79–85. Springer, Heidelberg, 2016. doi:10.1007/

978-3-319-29360-8_6.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum security of the
Fujisaki-Okamoto and OAEP transforms. In TCC 2016-B, volume 9986 of
LNCS, pages 192–216. Springer, 2016. doi:10.1007/978-3-662-53644-5_8.

[Unr14] Dominique Unruh. Quantum position verification in the random oracle
model. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 1–18. Springer, Heidelberg, August 2014.
doi:10.1007/978-3-662-44381-1_1.

[Unr15a] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 755–784. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_25.

[Unr15b] Dominique Unruh. Revocable quantum timed-release encryption. Journal of
the ACM, 62(6):49:1–76, 2015. Preprint on IACR ePrint 2013/606.

[Unr17] Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 65–95. Springer, Heidelberg, December 2017. doi:

10.1007/978-3-319-70694-8_3.

[YAJ+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A post-quantum digital signature scheme based on supersingular
isogenies. In Aggelos Kiayias, editor, FC 2017, volume 10322 of LNCS, pages
163–181. Springer, Heidelberg, April 2017.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A,
60:2746–2751, Oct 1999. URL: https://arxiv.org/abs/quant-ph/9711070,
doi:10.1103/PhysRevA.60.2746.

[Zha12a] Mark Zhandry. How to construct quantum random functions. In 53rd
FOCS, pages 679–687. IEEE Computer Society Press, October 2012. doi:

10.1109/FOCS.2012.37.

[Zha12b] Mark Zhandry. Secure identity-based encryption in the quantum random ora-
cle model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 758–775. Springer, Heidelberg, August 2012.
doi:10.1007/978-3-642-32009-5_44.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Information and Computation, 15(7&8), 2015.

45

https://doi.org/10.1007/978-3-319-29360-8_6
https://doi.org/10.1007/978-3-319-29360-8_6
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://arxiv.org/abs/quant-ph/9711070
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44

Symbol index

OSC
I Semi-classical oracle for set I

Find Semi-classical OSC
S returns 1

∆(X,Y) Statistical distance between distributions/random vari-
ables X and Y

flipi(l) Flips i-th bit of l

F (ρ1, ρ2) Fidelity between ρ1 and ρ2 17

TD(ρ1, ρ2) Trace distance between ρ1 and ρ2. 17

tr ρ Trace of ρ

B(ρ1, ρ2) Bures distance between ρ1 and ρ2 17

|Ψ〉 Refers to a quantum state (or, for x ∈ M , |x〉 refers
to a basis vector of CM)

trAρ Partial trace of ρ, removing register A

〈Ψ| Adjoint of |Ψ〉, i.e., 〈Ψ|†

C Complex numbers

E A quantum operation (superoperator)

D A distribution

x
$←M x picked uniformly from the set M

H \ I Oracle H, punctured at I

|x| Absolute value of x / cardinality of set x

x← A x assigned output of algorithm A / picked according
to distribution A

Guess Query to fully-quantum oracle is in S

‖x‖ Norm of x

Expz[y] Expectation of y, taken over the randomness of z

46

	Introduction
	Related work
	Impact on existing cryptosystems

	Preliminaries
	Semi-classical oracles
	Regular O2H, revisited

	Examples how to use the O2H Theorems
	Hardness of searching in a sparse random function
	Hardness of inverting a random oracle with leakage

	Proofs
	Auxiliary lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Appendix
	Optimality of Corollary 1
	Improved proof of the Targhi-Unruh transform

